
Am I going to Heaven? First step climbing the Stairway to
Heaven Model

Results from a Case Study in Industry

Paulo Sérgio dos Santos Júnior
Department of Computer Science,

Federal Institute of Education, Science
and Technology of Espírito Santo

Serra, ES, Brazil
paulo.junior@ifes.edu.br

Monalessa P. Barcellos
Ontology and Conceptual Modeling
Research Group (NEMO), Computer

Science Department, Federal
University of Espírito Santo

Vitória, ES, Brazil
monalessa@inf.ufes.br

Rodrigo Fernandes Calhau
Department of Computer Science,

Federal Institute of Education, Science
and Technology of Espírito Santo

Serra, ES, Brazil
calhau@ifes.edu.br

ABSTRACT
Context: Nowadays, software development organizations have adop-
ted agile practices and data-driven software development aiming at
competitive advantage. Moving from traditional to agile and data-
driven software development requires changes in the organization
culture and structure, which may not be easy. Stairway to Heaven
Model (StH) describes this evolution path in five stages. Objective:
We aimed to investigate how Systems Theory tools, GUTMatrix and
reference ontologies can help organizations in the first transition
of StH, i.e., moving from traditional to agile development. Method:
We performed a participative case study in a Brazilian organization
that develops software in partnership with a European organization.
We applied Systems Theory tools (systemic maps and archetypes)
to understand the organization and identify undesirable behaviors
and their causes, and also GUT matrices to decide about which
ones should be addressed first; we defined strategies to change the
undesirable behaviors by implementing agile practices, and we used
reference ontologies to share a common understanding about agile
concepts. Results: By understanding the organization, a decisionwas
made to implement a combination of agile and traditional practices.
The implemented strategies improved software quality and project
time and cost. Problems due to misunderstanding agile concepts
were solved, allowing the organization to experience agile culture
and foresee changes in its business model. Conclusion: Systems
Theory tools and GUT Matrix aid organizations to move from
traditional to agile development by supporting better understand
the organization, find leverage points of change and enabling to
define strategies aligned to the organization characteristics and
priorities. Reference ontologies can be useful to establish a common
understanding about agile, enabling teams to be aware of and, thus,
more committed to agile practices and concepts.

KEYWORDS
Stairway to Heaven, Agile, Systems Theory, GUT Matrix, Ontology

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SBES 2020, October 19–23, 2020, Natal,RN - Brazil
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422406

ACM Reference Format:
Paulo Sérgio dos Santos Júnior, Monalessa P. Barcellos, and Rodrigo Fernan-
des Calhau. 2020. Am I going to Heaven? First step climbing the Stairway to
HeavenModel: Results from a Case Study in Industry. In 34th Brazilian Sym-
posium on Software Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3422392.3422406

2020 SBES ’20,October 21–23, 2020, Natal, Brazil 978-1-4503-8753-
8/20/09

1 INTRODUCTION
Typically, fast-changing and unpredictable market needs, complex
and changing customer requirements, and pressures of shorter time-
to-market are challenges faced by organizations. To address these
challenges, many organizations have started adopting agile devel-
opment methods with the intention to enhance the organization
ability to respond to change. In emphasizing flexibility, efficiency
and speed, agile practices have led to a paradigm shift on how soft-
ware is developed [12] [21]. Different flavors of the agile methods
have become the de facto way of working in the software indus-
try [14]. In allowing for more flexible ways of working with an
emphasis on customer collaboration and speed of development,
agile methods help organizations address many of the problems
associated with traditional development [5].

The adoption of agile practices has enabled organizations to
shorten development cycles and increase customer collaboration.
However, this has not been enough. There has been a need to learn
from customers also after deployment of the software product. This
requires practices that extend agile practices, such as continuous
deployment (i.e., the ability to deliver software more frequently to
customers and benefit from frequent customer feedback), which
enables shorter feedback loops, more frequent customer feedback,
and the ability to more accurately validate whether the developed
functionalities correspond to customer needs and behaviors [13].
Therefore, organizations should evolve from traditional develop-
ment towards data-driven software development.

Considering that organizations struggle with the changes to be
made along the path andwith the order inwhich to implement them,
Olsson et al. [12] proposed the Stairway to Heaven Model (StH),
which describes the typical successful evolution of an organization
from traditional to customer data-driven development. The model
comprises five stages, where the first transition consists in moving
from traditional to agile development. This transition requires a

https://doi.org/10.1145/3422392.3422406
https://doi.org/10.1145/3422392.3422406

SBES 2020, October 19–23, 2020, Natal,RN - Brazil Santos Jr et al.

careful introduction of agile practices, a shift to small development
teams, and a focus on features rather than components.

In this paper, we report the experience of a Brazilian organization
(here called Organization A for anonymity reasons) which decided
to evolve from traditional to agile and data-driven software develop-
ment. For that, we have followed the StH model [12]. In this paper
our focus is on the first transition of the StH model. Although there
is an increasing number of organizations moving from traditional
to agile, implementing the changes needed to the first transition
prescribed in StH is not trivial because it involves changes not
only in the development process, but also in the organization cul-
ture. Moreover, there is no “one and right” way to implement agile
practices in an organization because each agile practice has to be
tailored to fit the business goals, culture, environment and other
aspects of the organization. Therefore, organizations should find
their own way to go through the path from traditional to agile [8].

Organization A has a particular characteristic that needs to be
taken into account when defining strategies to implement agile
practices: the software projects of Organization A are built in part-
nership with a European organization (here called Organization
B). In this partnership, Organization B is responsible for software
requirements specification process, while Organization A is re-
sponsible for design, coding, testing and deployment processes.
Furthermore, Organization B is responsible for the communication
between Organization A and the project client. Both organizations
A and B work in a traditional but many times ad hoc manner. This
way of working has brought problems, such as budget overloading,
teams divided into disciplines (testers, architects, programmers,
etc.) causing many intermediary delivery points in the organization
and increasing delays between them, and large periods required to
deploy new versions of the software products [8] [13] [21].

Organization A was in the first stage of StH and, in order to
evolve, the first step was to go towards becoming an agile organi-
zation. Two main challenges were faced in this context: (i) how to
move from a traditional development culture to an agile culture and
(ii) how to implement agile practices in an organization that shares
requirement-related activities with another organization and does
not have direct access to the project client.

To overcome these challenges, it would be necessary to get to
know the organization so that it would be possible to define suitable
strategies to implement agile practices. Thus, we employed an ap-
proach that combined Systems Theory tools (mainly systemic maps
and archetypes) [11][17], GUT Matrix [9] and reference ontologies
[7] to identify the path to implement agile practices and get into
agile culture based on the organization characteristics and con-
text. As main results we highlight: (i) it was possible to understand
the organization behavior, identify behavior patterns and leverage
points of change; (ii) strategies were defined to implement agile
practices by changing undesirable behaviors and focusing on lever-
age points, taking the organization characteristics into account; (iii)
by implementing the strategies, Organization A improved software
quality, project time and cost and started to develop agile culture;
and (iv) a process based on Systems Theory to aid organization
define strategies to implement agile practices arose from the study.

This work brings contributions to researchers and practitioners.
The study can serve as an example for other organizations similar
to Organization A and the process resulting from the study can be

used by other organizations. Researchers can reflect and provide
advances on the use of Systems Theory to support definition of
strategies in agile software development context.

This paper is organized as follows: Section 2 presents the theoret-
ical background; Section 3 presents the study planning, execution
and results; Section 4 discusses threats to validity and Section 5
presents our final considerations and future works.

2 BACKGROUND
Traditional software development is organized sequentially, hand-
ing over intermediate artifacts (e.g., requirements, designs, code)
between different functional groups in the organization. This cause
many handover points that lead to problems such as time delays
between handovers of different groups and amounts of resources
are applied to creating these intermediate artifacts that, to a large
extent, are replacements of human-to-human communication [2].
In agile software development, the notion of cross-functional, mul-
tidisciplinary teams plays a central role. These teams have the
different roles necessary to take a customer need all the way to
a delivered solution. Moreover, the notion of small, empowered
teams, the backlog, and daily stand up meetings and sprints guide
software development through shorter cycles and help bring the
software development closer to the client [2].

Moving from traditional to agile development is the first tran-
sition prescribed in Stairway to Heaven Model (StH) [12]. StH de-
scribes the evolution path organizations follow to successfully move
from traditional to data-driven software development. It comprises
five stages: traditional development, agile organization, continuous
integration, continuous deployment, and R&D as an innovation
system. In a nutshell, organizations evolving from traditional de-
velopment start by experimenting with one or a few agile teams.
Once these teams are successful, agile practices are adopted by
the organization. As the organization starts showing the benefits
of working agile, system integration and verification becomes in-
volved and the organization adopts continuous integration. Once it
runs internally, lead customers often express an interest to receive
software functionality earlier than through the normal release cycle.
They want continuous deployment of software. The final stage is
where the organization collects data from its customers and uses
a customer base to run frequent feature experiments to support
customer data-driven software development [13].

Many organizations have moved from traditional to agile. There
are many ways of doing that and each organization should consider
its business goals, culture, environment and other aspects to find
the best way to go through the path. In the experience reported in
this paper we have used Systems Theory tools, GUT Matrix and
reference ontologies, which are briefly introduced in the following.

A. Systems Theory: It has been used in industry and Academy to sup-
port (re)design of organizations [11][17][18]. It sees organization as
a system, consisting of elements (e.g., teams, artifacts, policies) and
interconnections (e.g., the relation between the development team,
the software artifacts it produces and the policies that influence
their production) coherently organized in a structure that produces
a characteristic set of behaviors, often classified as its function or

Am I going to Heaven? First step climbing the Stairway to Heaven Model SBES 2020, October 19–23, 2020, Natal,RN - Brazil

purpose (e.g., the development team produces a software product
aiming to accomplish its function in the organization)[11].

In the Systems Theory literature there are several tools that
support understanding the different elements and behaviors of a
system, such as systemic maps and archetypes[11][17]. A systemic
map (also known as causal loop diagram) allows representing the
dynamics of a system by means of the system borders, relevant
variables, their causal relationships and feedback loops. A positive
causal relationship means that two variables change in the same
direction (e.g., increase the number of bad design decisions causes
increasing in software defects), while a negative causal relationship
means that two variables change in opposite directions (e.g., in-
crease test efficacy causes decreasing in software defects). Feedback
loops are mechanisms that change variables of the system. There
are two main types: balancing and reinforcing feedback loops. The
former is an equilibrant structure in the system and is source of
stability and resistance to change. The latter compounds change in
one direction with even more change.

One beneficial effect of using systemic maps is that they help
identify archetypes. An archetype is a common structure of the sys-
tem that produces a characteristic pattern of behavior. For example,
the archetype Shifting the Burden occurs when a problem symptom
is “solved” by applying a symptomatic solution, which diverts atten-
tion away from a more fundamental solution [10]. Each archetype
has a corresponding modeling pattern. Therefore, by analyzing a
systemic map is possible to identify archetypes by looking for their
modeling patterns. Archetypes and systemic maps can be useful
to identify problems and possible leverage points to solve them.
Leverage points are points in the system where a small change can
lead to a large shift in behavior[11].

B. GUT Matrix: It allows to prioritize the resolution of problems,
considering that resources are limited to solve them [9]. The priori-
tization is based on: Gravity(G), which describes the impact of the
problem on the organization; Urgency(U); referring to how much
time is available to address the problem; and Tendency(T), which
measures the predisposition of a problem getting worse over time.

C. Reference Ontology: Ontologies have been recognized as impor-
tant instruments to solve knowledge-related problems. An ontol-
ogy is a formal, explicit specification of a shared conceptualization
[19]. Ontologies can be developed for communication purposes
(reference ontologies) or for computational solutions (operational
ontologies). A reference ontology is a special kind of conceptual
model representing a model of consensus within a community. It is
a solution-independent specification with the aim of making a clear
and precise description of the domain in reality for the purposes of
communication, learning and problem-solving. [1].

Some works have reported the use of Systems Theory in the agile
development context. For example, Vighen andWang [20] proposed
a framework based on the Systems Theory that identifies enablers
and inhibitors of agility, and discuss capabilities that should be
present in an agile team. Gregory et al. [6] discuss challenges to
implement agile and suggest some organizational elements that
could be used to do that. Considering the StH context, Karvonen
et al. [8] used BAPO categories to identify some practices to each

StH step. However, they do not discuss how to understand the
organization to establish proper strategies to implement them. Con-
sidering scenarios involving more than one organization to produce
software, Sousa et al.[3] discuss agile transformation in Brazilian
public institutions. Different from Organizations A and B, which
work together to produce software to the client, Brazilian public
institutions hire software organizations to develop software (i.e.,
the public institution is client of the hired organization). Moreover,
different from the scenario discussed in[3], in our study, Organiza-
tion A needed to develop skills, processes and culture that enabled
it to work with multicultural issues, because Organization A, Orga-
nization B and clients are in different countries and have different
cultures. None of the aforementioned works use Systems Theory
tools, GUT matrix and reference ontologies to help organizations
to define strategies to agile practices, as we did in our study.

3 CASE STUDY PLANNING, EXECUTION AND
RESULTS

Participative case study was selected as research method in this
study because two researchers acted as consultants in Organization
A and, this way, were participants in the process being observed
[1]. Together with other participants, they gathered information to
understand the organization and defined strategies to implement
agile practices. Thus, the researchers had some control over some
intervening variables.

3.1 Study Design
3.1.1 Diagnosis. Organization A is a Brazilian software develop-
ment organization that works together with a European organiza-
tion (Organization B) to develop software products to European
clients. It has 30 developers organized in teams managed by tech
leaders. Organization B elicits requirements with clients and Orga-
nization A is in charge of developing the corresponding software.
As a consequence of the increasing number of projects and team
members, added to the lack of flexible processes, some problems
emerged, such as projects late and over budget, increasing in soft-
ware defects, overloading of the teams due to rework on software
artifacts, and communication issues among client, Organization A
and Organization B.

Aiming to minimize these problems, in the first semester of 2019,
Organization A decided to implement Scrum practices, but without
success. According to the directors, the main difficulties were due to
non-direct communication with the client and included: difficult to
define product backlog, select a product owner and carry out Scrum
ceremonies that need client’s feedback. Furthermore, they pointed
out that agile culture demands knowledge and its clients, business
partners and developers were not prepared for it. This scenario
indicated to us that the particular characteristics and context of the
organization had not been considered in the first try to implement
agile practices. Therefore, at the beginning of 2020, we proposed
to use StH as a reference model to evolve Organization A from
traditional to data-driven software development, in a long-term
process improvement program. The first step: move from traditional
to agile. Considering the peculiar scenario of Organization A, we
decided to use Systems Theory to understand the organization in a
systemic way. Then, we used GUT Matrix to support prioritization

SBES 2020, October 19–23, 2020, Natal,RN - Brazil Santos Jr et al.

of problems resolution, and reference ontologies to provide common
knowledge about agile development.

3.1.2 Planning. The study goal was to analyze the use of Systems
Theory tools (particularly systemic maps and archetypes), GUT Ma-
trix and reference ontologies to help define strategies to implement
agile practices when the organization is moving from traditional
to agile development. By strategies we mean actions or plans es-
tablished to implement agile development. Aligned to this goal, the
following research question was defined: are Systems Theory, GUT
Matrix and reference ontologies useful to define suitable strategies for
an organization to move from traditional to agile development?

The expected outcomes were: (i) a view of important aspects
of the organization by means of systemic maps; (ii) prioritization
of problems and causes to be addressed; (iii) strategies to address
problems and implement agile practices; (iv) a Systems Theory-
based process to define strategies to move from traditional to agile.

The study participants who directly participated in interviews to
data collection and results evaluation were the two directors (soft-
ware development director and sales director), one tech lead and
two developers. The first and third authors worked as consultants
in Organization A and, thus, also participated in the study.

3.2 Study Execution and Data Collection
3.2.1 Data Collection. Data collection involved interviews, devel-
opment of systemic maps and GUT matrix, and definition of strate-
gies to implement agile practices.

A. Initial Interviews. Data collection started with interviews to
gather general information about the organization. Six interviews
were conducted, four with the directors and two with the devel-
opers and tech leader. Participants were told to feel free to talk as
much as they wanted to. Each interview lasted about 90 minutes.
The funnel questions technique was used, i.e., the interview started
with general questions (e.g., “What kind of software does the orga-
nization develop?”, “How is the software development process?”),
and then went deeper into more specific points of each one (e.g.,
“Tell me more about the software test activity”). The interviews
were recorded, transcribed and validate with each participant.

The interviews with the directors aimed to get information about
the following aspects: organizational environment, culture, rules of
relationship with partners, future plans, software development pro-
cess, software development issues and agile knowledge. Among the
information provided by the directors, they pointed out that some
problems were caused by misunderstood software requirements or
project scope not clearly defined. According to them, Organization
B did not describe requirements in a consistent and clear way.

The interviews with the tech leader and developers aimed at
understanding software development problems under their perspec-
tive and how familiar they were with agile methods and practices.
The problems mentioned by the directors were also reported by
the tech leader and developers. When asked about team organi-
zation, they pointed out that the teams were not self-organized.
Contrariwise, tech leaders were responsible for allocating tasks,
coordinating team members, establishing deadlines and monitoring
projects. Moreover, the team knowledge of agile was limited.

B. Systemic Maps. Information obtained in the interviews was used
to build systemic maps. Figure 1 shows a fragment of one of the
developed systemic maps. The elements in blue in the figure form a
modeling pattern that reveals the presence of the archetype Shifting
the Burden.

Figure 1: Fragment of systemic map

As previously said, Organization B is responsible for eliciting
requirements with the client, specifying and sending them for Or-
ganization A to develop the software. The development teams of
Organization A often misunderstand requirements that describe the
software, component or functionality to be developed, since Orga-
nization B produces Requirements poorly specified, neither adopting
a technique nor following a pattern to describe them.Misunderstood
requirements contribute to increase the number of Defects in soft-
ware artifacts, since design, code and test are produced based on
the requirements informed by Organization B. Defects in software
artifacts make Organization A to mobilize (and often overload) the
development team to fix defects by performing New urgent develop-
ment activities, which decrease the number of Defects in software
artifacts. These urgent activities are performed as fast as possible,
aiming not to delay other activities. Thus, they do not properly
follow software quality good practices. Moreover, they contribute
to increase the project cost and time (Late and over budget project).
Defects in software artifacts increase the need of using Software
quality techniques that, when used, lead to less Defects in software
artifacts. This causal relationship has a delay, since the effect of
using Software quality techniques can take a while to be perceived.

As shown in Figure 1, the archetype Shifting the Burden is com-
posed of two balancing feedback loops and one reinforcing feedback
loop. The balancing feedback loops (between New urgent develop-
ment activities and Defects in software artifacts, and between Defects
in software artifacts and Software quality techniques) mean that the
involved variables influence each other in a balanced and stable
way (e.g., higher/lower the number of Defects in software artifacts,
more/less New urgent development activities are performed). In the
reinforcing feedback loop, New urgent development activities are a
symptomatic solution that leads to Defects fixed through rework, a

Am I going to Heaven? First step climbing the Stairway to Heaven Model SBES 2020, October 19–23, 2020, Natal,RN - Brazil

side effect, because once urgent development activities fix the de-
fects in software artifacts, the Organization A feels like the problem
was solved. This, in turn, decreases the need for using Software qual-
ity techniques, which is a more fundamental solution. As a result,
software artifacts continue to be produced with defects, overload-
ing the development team with new urgent development activities.
Shifting the Burden is a complex behavior structure, because the
balancing and reinforcing loops move the system (Organization A)
in a direction (New urgent development activities) usually other than
the one desired (Software quality techniques). New urgent develop-
ment activities contribute to increase project cost and time (Project
is late and over budget), because these activities were not initially
planned in the project.

When Organization B does not properly define the project scope
(Scope poorly defined), Organization A may allocate a Team not
suitable for the project, contributing to Defects in software artifacts
and also to Changes in the project team along the project. Usually,
when the team is changed, the newmembers need to get knowledge
about the project. Moreover, often the new members are more ex-
perienced and thus more expensive, which contributes to Late and
over budget project. In order to change the project team, members
can be moved from a project to another, causing Deficit in other
projects. Furthermore, there is a balancing loop between Changes
in the project team and Defects in software artifacts. The former
may cause the latter due to instability inserted into the team. The
latter, in turn, contributes to the former because Defects in software
artifacts may lead to the need to change the team. There is a delay
in this relationship because it can take a while between defects
are noticed and the need to change the team. Finally, Scope poorly
defined causes Unrealistic deadline, which contributes to Late and
over budget project.

C. GUT Matrix. After getting a comprehensive view of the organiza-
tion and how it behaves, we reflected about the behaviors on which
the strategies should be focused. Thus, we created a GUT matrix to
identify and prioritize behaviors of the system that are not fruitful,
i.e., undesirable behaviors. They were identified mainly from the
systemic maps. For example, from the fragment depicted in Figure
1, based on the positive causal relationship between Misunderstood
requirements and Defects in software artifacts, the following un-
desirable behavior was identified: Software artifacts are developed
based on misunderstood requirements. From the Shifting the Bur-
den archetype, we identified: Software quality techniques are not
often applied to build software artifacts. To complement information
provided by the systemic maps, we used information from the in-
terviews to look for behaviors the literature points out as desirable
in organizations moving to agile (e.g., self-organized teams) [4].

After identifying the undesirable behaviors, the study partici-
pants validated and prioritized them considering the GUT dimen-
sions. Each dimension was evaluated considering values from 1
(very low) to 5 (very high). 13 undesirable behaviors were identified.
Table 1 shows a fragment of the GUT Matrix.

For each undesirable behavior, we analyzed the systemic maps
and the interviews and identified its causes. (UB1) Software arti-
facts are developed based on misunderstood requirement because (C1)
Requirements are not satisfactorily described and (C2) Poor commu-
nication between client and development team. C1 was identified

Table 1: Matrix GUT fragment

Undesirable Behaviors G U T GxUxT

UB1
Software artifacts are devel-
oped based on misunderstood
requirements

5 5 5 125

UB2
Software quality techniques are
not often applied to build soft-
ware artifacts

5 5 4 100

UB3 Projects are late and over bud-
get 5 5 4 100

UB4 Organization has inconsistent
knowledge of agile methods 5 5 4 100

UB5 Teams are not self-organized 5 4 4 80

directly from the systemic map. C2 was based on information about
the procedure followed by Organization A to communicate with
the client. When there is any doubt about requirements, the con-
tact was made mainly through email or comments on issues in
the project management system. Only Organization B has direct
contact with the client.

C1 and C2 are also causes of (UB2) Software quality techniques
are not often applied to build software artifacts, since the lack of
well-defined requirements and direct contact with the client im-
pact verification and validation activities. Moreover, there is a (C3)
Lack of clear and objective criteria to evaluate results and (C4) Large
deliverables, which make it difficult to evaluate results.

As it can be noticed in Figure 1, Projects are late and over budget
(UB3) mainly because C1 and (C5) Unstable scope and deadline.
Moreover (C6) Unsuitable team allocation and C4 also affect projects
cost and time. The former because low productivity impacts on
project time and, thus, cost. The latter because it is difficult to
estimate large projects.

Regarding (UB4) Organization has inconsistent knowledge of agile
methods, some members of the organization had previous experi-
ence with agile methods in other companies, others had a previ-
ous unsuccessful experience in Organization A and others did not
have experienced agile methods. Most of the members were not
sure about agile concepts and practices. Therefore, this undesirable
behavior is caused by (C7) Organization’s members had different
experiences with agile and (C8) Agile concepts and practices are not
well-known by the organization. Finally, Teams are not self-organized
(UB5) due to the (C9) Traditional development culture that produced
functional and hierarchical teams. Table 2 shows the identified
causes and respective undesirable behaviors.

D.Strategies. The causes of undesirable behaviors and the prior-
itization made in the GUT matrix showed us leverage points of
the system, i.e., points that if changed could change the system
behavior. Therefore, we defined strategies to help Organization A
move towards the second stage of StH by changing leverage points
of the system and thus creating new behaviors in the system in that
direction. We started by defining strategies to change undesirable
behaviors at the top of the GUT matrix and causes related to more
than one undesirable behavior.

SBES 2020, October 19–23, 2020, Natal,RN - Brazil Santos Jr et al.

Table 2: Causes of undesirable behaviors

Causes UB1 UB2 UB3 UB4 UB5

C1 Requirements are not satis-
factorily described x x x

C2
Poor communication be-
tween client and develop-
ment team

x x

C3 Lack of clear and objective
criteria to evaluate results x

C4 Large deliverables x x

C5 Unstable scope and dead-
line x

C6 Unsuitable team allocation x

C7
Organization’s members
had different experiences
with agile

x

C8
Agile concepts and prac-
tices are not well-known by
the organization

x

C9 Traditional development
culture x

Considering Organization A characteristics, mainly its partner-
ship with Organization B, the strategies combined agile and tradi-
tional practices. Agile approaches bring the culture of self-organized
teams, shorter development cycles, user story, smaller deliverables,
among other notions [4][8]. Traditional approaches were used to
complement agile practices. After all, agile methods usually do not
detail how to manage some aspects of a software project, such as
costs and risks.

The first strategy (S1) consisted in establishing a new procedure
to be followed by organizations A and B regarding requirements
and communication, aiming to address C1 and C2. Due to business
agreements, a big change in Organization B was not possible. For
example, we could not change the fact that only Organization B
could directly contact the project client. Hence, it was defined that
requirements would be sent from Organization B to the project
tech leader, who would rewrite the requirements as user stories and
validate them with Organization B. By representing requirements
as user stories, the project tech leader also has to represent their
acceptance criteria, which aids to address C3. Moreover, to properly
define the acceptance criteria, the tech leader needs to obtain de-
tailed information about the requirement, stimulating Organization
B to get such information from the client, which indirectly improves
communication with the client. Only user stories defined according
to the defined template and validated with Organization B follow
to the next development activities. We also suggested the use of a
template based on BDD (Behavior Driven Development) [22] de-
scribing business rules, acceptance criteria and scenarios to serve
as a protocol to communicate requirements among organizations A,
B and the client. It is worth mentioning that we were not allowed to
ask Organization B to write the requirements itself by following the
new guidelines, because this change was beyond the partnership
agreements. In this strategy, we designated Organization B to play

the Product Owner role. This way it is not only a business partner,
but it represents the client interests and has responsibilities in this
context. With this strategy, we also aimed to minimize the symp-
tomatic solution (New urgent development activities) indicated
in the Shift the Burden archetype identified in the systemic map.
According to Meadows [11], the most effective strategy for dealing
with a Shifting the Burden structure is to employ the symptomatic
solution and develop the fundamental solution. Thus, it is possible
to resolve the immediate problem and also work to ensure that
it does not return. By improving requirements descriptions and
defining clear acceptance criteria, software quality techniques (e.g.,
verification and validation), which are the fundamental solution
identified in the Shifting the Burden, can be properly applied.

Another strategy (S2) focused on changing the undesirable be-
havior (UB3) Projects are late and over budget. Again, to change that,
Organization A depended on changes in Organization B. Therefore,
it was established that at the beginning of a project, Organization
A and B should agree on the project scope, deadline, budget and in-
volved risks. The project characteristics (e.g., technologies, domain
of interest, platform, etc.) should also be clearly established. The
project team would not be allocated before this agreement. By prop-
erly aligning information about the project between organizations
A and B, it would be possible to allocate a development team with
skills and maturity suitable for the project. By doing that, C5 and
C6 would be minimized. Complementary, it was defined to change
the development process as a whole. In the Organization A business
model, when a project is contracted by a client, usually there is a
cost and time associated to it. This prevented us from using a pure
agile development process, were costs are dynamically established.
As a strategy to implement tailored agile practices, it was defined:
after requirements are validated, the development team (tech leader
and developers) selects the requirements to be developed in a short
cycle of development (i.e., a sprint), defines tasks and estimates
time and costs related to them. This information is aligned between
organizations A and B. This way, Organization B manages time and
budget at project level, while Organization A manages time and
budget in the sprint context. Once a week, monitoring meetings
are performed to check time and budget performance. During the
sprint, meetings based on the Scrum ceremonies are carried out in a
flexible way. For example, if the team informs that there is nothing
to report at the day, the daily meeting is not performed. Meetings
that depend on client’s feedback should be carried out with Organi-
zation B (in the Product Owner role). By breaking the development
process in shorter cycles, C4 is addressed, since the product is also
decomposed in smaller deliverables. This strategy also contributes
to treat C9, as it changes the traditional development culture.

Aiming to change the way teams are organized in Organization A
(UB5) and thus address C9, a strategy (S3) was defined to implement
Squad and Guild [4] concepts. A Squad is a team with all skills and
tools needed to develop and release a project. It is self-organized and
can make decisions about its way of working. For example, a Squad
can define the project development time-box (sprint) and how to
implement some practices of strategies S1 and S2 (e.g., the use of
BDD and how flexible Scrum ceremonies can be in the project).
The members are responsible for creating and maintaining one or
more projects. A Squad is composed of developers and a tech leader,
who is responsible for communicating with Organization B mainly

Am I going to Heaven? First step climbing the Stairway to Heaven Model SBES 2020, October 19–23, 2020, Natal,RN - Brazil

regarding aspects related to budget, time and requirements. A Guild
is a team responsible for defining standards and good practices that
will be used for all squads. A Guild is composed of members with
expertise in the subject of interest (e.g., a senior programmer can
define good programming practices). Its purpose is to record and
share good practices among the squads in the organization, aiming
at achieving a homogeneous level of quality in the projects.

To address C7 and C8, which cause the organization to have in-
consistent knowledge of agile methods (UB4), we defined as strategy
(S4) the use of reference ontologies to provide a common conceptu-
alization about the Software Engineering domain as a whole, and
about the agile development process in particular. We used ontolo-
gies from SEON [16], a Software Engineering Ontology Network
that describes various Software Engineering subdomains. Currently,
it includes 18 ontologies related to subdomains such as Software
Requirements, Software Project Management, Agile Software Pro-
cess, among others. We extracted the view relevant to understand
agile development. It contains a conceptual model fragment, ax-
ioms and textual descriptions that provide an integrated view of
agile and traditional development, defining concepts in a clear,
objective and unambiguous way. We suggested the use of SEON
because its ontologies have been developed based on the literature
and several standards, providing a consensual conceptualization.
Moreover, we have successfully used it in several interoperabil-
ity and knowledge-related initiatives. The SEON view used in the
study includes concepts such as: Sprint, Deliverable, Project De-
liverable, Software Requirement, User Story, Acceptance Criteria,
Sprint Planned Task, Successfully Performed Task, among others.

Table 3 summarizes the defined strategies, the leverage points
(causes) addressed by them and main agile concepts involved. It is
worth noticing that some agile concepts were indirectly addressed.
For example, although we did not directly use Product Backlog in
S1, the set of requirements agreed with Organization B works as
such. Similarly, in S3, when the team selects the requirements to
be addressed in a development cycle, we are applying the Sprint
Backlog notion. We decided not to use some of the original terms
because Organization A had a bad previous experience trying to
implement agile practices by following Scrum “by the book”, which
did not work and provoked resistance to certain practices. Thus,
we tried to give some flexibility even to the practices’ names, in
order to avoid bad links with the previous experience.

After defining the strategies, they were executed by the organiza-
tion in two projects with supervision of the first and third authors.
The new practices started to be used in early February 2020. About
four months later, we conducted an interview to obtain feedback.
At that point, one of the projects had already been concluded and
the other was ongoing.

3.3 Study analysis, interpretation and lessons
learned

In this section, we present results from the interviews that helped
us to answer the research question, the resulting Systems Theory-
based process that arose from this study and some lessons learned.

3.3.1 Results. To answer the research question, we carried out
an interview with the software development director and the tech
leader aiming to obtain their perception about the use of Systems

Table 3: Strategies, Causes and Agile Concepts

Strategies Agile Concepts Causes

S1
New procedure
to communicate
requirements

User Story,
BDD,Product
Owner and Product
Backlog

C1, C2, C3

S2

Budget and time
globally and locally
managed through
short development
cycles

Sprint, Sprint Back-
log, Scrum meet-
ings and Small de-
liverables

C4, C5, C6,
C9

S3 Self-organized
teams Squad and Guild C9

S4 Agile common con-
ceptualization

Concepts related to
agile software de-
velopment

C7, C8

Theory tools, GUT matrix and reference ontologies, as well as to
get information about results obtained from the use of the defined
strategies. They were interviewed together in a single section.

The director said that Systems Theory tools provided means to
understand how different organizational aspects (e.g., business rules
and quality software practices) are interrelated and influence each
other, and how these aspects and interrelations produce desirable
and undesirable behaviors. Moreover, Systems Theory helped to
create strategies to change undesirable behaviors, since it provided
a comprehensive understanding of the organization behavior and
supported identifying causes of undesirable behaviors. Regarding
GUT Matrix, the director stated that it was easy to use and im-
portant to prioritize the undesirable behaviors to be changed first.
According to him, using these tools was easier and clearer when
compared to Ishikawa and Pareto diagrams, because systemic maps
allow more comprehensive and freer views and GUT matrix has a
simple way of prioritization.

Concerning reference ontologies, he reported that they were use-
ful to create a common communication among project stakeholders
and business partners, eliminating some misunderstandings not
only about agile practices but also about Software Engineering in
general. For example, by using the conceptualization provided by
the ontology, the team truly understood the “done” concept, com-
monly used in agile projects, in the sense that a software item (e.g.,
a functionality, a component) is done (i.e., ready to be delivered
to the client) only if it met all the acceptance criteria established
in the user stories materialized in that software item. The tech
leader commented that by considering the ontology conceptual-
ization, it was clearer the necessary information a requirement
description should contain so that it can be properly understood.
An interesting aspect pointed out by the interviewees was that the
conceptualization provided by the reference ontologies was used
by the development teams as a basis to quality rules in the projects
(e.g., when a software item is done) and also to business rules in
new business contracts (e.g., acceptance criteria need to be defined)

The director and tech leader informed that the first project in
which the strategies were implemented was considered a successful

SBES 2020, October 19–23, 2020, Natal,RN - Brazil Santos Jr et al.

experience and served as a pilot. In similar projects, Organization A
used to be 30% to 50% over time and budget due to spending extra
resources on new urgent development activities to fix defects. By
adopting the defined strategies, the project delivered a better prod-
uct (at the moment of the interview, the client did not have reported
any defect). However, the project was about 15% over budget and
time due to changes in the agreed requirements. This may suggest
that strategies S1 and S2 need adjustments. Although they seek to
give some agility features to the development process, the project
had its scope predefined by Organization B, which established it to-
gether with the client and set cost and time considering that scope.
As Organization A started to develop the agreed requirements, Or-
ganization B noticed that some ot them needed to change to better
satisfy the client needs. Although the project was late and over
budget, the deviation in relation to the agreed cost and time was
smaller than in similar projects that did not follow the strategies.
The director pointed out that being able to show this difference to
Organization B, indicating the causes that contribute to increase
or decrease it, was an important result and can even be used to
motivate Organization B to be more involved in the changes to
improve the software development process as a whole. This would
make it possible, for example, to adjust strategies S1 and S2 to make
requirements elicitation, cost and time estimation more flexible.

The tech leader reported that using the strategies reduced misun-
derstandings in software requirements among the stakeholders and
enabled better managing budget and time locally, in short devel-
opment cycles. Moreover, according to him, in the second project
adopting the strategies (ongoing project), the development team
spent only 45 hours in new urgent development activities in a total
of about 2000 hours of performed development activities. He also
highlighted the use of user stories and BDD as an effective way to
communicate requirements in this project.

The interviewees said that the self-organization culture has been
developed in the teams and that the use of Squads has been very
helpful. The use of Guilds was still in progress. Finally, they com-
mented that, although the proposed strategies were used to address
some undesirable behaviors by applying agile practices and con-
cepts, they felt that changing the entire traditional culture can be a
complex work, mainly because it requires to change mental models,
processes and culture that also involve the organization partners
(particularly Organization B) and clients.

3.3.2 Systems Theory-based Process. An important result that arose
from this study is a process that combines Systems Theory tools
and GUT Matrix to aid organizations move from traditional to agile.
Figure 2 shows the process, and we briefly explain it next:

Understand the Organization: consists in obtaining information
to understand the organization as a whole so that it will be possible
to define strategies to implement agile practices in a suitable way
for the organization, considering its culture, environment, business
rules, software processes, agile experience and knowledge, people,
and so on. Information can be obtained by using techniques such
as interviews, document analysis and observation, among others.

Build a Systemic View: consists in using information obtained in
the previous step to build systemic maps to understand organization
behaviors relevant in the agile development context. Organization
borders, relevant variables that drive organization behavior, causal

relationships between them and feedback loopsmust be represented.
Archetypes describing behavior patterns must also be identified
from the systemic maps.

Identify Leverage Points: involves analyzing systematic maps and
archetypes to identify undesirable behaviors and their causes. At
this point, desirable behaviors in agile organizations suggested in
the literature can also be used to verify if the organization fit them.
Undesirable behaviors should be prioritized by using a GUT matrix,
so that it is possible to identify which ones represent leverage points
and will be addressed in the strategies.

Establish Strategies: consists in defining strategies (i.e., plans and
actions) to implement agile practices focusing on the leverage points
and considering the organization culture, business, rules, environ-
ment, people, etc.

Implement Strategies: involves implementing the defined strate-
gies. It is suggested to start with one or two projects. After that,
if the strategies work, they can be extended to other projects and
then to the entire organization.

Monitor Strategies: consists in evaluating if undesirable behav-
iors changed as expected after strategies execution. The new behav-
iors caused by the strategies need to be evaluated and, depending
on the results, strategies can be extended to other projects, aborted
or adjusted.

3.3.3 Lessons Learned. In this section we discuss some lessons we
learned in the study. In the lessons learned, we adopt terms such as
should and may instead of mandatory terms such as must because
we learned the lessons from a single case study. Thus, we believe
that other studies are needed to corroborate what we have learned.

Systemic maps should be built with a goal in mind: since systemic
maps allow to represent a comprehensive view of how the organi-
zation behaves and this may involve many aspects, it is important
to focus on variables relevant to the goal to be achieved from the
use of the systemic maps. Otherwise, the maps can be too complex
and involve variables that do not provide meaningful information
for the desired purpose.

The boundaries of the system should be clearly identified: to under-
stand how external elements can influence organization behaviors,
it is important to identify the organization boundaries as well the
elements that the organization controls and the ones controlled by
external agents. This way, it will be possible to create suitable strate-
gies considering both the organization and the external agents.

Changes in leverage points may change the system as a whole:
we noticed that when the changes are made in leverage points,
particularly in the ones connected to undesirable behaviors with
higher priority, the changes tend to provoke a meaningful shift in
the organization behavior as a whole, changing existing behaviors
and creating others. For example, by changing the way organiza-
tions A and B deal with project scope, time and budget, there were
also changes in the way Organization A allocates teams, selects
requirements to be implemented and the need for changes in the
partnership rules with Organization B was perceived.

Strategies should be integrated into the software processes: in order
for strategies to be performed as part of the organization daily ac-
tivities, it is important that they are incorporated to the processes
performed by the organization. In the study, the strategies were

Am I going to Heaven? First step climbing the Stairway to Heaven Model SBES 2020, October 19–23, 2020, Natal,RN - Brazil

Figure 2: Process to aid defining strategies and implementing agile practices

incorporated into the organization software process, involving de-
velopment, management and quality assurance activities.

Strategies should be gradually implemented and start in relevant
projects: implementing the changes gradually and starting with one
or two projects it was positive and the obtained results contributed
for the organization to keep the intention of expanding the changes
to other projects. We selected projects in which the teams were
interested in using agile practices and that were important for the
organization, so that the commitment of the team would be higher.
This helped to minimize resistance to the new practices. Once they
experienced the benefits of following the strategies, team members
became disseminators of the new practices and concepts, helping
to extend agile culture to other team members.

Strategies results should be measurable: when defining the strate-
gies, we did not define any indicator to measure its effectiveness.
However, the tech leaders used some metrics in the projects (e.g.,
number of hours spent in new urgent development activities, bud-
get deviation, etc.) that helped us to evaluate the strategies. Thus,
when defining the strategies, it is important to define the indicators
to be used to evaluate them.

Representing the ontology conceptualization in textual format can
be more palatable than conceptual models: the reference ontologies
of SEON are represented by means of conceptual models, textual
descriptions and axioms. Although the conceptual model of the
SEON view used in the study provides an abstract view showing
all the relevant concepts and relations in a single model, we no-
ticed that the team preferred textual descriptions to the conceptual
models. Thus, we prepared a document containing the concepts
relevant to the study and their detailed description, also including
information about constraints and relationships. This way, the con-
ceptualization provided by the ontology was represented in a more
palatable way for the team.

Changes involving business partners can be hard to implement and
demand more flexibility and time: the way Organization B works
directly affects Organization A. Due to business arrangements, Or-
ganization A does not have enough influence to make changes
in Organization B. It can suggest changes, but it cannot demand
them. Thus, it was necessary to define strategies that caused only
small changes in Organization B (e.g., help to better describe re-
quirements, allow shared control of time and cost). By noticing

improvements from the use of the proposed strategies, Organiza-
tion B may be more willing to further changes.

Squads should have autonomy to choose methods and tools: the
organization can have a set of tools, techniques and methods to
be adopted in the projects. Guilds can help define that. According
to the project team and characteristics, some tools, methods and
techniques can suit better. We noticed that the squad became more
self-organized when its members could choose the techniques to
solve the project problems. For example, in the study, a squad
decided to adopt user stories and BDD to describe requirements,
while the other used the complete user story template. In both cases,
information about requirements was clear and complete. However,
each squad chose the technique more suitable for the project and
team characteristics.

4 THREATS TO VALIDITY TO THE STUDY
RESULTS

The validity of a study denotes the trustworthiness of the results.
Every study has threats that should be addressed asmuch as possible
and considered together with the results. In this section, we discuss
some threats considering the classification proposed in [15].

The main threat in this study is related to the researchers who
conducted the study. Participative case studies are biased and sub-
jective as their results rely on the researchers [1]. The first and third
authors acted as consultants in Organization A and were respon-
sible for conducting the interviews, creating systemic maps and
GUT matrix and defining strategies. The researchers participation
affects Internal Validity, which is concerned with the relationship
between results and the applied treatment, External Validity, which
regards to what extent it is possible to generalize the results from
the case-specific findings to different cases, and Reliability Validity,
which refers to what extent data and analysis depend on specific
researchers. To reduce the threat, the other study participants par-
ticipated in the activities and validated results. Moreover, another
researcher, external to the organization, evaluated data collection
and analysis and was involved in discussing and reflecting on the
study and results.

Concerning Construct Validity, which is related to the constructs
involved in the study, the main threat is that we did not define indi-
cators to evaluate results. Data collection was performed through
interviews, which involves subjectivity. To minimize this threat,

SBES 2020, October 19–23, 2020, Natal,RN - Brazil Santos Jr et al.

we used some measures collected in the projects to evaluate the
new behaviors caused by the proposed strategies.

In case-based research, after getting results from specific case
studies, generalization can be established for similar cases. However,
the threats aforementioned constraint generalization. Moreover,
the study involved only one organization. Thus, it is not possible
to generalize results for cases without researcher intervention or
for organizations not similar to Organization A.

5 CONCLUSIONS AND FUTUREWORKS
This paper presented a case study carried out in a Brazilian orga-
nization towards the first transition in the path prescribed by the
StH model [12]. Organization A develops software in partnership
with a European organization (Organization B) and it does not have
direct contact with clients. After went through an unsuccessful try
to implement agile practices “by the book”, the organization started
a long-term process improvement program. To support it, we have
used StH to describe the evolution path to be followed. To aid in
the first transition and move from traditional to agile, we combined
Systems Theory tools, GUT matrix and reference ontologies.

In summary, Systems Theory tools and GUTMatrix were helpful
to better understand the organization, find leverage points of change
and define strategies aligned to the organization characteristics and
priorities. Reference ontologies were useful to establish a common
understanding about agile methods, enabling teams to be aware of
and, thus, more committed to agile practices and concepts.

As a result of the initiative, the organization has implemented
agile practices in a flexible way and combined to some traditional
practices, which is more suitable for the organization characteristics.
Due to the obtained results, the organization kept its intention to
continue evolving by following the StH stages. In the first transition,
it was not possible to propose big changes in the way Organization
B works. However, Organization A expects that considering the
positive results, Organization B will be more willing to be involved
in the evolution path. This will be crucial in the more advanced
stage, where data from the clients are needed to support decision-
making and identify new opportunities.

Regarding human aspects, we focused mainly on soft skills re-
lated to agile culture. Strategy S3 is directly related to human
aspects, being responsible for implementing Squads and Guilds.
Squads promoted self-organization, trust, leadership and others
important skills in agile organizations. Guilds promoted creation of
processes and organizational culture that enabled sharing and man-
aging knowledge at individual, team and organizational levels. This
knowledge is valuable to continuous improvement of Organization
A. By changing human aspects, S3 enabled Organization A to create
processes, vocabulary and mindset, i.e., an organizational culture
that supported the movement from traditional to agile. Moreover,
the soft skills developed by S3 supported other strategies. For exam-
ple, S1 and S2 were possible because S3 developed some soft skills
(e.g., effective communication, self-organization and adaptability)
that supported S1 and S2.

As for limitations of our approach, we highlight that it involves
a lot of tacit knowledge and judgment. Besides knowledge about
System Thinking tools and GUT matrix, it is necessary to have
organizational knowledge to apply them (e.g., one must be able

to properly identify problems, investigate causes, define strategies
etc.). As future work, we plan to add knowledge (e.g., by means
of guidelines) to help others to use our approach. We also intend
to explore other Systems Theory tools and combine them with
Enterprise Architecture Models to connect system variables, un-
desirable behaviors and causes to elements of the organization
architecture. Concerning Organization A, we plan to monitor the
implemented strategies and extend them to other projects. Once
the new practices become solid, we plan to aid Organization A in
the next transitions, where continuous integration and continuous
deployment are performed.

REFERENCES
[1] Richard L Baskerville. 1997. Distinguishing action research from participative

case studies. Journal of systems and information technology 1, 1 (1997), 25–45.
[2] Jan Bosch. 2014. Continuous Software Engineering: An Introduction. In Contin-

uous Software Engineering. Springer, Chapter 1, 3–13.
[3] Thatiany Lima De Sousa, Elaine Venson, Rejane Maria Da Costa Figueiredo,

Ricardo Ajax Kosloski, and Luiz Carlos Miyadaira Ribeiro. 2016. Using scrum
in outsourced government projects: An action research. In 2016 49th Hawaii
International Conference on System Sciences (HICSS). IEEE, 5447–5456.

[4] Leffingwell Dean. 2016. SAFe® 4.0 Reference Guide: Scaled Agile Framework®
for Lean Software and Systems Engineering.

[5] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies of agile software
development: A systematic review. Information and Software Technology 50, 9-10
(2008), 833–859.

[6] Peggy Gregory, Leonor Barroca, Helen Sharp, Advait Deshpande, and Katie
Taylor. 2016. The challenges that challenge: Engaging with agile practitioners’
concerns. Information and Software Technology 77 (2016), 92–104.

[7] Giancarlo Guizzardi. 2007. On ontology, ontologies, conceptualizations, modeling
languages, and (meta) models. Frontiers in Artificial Intelligence and Applications
155 (2007), 18–39.

[8] Teemu Karvonen, Lucy E. Lwakatare, Tanja Sauvola, Jan Bosch, Helena H. Olsson,
Pasi Kuvaja, and Markku Oivo. 2015. Hitting the target: practices for moving
toward innovation experiment systems. In Int. Conference on Software Business.
117–131.

[9] Charles Higgins Kepner and Benjamin B Tregoe. 1981. The new rational manager.
Vol. 37. Princeton Research Press Princeton, NJ.

[10] Daniel H Kim. 1993. Systems archetypes I: diagnosing systemic issues and designing
high-leverage interventions. Pegasus Communications.

[11] Donella H Meadows. 2008. Thinking in systems: A primer. Chelsea Green Pub-
lishing.

[12] Helena Holmstrom Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the
"Stairway to Heaven" –A Mulitiple-Case Study Exploring Barriers in the Transi-
tion from Agile Development towards Continuous Deployment of Software. In
38th Euromicro Conf.on Software Engineering and Advanced Applications. 392–399.

[13] Helena H. Olsson and Jan Bosch. 2014. Climbing the “Stairway to Heaven”:
evolving from agile development to continuous deployment of software. In
Continuous Software Engineering. Springer, Chapter 10, 15–27.

[14] Pilar Rodriguez, Jouni Markkula, Markku Oivo, and Kimmo Turula. 2012. Survey
on agile and lean usage in finnish software industry. In ACM-IEEE Int. Symposium
on Empirical Software Engineering and Measurement. 139–148.

[15] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case study
research in software engineering: Guidelines and examples. John Wiley & Sons.

[16] Fabiano B. Ruy, Ricardo A. Falbo, Monalessa P. Barcellos, Simone D. Costa, and
Giancarlo Guizzardi. 2016. SEON: a software engineering ontology network. In
European Knowledge Acquisition Workshop. Springer, 527–542.

[17] John Sterman. 2010. Business Dynamics. Irwin/McGraw-Hill.
[18] John D Sterman. 1994. Learning in and about complex systems. System Dynamics

Review 10, 2-3 (1994), 291–330.
[19] Rudi Studer, V Richard Benjamins, and Dieter Fensel. 1998. Knowledge engi-

neering: principles and methods. Data & knowledge Engineering 25, 1-2 (1998),
161–197.

[20] Richard Vidgen and Xiaofeng Wang. 2009. Coevolving systems and the organiza-
tion of agile software development. Information Systems Research 20, 3 (2009),
355–376.

[21] Laurie Williams and Alistair Cockburn. 2003. Agile software development: it’s
about feedback and change. IEEE Computer 36, 6 (2003), 39–43.

[22] Matt Wynne, Aslak Hellesoy, and Steve Tooke. 2017. The cucumber book:
behaviour-driven development for testers and developers. Pragmatic Bookshelf.

	Abstract
	1 Introduction
	2 Background
	3 Case Study Planning, Execution and Results
	3.1 Study Design
	3.2 Study Execution and Data Collection
	3.3 Study analysis, interpretation and lessons learned

	4 Threats to Validity to the Study Results
	5 Conclusions and Future Works
	References

