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Laboratório Nacional de Computação Cientı́fica - LNCC/MCT
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Abstract. In this work we present a new implementation strategy for theNonlinear Subgrid
Stabilization (NSGS) method (Santos and Almeida, 2007, 2008). The NSGS method is a
methodology for approximating transport problems, based on a multiscale decomposition of
the approximation space. The two-scale viscosity model is obtained by adding to the Galerkin
formulation a nonlinear operator acting only on the unresolved mesh scales. The resulting
method is stable and does not require any tune-up parameter.However, it requires the solution
of a system twice as large as that related to the final resolvedscale resolution. To avoid
this drawback, we propose here a new strategy to approximatethe effects of the unresolved
scales on the resolved scales combined with an element-based and edge-based data structures.
The resulting methodology yields superior performance, which is demonstrated by a variety of
numerical experiments covering the regimes of dominant advection and dominant absorption.
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1. INTRODUCTION

The numerical solution of transport equations using the Galerkin formulation may exhibit
global spurious oscillations when the diffusive term is smaller than the advective or reactive
ones. More accurate and stable results can be obtained usingstabilized or multiscale methods.
In a general sense, each of these alternative methodologiesare based on adding some type of
linear stabilization to the standard Galerkin formulationand usually depends on the definition
of one or more tuning parameters. The multiscale approach consists of decomposing the
approximation space into a resolved coarse scale and an unresolved subgrid scale spaces such
that the weak form of the problem is split into two sub-problems: one for the coarse scales
and one for the subgrid scales. From this point of view, the attempts to recover stability of the
resolved scale solution may be interpreted as a way of improving the simulation by considering
the effects of the smallest scales on the larger ones Brezzi and Marini (2002).

The Nonlinear Subgrid Stabilization (NSGS) method is a steptowards the development
of two-scale methods whose stability and convergence properties do not rely on tune-up
parameters. Its first version was presented in (Santos and Almeida, 2007) for advection-
diffusion problems and was based on adding a nonlinear artificial viscosity term only to
the subgrid scales. The amount of the subgrid viscosity depends on assuming an additive
decomposition of the velocity field and solving the resolvedscale equation at the element level,
yielding a self adaptive method. A linear subgrid stabilization was kept when the resolved scale
solution was accurate enough.

The NSGS method was extended in (Santos and Almeida, 2008) toadvection-diffusion-
reaction problems and some improvements were introduced insmooth regions so as to recover
the Galerkin formulation for regular resolved scale solutions. To improve the convergence of
the linearization process, an alternative iterative algorithm to solve the nonlinear problem was
also proposed. The resulting self adapted methodology has very good stability and convergence
properties for a wide range of transport problems, but presents the drawback of requiring the
solution of a system twice as large as that associated with the resolved scale resolution. To
overcome this drawback, in this work we present a strategy for building the NSGS method
using element-based (EBE) and edge-based (EDS) implementations (Catabriga et al., 1998;
Catabriga and Coutinho, 2002). The present strategy locally approximates the effects of the
subgrid scales on the resolved scales by performing a staticcondensation of the subgrid degrees
of freedom of the associated macro element. Solution efficiency is improved by using an edge
based data structure and the final algebraic system is solvedby using the generalized minimal
residual method (GMRES) (Saad, 1995).

The outline of this paper is as follows. We briefly describe the Nonlinear Subgrid
Stabilization (NSGS) method in Section 2. Section 3 presents the proposed strategy
of incorporating the subgrid effects into the resolved scale and Section 4 presents the
related element-based (EBE) and edge-based (EDS) data structures. Numerical examples
are conducted in Section 5 and Section 6 concludes this paperby pointing out the main
achievements, difficulties and perspectives.

2. THE NONLINEAR SUBGRID STABILIZATION METHOD

Consider the steady scalar advection-diffusion-reactionproblem whose solution satisfies

−ǫ∆u + β ·∇u + σu = f in Ω; (1)

u = 0 on∂Ω, (2)

whereΩ ⊂ R
d(d = 2) is an open bounded domain with a Lipschitz boundary∂Ω and unit

outward normaln, β is the velocity field,σ is the reaction coefficient,0 < ǫ ≪ 1 is the



(constant) diffusion coefficient, andf is the source term. For simplicity, we only consider
homogeneous Dirichlet boundary conditions and it is assumed thatβ ∈ W 1,∞(Ω), σ ∈ L∞(Ω)
andf ∈ L2(Ω).

The weak formulation of the problem (1)-(2) reads: findu ∈ H1
0 (Ω) such that

B(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (3)

where

B(u, v) = ǫ(∇u, ∇v) + (β ·∇u, v) + (σu, v) (4)

and(·, ·) stands for the usual inner product inL2(Ω). It is also assumed thatσ ≥ 0 and that
there exists a constantσ0 such that

σ −
1

2
∇ · β ≥ σ0 > 0. (5)

The Lax-Milgram Lemma implies that the problem (3) has an unique solution. To define
the discrete model, we consider a triangular partitionTH = {T} of the domainΩ whereH
stands for the mesh parameter. From each triangleT ∈ TH , four triangles are created by
connecting the midpoints of the edges. We seth = H/2 and denote byTh = {Th} the resulting
finer triangulation. A two-level piecewise linear finite element approximation is defined by
introducing the following two spaces:

XH = {uH ∈ H1
0 (Ω) | uH|T ∈ P1(T ), ∀T ∈ TH}; (6)

Xh = {uh ∈ H1
0 (Ω) | uh|Th

∈ P1(Th), ∀Th ∈ Th}. (7)

Moreover, we introduce an additional discrete spaceXH
h ⊂ Xh, such that the following

decomposition holds:

Xh = XH ⊕XH
h , (8)

whereXH is the resolved (coarse) scale space whereasXH
h is the subgrid (fine) scale space.

We define also the projection operatorPH : Xh → XH so thatXH
h = (I − PH)Xh, whereI

is the identity operator. Then, givenuh ∈ Xh anduH ∈ XH such thatuh anduH coincide in
the coarse scale nodes, the space decomposition (8) impliesthatuH

h = (I −PH)uh = uh− uH ,
∀uH

h ∈ XH
h . The couple(XH , Xh) will be referred to as thetwo-levelP1 setting(see Fig. 1)

Guermond (1999).

X
H nodes

X
H
h nodes

T

Figure 1: Schematic representation of thetwo-levelP1 setting



The Nonlinear Subgrid Stabilization Method (NSGS) (see Santos and Almeida (2007,
2008) for details) is given by

Finduh ∈ Xh such that

B(uh, vh) +
∑

Th∈Th

D(uH , uH
h , vH

h ) = (f, vh), ∀vh ∈ Xh, (9)

where the non-linear operatorD(uH, uH
h , vH

h ) in each elementTh ∈ Th is given by

D(uH, uH
h , vH

h ) =

∫

Th

ξ(uH)∇uH
h ·∇vH

h dΩ, (10)

with

ξ(uH) =
1

2
µ(h)|βH

h |

and µ(h) stands for the subgrid characteristic lehgth. For thetwo-levelP1 setting, we use
µ(h) = h/2. The subgrid velocity fieldβH

h is given by

βH
h =

{
R(uH )
|∇uH |2

∇uH , if |∇uH | 6= 0;

0, otherwise,
(11)

where

R(uH) = −ǫ∆uH + β ·∇uH + σuH − f . (12)

Settingξ(uH) = cbh, with cb > 0 constant, we obtain the Linear Subgrid Stabilization (SGS)
method (Guermond, 1999, 2001; Layton, 2002). When|∇uH | = 0, the formulation (9) recovers
the standard Galerkin method.

The NSGS method is solved using an iterative procedure for which the SGS solution is the
initial guess (withcb = 1) andξ(uH) (or βH

h ) is delayed one iteration (see Algorithm 1). The
iterative NSGS process is defined by: Givenun−1

h , we findun
h satisfying

B(un
h, vh) +

∑

Th∈Th

∫

Th

ξ(un−1
H )∇uH;n

h ·∇vH
h dΩ = (f, vh), ∀vh ∈ Xh, (13)

whereξ(un−1
H ) = cb,Th

µ(h) is locally adjusted depending on the residual of the resolved scale
solution. The iterative NSGS procedure is given by (Algorithm 1), whereui

H andβ
H;i
h stand for

the approximate resolved scale solution and the subgrid velocity field, respectively, at iteration
i; maxiteris the maximum number of iterations andtol is the prescribed tolerance.

Thus, the desired resolved solutionuH is obtained when the convergence of (Algorithm 1)
is attained. At each iteration, a linear system of the formAx = b, with A nonsymmetric, has to
be solved in order to determineui

H (step 12). The system dimension is equal to the number of
degrees freedom of the meshTh. As mentioned before, this is the method major drawback and
may be overcome by applying the strategy proposed in the nextsection.

3. APPROXIMATING THE SUBGRID EFFECTS

In this section we propose a new implementation strategy forthe NSGS method, in which
the non-linear formulation (9) is solved for the coarse meshTH . Let ũH be the approximation
of the resolved scale solutionuH . ũH is obtained by locally approximating the effects of each



Algorithm 1
Require: This algorithm receive as inputu0

H - calculated using SGS withcb = 1
Ensure: The output is the approximate solutionuH

1: for (each elementTh ∈ Th) do
2: c0

Th
← cb

3: end for
4: i← 0
5: repeat
6: i← i + 1
7: for (each elementTh ∈ Th) do
8: determineβH;i−1

h

9: ci
Th
← 1

2

[

ci−1
Th

+ 1
2

∣
∣
∣β

H;i−1
h

∣
∣
∣

]

10: cb,Th
← ci

Th

11: end for
12: determineui

H

13: until
(

i ≤ maxiter or max
j=1,...,dof

∣
∣ui

H;j − ui−1
H;j

∣
∣ ≤ tol

)
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Figure 2: Macro elementT ∈ TH and its corresponding micro elementsT 1
h , T 2

h , T 3
h andT 4

h ∈ Th:
relationship among the degrees of freedom ofTH andTh, due to the projection operatorPH .



subgrid degree of freedom belonging toT ∈ TH . To show how this approximation is performed,
let us first notice that both linear and linearized operatorsin (13) can be built by summing up the
contributions of each macro elementT ∈ TH . Each6× 6 local matrix results from assembling
the contributions of its corresponding micro elementsT i

h ⊂ T , i = 1, 2, 3, 4 (see Fig. 2).
Moreover, the degrees of freedom of the micro elements are connected to the resolved scale
nodes of the related macro element due to the linearized operator D(un−1

H ; uH;n
h , vH

h ), which
prevents the use of an edge based structure. This can be clearly seen by rewriting it in the
following way:

∑

T∈TH

∫

T

ξ(un−1
H )∇uH;n

h ·∇vH
h dΩ =

∑

T∈TH

∫

T

ξ(un−1
H )∇(un

h − un
H) ·∇(vh − vH) dΩ

=
∑

T∈TH

(

I − II − III + IV
)

, (14)

where

I =

∫

T

ξ(un−1
H )∇un

h ·∇vhdΩ; II =

∫

T

ξ(un−1
H )∇un

h ·∇vHdΩ;

III =

∫

T

ξ(un−1
H )∇un

H ·∇vhdΩ and IV =

∫

T

ξ(un−1
H )∇un

H ·∇vHdΩ.

The termI is similar to the diffusive term coming from the bilinear form B(un
h, vh). In the other

three terms (II, III, IV ) theTH resolved degrees of freedom are coupled with theTh degrees
of freedom. For eachT i

h ⊂ T , i = 1, 2, 3, 4, the former are obtained by projecting the latter into
the macro elementT using the projection operatorPH (Fig. 2).

After assembling the contributions of each micro elementTh ∈ T , the local problem
associated with eachT ∈ TH may be defined as

KT UT = F T . (15)

The local vector of unknownsUT = {uT
h;1, u

T
h;2, u

T
h;3, u

T
h;4, u

T
h;5, u

T
h;6}

t may also be written as
UT = {uT

H;1, u
T
H;2, u

T
H;3, u

T
h;4, u

T
h;5, u

T
h;6}

t, sinceuh anduH coincide in the coarse scale nodes.
The local system (15) can be partitioned in the following way

[
A B
C D

] [
U1

U2

]

=

[
F1

F2

]

(16)

whereU1 = {uT
H;1, u

T
H;2, u

T
H;3}

t andU2 = {uT
h;4, u

T
h;5, u

T
h;6}

t. This local system shows quite
well the coupling of the resolved scale and the subgrid nodes. Although we are interested in the
resolved scale solution, such coupling should not be disregard. Besides, such local connection
spreads to the macro element neighbors due to the support of the interpolation functions (two-
levelP1 setting). This property prevents the use of an EBE and EDS data structure. However, we
may approximate the problem by disregarding the global subgrid connectivity and performing
a static condensation of the unknownsU2 at each macro element level. Thus, assuming that the
matrixD is nonsingular, the condensed local problem becomes

KTUT
1 = FT (17)

whereKT = (A − BD−1C) is the3 × 3 local matrix which approximates the macro element
matrix ofT ∈ TH . The respective local vector isFT = (F1 − BD

−1F2). After assembling the
contributions of allT ∈ TH , the following new global linear system is obtained

KŨ = F , (18)



where

K =
nel

A
T=1
KT ; F =

nel

A
T=1
FT ; Ũ =

nel

A
T=1
UT

1 . (19)

In this expression,nel is the total number of macro elements of the coarse meshTH . The linear
system (18) is then solved for the resolved scale unknown vector Ũ = {ũH;1, . . . , ũH;Neq

H
}t,

where NeqH is the total number of resolved scale nodes. Such approach yields a remarkable
decrease of the computational cost, which can also be improved by using an EBE or EDS data
structure.

The resulting methodology can be seen as an approximation ofthe original NSGS method.
Although lacking a full mathematical explanation, the numerical results are promising, as will
be discussed in the following.

4. ELEMENT-BASED AND EDGE-BASED STRUCTURES

Element-based and Edge-based structures have been extensively used in finite
element implementations, resulting in considerable improvements comparing to standard
implementations. The success of this solution strategy requires an efficient implementation
of matrix-vector products and the choice of a suitable preconditioner. Generally, the edge-
based data structure reduces processing time and requires around one half of the storage area
to hold the coefficient matrix when compared to an enhanced element-based implementation.
We perform an implementation of the NSGS method using element-based and edge-based
implementations.

The conventional finite element data structure associates to each trianglee is its
connectivity, that is, the mesh nodesI, J andK. In the edge-based data structure each edges
is associated to the adjacent elementse andf , thus to the nodesI, J , K andL, as shown in
Figure 3.

s

I

J

K

L
f

e

Figure 3: Elements adjacent to edges, formed by nodesI eJ.

Each element matrix can be disassembled into its contributions to three edges,s, s + 1 and
s + 2, with connectivitiesIJ , JK andKI, that is,





• • •
• • •
• • •





︸ ︷︷ ︸

elemente

=





× × 0

× × 0

0 0 0





︸ ︷︷ ︸

edges

+





0 0 0

0 × ×
0 × ×





︸ ︷︷ ︸

edges + 1

+





× 0 ×
0 0 0

× 0 ×





︸ ︷︷ ︸

edges + 2

, (20)



where• and× are matrix coefficients defined from (13). Thus, all the contributions belonging
to edges will be present in the adjacent elementse andf . The resulting edge matrix is the sum
of the corresponding sub-element matrices containing all the contributions to nodesI andJ ,
that is,

[
◦ ◦
◦ ◦

]

︸ ︷︷ ︸

edges

=

[
× ×
× ×

]

︸ ︷︷ ︸

elemente

+

[
× ×
× ×

]

︸ ︷︷ ︸

elementf

. (21)

Considering a conventional elementwise description of a given finite element mesh, the
topological informations are manipulated, generating a new edge-based mesh description. Thus,
the assembled global matrix given in equation (19) may be written now as,

K =

nedges

A
s=1
Ks (22)

wherenedges is the total number of edges of the macro meshTH . The edge matrixKs is
obtained from the contributions of all the element matricesKT that share the edges.

In the element by element (EBE) implementation strategy, the coefficients of the global
matrix are stored in each macro element matrix as defined by (19). The global matrixK is
stored in a compact form of sizenel × 9. On the other hand, in the edge-based (EDS) strategy
the coefficients of the global matrix, defined by (22), are also stored in a compact form of size
nedge× 4.

5. NUMERICAL RESULTS

In this section we evaluate the numerical performance of theproposed Condensed NSGS
on some academic test cases. In all of them the computationaldomainΩ = (0, 1) × (0, 1) is
discretized by using triangular meshes with20 × 20, 40 × 40 and80 × 80 cells, where each
cell is subdivided in two triangles (macro elements). Besides comparing the resolved solution
in the lights of the condensed and the original NSGS, we investigate the efficiency of both EBE
and EDS implementations of the new methodology. The tolerance of the GMRES algorithm is
10−7. It is used 50 vectors in the Krylov basis in examples 1 and 2 and 10 vectors in the example
3. The convergence of the NSGS method is attained for a prescribed tolerance (tol = 10−2 to
the examples 1 and 2, andtol = 10−4 to the example 3) ormaxiter = 30.

5.1 Example 1: Advection-diffusion problem

This example simulates a two-dimensional advection dominated advection-diffusion
problem withǫ = 10−12, β = (1, 1) and f = σ = 0. The Dirichlet boundary conditions
are given by

u(0, y) = u(1, y) = u(x, 1) = 0 and u(x, 0) =

{

1, x ≤ 0.3 ;

0, x > 0.3.

These conditions yield a solution with an internal layer in the direction of the velocity field
starting at(0.3, 0.) and an exponential external layer atx = 1.

Figure 4 shows the standard NSGS solution and the EBE/EDS-based condensed NSGS
solution using the coarsest mesh (20 × 20). Thus, the meshTH is composed by800 macro
elements with361 unknowns, while the meshTh is formed by3200 elements with1521
unknowns. Note that the EBE/EDS-based condensed NSGS solution, obtained onTH , is quite
accurate.



Table 1 presents the computational performance of the element-based (EBE) and edge-
based (EDS) data structures, respectively, for the condensed NSGS method. In Tab. 1, NeqH

is the number of unknowns related to coarse mesh and the CPU times are reported. The edge-
based approach is about60% faster than the element-based one. ForTH with 20 × 20 and
40 × 40, the CPU times for the standard NSGS (resolved forTh, direct solver) is196.6 and
13814.75 seconds, respectively. Thus, either using EBE or EDS, remarkable computational
improvements are obtained with the condensed NSGS strategy.
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Figure 4: Example 1 - NSGS method solutions.

Table 1: Example 1: Computational costs - EBE and EDS structures
Mesh(TH) NeqH Time (s)

EBE EDS

20× 20 361 6.36 3.79
40× 40 1521 55.82 33.63
80× 80 6241 243.27 148.65

5.2 Example 2: Advection-diffusion problem with source term

This example simulates a two-dimensional advection dominated advection-diffusion
problem withǫ = 10−9, β = (1, 0), σ = 0 and a constant source termf = 1. We setu = 0
on all boundary so that the exact solution is a45o slope, possessing parabolic layers aty = 0,
y = 1 and an exponential layer atx = 1.

The standard NSGS solution and the edge-based condensed NSGS solution using the mesh
with 20× 20 cells are shown in Fig. 5. The standard NSGS method presents some oscillations
in the neighborhood of the parabolic layers (y = 0 andy = 1). The condensed NSGS solution
presents a diffusive behavior in the these layers and a smallovershoot inx = 1. However, there
is no oscillation at the externals layers.

Table 2 presents the computational performance for the condensed NSGS method
considering both data structures. The edge-based approachis about60% faster than the element-
based one, as in the example 1. ForTH with 20×20 and40×40, the CPU times for the standard
NSGS (resolved forTh, direct solver) is128.79 and13873.37 seconds, respectively.
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Figure 5: Example 2 - NSGS method solutions.

Table 2: Example 2: Computational costs: EBE and EDS structures
Mesh(TH) NeqH Time (s)

EBE EDS

20× 20 361 3.23 2.11
40× 40 1521 94.22 55.11
80× 80 6241 2236.63 1450.08

5.3 Example 3: Diffusion - reaction problem

In this example, we consider the singular perturbed case where ǫ = 10−12, σ = 1 andf =
0.5, with the following boundary conditions:u(x, 0) = u(0, y) = 0 andu(x, 1) = u(1, y) = 1.

The Galerkin solution obtained on macro mesh20 × 20 is shown in Fig. 6(a), which
presents some locallized oscillations in the neighborhoodof the external layers. Fig. 6(b) and
6(c) show the corresponding standard and condensed NSGS solution, respectively. Although
some oscillations still remain at external layers, the edge-based condensed NSGS solution is
more accurate than the NSGS standard one.

The computational performance for the condensed EBE and EDSbased NSGS
implementation are presented in Tab. 3. For this example theelement-based data structure
is more effective than the edge-based, that is, the EBE CPU time for all meshes is smaller
than the EDS CPU time. Usually, EDS is more effective than EBEdue to the matrix-vector
product float-point operations. However, as the number of the GMRES iterations is very small
in the present example, the solution required fewer number of matrix-vector products float-
point operations. Thus, the computational costs are mainlyconcentrated on the generation of
the edge-based mesh.

Table 3: Example 3: Computational costs: EBE and EDS structures
Mesh(TH) Neq(H) Time (s)

EBE EDS

20× 20 361 0.07 0.75
40× 40 1521 2.78 2.82
80× 80 6241 11.58 11.37
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6. CONCLUSIONS

We propose a new implementation strategy for the Nonlinear Subgrid Stabilization (NSGS)
method. The NSGS method is a free parameter two-level subgrid method with good stability
and convergence properties, owing to a subgrid viscosity that acts only on the unresolved scales.
It requires the solution of linear systems associated with amesh with characteristic lengthh =
H/2 to obtain a solution whose resolution isH. The Condensed NSGS method proposed here
introduces a procedure to overcome this drawback. This is performed by locally approximating
the effects of the unresolved scale, yielded by a static condensation of the not null subgrid
degrees of freedom at the macro element level. Then, the Condensed NSGS method can be
seen as an approximation of the original NSGS method. Although lacking a full mathematical
explanation, such simple procedure results in a remarkablecomputational gain. Moreover,
some numerical experiments indicate that it yields extra regularization. Since the resolved scale
solution is obtained directly for the macro finite element mesh, we incorporate the EBE and
EDS data structures, yielding additional computational efficiency.

Contrasting other techniques that use tune-up parameters to improve accuracy, the present
free Condensed EBE/EDS NSGS method combines simplicity with computational efficiency.
Some important issues associated with the convergence of the nonlinear procedure, the
mathematical and numerical analysis, application to nonlinear and transient problems remain to
be investigated in forthcoming works.
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