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Abstract. In this work we present a new implementation strategy forNbalinear Subgrid
Stabilization (NSGS) method (Santos and Almeida, 20078)200he NSGS method is a
methodology for approximating transport problems, basedaanultiscale decomposition of
the approximation space. The two-scale viscosity modddtgimed by adding to the Galerkin
formulation a nonlinear operator acting only on the unresa mesh scales. The resulting
method is stable and does not require any tune-up parantétvever, it requires the solution
of a system twice as large as that related to the final resobeale resolution. To avoid
this drawback, we propose here a new strategy to approxinegteeffects of the unresolved
scales on the resolved scales combined with an elementtHaasbedge-based data structures.
The resulting methodology yields superior performancecivis demonstrated by a variety of
numerical experiments covering the regimes of dominan¢etthvn and dominant absorption.

Keywords: Nonlinear subgrid viscosity, Edge-based data structurg|d¢ iterative methods



1. INTRODUCTION

The numerical solution of transport equations using theefgal formulation may exhibit
global spurious oscillations when the diffusive term is Berahan the advective or reactive
ones. More accurate and stable results can be obtainedsiaimtized or multiscale methods.
In a general sense, each of these alternative methodolagidsased on adding some type of
linear stabilization to the standard Galerkin formulataéord usually depends on the definition
of one or more tuning parameters. The multiscale approackists of decomposing the
approximation space into a resolved coarse scale and asalved subgrid scale spaces such
that the weak form of the problem is split into two sub-prole one for the coarse scales
and one for the subgrid scales. From this point of view, thengpts to recover stability of the
resolved scale solution may be interpreted as a way of imipgdie simulation by considering
the effects of the smallest scales on the larger ones Bradzvirini (2002).

The Nonlinear Subgrid Stabilization (NSGS) method is a $teyards the development
of two-scale methods whose stability and convergence piiepedo not rely on tune-up
parameters. Its first version was presented in (Santos anteidh, 2007) for advection-
diffusion problems and was based on adding a nonlinear caatifviscosity term only to
the subgrid scales. The amount of the subgrid viscosity miigp®n assuming an additive
decomposition of the velocity field and solving the resolsedle equation at the element level,
yielding a self adaptive method. A linear subgrid stabtlmawas kept when the resolved scale
solution was accurate enough.

The NSGS method was extended in (Santos and Almeida, 20G8jviection-diffusion-
reaction problems and some improvements were introducschgoth regions so as to recover
the Galerkin formulation for regular resolved scale solusi. To improve the convergence of
the linearization process, an alternative iterative algor to solve the nonlinear problem was
also proposed. The resulting self adapted methodologydrgggood stability and convergence
properties for a wide range of transport problems, but pitssihe drawback of requiring the
solution of a system twice as large as that associated withrebolved scale resolution. To
overcome this drawback, in this work we present a strategy@ilding the NSGS method
using element-based (EBE) and edge-based (EDS) impletimergtgCatabriga et al., 1998;
Catabriga and Coutinho, 2002). The present strategy loealproximates the effects of the
subgrid scales on the resolved scales by performing a statidensation of the subgrid degrees
of freedom of the associated macro element. Solution efiigiés improved by using an edge
based data structure and the final algebraic system is sbivading the generalized minimal
residual method (GMRES) (Saad, 1995).

The outline of this paper is as follows. We briefly describe tdonlinear Subgrid
Stabilization (NSGS) method in Section 2. Section 3 presdhe proposed strategy
of incorporating the subgrid effects into the resolved escahd Section 4 presents the
related element-based (EBE) and edge-based (EDS) dataus&s. Numerical examples
are conducted in Section 5 and Section 6 concludes this gapgointing out the main
achievements, difficulties and perspectives.

2. THE NONLINEAR SUBGRID STABILIZATION METHOD
Consider the steady scalar advection-diffusion-reagiroblem whose solution satisfies
—eAu+3-Vu+ou = f InQ,; (1)
u = 0 onosl, (2)

whereQ) c R%(d = 2) is an open bounded domain with a Lipschitz bound2fyand unit
outward normaln, 3 is the velocity field,o is the reaction coefficient) < ¢ <« 1 is the



(constant) diffusion coefficient, anfl is the source term. For simplicity, we only consider
homogeneous Dirichlet boundary conditions and it is assutimat 3 € W1 (Q), 0 € L>(Q)
andf € L*(Q).

The weak formulation of the problem (1)-(2) reads: find H}(Q2) such that

B(u,v) = (f,v) Vv € Hy(€), 3)
where
B(u,v) = €(Vu, Vo) + (8 - Vu,v) + (ou,v) 4)

and(-,-) stands for the usual inner productif(€2). It is also assumed that > 0 and that
there exists a constaa} such that

1
U—§V~,BZO'0>O. (5)

The Lax-Milgram Lemma implies that the problem (3) has amquaisolution. To define
the discrete model, we consider a triangular partiton= {7'} of the domain? where H
stands for the mesh parameter. From each triafigle 7, four triangles are created by
connecting the midpoints of the edges. We/set H/2 and denote by;, = {7} } the resulting
finer triangulation. A two-level piecewise linear finite ent approximation is defined by
introducing the following two spaces:

Xy = {UH c HOI(Q) ‘ UH|, € ]Pl(T), VT € TH}; (6)
X, = {uh € Hol(Q) | uh‘Th € Pl(Th), VT, € 7;1} (7)

Moreover, we introduce an additional discrete spagé C X, such that the following
decomposition holds:

X=Xy X, (8)

where X is the resolved (coarse) scale space whefédsis the subgrid (fine) scale space.
We define also the projection operat®y : X, — Xy so thatX/! = (I — Py)X,, wherel

is the identity operator. Then, given, € X, anduy € Xy such thatu, anduy coincide in
the coarse scale nodes, the space decomposition (8) inttpdies’ = (I — Py )uj, = up — ug,
Vull € XH. The couple( Xy, X},) will be referred to as thewo-levelP; setting(see Fig. 1)
Guermond (1999).

® X nodes
o X/ nodes

Figure 1. Schematic representation of ttveo-levelP; setting



The Nonlinear Subgrid Stabilization Method (NSGS) (seet@amand Almeida (2007,
2008) for details) is given by

Findu;, € X, such that
B(Um'l]h)-F Z D(quuinvU}];l) = (fvvh)v vUh eXha (9)

The 7—h

where the non-linear operatéX(uy, ul , vf) in each elemerit), € 7, is given by

D(ug,uf ,vf)y = | &(ug)Vui - VoldQ, (10)

with
§(um) = ( )18 |

and p(h) stands for the subgrid characteristic lehgth. For tihe-level P; setting we use
1(h) = h/2. The subgrid velocity fielg!” is given by

R(ugr)
0, otherW|se
where
R(ug) = —€Auyg + 8- Vuy +ouy — f. (12)

Settingé(uy) = ¢h, with ¢, > 0 constant, we obtain the Linear Subgrid Stabilization (SGS)
method (Guermond, 1999, 2001, Layton, 2002). Wheén | = 0, the formulation (9) recovers
the standard Galerkin method.

The NSGS method is solved using an iterative procedure fastwthe SGS solution is the
initial guess (withe, = 1) andé(ugy) (or 37) is delayed one iteration (see Algorithm 1). The
iterative NSGS process is defined by: Givén', we findu} satisfying

B(uy,v) + Y NV VoldQ = (f,un), VYo, € X, (13)

TheT Th

where¢(u}; ') = ¢ 1, 1(h) is locally adjusted depending on the residual of the resbbeale
solution. The iterative NSGS procedure is given by (Alduoritl), where:’, andﬁhH?i stand for
the approximate resolved scale solution and the subgratitglfield, respectively, at iteration
i; maxiteris the maximum number of iterations atul is the prescribed tolerance.

Thus, the desired resolved solutiop is obtained when the convergence of (Algorithm 1)
is attained. At each iteration, a linear system of the fetm= b, with A nonsymmetric, has to
be solved in order to determing, (step 12. The system dimension is equal to the number of
degrees freedom of the megh As mentioned before, this is the method major drawback and
may be overcome by applying the strategy proposed in theseekion.

3. APPROXIMATING THE SUBGRID EFFECTS

In this section we propose a new implementation strategthi@eNSGS method, in which
the non-linear formulation (9) is solved for the coarse mé&ghLet u; be the approximation
of the resolved scale solutiary,. 4y is obtained by locally approximating the effects of each



Algorithm 1

Require: This algorithm receive as input; - calculated using SGS with = 1
Ensure: The output is the approximate solutiap
1: for (each element}, € 7;,) do

2: c%h —
3: end for
4: 17— 0
5: repeat
6: 1—1+1
7: for (each element), € 7;,) do
8: determings;*
e I 1|
10: Co.1y, ciTh
11: end for
12:  determineu},

[N
w

_ e . i il
: until (z < maxiter or j:?,l.?fzof Uy uH;j} < tol)

Py

v1+v2
2

Figure 2. Macro elementl’ € 7y and its corresponding micro elemers, 72, T2 andT;} € Ty:
relationship among the degrees of freedonT gfand7;,, due to the projection operatéiy.



subgrid degree of freedom belonginglta= 7. To show how this approximation is performed,
let us first notice that both linear and linearized operato($3) can be built by summing up the
contributions of each macro eleméhtc 7. Each6 x 6 local matrix results from assembling
the contributions of its corresponding micro elemeftsc T, : = 1,2,3,4 (see Fig. 2).
Moreover, the degrees of freedom of the micro elements aneemied to the resolved scale
nodes of the related macro element due to the linearizecatape® (u? ' u) ", vf), which
prevents the use of an edge based structure. This can bé dean by rewriting it in the

following way:

Z/f DV, ™ - VoldQ = 2/5 up, — upy) - V(vp — vg) dS2

TeTy TeTy
- ¥ (1—11—111+Iv), (14)
TeTy
where
[= / £Vl - VopdQ; 1= / YVl - Vg dQ;

]I[—/g HYVul, - Vu,dQ and TV = /5 HYwul, - VogdQ.

The term/ is similar to the diffusive term coming from the bilinearfoB (u}, vy,). In the other
three terms i/, 11, IV) the 7y resolved degrees of freedom are coupled withZhdegrees
of freedom. For eacl} C T',i = 1,2, 3, 4, the former are obtained by projecting the latter into
the macro element using the projection operatdty (Fig. 2).

After assembling the contributions of each micro elemg&nte T, the local problem
associated with each € 7y may be defined as

KTuT = FT . (15)

The local vector of unknown&” = {uf;l., U, uf;g,ufﬂ,u}fﬁ, g%}f may also be written as
UT = {ufp.), ufro, Uiy, Uy, ufﬁ,u};?}t, sinceu, anduy coincide in the coarse scale nodes.
The local system (15) can be partitioned in the following way

A B U Fi

o)) 17] @
wherelt; = {uj., ufyy, ujrs}' andiy = {uj, uf.5, ujq}'. This local system shows quite
well the coupling of the resolved scale and the subgrid no#liésough we are interested in the
resolved scale solution, such coupling should not be distcegBesides, such local connection
spreads to the macro element neighbors due to the supptw afterpolation functionso-
levellP; setting. This property prevents the use of an EBE and EDS data steidtiowever, we
may approximate the problem by disregarding the global sdlegnnectivity and performing

a static condensation of the unknowvisisat each macro element level. Thus, assuming that the
matrix D is nonsingular, the condensed local problem becomes

Kruf = F* (17)

whereK” = (A — BD~!C) is the3 x 3 local matrix which approximates the macro element
matrix of T' € 7. The respective local vector " = (F, — BD~1F,). After assembling the
contributions of alll’ € 7y, the following new global linear system is obtained

Ku = F, (18)



where

nel nel nel

K=AKT; F=A7rT, u=Aur. (19)
T=1 T=1 T=1

In this expressiomel is the total number of macro elements of the coarse rigsfihe linear
system (18) is then solved for the resolved scale unknowtowet = {Gm, ... UmNeq, H,
where Neg; is the total number of resolved scale nodes. Such approatiisya remarkable
decrease of the computational cost, which can also be inregrby using an EBE or EDS data
structure.

The resulting methodology can be seen as an approximatitre @friginal NSGS method.
Although lacking a full mathematical explanation, the nuiced results are promising, as will
be discussed in the following.

4. ELEMENT-BASED AND EDGE-BASED STRUCTURES

Element-based and Edge-based structures have been weelgnsised in finite
element implementations, resulting in considerable im@meents comparing to standard
implementations. The success of this solution strateguires an efficient implementation
of matrix-vector products and the choice of a suitable pnddmner. Generally, the edge-
based data structure reduces processing time and requiasdeone half of the storage area
to hold the coefficient matrix when compared to an enhanceth@ht-based implementation.
We perform an implementation of the NSGS method using eléina@sed and edge-based
implementations.

The conventional finite element data structure associategach trianglee is its
connectivity, that is, the mesh nodes/ and K. In the edge-based data structure each edge
is associated to the adjacent elemengnd f, thus to the nodes$, J, K and L, as shown in
Figure 3.

Figure 3: Elements adjacent to edgeformed by nodes e J.

Each element matrix can be disassembled into its contabsitio three edges, s + 1 and
s + 2, with connectivitied J, JK andK I, that is,

o o X x 0 0O 0 O x 0 X
° =|x x 0|4+]0 x x|+]0 0 0], (20)
° 0O 0 O 0 x X x 0 X

elemente edges edges + 1 edges + 2



wheree and x are matrix coefficients defined from (13). Thus, all the cbations belonging
to edges will be present in the adjacent elementand f. The resulting edge matrix is the sum
of the corresponding sub-element matrices containinghallcontributions to nodes and J,
that is,

[o o}:{x x}_i_{x x]. (21)
o o X X X X
—— ~~ ~~

edges elemente elementf

Considering a conventional elementwise description of \&emifinite element mesh, the
topological informations are manipulated, generatingraegge-based mesh description. Thus,
the assembled global matrix given in equation (19) may bdewnow as,

nedges

K = él K (22)

wherenedges is the total number of edges of the macro m&sh The edge matriXC® is
obtained from the contributions of all the element matrikésthat share the edge

In the element by element (EBE) implementation strategy,dbefficients of the global
matrix are stored in each macro element matrix as defined ®y (Lhe global matrixC is
stored in a compact form of sizezl x 9. On the other hand, in the edge-based (EDS) strategy
the coefficients of the global matrix, defined by (22), ar® al®red in a compact form of size
nedge x 4.

5. NUMERICAL RESULTS

In this section we evaluate the numerical performance optbposed Condensed NSGS
on some academic test cases. In all of them the computationahinQ = (0,1) x (0,1) is
discretized by using triangular meshes withx 20, 40 x 40 and80 x 80 cells, where each
cell is subdivided in two triangles (macro elements). Besidomparing the resolved solution
in the lights of the condensed and the original NSGS, we tiyate the efficiency of both EBE
and EDS implementations of the new methodology. The toterarfithe GMRES algorithm is
1077. Itis used 50 vectors in the Krylov basis in examples 1 and2énvectors in the example
3. The convergence of the NSGS method is attained for a fipesctolerancetpl = 1072 to
the examples 1 and 2, and = 10~* to the example 3) omaxiter = 30.

5.1 Example 1: Advection-diffusion problem

This example simulates a two-dimensional advection dotethaadvection-diffusion
problem withe = 107!2, 3 = (1,1) and f = o = 0. The Dirichlet boundary conditions
are given by

1, <03,

u(0,y) =u(l,y) =u(z,1) =0 and wu(r,0)= {0 x> 0.3.

These conditions yield a solution with an internal layerhe direction of the velocity field
starting at(0.3, 0.) and an exponential external layemnat 1.

Figure 4 shows the standard NSGS solution and the EBE/EB&dbeondensed NSGS
solution using the coarsest mesi (x 20). Thus, the mesly is composed by00 macro
elements with361 unknowns, while the mesH;, is formed by 3200 elements with1521
unknowns. Note that the EBE/EDS-based condensed NSGSosplabtained ory, is quite
accurate.



Table 1 presents the computational performance of the elebssed (EBE) and edge-
based (EDS) data structures, respectively, for the comrtdeNSGS method. In Tab. 1, Ngq
is the number of unknowns related to coarse mesh and the @fid aire reported. The edge-
based approach is abo6@% faster than the element-based one. #grwith 20 x 20 and
40 x 40, the CPU times for the standard NSGS (resolvedZgrdirect solver) is196.6 and
13814.75 seconds, respectively. Thus, either using EBE or EDS, riesthée computational
improvements are obtained with the condensed NSGS strategy

> ——

s

(a) standard NSGS (b) EBE/EDS-based condensed NSGS

Figure4: Example 1 - NSGS method solutions.

Table 1. Example 1: Computational costs - EBE and EDS structures
Mesh(Z) | Neqgy Time (s)

EBE \ EDS

20 x 20 361 6.36 3.79

40 x 40 1521 | 55.82 | 33.63

80 x 80 | 6241 | 243.27| 148.65

5.2 Example 2: Advection-diffusion problem with sourceterm

This example simulates a two-dimensional advection dotathaadvection-diffusion
problem withe = 107, 3 = (1,0), ¢ = 0 and a constant source terfn= 1. We setu = 0
on all boundary so that the exact solution 454 slope, possessing parabolic layerg at 0,

y = 1 and an exponential layer at= 1.

The standard NSGS solution and the edge-based condensesl $&Bfion using the mesh
with 20 x 20 cells are shown in Fig. 5. The standard NSGS method presemis gscillations
in the neighborhood of the parabolic layeys=£ 0 andy = 1). The condensed NSGS solution
presents a diffusive behavior in the these layers and a swalshoot inc = 1. However, there
is no oscillation at the externals layers.

Table 2 presents the computational performance for the eamsatl NSGS method
considering both data structures. The edge-based appsaobutt0% faster than the element-
based one, as in the example 1. Fgrwith 20 x 20 and40 x 40, the CPU times for the standard
NSGS (resolved fof;,, direct solver) is128.79 and13873.37 seconds, respectively.



(a) standard NSGS (b) EBE/EDS-based condensed NSGS

Figure5: Example 2 - NSGS method solutions.

Table 2: Example 2: Computational costs: EBE and EDS structures
Mesh(Zy) | Negy Time (s)

EBE \ EDS

20 x 20 361 3.23 2.11

40 x 40 1521 | 94.22 55.11

80 x 80 | 6241 | 2236.63| 1450.08

5.3 Example 3: Diffusion - reaction problem

In this example, we consider the singular perturbed caseexhe 10712, 0 = 1 andf =
0.5, with the following boundary conditionsi(z,0) = u(0,y) = 0 andu(z, 1) = u(1,y) = 1.

The Galerkin solution obtained on macro me$hx 20 is shown in Fig. 6(a), which
presents some locallized oscillations in the neighborhafdte external layers. Fig. 6(b) and
6(c) show the corresponding standard and condensed NS@®agkespectively. Although
some oscillations still remain at external layers, the eodgged condensed NSGS solution is
more accurate than the NSGS standard one.

The computational performance for the condensed EBE and BBSd NSGS
implementation are presented in Tab. 3. For this exampleelém®ent-based data structure
is more effective than the edge-based, that is, the EBE CiR# tor all meshes is smaller
than the EDS CPU time. Usually, EDS is more effective than EBBE to the matrix-vector
product float-point operations. However, as the number®fGMRES iterations is very small
in the present example, the solution required fewer numbenadrix-vector products float-
point operations. Thus, the computational costs are maimgentrated on the generation of
the edge-based mesh.

Table 3: Example 3: Computational costs: EBE and EDS structures
Mesh(y) | Neq(H) Time (s)

EBE\ EDS

20 x 20 361 0.07 | 0.75

40 x 40 1521 | 2.78 | 2.82

80 x 80 6241 | 11.58| 11.37




(a) Galerkin

(c) EBE/EDS-based condensed NSGS

(b) standard NSGS

Figure 6: Example 3 - Galerkin and NSGS methods solutions .



6. CONCLUSIONS

We propose a new implementation strategy for the Nonlinahg8d Stabilization (NSGS)
method. The NSGS method is a free parameter two-level stibggithod with good stability
and convergence properties, owing to a subgrid viscosatlyabts only on the unresolved scales.
It requires the solution of linear systems associated wititeah with characteristic length=
H /2 to obtain a solution whose resolutionfit The Condensed NSGS method proposed here
introduces a procedure to overcome this drawback. Thisrfeqmeed by locally approximating
the effects of the unresolved scale, yielded by a static eénsation of the not null subgrid
degrees of freedom at the macro element level. Then, thegdsed NSGS method can be
seen as an approximation of the original NSGS method. Agghdacking a full mathematical
explanation, such simple procedure results in a remarkedmieputational gain. Moreover,
some numerical experiments indicate that it yields exigalagization. Since the resolved scale
solution is obtained directly for the macro finite elementsimewe incorporate the EBE and
EDS data structures, yielding additional computationttiency.

Contrasting other techniques that use tune-up parametargptove accuracy, the present
free Condensed EBE/EDS NSGS method combines simplicity @otmputational efficiency.
Some important issues associated with the convergenceeohdmlinear procedure, the
mathematical and numerical analysis, application to meali and transient problems remain to
be investigated in forthcoming works.
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