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Abstract. In this work we evaluate the performance of the left conjugate direction method
(LCD) for the solution of non-symmetric systems of equations arising from finite element
simulation of the steady convection-diffusion equation. The restarted LCD algorithm is
implemented in the LibMesh library and computational efficiency of this new method and
two Krylov solvers available in the library (GMRES and Bi-CGSTAB) are compared. The
test problems considered correspond to a low speed flow problem with diffusion and a
convection dominated problem.
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1. INTRODUCTION

Numerical strategies for flow problems in science and engineering often require re-
peated solution of large sparse nonlinear systems of equations. The associated linearized
subproblems are usually solved by Krylov subspace iterative methods (e.g. see Saad
(1996)). Yuan et al. (2004) introduced a new algorithm for solving nonsymmetric, nonsin-
gular linear systems, the Left Conjugate Direction (LCD) method. This method is based
on the concept of left and right conjugate vectors for nonsymmetric and nonsingular ma-
trices and possesses several theoretical advantages: (i) it has a finite termination property;
(ii) breakdown for general matrices can be avoided and (iii) there is a connection between
LCD and LU decomposition. Initial experiments to solve some sample linear systems
arising from linear partial differential equations are presented in Yuan et al. (2004). Us-
ing a MATLAB implementation, they have shown that the LCD method has attractive
convergence rates when compared to Bi-CGSTAB, QMR and GMRES methods.
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Catabriga et al. (2004) evaluated the performance of the original LCD algorithm for
the solution of nonsymmetric systems of linear equations arising from the implicit semi-
discrete SUPG finite element formulation for inviscid compressible flows described in
Catabriga and Coutinho (2002). They extended the original algorithm to accommodate
restarts and typical finite element preconditioners. In these studies, for that application
class, comparisons with other Krylov space methods with or without preconditioning un-
fortunately did not favour the LCD method. Although requiring usually fewer iterations,
CPU times and memory were larger than GMRES, Bi-CGSTAB and TFQMR algorithms.
The main reason is the need to compute two matrix-vector products per iteration, one with
the coefficient matrix and the other with its transposed matrix.

Recently, Dai and Yuan (2004) proposed a new technique to overcome the break-
down problem appearing in the semi-conjugate direction method and a memory limitation
scheme similar to the limited-memory BFGS method to minimize memory requirements
of the original algorithm. Catabriga et al. (2005) introduced a restart strategy for the
new LCD algorithm given by Dai and Yuan (2004) and compared it with the restarted
LCD algorithm given by Catabriga et al. (2004) and the restarted GMRES method for
the solution of linear and nonlinear problems discretized by finite element and finite dif-
ference methods. They observed that in some cases the LCD algorithm was faster than
GMRES. In this work we evaluate the performance of the LCD scheme for the solution
of non-symmetric systems of equations arising in finite element simulation of that steady
convection-diffusion problem. This scheme in implemented in the LibMesh library and
compared with GMRES and Bi-CGSTAB with ILU(0) preconditioning. The present study
is confined to serial simulations on structured meshes (LibMesh permits parallel adaptive
unstructured mesh simulations).

The remainder of this work is organized as follows. In the next section we briefly
comment on LibMesh and associated solvers. Section 3 introduces the LCD algorithm
with particular emphasis on the restart capability. This is followed by several numerical
experiments, where we compare the performance of LCD with GMRES and Bi-CGSTAB
methods.

2. LibMesh LIBRARY

The LibMesh (2005) library is a tool for numerical simulation of partial differential
equations on serial and parallel platforms, using the finite element method and developed
in C++. It provides a C++ interface to the user, simplifying many programming details.
LibMesh allows discretization of one, two and three dimensional transient problems using
several element types. A major goal of LibMesh is to provide support for Adaptive Mesh
Refinement (AMR). LibMesh includes interfaces for standard high performance linear
equation solvers libraries such as PETSc (2005) and LASPack (2005). The choice of
appropriate solvers is made by the user at runtime.

PETSc and LASPack packages are integrated into LibMesh providing several linear
equation solvers such as GMRES, CG, Bi-CGSTAB, QMR. The library allows the com-
bination of a Krylov subspace iterative method and a preconditioner. Jacobi, Incomplete
LU factorization and Incomplete Cholesky factorization are examples of preconditioners
found in the library.
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3. GOVERNING EQUATIONS AND DISCRETE FORMULATION

We consider the following linear convection-diffusion equation defined in a domain
Ω with boundary Γ:

β · ∇u −∇.(κ∇u) = f, (1)
u = g on Γg, (2)

n · κ∇u = h on Γh, (3)

where u represents the quantity being transported (e.g. temperature, concentration), β

is the divergence-free flow velocity and κ is the volumetric diffusivity. Equations (2)
and (3) are the essential and natural boundary conditions, respectively, g and h are given
functions of x = (x, y), and n is the unit outward normal vector at the boundary, Γg and
Γh are the complementary subsets of Γ where boundary conditions are prescribed.

Consider a finite element discretization of Ω into elements Ωe, e = 1, . . . , nel, where
nel is the number of elements. The stabilized finite element formulation of Brooks and
Hughes (1982), leads to a system of linear equations,

Ax = b, (4)

where x is the vector of nodal values of u, A is a nonsymmetric sparse matrix and b is a
vector accounting for sources/sinks and boundary contributions.

The nonsymmetric linear systems are solved using the LCD method implemented
in LibMesh and two linear solvers available there (GMRES and Bi-CGSTAB methods).
The LCD algorithm introduced in the library is the algorithm proposed by Catabriga et al.
(2005) which accommodates restarts and typical finite element preconditioners. In this
LCD version, we need only one matrix vector product as in the GMRES algorithm, min-
imizing memory requirements of the original algorithm in Yuan et al. (2004). The LCD
algorithm for nonsymmetric system (4) can be written as follows:

1. Given x, A, b, lmax, kmax and η

2. r = b − Ax

3. ε = η‖r‖
4. Choose p1 such that pT

1 Ap1 6= 0
5. For l = 1, . . . , lmax do

5.1. q1 = Ap1

5.2. For i = 1, . . . , kmax do
5.2.1. αi =

pT
i r

pT
i qi

x = x + αipi

r = r − αiqi

5.2.2. if ‖r‖ < ε then exit loops i and l, x is the solution; else
5.2.3. pi+1 = r

qi+1 = Api+1

For j = 1, . . . , i do

βj = −
pT

j qi+1

pT
j qj

pi+1 = pi+1 + βjpj
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qi+1 = qi+1 + βjqj

5.3. choose the new p1 such that pT
1 Ap1 6= 0

where lmax is the maximum number of iterations, kmax is the number of left conjugate
directions considered in the restart and η is user a supplied tolerance. To start LCD, we
have to choose p1 in step 4 and the subsequent values of p1, in step 5.3, for each itera-
tion. Catabriga et al. (2004) report numerical experiments concerning this choice for the
compressible flow simulations. The best results were p1 = r for l = 1 and p1 = pkmax+1

for l + 1 so in this work we adopt this choice. For all solvers we use an ILU(0) precon-
ditioner and the LCD method was implemented using the same functions (for instance,
matrix-vector products, inner products and preconditioner calculations) used in GMRES
and Bi-CGSTAB algorithms and available on the LASPack and PETSc libraries.

4. NUMERICAL RESULTS

4.1 Linear convection-diffusion problem

Let us consider the linear convection-diffusion equation (1)-(2) defined in a unit
square domain Ω = (0,1) × (0,1) with boundary Γ. The diffusivity coefficients are kx = 1
and ky = 1 and β is a specified velocity vector given by

βx = x2(1 − x)2(2y − 6y2 + 4y3) (5)
βy = y2(1 − y)2(−2x + 6x2 − 4x3) (6)

and body force f is constructed such that u(x, y) = 100xy(x − 1)(y − 1) is the exact
solution with g = 0 on boundary Γ. The domain is discretized by grids of three-node
(TRI3) and six-node (TRI6) triangular elements (with 64× 64, 128× 128 and 256× 256
cells, and each cell is subdivided into four triangles). For all cases, we consider a relative
residual tolerance of 10−10.

First, we solve the problem using different numbers of restart vectors in the GM-
RES and LCD algorithms to observe the number of iterations and CPU time (in seconds)
needed for convergence. We consider 5, 10, 20, 30 and 40 restart vectors in both algo-
rithms. In most of the cases, the best performance of GMRES and LCD methods occur
when 40 and 10 vectors are used for restart, respectively. As an example of the numerical
experiments performed in this analysis, we show in Table 1 the number of iterations and
CPU time (in seconds) to solve the convection-diffusion problem on the mesh with 256 ×
256 cells. Bi-CGSTAB has an order of magnitude fewer iterations and, in the case shown,
gives the best results in terms of CPU time. Depending on the type of element used,
Bi-CGSTAB is up to 4 times faster than GMRES and LCD. When we compare the LCD
and GMRES methods, we can see that the LCD method presents better results in most
of the cases. The difference between the performance of the methods increases when we
increase the number of cells in the mesh.

Now, for 40 restart vectors we calculate the dominant computational costs in the
algorithms. Table 2 shows the cost of inner products, matrix vector products and precon-
ditioner calculations on the mesh with 256 × 256 cells with linear (TRI3) and quadratic
(TRI6) triangular elements. The preconditioner calculations are the most costly task in
Bi-CGSTAB and GMRES, and the inner products are the most costly task in LCD. Figure
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Table 1: Performance of GMRES, LCD and Bi-CGSTAB methods for the convection-
diffusion problem - Mesh 256 × 256 cells

GMRES LCD
TRI3 TRI6 TRI3 TRI6

Vec. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter.
5 109.17 5037 1146.5 10000 10.124 328 321.54 2107
10 57.673 2604 981.27 8657 11.2 296 302.58 1718
20 36.202 1403 486.67 3843 13.349 251 362.57 1525
30 24.504 812 464.29 3243 17.28 251 411.72 1368
40 20.994 612 402.01 2506 21.277 251 506.69 1381

Bi-CGSTAB - TRI3 Bi-CGSTAB - TRI6
CPU Time Iter. CPU Time Iter.

5.3867 150 77.983 407

1 shows the residual behavior for TRI3 and TRI6 elements considering the mesh with
256 × 256 cells and 40 vectors for the restart. The relative residual in LCD and GM-
RES decreases more slowly than Bi-CGSTAB. LCD converges with fewer iterations than
GMRES. The behavior of the residuals for the other cases are similar.

Table 2: Computational cost for the convection-diffusion problem - Mesh 256× 256 cells

GMRES(40) TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 5.0166 23.9% 81.199 20.2%
Matrix-Vector 2.9444 14.0% 65.166 16.2%
Preconditioner 5.2279 24.9% 125.060 31.1%
LCD(40) TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 7.2909 34.26% 145.710 28.75%
Matrix-Vector 1.1585 5.40% 35.588 7.00%
Preconditioner 2.1926 10.30% 69.130 13.60%
Bi-CGSTAB TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 0.31934 5.9% 3.5611 4.5%
Matrix-Vector 1.3786 25.6% 20.375 26.1%
Preconditioner 2.4801 46.0% 39.686 50.9%
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Figure 1: Relative residual evolution (Iterations × log(||r||)) for TRI3 (left) and TRI6
(right) elements, mesh 256 × 256 cells - convection-diffusion problem

4.2 Convection-dominated problem

Consider the common test problem of convection-dominated transport of a scalar on
a unit square domain, where convection is skew to the mesh and diffusivity is negligible.
The problem set up is given in Fig. 2 for boundary conditions u = 0 along y = 0,
u = 0 along x = 0 and 0 < y < 0.25, and u = 1 along x = 0 and 0.25 < y < 1.0.
The flow direction is 45o from the x-axis, constant (||β|| = 1), the diffusivity coefficients

Figure 2: Problem set up - Convection-dominated problem

are kx = 10−7 and ky = 10−7 and the solution has an interior layer emanating. The
stabilization parameter for the SUPG finite element discretization is determined as in
Brooks and Hughes (1982). As in the first example, the domain is discretized by linear
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(TRI3) and quadratic (TRI6) triangular elements (with 64× 64, 128× 128 and 256× 256
cells, and each cell is subdivided into four triangles). For all cases, we consider a relative
residual tolerance of 10−10.

Table 3 shows the CPU time (in seconds) and the number of iterations to solve this
problem for the mesh with 128 × 128 cells. The results for the other meshes are similar
and therefore are not shown here for conciseness. In this second example, we observe that
the GMRES method presents the smallest CPU time for all cases. Bi-CGSTAB has better
performance than LCD for linear elements.

Table 3: Performance of GMRES, LCD and Bi-CGSTAB methods for convection-
dominated problem - Mesh 128 × 128 cells

GMRES LCD
TRI3 TRI6 TRI3 TRI6

Vec. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter.
5 0.058874 9 8.3921 325 0.07265 9 10.875 327
10 0.061265 9 10.435 374 0.08657 9 18.133 430
20 0.065397 9 14.856 480 0.091874 9 27.969 481
30 0.066153 9 19.729 564 0.10035 9 41.007 569
40 0.066056 9 25.562 657 0.1037 9 58.142 664

Bi-CGSTAB - TRI3 Bi-CGSTAB - TRI6
CPU Time Iter. CPU Time Iter.
0.061741 5 9.8254 217

Table 4 shows the computational cost of inner products, matrix vector products and
preconditioner calculations for the case studied above. In this example, preconditioner
calculations are the most costly task for all methods, followed by matrix-vector products
and inner products. This behavior is mainly due to the number of restart vectors (5) used in
this case. Figure 3 shows the residual behavior for TRI3 and TRI6 elements using 5 restart
vectors and the mesh with 128×128 cells. For linear triangular elements, we observe that
the relative residual in GMRES and LCD are similar and Bi-CGSTAB converges with
the smallest number of iterations. For quadratic triangular elements, the relative residual
in Bi-CGSTAB oscillates and increases in the beginning of the process. However, just
before 200 iterations the relative residual falls abruptly.

5. CONCLUDING REMARKS

In this work we include the restarted left conjugate direction method (LCD) in the
LibMesh library and perform comparison studies between the computational efficiency
of this new method and two Krylov solvers available in the library, GMRES and Bi-
CGSTAB. For all solvers we use the incomplete LU factorization preconditioner available
in the library and the LCD method was implemented using the same functions as in the
GMRES algorithm and available on the PETSc library. We solve a convection-diffusion
transport problem and a convection-dominated problem implemented in the LibMesh li-
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Table 4: Computational cost for convection-dominated problem - Mesh 128 × 128 cells

GMRES(5) TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 0.00233 3.5% 0.3780 4.27%
Matrix-Vector 0.01138 17.3% 2.3727 26.80%
Preconditioner 0.02700 41.0% 4.2993 48.60%
LCD(5) TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 0.00704 9.6% 1.6585 14.30%
Matrix-Vector 0.01266 17.3% 2.2829 19.70%
Preconditioner 0.02146 41.0% 4.3327 37.45%
Bi-CGSTAB TRI3 TRI6
Operations CPU time % cost CPU time % cost
Inner product 0.00213 3.4% 0.4367 4.6%
Matrix-Vector 0.01708 27.1% 2.5359 26.8%
Preconditioner 0.02648 35.9% 4.7840 50.6%

-10

-8

-6

-4

-2

 0

 2

 0  1  2  3  4  5  6  7  8  9

LCD(5)
GMRES(5)
BICGSTAB

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0  50  100  150  200  250  300  350

LCD(5)
GMRES(5)
BICGSTAB

Figure 3: Relative residual evolution (Iterations × log(||r||)) for TRI3 (left) and TRI6
(right) elements, mesh 128 × 128 cells - Convection-dominated problem

brary on a serial platform. Future plans are to solve more complex 3D problems using
parallel adaptive mesh refinement (AMR) with LibMesh.

In the first problem, the best performance of GMRES and LCD methods occurs when
40 and 10 vectors are used for restart, respectively. Bi-CGSTAB has the best results in
terms of CPU time. Depending on the type of element used, Bi-CGSTAB is up to 4 times
faster than GMRES and LCD. When we compare the LCD and GMRES methods, we
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see that the LCD method yields better results in most of the cases. For the case of 40
restart vectors, the preconditioner calculations are the most costly task in Bi-CGSTAB
and GMRES, and the inner products are the most costly task in LCD. In this case, the
relative residuals in LCD and GMRES decrease more slowly than Bi-CGSTAB, and LCD
converges with fewer iterations than GMRES.

The second example is a convection dominated problem. In this case, both GMRES
and LCD methods present better performance using 5 restart vectors and the GMRES
method presents the smallest CPU time for all cases. Bi-CGSTAB has better performance
than LCD for linear elements. For 5 restart vectors, preconditioner calculations are the
most costly task for all methods, followed by matrix vector products and inner products.
This behavior is mainly due to the number of restart vectors used in this case. The relative
residual in GMRES and LCD are similar and Bi-CGSTAB converges with the smallest
number of iterations.
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