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Preface

Theoretical and applied research in flow, heat, and mass transfer in porous
media has received increased attention during the past three decades. This
is due to the importance of this research area in many engineering applic-
ations. Significant advances have been made in modeling fluid flow, heat,
and mass transfer through a porous medium including clarification of sev-
eral important physical phenomena. For example, the non-Darcy effects on
momentum, energy, andmass transport inporousmedia havebeen studied in
depth for various geometrical configurations andboundary conditions.Many
of the research works in porous media for the past couple of decades util-
ize what is now commonly known as the Brinkman–Forchheimer-extended
Darcy or the generalized model.
Important topics that have received significant interest include porosity

variation, thermaldispersion, the effects of local thermal equilibriumbetween
the fluid phase and the solid phase, partially filled porous configurations, and
anisotropic porousmedia, amongothers.Advancedmeasurement techniques
have also been developed including more efficient measurement of effective
thermal conductivity, flow and heat transfer measurement, and flow visu-
alization. The main objective of this handbook is to compile and present
the pertinent recent research information related to heat and mass transfer
including practical applications for analysis and the design of engineering
devices and systems involving porous media. Both the first and the present
editions of the Handbook of Porous Media are aimed at providing researchers
with the most pertinent and up-to-date advances in modeling and analysis
of flow, heat, and mass transfer in porous media. The second edition of the
Handbook of Porous Media, which addresses a substantially different set of
topics compared to the first edition includes recent studies related to cur-
rent and future challenges and advances in fundamental aspects of porous
media, viscous dissipation, forced and double diffusive convection in porous
media, turbulent flow, dispersion, particle migration and deposition in por-
ousmedia, dynamicmodeling of convective transport throughporousmedia,
and a number of other important topics.
It is important to recognize that different models can be found in the liter-

ature and in the present handbook in the area of fluid flow, heat, and mass
transfer in porous media. An in-depth analysis of these models is essential
in resolving uncertainty in utilizing them (see Tien, C.L. and Vafai, K., 1989,
Convective and radiative heat transfer in porous media, Adv. Appl. Mech.,
27, 225–282; Hadim, H. and Vafai, K., Overview of current computational
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vi Preface

studies of heat transfer in porous media and their applications — forced con-
vection and multiphase transport, in W. J. Minkowycz and E. M. Sparrow,
eds, Advances in Numerical Heat Transfer, Taylor and Francis, Vol. 2, Chap. 9,
pp. 291–330, Taylor & Francis, New York (2000); Vafai, K. and Hadim, H.,
Overview of current computational studies of heat transfer in porous media
and their applications — natural convection and mixed convection, in W. J.
Minkowycz and E. M. Sparrow, eds, Advances in Numerical Heat Transfer,
Taylor and Francis, Vol. 2, Chap. 10, pp. 331–371, Taylor & Francis, NewYork
(2000)). Additionally, competing models for multiphase transport models
in porous media were analyzed in detail in Vafai and Sozen (Vafai, K. and
Sozen, M., 1990, A comparative analysis of multiphase transport models in
porousmedia,Annu. Rev. HeatTransfer, 3, 145–162). In thatwork, a critical ana-
lysis of various multiphase models including the phase change process was
presented. These previous studies provide some clarification and insight for
understanding several pertinent aspects ofmodeling of transport phenomena
in porous media utilized in the literature and this handbook.
In another study, detailed analysis of variations among transport models

for fluid flowand heat transfer in porousmediawas presented (seeAlazmi, B.
and Vafai, K., 2000, Analysis of variants within the porous media transport
models, ASME J. Heat Transfer, 122, 303–326). In this work the pertinent mod-
els for fluid flow and heat transfer in porous media for four major categories
were analyzed.Another important aspect ofmodeling inporousmedia relates
to interface conditions between a porous medium and a fluid layer. As such,
analysis of fluid flow and heat transfer in the neighborhood of an interface
region for the pertinent interfacial models is presented in Alazmi and Vafai
(Alazmi, B. and Vafai, K., 2000, Analysis of fluid flow and heat transfer inter-
facial conditions between a porousmedium and a fluid layer, Int. J. Heat Mass
Transfer, 44, 1735–1749). Determination of the appropriate thermal boundary
conditions for the solid and fluid phases within a porous medium is also
an important aspect of modeling in porous media. This type of modeling
is necessary when prescribed wall heat flux boundary conditions and local
thermal nonequilibrium effects are present. As such, Alazmi and Vafai (2000)
presented and analyzeddifferent pertinent forms of constant heat flux bound-
ary conditions (see Alazmi, B. and Vafai, K., 2000, Constant wall heat flux
boundary conditions in porous media under local thermal non-equilibrium
conditions, Int. J. Heat Mass Transfer, 45, 3071–3087).
Developments in modeling transport phenomena in porous media have

advanced several pertinent areas, such as biology (see Khaled, A. –R. A. and
Vafai, K., 2003, The role of porous media in modeling flow and heat transfer
in biological tissues, Int. J. Heat Mass Transfer, 46, 4989–5003). In this work,
various biological areas such as diffusion in brain tissues, diffusion during
tissue generation process, the use of Magnetic Resonance Imaging (MRI) to
characterize tissue properties, blood perfusion in human tissues, blood flow
in tumors, bioheat transfer in tissues, and bioconvection that utilize different
transport models in porous media have been synthesized. Different turbu-
lent models for transport through porous media were analyzed in detail by
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Vafai et al. (Vafai et al., 2005, Synthesis of models for turbulent transport
through porous media, inW. J. Minkowycz and E. M. Sparrow, eds,Handbook
of Numerical Heat Transfer, John Wiley & Sons, New York). In this work, vari-
ous features, strengths, and weaknesses of the pertinent turbulent models
for flow through porous media have been analyzed and the formulation of a
generalized model leading to a more promising model has been established
and discussed. Further advances in porous media include modeling of the
free surface fluid flow and heat transfer through porous media. This topic
is important in a number of engineering applications such as geophysics,
die filling, metal processing, agricultural and industrial water distribution,
oil recovery techniques, and injection molding. Accordingly, a comprehens-
ive analysis of the free surface fluid flow and heat transfer through porous
media is presented in a recent work by Alazmi and Vafai (see Alazmi, B. and
Vafai, K., 2004, Analysis of variable porosity, thermal dispersion and local
thermal non-equilibrium effects on free surface flows through porous media,
J. Heat Transfer, 126, 389–399).
This handbook is targeted at researchers, practicing engineers, as well as

seasoned beginners in this field. A leading expert in the related subject area
presents each topic.Anattempt has beenmade topresent the topics in a cohes-
ive, concise yet complementary way with a common format. Nomenclature
common to various sections was used as much as possible.
The Handbook of PorousMedia, Second Edition, is arranged into seven sections

with a total of 17 chapters. The material in Part I covers fundamental topics
of transport in porous media including theoretical models of fluid flow, the
local volume-averaging technique andviscous anddynamicmodeling of con-
vective heat transfer, and dispersion in porous media. Part II covers various
aspects of forced convection in porous media including numerical modeling,
thermally developing flows and three-dimensional flow, and heat transfer
within highly anisotropic porous media. Natural convection, double diffus-
ive convection and flows induced by both natural convection and vibrations
in porous media are presented in Part III. Part IV presents the effects of vis-
cous dissipation in porous media for natural, mixed, and forced convection
applications. Part V covers turbulence in porous media. Particle migration
and deposition in porousmedia— composed of two parts— are discussed in
Part VI. The final part, VII, covers several important applications of transport
in porous media, including geothermal systems, liquid composite molding,
combustion in inert porous media, and bioconvection applications in porous
media. Also, the final part includes the application of Genetic Algorithms
(GAs) for identification of the hydraulic properties of porous materials in the
context of petroleum, civil, and mining engineering.
Chapter 1 examines the general problem of coupled, nonlinear mass trans-

fer with heterogeneous reaction in porous media. This situation occurs
whenever the mole fraction of the diffusing species is not small compared
to one. Under these conditions, the flux depends on both the mole fractions
and the mole fraction gradients of all other species that are present. For most
processes of diffusion and reaction in porousmedia, the governing equations
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viii Preface

can be linearized over the averaging volume and this allows for the method
of volume averaging to be applied in the traditional manner. The main con-
clusion of this work is that a single tortuosity tensor describes the influence
of the porous medium on the diffusion process of all species present in the
system.
In Chapter 2, macroscopic descriptions of flows and convective heat trans-

fer in porousmedia are obtained by averaging themicroscopicNavier–Stokes
andenergy equations volumetrically overfluid and solidphases, respectively.
This averaging procedure leads to the closure problemwhere new unknowns
require modeling to relate the unknowns to the averaged flow quantities.
Dynamic closure modeling for incompressible flows was constructed based
on the first principle of microscopic heat convection over the solids. The coef-
ficients in the closure relations, which depend only on the microstructure
of solids, are evaluated experimentally and/or numerically for some special
micro-geometries, such as the periodic media in two and three dimensions.
The analogies of the flows and heat transfer in porous media to those of
Hele-Shaw cells that represent laminated parallel-plates are examined. The
characteristics of macroscopic convective heat transfer in porous media are
demonstrated with the steady forced convections and the enhanced heat
transfer by oscillating flows past a heated circular cylinder in Hele-Shaw
cells.
Chapter 3 starts with the general volume-averaged transport equations:

fluid flow momentum equation, energy balance equation, and mass balance
equation. In these equations, there is a common term that is absent for flow
through a systemwhere the porous matrix is not present, namely, the disper-
sion. Mathematically, the origin of the dispersion is due to the microscopic
spatial velocity variation (special fluctuation). Physically, dispersion occurs
because of constant joining and splitting of flow streams when the fluid is
traversing through the porous structure. Discussion of the dispersion and
its effect on single fluid (and multiple fluids) flow, heat transfer, and mass
transfer is presented. Dispersion models are evaluated in this chapter.
Chapter 4 deals with recent analytical studies of forced convection in

channels orducts. The studies fall under twoheadings, namely thermaldevel-
opment and transverse (cross-channel) heterogeneity. The extension to the
case of local thermal nonequilibrium is also studied. Further, the extension to
the case where axial conduction and viscous dissipation are not negligible is
analyzed. In this chapter, the effect of transverse heterogeneity with respect
to permeability or thermal conductivity (or both) is also discussed for the case
of fully developed forced convection in a parallel-plate channel and a circular
duct, with walls at uniform temperature or uniform heat flux.
Chapter 5 presents a review of recent studies on the hydrodynamics and

heat transfer effects of variable (with temperature) viscosity flows in a liquid
saturated porous media channel. The Hydrodynamics section discusses in
detail the fundamental modifications necessary to correct existing models,
leading to the newly proposed Modified-HDD model. Influence of vari-
able viscosity on the Nusselt number, the pump power, and other aspects
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related to heat-transfer enhancements, are reviewed in the Heat Transfer
section. A Perturbation Models section reviews alternative efforts to address
the thermohydraulic problem analytically. Before concluding, a brief section
is devoted on the experimental validation of the proposed models.
A numerical model for a three-dimensional heat and fluid flow through

a bank of infinitely long cylinders in yaw has been proposed in Chapter 6
to investigate complex flow and heat-transfer characteristics associated with
man made anisotropic porous media, such as extended fins and plate fins
in heat-transfer equipment. Upon exploiting the periodicity of the structure,
one structural unit is found to represent the calculation domain. An eco-
nomical quasi-three-dimensional calculation procedure has been proposed
in this chapter to replace exhaustive three-dimensional numerical manipula-
tions. Extensive numerical calculations were carried out in this chapter for
various sets of the porosity, degree of anisotropy, Reynolds number, and
macroscopic flow direction in a three-dimensional space. Upon examining
the numerical data, a useful set of explicit expressions are established for
the permeability tensor and directional interfacial heat-transfer coefficient to
characterize flow and heat transfer through a bank of cylinders. The system-
atic modeling procedure proposed in this study can be utilized to conduct
subscale modelings of manmade structures needed in the possible applic-
ations of a volume-averaging theory to investigate flow and heat transfer
within complex heat and fluid flow equipment consisting of small elements.
Chapter 7 contains substantially revised material on double-diffusive con-

vection from the first version of the Handbook of Porous Media. Also, new
updated material is included as well as new results concerning the Soret
effect in double-diffusive convection in porous media.
Chapter 8 presents a linear and weakly nonlinear stability analysis (analyt-

ical and numerical study) of the thermal diffusive regime under the action
of mechanical harmonic vibrations. In this chapter, the influence of high fre-
quencies and small amplitude vibrations on the onset of convection in an
infinite horizontal porous layer and in rectangular cavity filled with a satur-
ated porous medium is studied. The influence of the direction of vibration
is also studied when the equilibrium or quasi-equilibrium solution exists.
In this chapter, the so-called time-averaged formulation is utilized. The two
horizontal walls, of the cell, are kept at different but uniform temperatures,
while vertical walls are subject to adiabatic conditions.
Chapter 9 reviews recent research progress related to the effect of viscous

dissipation on steady free, forced, andmixed convection flows over a vertical
plane surface embedded in a fluid saturated porous medium. The presence
of viscous dissipation breaks the usual equivalence between the upward free
convection flow from a heated vertical flat plate and from its downward
cooled counterpart. In the latter case the opposing effect of the buoyancy
forces due to heat release by viscous dissipation can give rise to a parallel flow.
In the case of forced and mixed convection flows, the usual thermal asymp-
totic condition contradicts the energy equation when the viscous dissipation
is taken into account. The asymptotic conditions that need to be substituted
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in order to achieve consistency with the energy equation are set forth. It is
shown that any local disturbance of the static equilibrium of a (resting) fluid
leads to a local heat release due to viscous dissipation and in turn, owing
to gravity, to a self-sustaining buoyant flow, even if the plate is kept at the
constant ambient temperature of the fluid. With the aid of a uniform lateral
suction of the fluid, this self-sustaining buoyant flow is shown to behave as
a steady jet-like momentum and thermal boundary layer. This turns out to
be a universal flow in the sense that its characteristics do not depend on the
thermophysical properties of the fluid and the solid skeleton. These kinds of
flows are discussed in detail in this chapter.
In Chapter 10, the double-decomposition concept (Pedras, M.H.J. and

de Lemos, M.J.S., IJHMT, 44(6), 1081–1093, 2001) is presented and thor-
oughly discussed prior to the derivation ofmacroscopic governing equations.
Equations for turbulent momentum transport in porous media are listed
showing detailed derivation for the mean and turbulent field quantities. The
statistical k–εmodel for clear domains, used tomodelmacroscopic turbulence
effects, serves also as the basis for turbulent heat transport modeling. Also,
this chapter discusses applications inHybridMedia covering flow overwavy
porous layers in channels and in cavities partially filledwith porousmaterial.
A microscopic phenomenological model and its simulation and experi-

mentalvalidation forfineparticlemigrationanddeposition inporousmedia is
presented in Chapter 11. The mathematical model of Gruesbeck and Collins
(Gruesbeck, C. and Collins, R.E., 1982, Entrainment and deposition of fine
particles in porous media, SPEJ, 22(6), 847–856) with the modifications and
improvements proposed by Civan (Civan, F., 2000, Reservoir Formation Dam-
age — Fundamentals, Modeling, Assessment, and Mitigation, Gulf Pub. Co.
Houston, TX, and Butterworth-Heinemann, Woburn, MA) is utilized in this
work. A bundle of plugging and nonplugging parallel capillary pathways is
developed in order to represent the particle and fluid transfer processes asso-
ciated with flow of a particle–fluid suspension through porous media. This
model allows for particle transfer between the plugging (highly tortuous flow
paths) and nonplugging (smoother flow paths) pathways by means of cross-
flow, and attempts to simulate the porosity and permeability reduction, and
the evolution of plugging and nonplugging pathways by particle deposition
in porous media.
In Chapter 12, rectilinear and radial macroscopic phenomenological mod-

els alongwith analytical solutions and applications for impairment of porous
media bymigration and deposition of fine particles are presented. Themech-
anism and kinetics of the fine-particle deposition in porous media for two
different models are described. The two models are compared and a phe-
nomenological approach is taken to represent the depositional source/sink
term and to provide constitutive relationships. For these models, the coupled
set of nonlinear equations are expressed in normalized variables and solved
analytically bymeans of themethod of characteristics for both rectilinear and
radial flows in porous media. Analytical solutions are provided for both con-
stant and variable deposition rates. The analysis in this chapter compares the
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solutions and results of the twomodels with an eye toward the interpretation
and representation of experimental data.
Chapter 13 describes the mathematical modeling process applied to phys-

ical systems where fluids move within heated porous ground structures.
The parameters that are needed to describe the thermodynamic properties
of the fluid and solid phases are listed and explained. Techniques for solving
the nonlinear system of differential equations, which result from the formal
modeling process are described, and some recent developments and foci of
research in this area are discussed.
Chapter 14 deals with Liquid Composite Molding (LCM) processes such

as Resin Transfer Molding (RTM), Vacuum Assisted Resin Transfer Mold-
ing (VARTM), CoInjection Resin Transfer Molding (CIRTM), and Structuring
Reaction Injection Molding (SRIM). These processes are used for manufac-
turing advanced polymer composites. In such processes, the fiber preform
is placed inside the mold cavity and a thermoset resin is injected into the
mold to wet the fiber preform. The resin cures and cross-links to form a solid
composite material. To understand the impregnation and the curing process
during manufacturing of composites, research has been conducted to model
the heat and flowphenomena in the LCMprocesses. The transport theories in
porous media and the chemical reaction equations have been used to model
the thermal and fluid behavior.
Chapter 15 of this handbook discusses premixed combustion of gaseous

fuels and air, which react in porous inert media (PIM) that serve as “flame
holders” for the burners. The intimate coupling of local chemical energy
release during the reaction and heat transfer by conduction, convection, and
radiation in the solid matrix results in recirculation of part of the heat of reac-
tion and affects the flame speed, flame stability, the peak flame temperature,
and pollutant emissions. The design, theory, modeling, and characteristics
of selected combustion systems in which the reactants are preheated using
heat recycled from beyond the flame zone, without mixing the two streams,
are discussed in this chapter. Applications of devices that have the potential
for high efficiencies, low pollutant emissions, and possibility of burning low
calorific value gaseous fuels and combustion of lean hydrogen/air mixtures
are discussed here.
Chapter 16 deals with bioconvection in porous media. This is an area that

is related to a number of pertinent biological applications. One of the applic-
ations of porous media is in control and suppression of bioconvection. This
problem is of importance, for example, in separation between living and
dead cells in suspensions of upswimming mobile microorganisms. Since liv-
ing microorganisms are heavier than water, their upswimming results in an
increase in the density of the upper fluid layer. This leads to convection
instability that induces convective motion in the fluid layer. This convect-
ive motion, called bioconvection, moves the dead cells from the lower part of
the fluid layer and transports them to the upper part of the fluid layer, causing
mixing between living and dead cells. By utilizing porous substrates it is pos-
sible to control or even completely suppress bioconvection. A large portion of
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the chapter is devoted to derivation of the stability criteria for bioconvection
in porous media. The effect of cell deposition and declogging as well as the
effect of fouling of porousmedia on the critical permeability are investigated.
Finally, this chapter also presents a theory of a bioconvection plume in a sus-
pension of oxytactic bacteria in a deep chamber filled with a fluid saturated
porous medium.
The last chapter in the handbook addresses the inverse problem of the

identification of the hydraulic properties of porous materials in the context
of petroleum, civil, and mining engineering. The application of GAs, which
attempts to imitate the principles of biological evolution in the construction
of optimization strategies and has led to the development of a powerful and
efficient optimization tool, is investigated for such purposes. In this chapter,
an inversion technique is formulated in order to retrieve homogeneous or
spacewise dependent material property coefficients. Surface measurements
bymeansof simulatedports along the sealedboundariesof thematerials serve
as information to the GA optimization procedure, thus enabling a modified
least squares functional tominimize the difference between the observed and
the numerically predicted boundary pressure and/or average hydraulic flux
measurements under current hydraulic conductivity tensor and specific stor-
age estimates. Composite anisotropic materials, that is, incorporating faults,
are also investigated. Parameter identification in inverse problems is numer-
ically investigated and the results are found to provide an accurate means
of recovering the required material properties. A comparison on the per-
formance of the inversion highlights the advantages of the GA optimization
approach against a traditional gradient-based optimization procedure.
In each of these chapters whenever applicable pertinent aspects of exper-

imental work or numerical techniques are discussed. Experts in the field
reviewed each chapter of this handbook. Overall, there were many reviewers
who were involved. The authors and I are very thankful for the valuable and
constructive comments that were received.

Kambiz Vafai
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1
Coupled, Nonlinear Mass Transfer and
Heterogeneous Reaction in Porous Media

Michel Quintard and Stephen Whitaker

CONTENTS
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1.1 Introduction

This chapter deals with multicomponent mass transfer and heterogeneous
reaction under conditions where temperature effects can be ignored. The
process is illustrated in Figure 1.1 where we have identified a flowing fluid as
the γ -phase and an impermeable solid as the κ-phase. The chemical reaction
takes place at the γ –κ interface, and when convective transport is important
this situation is often referred to asmass transferwith reaction at a nonporous
catalyst. Such systems are commonly treated in texts on reactor design [1–4]
and in many cases one must consider the effect of heat transfer on the reac-
tion rate. When convective transport is negligible, the process illustrated in
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�-phase
�-phase

FIGURE 1.1
Transport in a rigid porous medium.

Figure 1.1 represents a case of diffusion and reaction in a porous catalyst, and
this is a major problem in the area of reactor design.
In texts on reactor design, problems of mass transfer and reaction are

uniformly presented in terms of an uncoupled, linear convective–diffusion
equation, or as an uncoupled, linear diffusion equation in the case of por-
ous catalysts. This simplification is applicable when the reacting species is
dilute and this requires that the mole fraction of the reacting species be small
compared to one. When this is not the case, the diffusive transport becomes
nonlinear, and what is often considered to be a routine transport problem
becomes quite complex. Direct numerical solution of the nonlinear prob-
lem is possible; however, transport processes in porous media necessarily
demand spatially smoothed equations [5] and this increases the complexity
of the analysis.

1.2 Mass Transfer

Problems of isothermal mass transfer and reaction are usually based on the
species continuity equation [6, 7] in the molar form given by

∂cAγ
∂t
+ ∇ · (cAγ vAγ ) = RAγ , A = 1, 2, . . . ,N (1.1)

alongwith the speciesmass jumpcondition at the γ –κ interface.When surface
transport [8] can be neglected, the jump condition takes the form

∂cAs

∂t
= (cAγ vAγ ) · nγ κ + RAs, at the γ –κ interface, A = 1, 2, . . . ,N (1.2)
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Nonlinear Mass Transfer in Porous Media 5

in which nγ κ represents the unit normal vector directed from the γ -phase to
the κ-phase. In Eq. (1.1) we have used cAγ to represent the bulk concentration
of species A (moles per unit volume), while in Eq. (1.2) we have used cAs
to represent the surface concentration of species A (moles per unit area).
The nomenclature for the homogeneous reaction rate, RAγ , and heterogen-
eous reaction rate, RAs, follows the same pattern. Both Eqs. (1.1) and (1.2)
can be expressed in terms of the species mass density and the mass rate of
reaction; however, most phase equilibrium data are given in terms of mole
fractions and most chemical kinetic constitutive equations are given in terms
of molar concentrations, thus we prefer to base our analysis on the molar
forms given by Eqs. (1.1) and (1.2).
The independent homogeneous and heterogeneous chemical reaction rates

[9] must be specified in terms of the molar concentrations of the N species
by a chemical kinetic constitutive equation. A complete description of the
mass transfer process requires a connection between the surface concentration,
cAs, and the bulk concentration, cAγ . One classic connection is based on the
condition of local mass equilibrium, and for a linear equilibrium relation this
concept takes the form

cAs = KAcAγ , at the γ –κ interface, A = 1, 2, . . . ,N (1.3a)

The condition of local mass equilibrium can exist even when adsorption
and chemical reaction are taking place [5, problem 1.3]. When local mass
equilibrium is not valid, one must propose an interfacial flux constitutive
equation. The classic linear form is given by [10, 11]

(cAγ vAγ ) · nγ κ = kA1cAγ − k−A1cAs, at the γ –κ interface, A = 1, 2, . . . ,N
(1.3b)

in which kA1 and k−A1 represent the adsorption and desorption rate coeffi-
cients for species A.
In addition to Eqs. (1.1) and (1.2), we need N momentum equations [12]

that are used to determine the N species velocities represented by vAγ ,
A = 1, 2, . . . ,N. There are certain problems for which the N momentum
equations consist of the total, or mass average, momentum equation

∂

∂t
(ργ vγ )+ ∇ · (ργ vγ vγ ) = ργbγ + ∇ · Tγ (1.4)

along with N − 1 Stefan–Maxwell equations that take the form

0 = −∇xAγ +
E=N∑
E=1
E�=A

xAγ xEγ (vEγ − vAγ )
DAE

, A = 1, 2, . . . ,N − 1 (1.5)
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6 Michel Quintard and Stephen Whitaker

The species velocity can be decomposed into an average velocity and adiffusion
velocity in more than one way [6, 7, 13], and arguments are often given
to justify a particular choice. In this work we prefer a decomposition in
terms of the mass average velocity because governing equations, such as the
Navier–Stokes equations, are available to determine this velocity. The mass
average velocity in Eq. (1.4) is defined by

vγ =
A=N∑
A=1

ωAγ vAγ (1.6)

and the associated mass diffusion velocity is defined by the decomposition

vAγ = vγ + uAγ (1.7)

The mass diffusive flux has the attractive characteristic that the sum of the
fluxes is zero, that is,

A=N∑
A=1

ρAγuAγ = 0 (1.8)

As an alternative to Eqs. (1.6) through (1.8), we can define a molar average
velocity by

v∗γ =
A=N∑
A=1

xAγ vAγ (1.9)

and the associated molar diffusion velocity is given by

vAγ = v∗γ + u∗Aγ (1.10)

In this case, the molar diffusive flux also has the attractive characteristic
given by

A=N∑
A=1

cAγu∗Aγ = 0 (1.11)

however, the use of the molar average velocity defined by Eq. (1.9) presents
problems when Eq. (1.4) must be used as one of theN momentum equations.
If we make use of the mass average velocity and the mass diffusion

velocity as indicated by Eqs. (1.6) and (1.7), the molar flux in Eq. (1.1) takes
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Nonlinear Mass Transfer in Porous Media 7

the form

cAγ vAγ︸ ︷︷ ︸
total molar

flux

= cAγ vγ︸ ︷︷ ︸
molar convective

flux

+ cAγuAγ︸ ︷︷ ︸
mixed-mode
diffusive flux

(1.12)

Here we have decomposed the total molar flux into what we want, the molar
convective flux, and what remains, that is, a mixed-mode diffusive flux.
Following Eq. (1.7), we indicate the mixed-mode diffusive flux as

JAγ = cAγuAγ , A = 1, 2, . . . ,N (1.13)

so that Eq. (1.1) takes the form

∂cAγ
∂t
+ ∇ · (cAγ vγ ) = −∇ · JAγ + RAγ , A = 1, 2, . . . ,N (1.14)

The single drawback to this mixed-mode diffusive flux is that it does not
satisfy a simple relation such as that given by either Eq. (1.8) or Eq. (1.11).
Instead, we find that the mixed-mode diffusive fluxes are constrained by

A=N∑
A=1

JAγ (MA/M) = 0 (1.15)

in whichMA is the molecular mass of species A andM is the mean molecular
mass defined by

M =
A=N∑
A=1

xAγMA (1.16)

There are many problems for which we wish to know the concentration, cAγ ,
and the normal component of the molar flux of speciesA at a phase interface.
The normal component of the molar flux at an interface will be related to
the adsorption process and the heterogeneous reaction by means of the jump
condition given by Eq. (1.2) and relations of the type given by Eq. (1.3), and
this fluxwill be influencedby the convective, cAγ vγ , anddiffusive, JAγ , fluxes.
The governing equations for cAγ and vγ are available to us in terms of

Eqs. (1.4) and (1.14), and here we consider the matter of determining JAγ .
Todetermine themixed-modediffusive flux, we return to the Stefan–Maxwell
equations and make use of Eq. (1.7) to obtain

0 = −∇xAγ +
E=N∑
E=1
E�=A

xAγ xEγ (uEγ − uAγ )

DAE
, A = 1, 2, . . . ,N − 1 (1.17)
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8 Michel Quintard and Stephen Whitaker

This can be multiplied by the total molar concentration and rearranged in
the form

0 =− cγ∇xAγ + xAγ
E=N∑
E=1
E�=A

cEγuEγ

DAE

−




E=N∑
E=1
E�=A

xEγ
DAE


 cAγuAγ , A = 1, 2, . . . ,N − 1 (1.18)

which can then be expressed in terms of Eq. (1.13) to obtain

0 = −cγ∇xAγ + xAγ
E=N∑
E=1
E�=A

JEγ
DAE

−




E=N∑
E=1
E�=A

xEγ
DAE


 JAγ , A = 1, 2, . . . ,N − 1

(1.19)

Here we can use the classic definition of the mixture diffusivity

1
DAm

=
E=N∑
E=1
E�=A

xEγ
DAE

(1.20)

in order to express Eq. (1.19) as

JAγ − xAγ
E=N∑
E=1
E�=A

DAm

DAE
JEγ = −cγDAm∇xAγ , A = 1, 2, . . . ,N − 1 (1.21)

When the mole fraction of species A is smaller than one, we obtain the dilute
solution representation for the diffusive flux

JAγ = −cγDAm∇xAγ , xAγ � 1 (1.22)

and the transport equation for species A takes the form

∂cAγ
∂t
+ ∇ · (cAγ vγ ) = ∇ · (cγDAm∇xAγ )+ RAγ , xAγ � 1 (1.23)

Given the condition, xAγ � 1, it is often plausible to impose the condition

xAγ∇cγ � cγ∇xAγ (1.24)

© 2005 by Taylor & Francis Group, LLC
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and this leads to the following convective–diffusion equation that is
ubiquitous in the reactor design literature:

∂cAγ
∂t
+ ∇ · (cAγ vγ ) = ∇ · (DAm∇cAγ )+ RAγ , xAγ � 1 (1.25)

When the mole fraction of species A is not smaller than one, the diffusive
flux in this transport equation will not be correct. If the diffusive flux plays an
important role in the rate of heterogeneous reaction, Eq. (1.25) will not lead
to a correct representation for the rate of reaction.

1.3 Diffusive Flux

We begin our analysis of the diffusive flux with Eq. (1.21) in the form

JAγ = −cγDAm∇xAγ + xAγ
E=N∑
E=1
E�=A

DAm

DAE
JEγ , A = 1, 2, . . . ,N − 1 (1.26)

and make use of Eq. (1.15) in an alternate form

A=N∑
A=1

JAγ (MA/MN) = 0 (1.27)

to obtain N equations relating the N diffusive fluxes. At this point we define
a matrix [R] according to

[R] =




1 − xAγDAm

DAB
− xAγDAm

DAC
− · · · − xAγDAm

DAN

−xBγDBm

DBA
+ 1 − xBγDBm

DBC
− · · · − xBγDBm

DBN

−xCγDCm

DCA
− xCγDCm

DCB
+ 1 − · · · − xCγDCm

DCN

...
...

...
...

... − · · · − ...

...
...

...
...

... − · · · − ...

MA

MN
+ MB

MN
+ MC

MN
+ · · · + 1




(1.28)

© 2005 by Taylor & Francis Group, LLC
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and use Eqs. (1.26) and (1.27) to express the N diffusive fluxes according to

[R]




JAγ
JBγ
JCγ
...
...

JNγ



= −cγ




DAm∇xAγ
DBm∇xBγ
DCm∇xCγ

...
D(N−1)m∇x(N−1)γ

0




(1.29)

We assume that the inverse of [R] exists in order to express the columnmatrix
of diffusive flux vectors in the form



JAγ
JBγ
JCγ
...
...

JNγ



= −cγ [R]−1




DAm∇xAγ
DBm∇xBγ
DCm∇xCγ

...
D(N−1)m∇x(N−1)γ

0




(1.30)

in which the column matrix on the right-hand side of this result can be
expressed as



DAm∇xAγ
DBm∇xBγ
DCm∇xCγ

...
D(N−1)m∇x(N−1)γ

0



=




DAm 0 0 · · · 0 0
0 DBm 0 · · · 0 0
0 0 DCm · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · D(N−1)m 0
0 0 0 · · · 0 DNm




×




∇xAγ
∇xBγ
∇xCγ
...

∇x(N−1)γ
0




(1.31)

The diffusivity matrix is now defined by

[D] = [R]−1




DAm 0 0 · · · 0 0
0 DBm 0 · · · 0 0
0 0 DCm · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · D(N−1)m 0
0 0 0 · · · 0 DNm




(1.32)
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so that Eq. (1.30) takes the form




JAγ
JBγ
JCγ
...
...

JNγ



= −cγ [D]




∇xAγ
∇xBγ
∇xCγ
...

∇x(N−1)γ
0




(1.33)

This result can be expressed in a form analogous to that given by Eq. (1.26)
leading to

JAγ = −cγ
E=N−1∑
E=1

DAE∇xEγ , A = 1, 2, . . . ,N (1.34)

In the general case, the elements of the diffusivity matrix, DAE, will depend
on the mole fractions in a nontrivial manner. When this result is used in
Eq. (1.14), we obtain the nonlinear, coupled governing differential equation
for cAγ given by

∂cAγ
∂t
+ ∇ · (cAγ vγ ) = ∇ ·

(
cγ

E=N−1∑
E=1

DAE∇xEγ
)
+ RAγ , A = 1, 2, . . . ,N

(1.35)

We seek a solution to this equation subject to the jump condition given by
Eq. (1.2) and this requires knowledge of the concentration dependence of the
homogeneous and heterogeneous reaction rates and information concerning
the equilibrium adsorption isotherm. In general, a solution of Eq. (1.35) for
the system shown in Figure 1.1 requires upscaling from the point scale to the
pore scale and this can be done by the method of volume averaging [5].

1.4 Volume Averaging

To obtain the volume-averaged form of Eq. (1.35), we first associate an aver-
aging volume with every point in the γ –κ system illustrated in Figure 1.1.
One such averaging volume is illustrated in Figure 1.2, and it can be
represented in terms of the volumes of the individual phases according to

V = Vγ + Vκ (1.36)

The radius of the averaging volume is ro and the characteristic length scale
associated with the γ -phase is indicated by 
γ in Figure 1.2. In Figure 1.2 we
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�-phase �-phase

ro

�

L

FIGURE 1.2
Averaging volume for a packed bed of nonporous catalyst.

have also illustrated a length L that is associatedwith the distance over which
significant changes in averaged quantities occur. Throughout this analysiswe
will assume that the length scales are disparate, that is, the length scales are
constrained by


γ � ro � L (1.37)

Elsewhere [5, chapter 1] it is shown that these constraints are overly severe;
however, they are quite sufficient for the purposes of this presentation.
We will use the averaging volume V to define two averages: the superficial

average and the intrinsic average. Each of these averages is routinely used
in the description of multiphase transport processes, and it is important to
clearly define each one. We define the superficial average of some function ψγ
according to

〈ψγ 〉 = 1
V

∫
Vγ
ψγ dV (1.38)

and we define the intrinsic average by

〈ψγ 〉γ = 1
Vγ

∫
Vγ
ψγ dV (1.39)

© 2005 by Taylor & Francis Group, LLC
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These two averages are related according to

〈ψγ 〉 = εγ 〈ψγ 〉γ (1.40)

in which εγ is the volume fraction of the γ -phase defined explicitly as

εγ = Vγ /V (1.41)

In this notation for the volume averages, a Greek subscript is used to identify
the particular phase under consideration while a Greek superscript is used
to identify an intrinsic average. Since the intrinsic and superficial averages
differ by a factor of εγ , it is essential to make use of a notation that clearly
distinguishes between the two averages.
Whenwe form the volume average of any transport equation, we are imme-

diately confronted with the average of a gradient (or divergence), and it is
the gradient (or divergence) of the average that we are seeking. In order to
interchange integration and differentiation, we will make use of the spatial
averaging theorem [14–17]. For the two-phase system illustrated in Figure 1.2
this theorem can be expressed as

〈∇ψγ 〉 = ∇〈ψγ 〉 + 1
V

∫
Aγ κ

nγ κψγ dA (1.42)

in whichψγ is any function associatedwith the γ -phase. HereAγ κ represents
the interfacial area containedwithin the averaging volume, andwe have used
nγ κ to represent the unit normal vector pointing from the γ -phase toward the
κ-phase.
Even though Eq. (1.35) is considered to be the preferred form of the species

continuity equation, it is best to begin the averaging procedure with Eq. (1.1)
and we express the superficial average of that form as〈

∂cAγ
∂t

〉
+ 〈∇ · (cAγ vAγ )〉 = 〈RAγ 〉, A = 1, 2, . . . ,N (1.43)

For a rigid porous medium, one can use the transport theorem and the
averaging theorem to express this result as

∂〈cAγ 〉
∂t
+ ∇ · 〈cAγ vAγ 〉 + 1

V

∫
Aγ κ

nγ κ · (cAγ vAγ )dA = 〈RAγ 〉 (1.44)

where it is understood that this applies to all N species. Since we seek a
transport equation for the intrinsic average concentration, we make use of
Eq. (1.40) to express Eq. (1.44) in the form

εγ
∂〈cAγ 〉γ
∂t

+ ∇ · 〈cAγ vAγ 〉 + 1
V

∫
Aγ κ

nγ κ · (cAγ vAγ )dA = εγ 〈RAγ 〉γ (1.45)
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At this point, it is convenient to make use of the jump condition given by
Eq. (1.2) in order to obtain

εγ
∂〈cAγ 〉γ
∂t

+ ∇ · 〈cAγ vAγ 〉 = εγ 〈RAγ 〉γ − 1
V

∫
Aγ κ

∂cAs

∂t
dA+ 1

V

∫
Aγ κ

RAs dA

(1.46)

We now define the intrinsic interfacial area average according to

〈ψγ 〉γ κ = 1
Aγ κ

∫
Aγ κ

ψγ dA (1.47)

so that Eq. (1.46) takes the convenient form given by

εγ
∂〈cAγ 〉γ
∂t︸ ︷︷ ︸

accumulation

+∇ · 〈cAγ vAγ 〉︸ ︷︷ ︸
transport

= εγ 〈RAγ 〉γ︸ ︷︷ ︸
homogeneous

reaction

− av
∂〈cAs〉γ κ
∂t︸ ︷︷ ︸

adsorption

+ av〈RAs〉γ κ︸ ︷︷ ︸
heterogeneous

reaction

(1.48)

One must keep in mind that this is a general result based on Eqs. (1.1) and
(1.2); however, only the first term in Eq. (1.48) is in a form that is ready for
application.

1.5 Chemical Reactions

To obtain a useful form for the homogeneous reaction rate, one needs a
chemical kinetic constitutive equation that can be expressed as

RAγ = RAγ (cAγ , cBγ , . . . , cNγ ) (1.49)

Even for nonlinear reaction ratemechanisms, the volume average of Eq. (1.49)
can usually be expressed as

〈RAγ 〉γ = RAγ
(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ ) (1.50)

This approximation requires that the concentration gradients be small enough,
and what is meant by small enough has been explored byWood andWhitaker
[18, 19] for the case of biological reaction rate mechanisms. When Eq. (1.50)
is valid, the treatment of homogeneous reactions in porous media becomes a
routinematter and is not considered further in this chapter. When Eq. (1.50) is
not valid the rate of homogeneous reaction will depend on ∇〈cAγ 〉γ , ∇〈cBγ 〉γ ,
etc., in addition to 〈cAγ 〉γ , 〈cBγ 〉γ , etc.
© 2005 by Taylor & Francis Group, LLC
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The chemical kinetic constitutive equation for the heterogeneous rate of
reaction can be expressed as

RAs = RAs(cAs, cBs, . . . , cNs) (1.51)

and here we see the need to relate the surface concentrations, cAs,
cBs, . . . , cNs, to the bulk concentrations, cAγ , cBγ , . . . , cNγ , and subsequently
to the local volume-averaged concentrations, 〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ . For
heterogeneous reaction to occur, adsorption at the catalytic surface must
also occur. However, there are many transient processes of mass transfer
with heterogeneous reaction for which the catalytic surface can be treated as
quasi-steady [20, 21]. When homogeneous reactions can be ignored and the
catalytic surface can be treated as quasi-steady, the local volume-averaged
transport equation simplifies to

εγ
∂〈cAγ 〉γ
∂t︸ ︷︷ ︸

accumulation

+∇ · 〈cAγ vAγ 〉︸ ︷︷ ︸
transport

= av〈RAs〉γ κ︸ ︷︷ ︸
heterogeneous

reaction

(1.52)

and this result provides the basis for several special forms.

1.6 Convective and Diffusive Transport

Before examining the heterogeneous reaction rate in Eq. (1.52), we consider
the transport term, 〈cAγ vAγ 〉. We begin with the mixed-mode decomposition
given by Eq. (1.12) in order to obtain

〈cAγ vAγ 〉︸ ︷︷ ︸
total molar

flux

= 〈cAγ vγ 〉︸ ︷︷ ︸
molar convective

flux

+ 〈cAγuAγ 〉︸ ︷︷ ︸
mixed-mode
diffusive flux

(1.53)

Here the convective flux is given in terms of the average of a product, and we
want to express this flux in terms of the product of averages. As in the case of
turbulent transport, this suggests the use of decompositions given by

cAγ = 〈cAγ 〉γ + c̃Aγ , vγ = 〈vγ 〉γ + ṽγ (1.54)

At this point one can follow a detailed analysis [5, chapter 3] of the convective
transport to arrive at

〈cAγ vAγ 〉︸ ︷︷ ︸
total flux

= εγ 〈cAγ 〉γ 〈vγ 〉︸ ︷︷ ︸
average convective

flux

+ 〈c̃Aγ ṽγ 〉︸ ︷︷ ︸
dispersive

flux

+ 〈JAγ 〉︸ ︷︷ ︸
mixed-mode
diffusive flux

(1.55)
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Here we have used the intrinsic average concentration since this is most
closely related to the concentration in the fluid phase, and we have used the
superficial average velocity since this is the quantity that normally appears in
Darcy’s law [5] or the Forchheimer equation [22]. Use of Eq. (1.55) in Eq. (1.52)
leads to

εγ
∂〈cAγ 〉γ
∂t

+ ∇ · (εγ 〈cAγ 〉γ 〈vγ 〉) = −∇ · 〈JAγ 〉︸ ︷︷ ︸
diffusive
transport

−∇ · 〈c̃Aγ ṽγ 〉︸ ︷︷ ︸
dispersive
transport

+ av〈RAs〉γ κ︸ ︷︷ ︸
heterogeneous

reaction

(1.56)

If we treat the catalytic surface as quasi-steady and make use of a simple
first-order, irreversible representation for the heterogeneous reaction, one can
show that RAs is given by [5, section 1.1]

RAs = −kAscAs = −
(

kAskA1
kAs + k−A1

)
cAγ , at the γ –κ interface (1.57)

when species A is consumed at the catalytic surface. Here we have used kAs to
represent the intrinsic surface reaction rate coefficient, while kA1 and k−A1 are the
adsorption and desorption rate coefficients that appear in Eq. (1.3b). Other
more complex reaction mechanisms can be proposed; however, if a linear
interfacial flux constitutive equation is valid, the heterogeneous reaction rates
can be expressed in terms of the bulk concentration as indicated by Eq. (1.57).
Under these circumstances the functional dependence indicated in Eq. (1.51)
can be simplified to

RAs = RAs(cAγ , cBγ , . . . , cNγ ), at the γ –κ interface (1.58)

Given the type of constraints developed elsewhere [18, 19], the interfacial area
average of the heterogeneous rate of reaction can be expressed as

〈RAs〉γ κ = 〈RAs〉γ κ(〈cAγ 〉γ κ , 〈cBγ 〉γ κ , . . . , 〈cNγ 〉γ κ), at the γ –κ interface
(1.59)

Sometimes confusion exists concerning the idea of an area averaged bulk
concentration, and to clarify this idea we consider the averaging volume illus-
trated in Figure 1.3. There we have shown an averaging volume with the
centroid located (arbitrarily) in the κ-phase. In this case, the area average of
the bulk concentration is given explicitly by

〈cAγ 〉γ κ
∣∣
x =

1
Aγ κ(x)

∫
Aγ κ (x)

cAγ
∣∣
x+y dA (1.60)
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�-phase

�-phase

y

x

FIGURE 1.3
Position vectors associated with the area average over the γ –κ interface.

in which x locates the centroid of the averaging volume and y locates points
on the γ –κ interface. We have used Aγ κ(x) to represent the area of the γ –κ
interface contained within the averaging volume.
To complete our analysis of Eq. (1.59), we need to know how the

area-averaged concentration, 〈cAγ 〉γ κ , is related to the volume-averaged
concentration, 〈cAγ 〉γ . Here we consider two special cases; one in which con-
vective transport dominates the system illustrated in Figure 1.1 and one in
which diffusive transport dominates the system. The former case is asso-
ciated with the analysis of a chemical reactor (see Figure 1.2) containing a
nonporous catalyst, while the latter case is associated with analysis of diffu-
sion and reaction in a porous catalyst. When the convective transport is large
enough so that the area-averaged and volume-averaged concentrations are
constrained by

〈cAγ 〉γ − 〈cAγ 〉γ κ � 〈cAγ 〉γ (1.61)

and small causes give rise to small effects [23], we can express Eq. (1.56) as

εγ
∂〈cAγ 〉γ
∂t

+ ∇ · (εγ 〈cAγ 〉γ 〈vγ 〉) = −∇ · 〈JAγ 〉 − ∇ · 〈c̃Aγ ṽγ 〉
+ av〈RAs〉γ κ

(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ )
(1.62)

When convective effects in an isothermal reactor are sufficiently large, both
axial dispersion and axial diffusion can be neglected according to

εγ 〈cAγ 〉γ 〈vγ 〉 � 〈c̃Aγ ṽγ 〉 � 〈JAγ 〉 (1.63)
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18 Michel Quintard and Stephen Whitaker

This leads to the special form of Eq. (1.62) given by

εγ
∂〈cAγ 〉γ
∂t

+ ∇ · (εγ 〈cAγ 〉γ 〈vγ 〉)
= av〈RAs〉γ κ

(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ ) , A = 1, 2, . . . ,N (1.64)

and the coupled set of volume-averaged transport equations can be solved
directly to determine the rate of heterogeneous reaction. A complete analysis
of this problem requires that constraints associatedwith the inequalities given
by Eq. (1.63) be developed [24]. In addition, a complete analysis of Eq. (1.56)
requires a detailed analysis of the dispersive flux, and that problem is left for
a subsequent study.
When convective transport can be neglected, the inequalities given by

Eq. (1.63) are reversed and we have

〈c̃Aγ ṽγ 〉 � εγ 〈cAγ 〉γ 〈vγ 〉 � 〈JAγ 〉 (1.65)

The classic approach in this case is to assume that the inequality given by
Eq. (1.61) is also satisfied and this leads to a transport equation that takes
the form

εγ
∂〈cAγ 〉γ
∂t

= −∇ · 〈JAγ 〉 + av〈RAs〉γ κ
(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ ) ,

A = 1, 2, . . . ,N (1.66)

�-phase

�-phase

FIGURE 1.4
Diffusion and reaction in a porous catalyst.
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Once again, the constraints associated with Eqs. (1.61) and (1.66) should be
developed, and some of these are given elsewhere [12]. Equation (1.66) forms
the basis for the classic problem of diffusion and reaction in a porous catalyst
such as we have illustrated in Figure 1.4. At this point we have not clearly
identified how one goes fromEq. (1.51) to Eq. (1.59) for the nondilute solution
described by Eqs. (1.1) and (1.2). That analysis will surely require a detailed
treatment of the diffusive flux, and in the remainder of this chapter we direct
our attention to the treatment of the process of diffusion and reaction in a
porous catalyst for which Eq. (1.66) is applicable.

1.7 Nondilute Diffusion

We begin this part of our studywith the use of Eq. (1.34) in Eq. (1.66) to obtain

εγ
∂〈cAγ 〉γ
∂t

= ∇ ·
〈
cγ

E=N−1∑
E=1

DAE∇xEγ
〉

+ av〈RAS〉γ κ
(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ ) , A = 1, 2, . . . ,N

(1.67)

in which the diffusive flux is nonlinear because DAE depends on the N − 1
mole fractions. This transport equationmust be solved subject to the auxiliary
conditions given by

cγ =
E=N∑
E=1

cAγ , 1 =
E=N∑
E=1

xAγ (1.68)

and this suggests that numerical methods must be used. However, the dif-
fusive flux must be arranged in terms of volume-averaged quantities before
Eq. (1.67) can be solved, and any reasonable simplifications that can be made
should be imposed on the analysis.

1.7.1 Constant Total Molar Concentration

Some nondilute solutions can be treated as having a constant total molar
concentration and this simplification allows us to express Eq. (1.67) as

εγ
∂〈cAγ 〉γ
∂t

= ∇ ·
〈E=N−1∑

E=1
DAE∇cEγ

〉

+ av〈RAs〉γ κ
(〈cAγ 〉γ , 〈cBγ 〉γ , . . . , 〈cNγ 〉γ ) , A = 1, 2, . . . ,N

(1.69)
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The restriction associated with this simplification is given by

xAγ∇cγ � cγ∇xAγ , A = 1, 2, . . . ,N (1.70)

and it is important to understand that the mathematical consequence of this
restriction is given by

cγ = 〈cγ 〉γ = constant (1.71)

Imposition of this condition means that there are only N − 1 independent
transport equations of the form given by Eq. (1.69), and we shall impose this
condition throughout the remainder of this chapter.
At this point we decompose the elements of the diffusion matrix accord-

ing to

DAE = 〈DAE〉γ + D̃AE (1.72)

If, for any particular system, we can neglect D̃AE relative to 〈DAE〉γ , the
transport equation given by Eq. (1.69) can be simplified to

εγ
∂〈cAγ 〉γ
∂t

=∇ ·
E=N−1∑
E=1
〈DAE〉γ〈∇cEγ 〉+ av〈RAs〉γ κ

(〈cAγ 〉γ , 〈cBγ 〉γ, . . . , 〈c(N−1)γ 〉γ) ,
A = 1, 2, . . . ,N − 1 (1.73)

When the simplification given by

D̃AE � 〈DAE〉γ (1.74)

is not satisfactory, it may be possible to develop a correction based on the reten-
tion of the spatial deviation, D̃AE; however, it is not clear how this type of
analysiswould evolve and further study of this aspect of the diffusion process
is in order.

1.7.2 Volume Average of the Diffusive Flux

The volume averaging theorem can be used with the average of the gradient
in Eq. (1.73) in order to obtain

〈∇cEγ 〉 = ∇〈cEγ 〉 + 1
V

∫
Aγ κ

nγ κcEγ dA (1.75)
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and one can follow an established analysis [5, chapter 1] in order to express
this result as

〈∇cEγ 〉 = εγ∇〈cEγ 〉γ + 1
V

∫
Aγ κ

nγ κ c̃Eγ dA (1.76)

Use of this result in Eq. (1.73) provides

εγ
∂〈cAγ 〉γ
∂t

=∇ ·




E=N−1∑
E=1
〈DAE〉γ


εγ∇〈cEγ 〉γ + 1

V

∫
Aγ κ

nγ κ c̃Eγ dA︸ ︷︷ ︸
filter






+ av〈RAs〉γ κ (1.77)

in which the area integral of nγ κ c̃Eγ has been identified as a filter. Not all the
information available at the length scale associatedwith c̃Eγ will pass through
this filter to influence the transport equation for 〈cAγ 〉γ , and the existence of
filters of this type is a recurring theme in themethod of volume averaging [5].

1.8 Closure

In order to obtain a closed form of Eq. (1.77), we need a representation for the
spatial deviation concentration, c̃Aγ , and this requires the development of the
closure problem. When convective transport is negligible and homogeneous
reactions are ignored as being a trivial part of the analysis, Eq. (1.14) takes
the form

∂cAγ
∂t
= −∇ · JAγ , A = 1, 2, . . . ,N − 1 (1.78)

Here one must remember that the total molar concentration is a specified
constant, thus there are onlyN−1 independent species continuity equations.
Use of Eq. (1.34) along with the restriction given by Eq. (1.70) allows us to
express this result as

∂cAγ
∂t
= ∇ ·

E=N−1∑
E=1

DAE∇cEγ , A = 1, 2, . . . ,N − 1 (1.79)

and on the basis of Eqs. (1.72) and (1.74) this takes the form

∂cAγ
∂t
= ∇ ·

E=N−1∑
E=1
〈DAE〉γ∇cEγ , A = 1, 2, . . . ,N − 1 (1.80)
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If we ignore variations in εγ and subtract Eq. (1.77) from Eq. (1.80), we can
arrange the result as

∂ c̃Aγ
∂t
= ∇ ·

[E=N−1∑
E=1
〈DAE〉γ∇ c̃Eγ

]

− ∇ ·
[E=N−1∑

E=1

〈DAE〉γ
εγ

1
V

∫
Aγ κ

nγ κ c̃Eγ dA

]
− av
εγ
〈RAs〉γ κ (1.81)

in which it is understood that this result applies to all N − 1 species.
Equation (1.81) represents the governing differential equation for the spatial
deviation concentration, and in order to keep the analysis relatively simple
we consider only the first order, irreversible reaction described by Eq. (1.57)
and expressed here in the form

RAs = −kA cAγ , at the γ –κ interface (1.82)

Here one must remember that kA is determined by the intrinsic surface reac-
tion rate coefficient, the adsorption rate coefficient, and the desorption rate
coefficient according to

kA = kAskA1
kAs + k−A1

(1.83)

One must also remember that this is a severe restriction in terms of realistic
systems and more general forms for the heterogeneous rate of reaction need
to be examined. Use of Eq. (1.82) in Eq. (1.81) leads to the following form

∂ c̃Aγ
∂t
= ∇ ·

[E=N−1∑
E=1
〈DAE〉γ∇ c̃Eγ

]

− ∇ ·
[E=N−1∑

E=1

〈DAE〉γ
εγ

1
V

∫
Aγ κ

nγ κ c̃Eγ dA

]
+ avkA

εγ
〈cAγ 〉γ (1.84)

Here we have made use of the simplification

〈cAγ 〉γ κ = 〈cAγ 〉γ (1.85)

and the justification is given elsewhere [5, section 1.3.3]. In order to complete
the problem statement for c̃Eγ , we need a boundary condition for c̃Eγ at the
γ –κ interface. To develop this boundary condition, we again make use of
the quasi-steady form of Eq. (1.2) to obtain

JAγ · nγ κ = −RAs, at the γ –κ interface (1.86)
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where we have imposed the restriction given by

vγ · nγ κ � uAγ · nγ κ , at the γ –κ interface (1.87)

This is certainly consistent with the inequalities given by Eq. (1.65); however,
the neglect of vγ · nγ κ relative to uAγ · nγ κ is generally based on the dilute
solution condition and the validity of Eq. (1.87) is another matter that needs
to be carefully considered in a future study. On the basis of Eqs. (1.34), (1.70),
(1.72), and Eq. (1.74) along with Eq. (1.82), the jump condition takes the form

−
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇cEγ = kAcAγ , at the γ –κ interface (1.88)

In order to express this boundary condition in terms of the spatial devi-
ation concentration, we make use of the decomposition given by the first
of Eq. (1.54) to obtain

−
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇ c̃Eγ − kAc̃Aγ

=
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇〈cEγ 〉γ + kA〈cAγ 〉γ , at the γ –κ interface (1.89)

With this result we can construct the following boundary value problem
for c̃Aγ :

∂ c̃Aγ
∂t︸ ︷︷ ︸

accumulation

= ∇ ·
[E=N−1∑

E=1
〈DAE〉γ∇ c̃Eγ

]
︸ ︷︷ ︸

diffusion

− ∇ ·
[E=N−1∑

E=1

〈DAE〉γ
εγ

1
V

∫
Aγ κ

nγ κ c̃Eγ dA

]
︸ ︷︷ ︸

nonlocal diffusion

+ avkA
εγ
〈cAγ 〉γ︸ ︷︷ ︸

reaction
source

(1.90)
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−
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇ c̃Eγ︸ ︷︷ ︸
diffusive flux

− kAc̃Aγ︸ ︷︷ ︸
heterogeneous

reaction

BC.1

=
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇〈cEγ 〉γ︸ ︷︷ ︸
diffusive source

+ kA〈cAγ 〉γ︸ ︷︷ ︸
reaction
source

, at the γ –κ interface

(1.91)

BC.2 c̃Aγ = F(r, t), at Aγ e (1.92)

IC. c̃Aγ = F(r), at t = 0 (1.93)

In addition to the flux boundary condition given by Eq. (1.91), we have added
an unknown condition at themacroscopic boundary of the γ -phase,Aγ e, and an
unknown initial condition. Neither of these is important when the separation
of length scales indicated by Eq. (1.37) is valid. Under these circumstances,
the boundary condition imposed at Aγ e influences the c̃Aγ -field only over
a negligibly small region, and the initial condition given by Eq. (1.93) can
be discarded because the closure problem is quasi-steady. Under these cir-
cumstances, the closure problem can be solved in some representative, local
region [25–29].
In the governing differential equation for c̃Aγ , we have identified the accu-

mulation term, the diffusion term, the so-called nonlocal diffusion term,
and the nonhomogeneous term referred to as the reaction source. In the
boundary condition imposed at the γ –κ interface, we have identified the
diffusive flux, the reaction term, and two nonhomogeneous terms that are
referred to as the diffusion source and the reaction source. If the source terms
in Eqs. (1.90) and (1.91) were zero, the c̃Aγ -field would be generated only
by the nonhomogeneous terms that might appear in the boundary condition
imposed at Aγ e or in the initial condition given by Eq. (1.93). One can easily
develop arguments indicating that the closureproblem for c̃Aγ is quasi-steady,
thus the initial condition is of no importance [5, chapter 1]. In addition, one
can develop arguments indicating that the boundary condition imposed at
Aγ e will influence the c̃Aγ -field over a negligibly small portion of the field
of interest. Because of this, any useful solution to the closure problem must
be developed for some representative region that is most often conveniently
described in terms of a unit cell in a spatially periodic system. These ideas
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lead to a closure problem of the form

0 = ∇ ·
[E=N−1∑

E=1
〈DAE〉γ∇ c̃Eγ

]
︸ ︷︷ ︸

diffusion

−∇ ·
[E=N−1∑

E=1

〈DAE〉γ
εγV

∫
Aγ κ

nγ κ c̃Eγ dA

]
︸ ︷︷ ︸

nonlocal diffusion

+ avkA
εγ
〈cAγ 〉γ︸ ︷︷ ︸

reaction
source

(1.94)

−
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇ c̃Eγ︸ ︷︷ ︸
diffusive flux

− kAc̃Aγ︸ ︷︷ ︸
heterogeneous

reaction
BC.1

=
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇〈cEγ 〉γ︸ ︷︷ ︸
diffusive source

+ kA〈cAγ 〉γ︸ ︷︷ ︸
reaction
source

, at the γ –κ interface (1.95)

BC.2 c̃Aγ (r + 
i) = c̃Aγ (r), i = 1, 2, 3 (1.96)

Herewehaveused 
i to represent the threebasevectorsneeded to characterize
a spatially periodic system. The use of a spatially periodic system does not
limit this analysis to simple systems since aperiodic systemcanbeanarbitrary
complex [25–29]. However, the periodicity condition imposed by Eq. (1.96)
can only be strictly justified when 〈DAE〉γ , 〈cAγ 〉γ , and ∇〈cAγ 〉γ are constants
and this does not occur for the types of systems under consideration. This
matter has been examined elsewhere [5, 12] and the analysis suggests that
the traditional separation of length scales allows one to treat 〈DAE〉γ , 〈cAγ 〉γ ,
and ∇〈cAγ 〉γ as constants within the framework of the closure problem.
It is not obvious, but other studies [30] have shown that the reaction source

in Eqs. (1.94) and (1.95) makes a negligible contribution to c̃Aγ . In addition,
one can demonstrate [5] that the heterogeneous reaction, kA c̃Aγ , can be neg-
lected for all practical problems of diffusion and reaction in porous catalysts.
Furthermore, the nonlocal diffusion term is negligible for traditional systems,
and under these circumstances the boundary value problem for the spatial
deviation concentration takes the form

0 = ∇ ·
[E=N−1∑

E=1
〈DAE〉γ∇ c̃Eγ

]
(1.97)
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BC.1 −
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇ c̃Eγ =
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇〈cEγ 〉γ , at Aγ κ

(1.98)

BC.2 c̃Aγ (r + 
i) = c̃Aγ (r), i = 1, 2, 3 (1.99)

Here one must remember that the subscript A represents species A, B, C, . . . ,
N − 1.
In this boundary value problem, there is only a single nonhomogeneous

term represented by ∇〈cEγ 〉γ in the boundary condition imposed at the γ –κ
interface. If this source term were zero, the solution to this boundary value
problemwould be given by c̃Aγ = constant.Any constant associatedwith c̃Aγ
will not pass through the filter in Eq. (1.77), and this suggests that a solution
can be expressed as a function of the gradients of the volume-averaged con-
centration. Since the system is linear in the N − 1 independent gradients of
the average concentration, this leads to a solution of the form

c̃Eγ = bEA · ∇〈cAγ 〉γ + bEB · ∇〈cBγ 〉γ + bEC · ∇〈cCγ 〉γ + · · ·
+ bE,N−1 · ∇〈c(N−1)γ 〉γ (1.100)

If the gradients,∇〈cEγ 〉γ , and the diffusivities, 〈DAE〉γ , in Eq. (1.100)were con-
stants, this representation for c̃Eγ would be an exact application of themethod
of superposition [5, problems 1.20 and 2.4; 31]. Since these quantities undergo
significant changes over the large length scale, L, illustrated in Figure 1.2, the
representation given by Eq. (1.100) is an approximation based on the separ-
ation of length scales indicated in Eq. (1.37). The vectors, bEA, bEB, etc., in
Eq. (1.100) are referred to as the closure variables or the mapping variables since
they map the gradients of the volume-averaged concentrations onto the spa-
tial deviation concentrations. In this representation for c̃Eγ , we can ignore the
spatial variations of ∇〈cAγ 〉γ , ∇〈cBγ 〉γ , etc., within the framework of a local
closure problem, and we can use Eq. (1.100) in Eq. (1.97) to obtain

0 = ∇ ·
[E=N−1∑

E=1
〈DAE〉γ

D=N−1∑
D=1

∇bED · ∇〈cDγ 〉γ
]

(1.101)

BC.1 −
E=N−1∑
E=1

nγ κ · 〈DAE〉γ
D=N−1∑
D=1

∇bED · ∇〈cDγ 〉γ

=
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇〈cEγ 〉γ , at Aγ κ (1.102)

BC.2 bAE(r + 
i) = bAE(r), i = 1, 2, 3, A = 1, 2, . . . ,N − 1 (1.103)
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The derivation of Eqs. (1.101) and (1.102) requires the use of simplifications
of the form

∇ (bEA · ∇〈cAγ 〉γ
) = ∇bEA · ∇〈cAγ 〉γ (1.104)

which result from the inequality

bEA · ∇∇〈cAγ 〉γ � ∇bEA · ∇〈cAγ 〉γ (1.105)

The basis for this inequality is the separation of length scales indicated
by Eq. (1.37), and a detailed discussion is available elsewhere [5]. One
should keep in mind that the boundary value problem given by Eqs. (1.101)
through (1.103) applies to all N − 1 species and that the N − 1 concentration
gradients are independent. This latter condition allows us to obtain

0 = ∇ ·
[E=N−1∑

E=1
〈DAE〉γ∇bED

]
, D = 1, 2, . . . ,N − 1 (1.106)

BC.1

−
E=N−1∑
E=1

nγ κ · 〈DAE〉γ∇bED = nγ κ 〈DAD〉γ , D = 1, 2, . . . ,N − 1, at Aγ κ

(1.107)

Periodicity: bAD(r + 
i) = bAD(r), i = 1, 2, 3, D = 1, 2, . . . ,N − 1 (1.108)

At this point it is convenient to expand the closure problem for species A in
order to obtain

First Problem for Species A

0 = ∇ ·
{
〈DAA〉γ

[
∇bAA +

(〈DAA〉γ
)−1 〈DAB〉γ∇bBA+

(〈DAA〉γ
)−1

×〈DAC〉γ∇bCA + · · · +
(〈DAA〉γ

)−1 〈DA,N−1〉γ∇bN−1,A
]}
(1.109a)

− nγ κ · ∇bAA−nγ κ ·
(〈DAA〉γ

)−1 〈DAB〉γ∇bBA − nγ κ ·
(〈DAA〉γ

)−1
BC. × 〈DAC〉γ∇bCA − · · · − nγ κ ·

(〈DAA〉γ
)−1

× 〈DA,N−1〉γ∇bN−1,A = nγ κ , at Aγ κ (1.109b)

Periodicity: bDA(r + 
i) = bDA(r), i = 1, 2, 3, D = 1, 2, . . . ,N − 1
(1.109c)
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Second Problem for Species A

0 = ∇ ·
{
〈DAB〉γ

[(〈DAB〉γ
)−1 〈DAA〉γ∇bAB + ∇bBB+

(〈DAB〉γ
)−1

×〈DAC〉γ∇bCB + · · · +
(〈DAB〉γ

)−1 〈DA,N−1〉γ∇bN−1,B
]}
(1.110a)

− nγ κ · ∇bAA − nγ κ ·
(〈DAA〉γ

)−1 〈DAB〉γ∇bBA − nγ κ ·
(〈DAA〉γ

)−1
BC. × 〈DAC〉γ∇bCA − · · · − nγ κ ·

(〈DAA〉γ
)−1

× 〈DA,N−1〉γ∇bN−1,A = nγ κ , at Aγ κ

(1.110b)

Periodicity: bDB(r + 
i) = bDB(r), i = 1, 2, 3, D = 1, 2, . . . ,N − 1
(1.110c)

Third Problem for Species A

An analogous boundary value problem involving

bAC,bBC,bCC, . . . ,bN−1,C (1.111)

N−1 Problem for Species A

An analogous boundary value problem involving

bA,N−1,bB,N−1,bC,N−1, . . . ,bN−1,N−1 (1.112)

Here it is convenient to define a new set of closure variables ormapping variables
according to

dAA = bAA +
(〈DAA〉γ

)−1 〈DAB〉γbBA +
(〈DAA〉γ

)−1 〈DAC〉γbCA

+ · · · + (〈DAA〉γ
)−1 〈DA,N−1〉γbN−1,A (1.113a)

dAB =
(〈DAB〉γ

)−1 〈DAA〉γbAB + bBB +
(〈DAB〉γ

)−1 〈DAC〉γbCB

+ · · · + (〈DAB〉γ
)−1 〈DA,N−1〉γbN−1,B (1.113b)

dAC =
(〈DAC〉γ

)−1 〈DAA〉γbAC +
(〈DAC〉γ

)−1 〈DAB〉γbBC

+ bCC + · · · +
(〈DAC〉γ

)−1 〈DA,N−1〉γbN−1,C (1.113c)

etc. (1.113n− 1)
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With these definitions, the closure problems take the following simplified
forms:

First Problem for Species A

0 = ∇2dAA (1.114a)

BC. − nγ κ · ∇dAA = nγ κ , at Aγ κ (1.114b)

Periodicity: dAA(r + 
i) = dAA(r), i = 1, 2, 3 (1.114c)

Second Problem for Species A

0 = ∇2dAB (1.115a)

BC. − nγ κ · ∇dAB = nγ κ , at Aγ κ (1.115b)

Periodicity: dAB(r + 
i) = dAB(r), i = 1, 2, 3 (1.115c)

Third Problem for Species A

An analogous boundary value problem for dAC (1.116)

N − 1 Problem for Species A

An analogous boundary value problem for dA,N−1 (1.117)

To obtain these simplified forms, one must make repeated use of inequalities
of the formgivenbyEq. (1.105). Eachoneof these closureproblems is identical
to that obtained by Ryan et al. [30] and solutions have been developed by
several researchers [30, 32–37]. In each case, the closure problem determines
the closure variable to within an arbitrary constant, and this constant can be
specified by imposing the condition

〈c̃Dγ 〉γ = 0, or 〈dGD〉γ = 0,

{
G = 1, 2, . . . ,N − 1
D = 1, 2, . . . ,N − 1 (1.118)

However, any constant associated with a closure variable will not pass
through the filter in Eq. (1.77), thus this constraint on the average is not
necessary.

1.8.1 Closed Form

The closed form of Eq. (1.77) can be obtained by use of the representation for
c̃Eγ given byEq. (1.100), alongwith the definitions represented byEqs. (1.113).
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After some algebraic manipulation, one obtains

εγ
∂〈cAγ 〉γ
∂t

=∇ ·
[
εγ 〈DAA〉γ

(
I+ 1

Vγ

∫
Aγ κ

nγ κdAA dA

)
· ∇〈cAγ 〉γ

+ εγ 〈DAB〉γ
(

I+ 1
Vγ

∫
Aγ κ

nγ κdAB dA

)
· ∇〈cBγ 〉γ

+ εγ 〈DAC〉γ
(

I+ 1
Vγ

∫
Aγ κ

nγ κdAC dA

)
· ∇〈cCγ 〉γ + · · ·

· · · + εγ 〈DA,N−1〉γ
(

I+ 1
Vγ

∫
Aγ κ

nγ κdA,N−1 dA
)
· ∇〈cN−1γ 〉γ

]

+ avkA〈cAγ 〉γ (1.119)

Here one must remember that we have restricted the analysis to the simple,
linear reaction rate expression given by Eq. (1.82), and one normally must
work with more complex representations for RAs.
On the basis of the closure problems given by Eqs. (1.114) through (1.117),

we conclude that there is a single tensor that describes the tortuosity for
species A. This means that Eq. (1.119) can be expressed as

εγ
∂〈cAγ 〉γ
∂t

= ∇·
[
εγDeff

AA · ∇〈cAγ 〉γ + εγDeff
AB · ∇〈cBγ 〉γ + εγDeff

AC · ∇〈cCγ 〉γ

+ · · · + εγDeff
A,N−1 · ∇〈c(N−1)γ 〉γ

]
+ avkA〈cAγ 〉γ (1.120)

in which the effective diffusivity tensors are related according to

Deff
AA

〈DAA〉γ =
Deff

AB
〈DAB〉γ =

Deff
AC

〈DAC〉γ = · · · =
Deff

A,N−1
〈DA,N−1〉γ (1.121)

The remaining diffusion equations for species B,C, . . . ,N − 1 have precisely
the same form as Eq. (1.120), and the various effective diffusivity tensors
are related to each other in the manner indicated by Eq. (1.121). The generic
closure problem can be expressed as:

Generic Closure Problem

0 = ∇2d (1.122a)

BC. − nγ κ · ∇d = nγ κ , at Aγ κ (1.122b)

Periodicity: d(r + 
i) = d(r), i = 1, 2, 3 (1.122c)

and the solution for this boundary value problem is relatively straight-
forward. The existence of a single, generic closure problem that allows for
the determination of all the effective diffusivity tensors represents the main
finding of thiswork. On the basis of this single closure problem, the tortuosity
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tensor is defined according to

τ = I+ 1
Vγ

∫
Aγ κ

nγ κddA (1.123)

and we can express Eq. (1.121) in the form

Deff
AA = τ 〈DAA〉γ , Deff

AB = τ 〈DAB〉γ , . . . , Deff
A,N−1 = τ 〈DA,N−1〉γ (1.124)

Substitution of these results into Eq. (1.120) allows us to represent the local
volume-averaged diffusion-reaction equations as

εγ
∂〈cAγ 〉γ
∂t

= ∇ ·
[E=N−1∑

E=1
εγ τ 〈DAE〉γ · ∇〈cEγ 〉γ

]
+ avkA〈cAγ 〉γ ,

A = 1, 2, . . . ,N − 1 (1.125)

It is important to remember that this analysis has been simplified on the basis
of Eq. (1.70), which is equivalent to treating cγ as a constant as indicated in
Eq. (1.71). For a porous medium that is isotropic in the volume-averaged sense,
the tortuosity tensor takes the classical form

τ = Iτ−1 (1.126)

inwhich I is the unit tensor and τ is the tortuosity. For isotropic porousmedia,
we can express Eq. (1.125) as

εγ
∂〈cAγ 〉γ
∂t

= ∇ ·
[E=N−1∑

E=1
(εγ /τ)〈DAE〉γ∇〈cEγ 〉γ

]
+ avkA〈cAγ 〉γ ,

A = 1, 2, . . . ,N − 1 (1.127)

Often εγ and τ can be treated as constants; however, the diffusion coefficients
in this transport equationwill be functions of the local volume-averagedmole
fractions and we are faced with a coupled, nonlinear diffusion and reaction
problem.
The decoupling of the different closure problems is reminiscent of the clas-

sical results of the linearized theory proposed by Toor [38] or Stewart and
Prober [39]. In that theory, variations of the coefficients in the diffusionmatrix
are assumed to be negligible. As a consequence, a special change of vari-
able leads to a diagonal diffusion matrix and a set of uncoupled balance
equations. Solving those equations directly for a spatially periodic porous
medium would show that the pore scale geometry has the same influence
on the resulting concentration fields, that is, the tortuosity effects are the same
for all constituents. The question of the diagonalization of general diffusion
matrices has been discussed in detail by Giovangigli [40]. If nonlinearities are
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retained in the original formulation of the diffusion problem, the simplifica-
tionsdescribedbyGiovangigli [40] are, in general, not available. However, we
have achieved a similar simplification in the closure problem for the process of
diffusion and reaction, and in the following paragraphs we wish to illustrate
this idea in amore compact form than that givenbyEqs. (1.97) through (1.125).
We begin a compact presentation of the theory with Eqs. (1.97)

through (1.99) written in the form

0 = ∇ · {[〈D〉γ ][∇ c̃γ ]} (1.128a)

BC.1 − nγ κ · [〈D〉γ ][∇ c̃γ ] = nγ κ · [〈D〉γ ][∇〈cγ 〉γ ], at Aγ κ (1.128b)

Periodicity: [c̃γ ](r + 
i) = [c̃γ ](r), i = 1, 2, 3 (1.128c)

The nomenclature used in this formulation of the closure problem is given by

[〈D〉γ ] =



〈DAA〉γ 〈DAB〉γ 〈DAC〉γ · · · 〈DA(N−1)〉γ
〈DBA〉γ · · · · · · · · · 〈DB(N−1)〉γ
〈DCA〉γ · · · · · · · · · 〈DC(N−1)〉γ

... · · · · · · · · · ...
〈D(N−1)A〉γ · · · · · · · · · 〈D(N−1)(N−1)〉γ


 (1.129a)

[∇ c̃γ ] =



∇ c̃Aγ
∇ c̃Bγ
∇ c̃Cγ
...

∇ c̃(N−1)γ


 , [∇〈cγ 〉γ ] =



∇〈cAγ 〉γ
∇〈cBγ 〉γ
∇〈cCγ 〉γ

...
∇〈c(N−1)γ 〉γ


 (1.129b)

Here one must be careful to note that c̃γ does not represent the spatial devi-
ation concentration for the total molar concentration and that 〈cγ 〉γ does not
represent the volume average of the total molar concentration. Within the
framework of the closure problem, the elements of [〈D〉γ ] are treated as con-
stants, thus the change of variable leading to a diagonal diffusionmatrix may
be used. We denote the modal matrix by [P] so that the diagonal version of
[〈D〉γ ] is given by

[〈D〉γ ]diag = [P]−1[〈D〉γ ][P] (1.130)

In addition, we introduce a new concentration deviation and a new average
concentration defined by

[C̃γ ] = [P]−1[c̃γ ], [〈Cγ 〉γ ] = [P]−1[〈cγ 〉γ ] (1.131)

so that the closure problem can be expressed as

0 = ∇ ·
{
[〈D〉γ ]diag[∇C̃γ ]

}
(1.132a)
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BC.1 − nγ κ ·
{
[〈D〉γ ]diag[∇C̃γ ]

}
= nγ κ ·

{[〈D〉γ ]diag[∇〈Cγ 〉γ ]} , at Aγ κ
(1.132b)

Periodicity: [C̃γ ](r + 
i) = [C̃γ ](r), i = 1, 2, 3 (1.132c)

In this form of the closure problem we see that concentration deviations can
be expressed as

[C̃γ ] = d · [∇〈Cγ 〉γ ] (1.133)

in which d is the generic closure variable determined by Eq. (1.122). We can
now revert to the original concentration variable to obtain

[c̃γ ] = d · [∇〈cγ 〉γ ] (1.134)

and this indicates that all the gradients, ∇〈cAγ 〉γ , ∇〈cBγ 〉γ , etc., are mapped
onto the spatial deviation concentrations, c̃Aγ , c̃Bγ , etc., in exactly the same
manner. From this we conclude that the general expression for the effective
diffusivity tensors is intimately related to the possibility of neglecting vari-
ations of the diffusion coefficients, 〈DAB〉γ , etc., at the closure level. When the
length scale constraints given by Eq. (1.37) are satisfied, volume-averaged
quantities such as 〈DAB〉γ can be considered as constants over a unit cell
[5, section 1.3] and the general result given by Eq. (1.134) is valid.

1.9 Conclusions

In this chapter we have shown how the coupled, nonlinear diffusion problem
can be analyzed to produce volume-averaged transport equations contain-
ing effective diffusivity tensors. The original diffusion-reaction problem is
described by

∂cAγ
∂t
= ∇ ·

E=N−1∑
E=1

DAE∇cEγ , A = 1, 2, . . . ,N − 1 (1.135a)

BC. −
E=N−1∑
E=1

nγ κ ·DAE∇cEγ = kAcAγ , at the γ –κ interface (1.135b)

cγ = 〈cγ 〉γ = constant (1.135c)

in which the DAE are functions of the mole fractions. For a porous medium
that is isotropic in the volume-averaged sense, the upscaled version of the

© 2005 by Taylor & Francis Group, LLC



34 Michel Quintard and Stephen Whitaker

diffusion-reaction problem takes the form

εγ
∂〈cAγ 〉γ
∂t

= ∇ ·
[E=N−1∑

E=1
(εγ /τ)〈DAE〉γ∇〈cEγ 〉γ

]

+ avkA〈cAγ 〉γ , A = 1, 2, . . . ,N − 1 (1.136)

Here we have used the approximation that DAE can be replaced by 〈DAE〉γ
and that variations of 〈DAE〉γ can be ignored within the averaging volume.
The fact that only a single tortuosity needs to be determined by Eqs. (1.122)
and (1.123) represents the key contribution of this study. It is important to
remember that this development is constrained by Eq. (1.61) along with the
linear chemical kinetic constitutive equation given by Eq. (1.82). The process
of diffusion in porous catalysts is normally associated with slow reactions
and Eq. (1.61) is satisfactory; however, the first order, irreversible reaction
represented by Eq. (1.82) is the exception rather than the rule, and this aspect
of the analysis requires further investigation. When convective transport is
important, we are normally dealing with fast reactions and Eq. (1.61) may not
be a satisfactory simplification.An analysis of that case is reserved for a future
study, which will also include a careful examination of the simplification
indicated by Eq. (1.87).

Nomenclature

Aγ e area of entrances and exits of the γ -phase contained in the
macroscopic region, m2

Aγ κ area of the γ –κ interface contained within the averaging
volume, m2

av Aγ κ/V, area per unit volume, m−1
bγ body force vector, m/sec2

cAγ bulk concentration of species A in the γ -phase, mol/m3

〈cAγ 〉 superficial average bulk concentration of speciesA in the γ -phase,
mol/m3

〈cAγ 〉γ intrinsic average bulk concentration of species A in the γ -phase,
mol/m3

〈cAγ 〉γ κ intrinsic area average bulk concentration of species A at the γ –κ
interface, mol/m3

c̃Aγ cAγ −〈cAγ 〉γ , spatial deviation concentration of speciesA, mol/m3

cγ
∑A=N

A=1 cAγ , total molar concentration, mol/m3

cAs surface concentration of species A associated with the γ –κ inter-
face, mol/m2

DAB binary diffusion coefficient for species A and B, m2/sec
DAm D−1Am =

∑E=N
E=1
E�=A

xEγ /DAE, mixture diffusivity, m2/sec
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[D] diffusivity matrix, m2/sec
DAE element of the diffusivity matrix, m2/sec
〈DAE〉γ intrinsic average element of the diffusivity matrix, m2/sec
D̃AE DAE − 〈DAE〉γ , spatial deviation of an element of the diffusivity

matrix, m2/sec
JAγ cAγuAγ , mixed-mode diffusive flux, mol/m2sec
KA adsorption equilibrium coefficient for species A, m
kA1 adsorption rate coefficient for species A, m/sec
k−A1 desorption rate coefficient for species A, sec−1
kAs intrinsic surface reaction rate coefficient, sec−1
kA kAskA1/(kAs+k−A1), pseudo surface reaction rate coefficient, m/sec

γ small length scale associated with the γ -phase, m
ro radius of the averaging volume, m
L large length scale associated with the porous medium, m
MA molecular mass of species A, kg/kg mol
M

∑A=N
A=1 xAγMA, mean molecular mass, kg/kg mol

nγ κ unit normal vector directed from the γ -phase to the κ-phase
r position vector, m
RAγ rate of homogeneous reaction in the γ -phase, mol/m3sec
RAs rate of heterogeneous reaction associated with the γ –κ interface,

mol/m2sec
〈RAs〉γ κ area average heterogeneous reaction rate for speciesA, mol/m2sec
t time, sec
Tγ stress tensor for the γ -phase, N/m2

uAγ vAγ − vγ , mass diffusion velocity, m/sec
u∗Aγ vAγ − v∗γ , molar diffusion velocity, m/sec
vAγ velocity of species A in the γ -phase, m/sec
vγ

∑A=N
A=1 ωAγ vAγ , mass average velocity in the γ -phase, m/sec

v∗γ
∑A=N

A=1 xAγ vAγ , molar average velocity in the γ -phase, m/sec
〈vγ 〉γ intrinsic mass average velocity in the γ -phase, m/sec
〈vγ 〉 superficial mass average velocity in the γ -phase, m/sec
ṽγ vγ − 〈vγ 〉γ , spatial deviation velocity, m/sec
V averaging volume, m3

Vγ volume of the γ -phase containedwithin the averaging volume,m3

Vκ volume of the κ-phase containedwithin the averaging volume, m3

xAγ cAγ /cγ , mole fraction of species A in the γ -phase
x position vector locating the center of the averaging volume, m
y position vector locating points on the γ –κ interface relative to the

center of the averaging volume, m

Greek Letters

εγ volume fraction of the γ -phase (porosity)
ρAγ mass density of species A in the γ -phase, kg/m3

ργ mass density for the γ -phase, kg/m3

ωAγ ρAγ /ργ , mass fraction of species A in the γ -phase
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Summary

Flows and heat transfer through porous media had been the subject of
investigations for centuries, because of their wide applications in mecha-
nical, chemical, and civil engineering. A review of existing literatures shows
that the current practices on describing the flow and the heat transfer in porous
media remain piecewise. In this chapter, we attempt to formulate a com-
plete set of macroscopic equations to describe these transport phenomena.
The macroscopic transport equations were obtained by averaging the micro-
scopic equations over a representative elementary volume (REV). The average
procedure leads to the closure problem where the dispersion, the interfacial
tortuosity, and the interfacial transfer become the new unknowns. The closure
relations as constructed earlier by the author and others for the dispersion, tor-
tuosity, and the interfacial transfer were summarized, reviewed, and adapted
to close the equation system. However, several coefficients which appeared
in the closure relations need to be determined experimentally (or numeric-
ally) a priori. Experiments conducted earlier for the determination of these
coefficients were reviewed. These experimental results had basically con-
firmed the validity of the closure relations, but were insufficient for a complete
evaluation of closure coefficients. More experiments are needed. An altern-
ative method is to validate the closure relations and to determine the closure
coefficients numerically. In view of the complexity of a random media, it is
proposed to study the flows in Hele-Shaw cells. The analogy as well as dif-
ference between a Hele-Shaw cell and a porous medium is first discussed.
The 3D steady and oscillating flows in Hele-Shaw cells past a heated circular
cylinder were simulated by the direct numerical simulation (DNS) method.
The results confirmed the basic theory of Hele-Shaw flows, but a complete
determination of the closure coefficients requires further works.

2.1 Introduction

Matters with masses form naturally into porous structures. They occur almost
over the entire world at different scales under considerations. One very good
example is our human body. Materials with porous structures are called
porous media. How the flows passing through the porous media with the
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associated heat and mass transfer has been of great interest to scientists
and engineers for centuries is because of its wide applications in materials,
mechanical, chemical, civil, and biomedical engineering. In this context, we
shall limit our discussions to the convective heat transfer through porous
media, although the same physical concepts devoted here can also be applied
to other disciplines.

2.1.1 Flows in Porous Media

Traditionally, the empirical Darcy’s [1] law has been applied for flows through
porous media when the Reynolds number based on the pore size (or particle
diameter, dp) is very small. Under this circumstance, the momentum equation
for fluid flows passing through an isotropic media is described by

−∇P = µU
K

(2.1)

where P is the pore pressure, µ the fluid viscosity, and U the Darcy velocity.
Here, Darcy velocity is taken as a superficial velocity by regarding the media
as a continuum and ignoring the details of porous structures. In Eq. (2.1), the
permeability, K, takes the well-known form of

K = φ3d2
p

a(1− φ)2 (2.2)

where φ is the porosity of porous media and a is a constant to parameterize
the microscopic geometry of the porous materials.

More lately, engineering practices require the operation of flows in porous
media at high Reynolds number, such as those in packed-bed reactors. Experi-
mental evidences showed that Eq. (2.1) was unable to describe the flows at
high Reynolds number. By fitting to experimental data, a nonlinear term was
added to Eq. (2.1) to correct for the advection inertia effect (Forchheimer [2]).
Thus, Eq. (2.1) was modified empirically into

−∇P = µU
K
+ Fρ|U|U√

K
(2.3)

where ρ is the fluid density. According to Ergun [3], the Forchheimer
coefficient F is given by F = b/

√
aφ3 where b is again a constant to para-

meterize the microscopic geometry of the media. Although Eq. (2.3) had been
used by researchers with some success in predicting flows in porous media,
Hsu and Cheng [4] showed theoretically that in addition to the two terms on
the right-hand side of Eq. (2.3), there is a need to include a term proportional
to |U|1/2U, to account for the viscous boundary layer effect at the intermediate
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Reynolds number. As a result, Eq. (2.3) was then modified into

−∇P = µU
K
+ H
√
ρµ|U|U
K3/4 + Fρ|U|U√

K
(2.4)

where the dimensionless coefficient H, like F, is a function of porosity and
microscopic solid geometry. Equation (2.4) was confirmed by Hsu et al. [5]
who performed experiments for flows through porous media over a wide
range from low to high Reynolds numbers.

Equation (2.4) was constructed based on the experiments and theory for
steady flows. Therefore, Eq. (2.4) is anticipated to apply only for steady
flows over all range of Reynolds number. Unsteady flows in porous media
have recently received great attention. One example is the oscillating flow
in the regenerators used in Stirling engines and catalytic converters. Others
are the transient processes in the start-up and shutdown of a capillary heat
pipe in mechanical engineering, and the well-bore pumping in hydraulic and
petroleum engineering. Because of the lack of adequate equations to describe
the unsteady flows in porous media, Eq. (2.3) sometimes was used indis-
criminately without justification. For coastal engineers to study the ocean
waves acting on sand sea beds or porous breakwaters, the common practice
is to incorporate into Eq. (2.1) the terms corresponding to transient inertia
and viscous diffusion (Liu et al. [6]), based on the classical works of Biot [7]
and Dagan [8]. The resultant equations had neglected the virtual mass and
viscous-diffusion memory effects and are expected to be valid only for low
Reynolds number flows of waves at long period. There remains the task to
construct a model for unsteady flows through porous media, which to the
first-order approximation is valid over the entire ranges of time scale and
Reynolds number.

2.1.2 Heat Transfer in Porous Media

Heat transfer in porous media had been studied for more than a century.
The simplest problem in heat transfer in porous media is the pure conduc-
tion when the fluid is not in motion (stagnant). Under the assumption of
a local thermal equilibrium between fluid and solid phases, mixture mod-
els were used traditionally for heat conduction in porous media. By this the
temperatures of solids and fluids are assumed the same locally and the heat
conduction equations averaged over the solid and fluid phases are lumped
into the following mixture equation,

(ρcp)m
∂T
∂t
= ∇ · [kst∇T] (2.5)

where T is the averaged temperature and kst is the effective stagnant thermal
conductivity. In Eq. (2.5), the effective heat capacity of the solid–fluid

© 2005 by Taylor & Francis Group, LLC



Dynamic Modeling of Convective Heat Transfer in Porous Media 43

mixture, (ρcp)m, is defined as

(ρcp)m = φρcp + (1− φ)ρscps (2.6)

where ρcp and ρscps are the heat capacities of fluid and solid, respectively,
with ρ and ρs being their densities. As a result, the main task is to determine
the effective stagnant thermal conductivity kst as has appeared in the lumped
mixture heat conduction equation.

The determination of effective stagnant thermal conductivity has been a
subject of great effort for more than a century, beginning with the work
by Maxwell [9]. A large number of experiments had been carried out to
measure the effective stagnant thermal conductivity. Kunii and Smith [10],
Krupiczka [11], and Crane and Vachon [12] have compiled these early
experimental data. The experimental methods for determining kst were also
reviewed by Tsotsas and Martin [13]. Most of these measurements were car-
ried out for materials with the solid to fluid thermal conductivity ratio σ(=
ks/k) in the range of 1 < σ < 103. Effective stagnant thermal conductivities
of porous materials with higher value of σ were obtained experimentally by
Swift [14] and Nozad et al. [15], while those with lower σ by Prasad et al. [16].
With the advances in computer technology, the effective stagnant thermal
conductivities were determined numerically. Deissler and Boegli [17] were
the first to calculate kst for media with cubic-packing spheres on the basis
of a finite-difference scheme, followed Wakao and Kato [18] and Wakao and
Vortmeyer [19] for media of a periodic orthorhombic structure. More recently,
Nozad et al. [15] and Sahraoui and Kaviany [20] had also obtained some
numerical results for periodic media. It should be noted that all the numer-
ical investigations were conducted for porous media with periodic structures
to confine the computation domain to a unit cell. Since Maxwell [9], sev-
eral analytical composite-layer models have been proposed for kst (Kunii and
Smith [10]; Zehner and Schlunder [21]). Recently, Hsu et al. [22] extended
the model of Zehner and Schlunder [21] by introducing a particle touching
parameter. The model of Kunii and Smith [10] was improved by Hsu et al.
[23, 24], using the touching and nontouching geometry of Nozad et al. [15];
they found that the predicted results of kst agree remarkably well with the
experimental data of Nozad et al. [15]. Kaviany [25] and Cheng and Hsu [26]
have reviewed the existing models of effective thermal conductivity in
detail.

The validity of the assumption of local thermal equilibrium remains an
open question, especially when the timescale of transient heat conduction is
short and the thermal conductivity ratio between the fluid and solid is very
much different from unity. If the solid and fluid are in thermally nonequi-
librium state, the heat conductions in the fluid and solid phases have to
be considered separately with a two-equation model. Closure modeling of
the thermal tortuosity and the interfacial heat transfer becomes inevitable.
Quintard and his coworkers [27, 28] had made considerable progresses on
the two-equation model. Hsu [29] proposed a transient closure model with
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a method to evaluate the thermal tortuosity. The transient closure model also
extended the model of Quintard and Whitaker [28] for interfacial heat trans-
fer by taking into account the dependence on the thermal conductivity ratio
of solid to fluid. A review of the transient heat conduction in porous media
to assess the validity of local thermal equilibrium assumption was given by
Hsu [30].

When the fluid in the porous media is in motion, a quantity due to thermal
dispersion as has appeared in the averaged energy equation becomes a new
unknown and requires closure modeling. Thermal dispersion bears consider-
able resemblance to mass dispersion that had received great attention for dec-
ades [31–41]. In contrary to mass dispersion, there exist only limited amount of
works on thermal dispersion. Gunn and De Sousa [42], Gunn and Khalid [43],
and Vortmeyer [44] represent some of the early works. More recently are
those works by Levec and Carbonell [45, 46] and Hsu and Cheng [4]. The
effect of fluid motion has also greatly enhanced the interfacial heat transfer
as a result of convection. Considerable progresses were made on the model-
ing of the enhanced interfacial heat transfer. These can be traced back to the
earlier works of Kunii and Suzuki [47], Nelson and Galloway [48], Martin [49],
and Wakao et al. [50]. Wakao and Kaguei [51] provided a comprehensive sum-
mary on the interfacial heat transfer. They found a great scattering of the
experimental data for low Reynolds number flows. Hsu [52] extended his
earlier work of interfacial heat transfer for pure conduction [29] to incorporate
the effect of forced convection for both low and high Reynolds number flows.

In this chapter, macroscopic equations governing the convective heat
transfer in porous media are derived rigorously by the method of volumetric
averaging [53], incorporated with an areal averaging procedure for the region
near a macroscopic boundary. This procedure leads to the closure problem
with new unknown terms as has appeared in the averaged equations where
the closure modeling becomes inevitable. These unknowns are those associ-
ated with the momentum and thermal dispersions, the interfacial tortuosity,
and the interfacial transfer. Closure relations as proposed by earlier works are
summarized to form a closed equation system. The limitations on the closure
relations are discussed to offer the possibility for further improvements. In
order to verify some aspects of the closure relations, convection in Hele-Shaw
cells in analog to flows and heat transfer in porous media is used. Flows and
heat transfer in the Hele-Shaw cells are computed with a 3D code, with a
direct numerical simulation method to assess the closure relations as well as
their associated closure coefficients.

2.2 Macroscopic Governing Equations

In this section, we shall obtain the macroscopic governing equations for the
transport of momentum and energy in porous media. The scaling law for

© 2005 by Taylor & Francis Group, LLC



Dynamic Modeling of Convective Heat Transfer in Porous Media 45

dx1

dx3
dx2

dx1 = dx2 = dx3 << dp

l > > dp

REV= dx1 dx2 dx3

dp

l = dx1

dx2

L

dx3

FIGURE 2.1
The schematic to illustrate the scaling law and the REV for the volumetric average scheme.

treating the porous media is first introduced, followed by a description of the
transport equations at the microscopic scale. The volumetric and areal aver-
aging procedures are then defined and applied to the microscopic transport
equations to obtain the macroscopic transport equations. Here, we restrict
our discussion to a rigid media where relative position of solids is fixed.

2.2.1 Scaling Law

As depicted in Figure 2.1, the macroscopic scale is defined by the coordinate
system xi, i = 1–3, which has the global length scale of L for the problem
under consideration. The increments of the macroscopic scale, dxi, are of the
same order to the length l of an REV given byV = dx1dx2dx3. The local micro-
scopic coordinate system, xi, also has the length scale l, which is assumed to be
large compared to the characteristic length of the solid particles, dp. Therefore,
the increments of the microscopic coordinates, dxi, are much smaller than dp,
but much larger than the molecular scale lm. Hence, L 
 l 
 dp 
 lm,
dxi = l = O(xi), and dp 
 dxi 
 lm. With the last inequality, the concept of
continuum mechanics can be applied directly at the microscopic scale.

2.2.2 Microscopic Transport Equations

For simplicity, we shall restrict our discussions to a rigid medium in which
the solid structure is fixed in space. The properties of the fluid such as density,
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viscosity, and thermal conductivity are assumed constant. Hence, the fluid
is Newtonian and incompressible. The continuity, momentum, and energy
equations of the fluids in pore space at the microscopic scale without body
forces are described respectively by:

Continuity equation

∇ · u = 0 (2.7)

where u is the fluid velocity and ∇ is the microscopic gradient operator.
Momentum equation

ρ
∂u
∂t
+ ρ∇ · (uu) = −∇p+ µ∇S (2.8)

where p is the pressure and S is the strain rate tensor given by

S = Sij =
(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.9)

Energy equation in fluid

ρcp
∂T
∂t
+ ρcp∇ · (uT) = k∇2T (2.10)

where T is the temperature of the fluid, cp is the specific heat capacity of fluid
at constant pressure, k is the thermal conductivity of the fluid.

While the solid of the porous media is assumed to be rigid, that is, us = 0,
the conduction of heat in solids may occur. The energy equation for the solid
phase can be obtained from Eq. (2.10) by subscripting the physical quantities
with s for the solid phase and setting us = 0 to yield:

Energy equation in solid

ρscps
∂Ts

∂t
= ks∇2Ts (2.11)

where Ts is the temperature, ρs the density, cps the specific heat capacity, and
ks the thermal conductivity, of the solid.

2.2.3 Volumetric and Areal Averages

Volumetric averaging
The intrinsic average of a fluid quantity w over the fluid phase is defined as

w = 1
Vf

∫
Vf

w dV (2.12)
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We now follow the procedure of Whitaker [53] to derive the volumetric
average for the divergence of a flux w. The divergence theorem reads∫

Vf

∇ ·w dV =
∫
Sf

w · ds (2.13)

whereSf is the surface enclosing the fluid volumeVf and ds is the surface areal
increment vector which is represented by ndA with n being the unit vector
outward normal toSf from fluid to solid and dA the scalar areal increment. For
the REV depicted in Figure 2.1, the surface Sf consists of a fluid–solid interfa-
cial surface Afs and six flat fluid surfaces, two Afxi each at xi ± dxi/2, i = 1–3.
We should assume that the areal porosities in the xi directions are identically
equal to φa, that is, Afxi/Axi = φa, and that Afxi and Axi are chosen sufficiently
large, equal to Af and A, respectively, to render φa being independent of the
size of A. Therefore, Eq. (2.13) after being divided by V becomes

1
V

∫
Vf

∇ ·w dV = ∇ ·
(

1
A

∫
Af

w dA
)
+ 1

V

∫
Afs

w · ds (2.14)

where ∇ is the macroscopic gradient operator. The areal and volumetric
averages can be taken as the same in the domain of a randomly packed porous
medium where both are defined rigorously. As a result, Eq. (2.14) in terms of
the intrinsic average quantity becomes

φ∇ ·w = ∇ · (φw)+ 1
V

∫
Afs

w · ds (2.15)

where the overhead bar represents the intrinsic average over the fluid phase,
that is,

(∇ ·w,w) = 1
Vf

∫
Vf

(∇ ·w,w)dv (2.16)

By applying the above divergence theorem to wi, wj, and wk, respect-
ively, and summing up the resultant expressions into a vector, the averaging
procedure for a gradient reads

φ∇w = ∇(φw)+ 1
V

∫
Afs

w ds (2.17)

Note that the last terms in Eqs. (2.15) and (2.17) represent the interfacial trans-
fer terms caused by the interaction between the fluid and solid. For the time
derivatives of a quantity, the average over the REV leads to

φ
∂w
∂t
= ∂(φw)

∂t
− 1

V

∫
Afs

wu · ds (2.18)
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The above expressions are for the averages in fluid phase. Using the similar
concept, it is easy to obtain the averages for solid phase. Then the quantity
ws denotes the solid phase averaged results defined as

ws = 1
Vs

∫
Vs

w dv (2.19)

The expressions (2.15), (2.17), and (2.18) are then converted to

φs∇ ·ws = ∇ · (φsws)− 1
V

∫
Afs

ws · ds (2.20)

φs∇ws = ∇(φsws)− 1
V

∫
Afs

ws ds (2.21)

and

φs
∂ws

∂t
= ∂(φsws)

∂t
+ 1

V

∫
Afs

wsus · ds (2.22)

for the averages over solid phase, where φs = 1 − φ is the volume ratio of
solid phase. Note that the last terms in Eqs. (2.20) to (2.22) take a different sign
from (2.15), (2.17), and (2.18) since ds is now inward into the solid. For rigid
solid medium where u = us = 0 on Afs, last terms in Eqs. (2.18) and (2.22)
become zero.

Areal averaging
It should be noted that the volumetric average defined above fails to apply
in the region near a macroscopic boundary. This problem becomes serious
since most of the important transfer process occurs in a boundary layer near
an impermeable wall. To circumvent this difficulty, we should degenerate the
REV into a thin plate as shown in Figure 2.2. Hence, V = dx1dx2dx3 = Adx3
where x3 is measured in the normal direction from the macroscopic boundary.
Note that x3 remains at a microscopic scale, that is, dx3 � dp. The fluid
volume in REV is given by Vf = Af dx3. Then, the porosity is defined by
Vf/V = Af/A = φa. The intrinsic average of a fluid quantity w over the fluid
phase now becomes

w = 1
Vf

∫
Vf

w dV = 1
Af

∫
Af

w dA (2.23)

For the degenerated REV (DREV), it can be easily shown that the relations
given by Eqs. (2.15), (2.17), and (2.18) remain valid, except that the volume-
tric porosity φ is replaced by the areal porosity φa, that the overhead bar
is interpreted as the areal average and that the macroscopic gradient ∇ is
interpreted as ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3). Expressions for the areal average
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FIGURE 2.2
The schematic for the DREV for the areal average scheme near the macroscopic boundary
wall.

over the solid phase similar to those of Eqs. (2.20) to (2.22) can be obtained,
and the correspondent interpretations follow.

2.2.4 Macroscopic Transport Equations

By performing the volumetric averaging to the microscopic equations
(2.7–2.11), invoking the relations (2.15–2.22) and decomposing the velocity,
pressure, and temperatures into u = u + u′, p = p + p′,T = T + T′, and
Ts = Ts + T′s, respectively, we find that

∇ · (φu) = 0 (2.24)

ρ

[
∂

∂t
(φu)+ ∇ · (φuu)

]
= −∇(φp)+ ρ[ν∇ · (φS)+ ∇ · (−φu′u′)] + bfs

(2.25)
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where

S = Sij = 1
φ

(
∂(φui)

∂xj
+ ∂(φuj)

∂xi

)
(2.26)

In Eq. (2.25),

bfs = 1
V

∫
Afs

(−pI+ µS) · ds = 1
V

∫
Afs

(−p′I+ µS′) · ds (2.27)

represents the interfacial force per unit volume as exerted by the solids,
with I = δij being the identity matrix. Note that the volumetric interfacial
force is contributed from the pressure and the shear stresses acting on the
solid surface. The quantities, −φu′u′, in Eq. (2.25) represent the additional
stresses due to the correlation between the velocity variations over REV,
called the momentum dispersion. Its occurrence may bear some resemblance
to the Reynolds stresses appearing in turbulence.

2.2.4.1 Energy equations

Fluid phase

ρcp
∂(φT)
∂t
+ ρcp∇ · (φuT) = k∇2

(φT)+ ρcp∇ · (−φu′T′)+ k∇ ·�fs + qfs

(2.28)

On the right-hand side of Eq. (2.28), the quantity (−u′T′) represents the
thermal dispersion, the quantity

�fs = 1
V

∫
Afs

T · ds = 1
V

∫
Afs

T′ · ds (2.29)

in the second last term represents the thermal tortuosity and the last term

qfs = 1
V

∫
Afs

k∇T · ds (2.30)

represents the interfacial heat transfer from solid into fluid per unit volume.
Solid phase

ρscps
∂(φsTs)

∂t
= ks∇2

(φsTs)− ks∇ ·�fs − qfs (2.31)
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In Eq. (2.31), we have invoked the condition of the continuity of heat flux
across the interface, that is,

k∇T = ks∇Ts on Afs (2.32)

so that the source term qfs given by Eq. (2.28) for fluid phase becomes the
sink term for solid phase, or vice versa. Because the surface increment ds is
out-normal from fluid into solid, the second term on the right-hand side of
Eq. (2.31) takes the negative sign as different from the corresponding term in
Eq. (2.28).

The macroscopic transport equations given above with some prescribed
boundary conditions cannot be solved directly because there are more
unknowns than the number of equations. This leads to a so-called closure
problem. These unknown terms are associated with the momentum and
thermal dispersions, the thermal tortuosity, and the interfacial momentum
and heat transfer. The interfacial momentum transfer appears as the resist-
ant force on fluid by the solid structure and is also termed as the volumetric
interfacial force. While the dispersions occur in the domain of fluid phase, the
thermal tortuosity and the interfacial momentum and heat transfer occur at
the solid–fluid interface. Constitutive relations need to be sought through
closure modeling scheme to relate these new unknowns to the averaged
macroscopic quantities.

2.3 Closure Modeling

The construction of closure relations associated with the dispersions,
tortuosity, and the interfacial transfer now becomes the major task for the
present treatise of the transport phenomena in porous medium. As the clos-
ure problem involves the microscopic deviation quantities, it is logical to
examine the behaviors of u’, p’, T’, and T′s. This can be done by first obtaining
the governing equations for the microscopic deviations, then normalizing
the resultant equations to reveal the key nondimensional parameters such
as Reynolds number, Péclet number, and Keulegan–Carpenter number that
govern the behaviors of the microscopic transports. The closure relations
applicable in different ranges of these key parameters then can be obtained
based on the correlation between the microscopic deviations and the mac-
roscopic quantities. The composite closure relations valid for all range of
the parameters can then be constructed. This procedure of closure modeling
scheme is quite standard and can be found in [4, 29, 30, 52, 53]. Here we shall
not go into details of the closure modeling scheme, but only summarize the
results of these closure relations as obtained earlier by others.
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2.3.1 Closure Relations for Momentum Dispersion and
Interfacial Force

Following the similar principle of Hsu and Cheng [4] for deriving the thermal
dispersion, Hsu [52] obtained the closure relations for the momentum disper-
sion and interfacial force. The resultant composite closure relations that are
valid for all Reynolds number, Rep = |u|dp/ν, and all range of timescale are
summarized as follows.

Momentum Dispersion
Following the Taylor series expansion, the velocity deviation u′ to the first-
order approximation can be expressed into

u′ = c′1u+ dpc′2 · S (2.33)

Therefore, the momentum dispersion becomes:

−u′u′ = −cuu+ εS (2.34)

where ε is the dispersion viscosity given by

ε = c1l|u| + c2l
2|S| (2.35)

with l being the mixing length of momentum dispersion and c1 and c2
being the correlation coefficients. The first term on the right-hand side of
Eq. (2.35) resembles the Prandtl’s third mixing length theory for turbulent
eddy viscosity of a wake behind a sphere and that the second term resembles
the eddy viscosity for turbulent boundary layer near a solid wall. How-
ever, the dispersion length for flows in porous media is assumed to scale
with the particle diameter in the core region far away from an impermeable
wall and then to become linearly proportional to the distance x3 measured
from the impermeable wall. By adapting van Driest’s damping factor A+, l is
expressed as

l = c3dp[1− exp(−A+x3/dp)] (2.36)

Volumetric Interfacial Force

bfs =− φsµcS

d2
p

u− φscB

d3/2
p

√
ρµ|u|u− ρφscI

dp
|u|u

− φscG

dp

√
ρµ

|∇ × (φu)|u× [∇ × (φu)]
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− ρφscLu× [∇ × (φu)] − ρφscV
D(φu)

Dt

−
√
ρµ

π

φscM

dp

∫ t

−∞
∂(φu)
∂τ

dτ√
t− τ (2.37)

where cS is the drag coefficient due to Stokes flow, cB and cI are the
viscous and inviscid drag coefficients due to fluid advection, cG and
cL are the viscous and inviscid lift force coefficients due to mean vor-
ticity, and cV and cM are the transient inertia drag coefficients due to
the virtual mass and the Basset transient memory effects. Note that the
form drag, the inviscid lift force, and the virtual mass force are inde-
pendent of the viscosity, that is, they are associated mainly with the
hydrodynamic pressure. The relation (2.37) bears considerable resemblance
to that for the two-phase flows, although there are some differences in
detail.

Macroscopic Momentum Transport Equations
By invoking Eq. (2.34) into Eq. (2.25), the macroscopic momentum transport
equations with the aid of Eq. (2.26) now become

ρ

[
∂

∂t
(φu)+ ∇ · (φ(1+ c)uu)

]
= −∇(φp)+ ρ∇ · [(ν + ε)∇(φu)]+ bfs

(2.38)

where bfs is given by Eq. (2.37). It is seen that the effects of momentum
dispersion are to produce the excess mean momentum and the dispersion
viscosity.

2.3.2 Closure Relations for Thermal Dispersion, Thermal
Tortuosity, and Interfacial Heat Transfer

The closure for the thermal dispersion, thermal tortuosity, and interfacial
heat transfer had been studied greatly for decades. Hsu and Cheng [4] pro-
posed a closure model for the thermal dispersion. The early works on the
closure modeling of thermal tortuosity were on the problem of stagnant heat
conduction in porous media. Quintard and Whitaker [27, 28] gave a first
comprehensive account of the thermal tortuosity, followed by the recent
work of Hsu [29]. The early works on the interfacial heat transfer were
highly experimental (Kunii and Suzuki [47]; Wakao et al. [50]). A more
comprehensive theoretical treatment of the closure model for the interfa-
cial heat transfer was given by Hsu [4, 52]. Here we should summarize the
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closure relations as obtained by Hsu and Cheng [4], Hsu [29], and Hsu [52]
as follows:

Thermal Dispersion
The thermal dispersion was modeled by Hsu and Cheng [4], who showed
that

−φu′T′ = AD · ∇ T (2.39)

where AD is the dispersion thermal diffusivity tensor which for a homo-
geneous media can be expressed into

AD =

α1 0 0

0 α2 0
0 0 α3


 (2.40)

with α1,α2, and α3 being the dispersion thermal diffusivities in the longitud-
inal, transverse, and lateral directions, respectively. It is anticipated that the
transverse and lateral dispersions are of the same order in core region of the
porous media, but not in the region near the impermeable wall. According to
Hsu and Cheng [4], the dispersion thermal diffusivities are linearly propor-
tional to the Péclet number, Pep = |u|dp/α, when the Péclet number is large,
and becomes proportional to the square of the Péclet number when the Péclet
number is low. Therefore, the composite relations for the dispersion thermal
diffusivities can be constructed as

αi = (1− φ)α
aiPe2

p

bi + Pep
(i = 1, 2, and 3) (2.41)

where ai and bi are coefficients depending only on microscopic geometry of
the media.

Thermal Tortuosity
According to the closure modeling of Hsu [29], the thermal tortuosity is
expressed as

�fs = G(∇ T − σ∇ Ts) (2.42)

where G is the tortuosity parameter and σ(= ks/k) is the conductivity ratio
between solid and fluid. The tortuosity parameter G can be determined from

G = [(kst/k)− φ − σ(1− φ)]
(1− σ)2 (2.43)

where kst is the effective stagnant thermal conductivity of the porous media
based on a mixture model under the condition of local thermal equilibrium.
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A comprehensive review of the effective stagnant thermal conductivity of
porous media was given in Cheng and Hsu [26].

Interfacial Heat Transfer
From Hsu [29], the closure relation for the interfacial transfer from solid to
fluid is given by

qfs = hfsafs(Ts − Tf) (2.44)

where afs(= Afs/V) is the specific interfacial area and hfs is the interfacial heat
transfer coefficient. From Hsu [52], the interfacial heat transfer coefficient
takes the form of h∗fs(1 + c4PrRep) at low Reynolds number where h∗fs is the
stagnant interfacial heat transfer coefficient when fluid is still (Hsu [29]); how-
ever, at large Reynolds number, it becomes proportional, PrmRenp, where m
and n depend on the ranges of Pr and Rep of the microscopic flows. Therefore,
the composite expressions for hfs in terms of the interfacial Nusselt number
becomes

Nufs =
hfsdp

k
= Nu∗fs

(
1+ aPrRep

b+Nu∗fsPr1−mRe1−n
p

)
(2.45)

where Nu∗fs is the stagnant interfacial Nusselt number and a and b are coeffi-
cients with a/b = c4. From the classical theory of convective heat transfer, we
have n > 0.5 for large Reynolds number. We also have m = 1/2 when Pr � 1
and m = 1/3 when Pr 
 1. Aquasi-steady model for Nu∗fs as proposed by Hsu
[29], on the basis of the parallel conduction layers on fluid and solid sides,
respectively, is expressed as

Nu∗fs =
h∗fsdp

k
= σ

αAσ + αB
(2.46)

where αA and αB represent the dimensionless conduction layer thickness in
fluid and solid phases as normalized by the particle diameter, respectively.

Macroscopic Energy Equations
By substituting the closure relations for the thermal dispersion, thermal tor-
tuosity, and interfacial heat transfer into (2.28) and (2.31), the macroscopic
energy equations become:

Fluid phase

ρcp
∂(φT)
∂t
+ ρcp∇ · (φuT) = k∇2

(φT)+ ρcp∇ · (AD : ∇ T)

+ k∇ · [G(∇ T − σ∇ Ts)] + hfsafs(Ts − T) (2.47)
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Solid phase

ρscps
∂(φsTs)

∂t
= ks∇2

(φsTs)− ks∇ · [G(∇ T − σ∇ Ts)] − hfsafs(Ts − T) (2.48)

Equations (2.47) and (2.48) with the dispersion thermal diffusivity, the tor-
tuosity, and the interfacial heat transfer coefficient given by Eqs. (2.39),
(2.42), and (2.44), respectively, are the macroscopic governing equations
for the unsteady convective heat transfer in porous media. The evaluation
of the closure coefficients αi, G, and hfs then becomes one of the main
tasks.

2.4 Superficial Flows and Heat Transfer

The above closure relations are derived in terms of the phase-averaged
flow and heat transfer quantities that have their intrinsic physical mean-
ing. For instance, for media with dispersed dilute spheres (limit case of
φ → 0), u is the incoming free stream velocity for the problem of flows
past a sphere. Then the closure coefficients can be determined from the clas-
sical theory of fluid mechanics. However, in this study the porous media
are made of densely packed particles or interlinked solids. The interfer-
ence among solid particles is important and the closure coefficients depend
strongly on the porosity. This dependence is hard to determine analytic-
ally; however, the evidences from the existing experimental data suggest
that the proper scale to account for the contribution due to particle inter-
ference to the volumetric interfacial force should be the hydraulic diameter,
defined by

dh = φ

1− φ dp (2.49)

The flows through the porous media are then postulated as those passing
through a series of capillary tubes of diameter dh. To be inline with classical
Darcy’s formulation, we should express the equations in terms of the pore
pressure, P = p, and the Darcy velocity, U = φu. Flows with velocity field U
are regarded as the superficial flows over the entire domain of porous media
since the velocity U does not represent the actual velocity in the media;
however, for convenience T and Ts will remain to represent the averaged
temperatures over the respective phases.
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2.4.1 Governing Equations for Superficial Flows

In terms of Darcy velocity, pore pressure, and hydraulic diameter, the phase-
averaged continuity and momentum equations, (2.24) and (2.38), become

∇ ·U = 0 (2.50)

and

ρ

[
∂

∂t
(U)+ ∇ · ((1+ c)UU/φ)

]
= −∇(φ P)+ ρ∇ · [(ν + ε)∇(U)]+ bfs

(2.51)

where the dispersion viscosity in terms of the hydraulic diameter is rewrit-
ten as

ε = ch1lh |U| + ch2l
2
h

∣∣∣Sh

∣∣∣ (2.52)

Here the strain rate tensor Sh and the hydraulic dispersion length lh are
redefined as

Sh = φS = φSij =
(
∂Ui

∂xj
+ ∂Uj

∂xi

)
(2.53)

and

lh = dh[1− exp(−A+h x3/dh)] (2.54)

Note that c3 in Eq. (2.36) can be adjusted arbitrarily to render Eq. (2.54). The
volumetric interfacial force in terms of Darcy velocity becomes

bfs =− µCS

d2
h

U − CB

d3/2
h

√
ρµ|U|U − ρCI

dh
|U|U − CG

dh

√
ρµ∣∣∇ ×U

∣∣ U× (∇ ×U)

− ρCLU× (∇ ×U)− ρCV
DU

D t
−
√
ρµ

π

CM

dh

∫ t

−∞
∂U
∂τ

dτ√
t− τ (2.55)

Here, the dependence of the dispersion viscosity and the volumetric inter-
facial force on the porosity appears implicitly in the hydraulic diameter and
the closure coefficients in Eqs. (2.52) and (2.55). These coefficients also depend
strongly on the microscopic geometry of the solids; hence, they need to be
determined experimentally.
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Equations (2.50) to (2.55) form a closed set of equations that can be solved
with proper macroscopic boundary conditions. They are the macroscopic gov-
erning equations for the superficial flows in porous media. These equations
have taken account of the first-order leading terms over the entire ranges
of Reynolds number and timescale. As seen from the right-hand side of
Eq. (2.55), the first term represents the force due to Stokes drag, proportional
toµ. It is contributed from both shear and pressure, and corresponds to creep-
ing flows at low Reynolds number. The second, fourth, and seventh terms are
proportional to µ1/2 corresponding to boundary layer flows at intermediate
Reynolds number (lower-end of high Reynolds number) and intermediate
timescale; the forces are solely contributed from shear. The third, fifth, and
sixth terms are independent of µ corresponding to inviscid potential flows
at very high Reynolds number and short timescale, and the forces are solely
contributed from pressure.

The superficial flow in terms of Darcy velocity can be considered as being
a continuum flow over the whole domain of the porous media. The details of
the solid structure in the media are disregarded. This is equivalent to saying
that the flows in porous media can be regarded macroscopically as the flows
of a special type of fluids. We should call this fluid as “Darcy fluid.” The flow
of Darcy fluid has a mass flux ρU but has a momentum flux ρ(1+ c)UU/φ ; it
also has a viscosity (ν + ε) as if that of a non-Newtonian fluid and subject to
a body force bfs associated with the resistance caused microscopically by the
solids. The effective pressure to drive the Darcy fluid is φP. It is noted that
the values of c, ε, and bfs depend strongly on the velocity and shear of the
superficial flow. Particularly, bfs depends also on the transient acceleration of
the superficial flow.

2.4.2 Heat Transfer in Superficial Flows

While the energy equation for the heat conduction in solid phase remains the
same as given by Eq. (2.48), the energy equations governing the convective
heat transfer of the Darcy fluid then become:

ρcp
∂(φT)
∂t
+ ρcp∇ · (UT) = k∇2

(φT)+ ρcp∇ · (AD · ∇ T)

+ k∇ · [G(∇ T − σ∇ Ts)] + hfsafs(Ts − T) (2.56)

where the dispersion thermal diffusivities are given by

αi = α
ahiPe2

h
bhi + Peh

(i = 1, 2, and 3) (2.57)

with the Péclet number based on hydraulic diameter given by Peh = |U|dh/α,
and ahi and bhi being coefficients. The interfacial Nusselt number in terms of
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the hydraulic diameter then becomes

Nuhfs = hfsdh

k
= Nu∗hfs

(
1+ ahPr Reh

bh +Nu∗hfsPr
1−mRe1−n

h

)
(2.58)

where Reh = |U|dh/ν is the Reynolds number based on Darcy velocity and
hydraulic diameter, and Nu∗hfs is stagnant Nussult number given by

Nu∗hfs =
h∗fsdh

k
= σ

αhAσ + αhB
(2.59)

If the solid and fluid phases are locally in thermal equilibrium, that is, Ts = T,
we can lump Eqs. (2.48) and (2.56) together to yield:

(ρcp)m
∂T
∂t
+ ρcp∇ · (UT) = kst∇2

T + ρcp∇ · (AD · ∇ T) (2.60)

where (ρcp)m = φρcp + (1 − φ)ρscps is the heat capacity of the solid–fluid
mixture.

2.5 Evaluation of Closure Coefficients

In this section, we shall review some of the experiments that are relevant
for the determination of the closure coefficients that appear in the closure
relations. They are summarized in the following sections.

2.5.1 Hydrodynamic Experiments

Most of the early experimental works on the flows in porous media were
devoted to the determination of the coefficients in the interfacial force. To the
author’s knowledge, till date there exist no experimental data for the determi-
nation of the coefficients in the closure relation of momentum dispersion.
The main difficulty lies on the fact that the Brinkman layer near an imper-
meable wall is too thin to be measurable. Even for the interfacial force, most
of the early works were conducted on steady flows for determining the per-
meability to delineate the Darcy’s law at very low Reynolds number and the
Forchheimer inertia effect at very large Reynolds number. To delineate the
transient effect, we need to study the unsteady flows. One of the simplest
unsteady flows is the one-dimensional periodically oscillating flow. Recently,
Hsu et al. [5] and Hsu and Fu [54] measured the velocity and the pressure-
drop for both steady and oscillating flows across porous columns packed
from wire screens. For better understanding of the experimental results,
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a brief review of the theory of oscillating flows in porous media is given
first. It should be noted that these experiments were only valid for flows in
the core region of the porous media.

2.5.1.1 Theory of oscillating flows in porous media

We consider oscillating flows in a packed column. In the core region of the
packed column, the superficial flow is one-dimensional, that is, U = (u, 0, 0)
where u is a function of time only. Equation (2.51) with the substitution of
(2.55) reduces to

ρ(1+ CV)
∂u
∂t
= −∂(φp)

∂x
− µCS

d2
h

u− CB

d3/2
h

√
ρµ|u|u− ρCI

dh
|u|u

−
√
ρµ

π

CM

dh

∫ t

−∞
∂u
∂τ

dτ√
t− τ (2.61)

In Eq. (2.61), the terms with the coefficients CS, CB, CI, CV, and CM are asso-
ciated, respectively, with the Stokes drag force, the frictional force due to
advection boundary layer, the inviscid form drag, the inviscid virtual mass
force, and the Basset memory viscous force due to transient boundary layer.

In the limit of low frequency oscillating flows, Eq. (2.61) reduces further to
the quasi-steady form of

−∂(φ p)
∂x

= µCS

d2
h

u+ CB

d3/2
h

√
ρµ|u|u+ ρCI

dh
|u|u (2.62)

which was proposed first by Hsu and Cheng [4]. Equation (2.62) indicates that
the negative pressure gradient and the velocity are in-phase, that is, maximum
pressure-drop occurs when the velocity is maximal. Taking the maximum of
pressure and velocity oscillations, Eq. (2.62) becomes

f = CS

Reh
+ CB

Re1/2
h

+ CI (2.63)

where f = φ�pmaxdh/(ρu2
maxL) is the pressure-drop coefficient with �pmax

being the maximum pressure-drop across a distance L of the packed column,
and Reh = umaxdh/ν the Reynolds number with umax being the amplitude of
a sinusoidal velocity, that is, u = umax cos ωt.

When the transient inertia force becomes important at high frequency, there
will be a phase difference between velocity and pressure-gradient oscilla-
tions. A complete description of velocity and pressure-gradient correlation
requires both the amplitude correlation and phase difference. The velocity
and pressure gradient are assumed as the real part of the following complex
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expressions,

U = ûeiωt and − 1
ρ

∂P
∂x
= α̂ eiωt + harmonics (2.64a,b)

where û(=umax) and α̂ represent the complex amplitudes of velocity and
pressure gradient of the fundamental mode, respectively. The substitution
of Eq. (2.64) into Eq. (2.61), and then collecting the fundamental mode of
oscillation, leads to

α̂ = 1
φ


νCS

d2
h

+ CB

d3/2
h

√
2.64ν

∣∣û∣∣
π

+ 2.67CI
∣∣û∣∣

π dh
+ CM

√
iων

dh
+ (1+ CV) iω


 û

(2.65)

From Eq. (2.65), it appears that the Basset memory force generates a pressure-
gradient component of a 45◦-phase difference from the velocity, while the
virtual mass force generates a component of a 90◦-phase difference. The
quasi-steady state then represents the limit case of a 0◦-phase difference when
ω→ 0. Taking the absolute value to Eq. (2.65) results in

f̂ =
∣∣∣∣∣ CS

Reh
+ CB

Re1/2
h

√
2.64
π
+ 2.67CI

π
+ CM

Re1/2
h

√
idh

A
+ (1+ CV)

idh

A

∣∣∣∣∣ (2.66)

where f̂ = ∣∣α̂∣∣φdh/
∣∣û∣∣2 is the pressure-gradient coefficient based on the fun-

damental mode, Reh =
∣∣û∣∣ dh/ν is the Reynolds number, and A = ∣∣û∣∣ /ω is

the amplitude of the fluid displacement of the superficial flow. Here we have
A = φA with A being the intrinsic average of fluid displacement in the pore.
The phase angle between the pressure and velocity can be obtained by taking
the argument to Eq. (2.65) to result in

θ = tan−1

[
(1+CV)(dh/A)+ (CM/

√
2Reh)

√
dh/A

CS/Reh + (CB/
√
Reh)
√

2.64/π + 2.67CI/π + (CM/
√

2Reh)
√
dh/A

]
(2.67)

Equations (2.66) and (2.67) indicate that the pressure gradient of an oscillating
flow in a porous medium depends on two parameters, Reh and dh/A. The
inverse of dh/A is the Keulegan–Carpenter number commonly encountered
in oscillating flows. In the limit of dh/A→ 0 (i.e., A→ ∞ and ω → 0 while
maintaining

∣∣û∣∣ as finite), Eq. (2.66) reduces to

f̂ = CS

Reh
+ CB

Re1/2
h

√
2.64
π
+ 2.67CI

π
(2.68)
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and the phase angle approaches zero. Note that Eq. (2.68) is different from
Eq. (2.63) by the factors of

√
2.64/π and 2.67/π in the last two terms because

Eq. (2.68) uses the amplitude of fundamental mode rather than the maximum
of the pressure gradient.

2.5.1.2 Experimental results

Figure 2.3 shows the experimental results of the pressure-drop coefficient
varying with the Reynolds number for steady and low frequency oscillating
flows across the packed column as obtained by Hsu et al. [5]. The most fasci-
nating result is that the oscillating flow data collapses into the steady flow
data. This implies that the oscillating flows in porous media in the low fre-
quency limit are indeed quasi-steady. The most important feature in Figure 2.3
is that the experimental data covered a wide range of 0.27 < Reh < 2600 so
that the constants CS and CI for the Darcy and the Forchheimer limits at
low and high Reynolds numbers, respectively, can be determined with no
ambiguity. As a result, CB can also be determined accurately by fitting the
experimental data to Eq. (2.63). The values of CS, CB, and CI as obtained from
the best curve-fit are 109, 5.0, and 1.0, respectively. For comparison, the curve
for CB = 0, which represents the two-term Darcy–Forchheimer correlation
commonly used in the porous medium research community, is also plotted
in Figure 2.3. It is seen that the exclusion of the term with Re−1/2

h on the

Reynolds number based on pore velocity and hydraulic diameter
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FIGURE 2.3
Correlation of pressure-drop coefficient with velocity of steady and oscillating flows through the
packed porous column.
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FIGURE 2.4
Phase difference between the fundamental mode oscillations of the velocity and the pressure-
drop across packed columns made of different sizes of wire screens.

right-hand side of Eq. (2.63) underestimates the pressure-drop by 20–30% in
the intermediate Reynolds number range of 40 < Reh < 1000.

The experimental results of pressure-drop and velocity correlation for high
frequency oscillating flows in the packed column as given by Hsu and Fu [54]
are shown in Figure 2.4 and Figure 2.5 for the phase angle and amplitude,
respectively. We note that the amplitude data is not accurate enough to be
used for the determination of the coefficients CM and CV. Instead, the phase
angle data were used. From Figure 2.4, it is seen that the phase difference
is as much as 40◦ at the Reynolds number of 780 when dh/A = 0.288. This
implies that the interfacial force due to transient inertia is of the same order
in magnitude as that due to advection inertia. With the values of CS = 109,
CB = 5.0, and CI = 1.0 from Figure 2.3, the curves with the values of CV and
CM obtained by best fit of the data to Eq. (2.67) are plotted in Figure 2.4. The
agreement between the experimental results and the theoretical predictions
is shown in Figure 2.4. This implies that the inclusion of the transient inertia
force into the volumetric interfacial force due to solid resistance is crucial for
a complete description of the unsteady flows in porous media. The predic-
tions of amplitude correlation based on Eq. (2.66) using CS = 109, CB = 5.0,
CI = 1.0, and the fitted values of CM and CV for different dh/A are plotted
in Figure 2.5. For comparison, the steady flow data of Figure 2.3 (equival-
ent to dh/A = 0) were first converted for Eq. (2.68) and plotted in Figure 2.5.
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FIGURE 2.5
Correlation between the amplitudes of fundamental mode oscillations of velocity and pressure-
drop across packed columns made of different sizes of wire screens.

A good agreement is found between the experimental data and the theoretical
predictions.

2.5.2 Heat Transfer Experiments

There exist considerable experiments on the heat transfer in porous media.
Wakao and Kaguei [51] and Kaviany [25] had comprehensively com-
piled the early experimental results. Here we recapture those that are
relevant to the thermal dispersion, thermal tortuosity, and interfacial
heat transfer, incorporated with some results from recent experiments by
Fu and Hsu [55].

2.5.2.1 Thermal dispersion

Under the low frequency condition, Fu and Hsu [55] measured the longitud-
inal thermal dispersion for oscillating flows through a porous column packed
of wire screens. The oscillating flows at such low frequency are quasi-steady as
demonstrated in Section 2.5.1. Figure 2.6 shows the variation of the effective
longitudinal dispersion thermal diffusivity with the hydraulic Péclet num-
ber. As seen from Figure 2.6, α1/α increases almost linearly with the Péclet
number when Peh 
 10. As Peh decreases toward Peh ≈ 10, the value of
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FIGURE 2.6
Comparison of the experimental results of dispersion thermal diffusivity (Fu and Hsu [55]) with
the predictions based on the model of Hsu and Cheng. (Taken from C.T. Hsu and P. Cheng. Int.
J. Heat Transfer 33:1587–1597, 1990. With permission.)

α1/α decreases more rapidly to exhibit the trend of Pe2
h, although the data

range of Peh is not low enough to provide a complete picture in the range of
low Péclet number. Apparently, the data shown in Figure 2.6 are consistent
with the quasi-steady closure model for thermal dispersion as given by Hsu
and Cheng [4]. The composite expression as given by Eq. (2.57) was used by
Fu and Hsu [55] to fit the data to obtain ah1 = 1.94 and bh1 = 30. The results
of the best fit are given in Figure 2.6 as the solid curve. It should be noted
that the value of bh1 may be subject to some uncertainty because of the lack
of data in low Péclet number range; however, the value of ah1 = 1.94 should
give better confidence.

2.5.2.2 Effective stagnant thermal conductivity and
thermal tortuosity

As the tortuosity parameter G is related to the effective stagnant thermal con-
ductivity kst by Eq. (2.43), the main task becomes to experimentally determine
kst. A more complete experiment for the determination of kst that covered a
wide range of solid-to-fluid thermal conductivity ratio was the one conduc-
ted by Nozad et al. [15]. More recently, Hsu et al. [23] proposed the lumped
parameter 2D and 3D models to predict the effective stagnant thermal con-
ductivity. For the 3D model of in-line periodic arrays of cubes, the unit cell is
shown as in Figure 2.7. The expression for the determination of kst/k is then
given as:

kst/k = 1− γ 2
a − 2γcγa + 2γcγ 2

a + σγ 2
c γ

2
a +

σγ 2
a (1− γ 2

c )

σ + γa(1− σ) +
2σγcγa(1− γa)
σ + γcγa(1− σ)

(2.69)
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c
a 1e

FIGURE 2.7
Unit cell of a 3D in-line array of cubes used in Hsu et al. (Taken from C.T. Hsu, P. Cheng, and
K.W. Wong. ASME J. Heat Transfer 117:264–269, 1995. With permission.)

where the particle size parameter γa(= a/le) and the solid–particle contact
parameter γc(= c/a), as shown in Figure 2.7, are related to the porosity by

1− φ = (1− 3γ 2
c )γ

3
a + 3γ 2

c γ
2
a (2.70)

For nontouching cubes (γc = 0), γa = (1− φ)1/3, and (2.84) reduces to

kst

k
= [1− (1− φ)2/3] + (1− φ)2/3σ

[1− (1− φ)1/3]σ + (1− φ)1/3 (2.71)

The predictions by the models of Hsu et al. [23] and the experimental results
of Nozad et al. [15] are given in Figure 2.8. The comparison shows excellent
agreement. Hsu [29] then used the above 3D model to calculate kst/k and
then evaluate the tortuosity parameter G by Eq. (2.43). The results of G as a
function of σ are given in Figure 2.9 for different values of porosity when the
solid–particle contact parameter takes a typical value of γc = 0.1.

2.5.2.3 Interfacial heat transfer

Unlike the thermal dispersion, considerable experimental works on the inter-
facial heat transfer were made in the past decades, because of important
applications in chemical engineering. Figure 2.10 shows the data compiled
by Kunii and Suzuki [47] in the range of low Reynolds number (areas enclosed
by solid curves), and by Wakao and Kaguei [51] in the range of high Reynolds
number (areas enclosed by dashed curves). The family of curves for differ-
ent values of σ in Figure 2.10 is the prediction of Eqs. (2.58) and (2.59), with
m = 0.5, n = 0.6, ah = 1.29, and bh = 0.001, αhA = 0.125, and αhB = 0.443
for air (Pr = 0.7). It appears that the model of Hsu [52] predicted the general
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© 2005 by Taylor & Francis Group, LLC



68 Chin-Tsau Hsu

Reh

10–3 10–2 10–1 100 101 102 103 104 105

N
u h

fs

10–5

10–4

10–3

10–2

10–1

100

101

102

103

� = 10–5, 10–4, 10–3, 10–2, 10–1, 1, 10

FIGURE 2.10
The predictions of the interfacial heat transfer coefficient based on the model of Hsu [52] and its
comparison with the early experimental data compiled by Kunii and Suzuki [47] and by Wakao
and Kaguei. (From N. Wakao and S. Kaguei. Head and Mass Transfer in Packed Beds. New York:
Gordon and Breach Science Pub. Inc., 1982. With permission.)

trend of experimental data with the correct magnitude. However, no solid
conclusion can be drawn because of the high scattering in data range (Nuhfs
ranges from 10−4 to 103).

2.6 Flows and Heat Transfer in Hele-Shaw Cells

Flows in Hele-Shaw cells are usually regarded as flows in a thin gap bounded
by two parallel plates. It has been widely used in analog by researchers for
studying flows in porous media in two-dimensions [56–60]. However, the
extent of Hele-Shaw flows in analog to the porous media flows and the lim-
itation of such analog were not well understood. Here, we should closely
examine the flows and heat transfer in Hele-Shaw cells using a heated circu-
lar cylinder imbedded in a porous medium as shown in Figure 2.11(a). For
such problem a desegregated model is to simplify the medium by separating
the fluid and solid phases in porous media into parallel layers. The character-
istic length of the solid and fluid layers are dp and dh. As a result, the domain
of the porous media consists of a series of parallel layers of solid and fluid as
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FIGURE 2.11
(a) Schematic of the flows past a circular cylinder imbedded in porous media. (b) The media is
simplified into a series of parallel layers of solid and fluid. (c) The unit cell represents a Hele-Shaw
cell.

shown in Figure 2.11(b), with the unit cell depicted in Figure 2.11(c). Note that
in Figure 2.11(b) and Figure 2.11(c) we have adopted the notation dp = 2Hs
and dh = 2H for convenience. This unit cell is a Hele-Shaw cell. It becomes
clear that

dh + dp = dh

φ
= dp

1− φ (2.72)

which is consistent with Eq. (2.49). Flows and heat transfer in the Hele-Shaw
cell microscopically is a 3D conjugate problem. They are governed by
Eqs. (2.7) to (2.11) described in Section 2.2. For the case of constant temperature
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Tw on the cylinder surface, the proper boundary conditions are:

On the cylinder surface, r = R:

u = 0 T = Tw (2.73a)

On the solid–fluid interface (cell surface), z = ±H:

u = 0 T = Ts and k∂T/∂z = ks∂Ts/∂z (2.73b)

On the mid-plane of solid layer, z = ±(H +Hs):

∂Ts/∂z = 0 (2.73c)

At far away from the cylinder, r = ∞:

u = u∞ T = T∞ (2.73d)

whereu∞ is a classical Hele-Shaw solution for fully developed channel flows.

The advantage of using Hele-Shaw cells is that the equation system
(2.7) to (2.11) with the boundary conditions (2.73) is well defined. The sys-
tem can be tackled much easier than dealing with random media, although
obtaining the complete solution for a 3D Hele-Shaw flow remains as a chal-
lenge. To explore the analog between Hele-Shaw cells and porous media, the
phase averages of a physical quantity over the thicknesses of the fluid and
solid layers are defined, respectively, as:

W = 1
2H

∫ H

−H
W dz and W s = 1

2Hs

∫ H+2Hs

H
Ws dz (2.74a,b)

Performing the phase averages over the fluid and solid layers to
Eqs. (2.7) to (2.11) leads to the following governing equations for the averaged
2D flow in parallel to the Hele-Shaw cell:

Fluid phase

∇ · u = 0 (2.75)

ρ

[
∂u
∂t
+ ∇ · (uu)

]
= −∇(p)+ ρ

[
ν∇ · S+ ∇ · (−u′u′)

]
+ τw

2H
(2.76)

where

S = Sij =
(
∂ ui

∂xj
+ ∂uj

∂xi

)
with i, j = 1, 2 (2.77)
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is the strain rate tensor and

τw =
(
µ
∂u
∂z

)z=H

z=−H
(2.78)

is the total wall shear stress. The averaged energy equation in the Hele-Shaw
cell becomes:

ρcp
∂T
∂t
+ ρcp∇ · (uT) = k∇2

(T)+ ρcp∇ · (−u′T′)+ qw

2H
(2.79)

where qw = (k∇T)z=Hz=−H is the heat source from the wall.

Solid phase

ρscps
∂Ts

∂t
= ks∇2

(Ts)− qw

2Hs
(2.80)

Under the local thermal equilibrium assumption, Ts = T. Equations (2.79)
and (2.80), after being multiplied by 2H and 2Hs respectively, can be
lumped into:

(ρcp)m
∂T
∂t
+ ρcp∇ · (φuT) = kst∇2

(T)+ ρcp∇ · (−φu′T′) (2.81)

where (ρcp)m has been defined after Eq. (2.60) and kst = φ k + (1 − φ)ks is
the effective stagnant thermal conductivity based on parallel layers model.
It is possible to construct a 2D thermal dispersion model for (−φu′T′) that is
similar to Eq. (2.39).

The comparison of the governing equations for the averaged flows and heat
transfer in Hele-Shaw cells with those of porous media derived in Section 2.4
shows the following differences: (a) the averaged Hele-Shaw flow is 2D, (b) the
interfacial force in the averaged Hele-Shaw flows is contributed solely from
the shear force, and (c) there exists no thermal tortuosity for the averaged
Hele-Shaw flows. As a result, a flow in Hele-Shaw cell can only be used as a
good analog to a flow in porous medium, only when the volumetric averaged
flow of porous media is 2D, viscous dominated, and thermal-tortuosity neg-
ligible. On the other hand, these simplified natures in Hele-Shaw flow render
the flow as a good candidate for the verification of the closure modeling. In
addition, a 3D numerical simulation of the convection heat transfer in Hele-
Shaw cells may reveal some detailed physics of heat transfer in porous media
that are impossible to tackle due to the randomness and the complexity of the
microscopic solid geometry.
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2.6.1 Steady Flows Past a Circular Cylinder in a Hele-Shaw Cell

For a steady flow past a circular cylinder (disc) in a Hele-Shaw cell, the 3D
continuity and Navier–Stokes equations, normalized by using the mean velo-
city Um far away from the cylinder as velocity scale and the cylinder radius
R (= D/2 where D is the diameter of the cylinder) as length scale, subjected
to the nonslip boundary condition given in Eq. (2.73) and the steady flow
boundary condition at far away (r = r∞) as given by

u = 1.5×
[

1− 1
r2∞

cos 2θ
]
×
[

1− z2

H2

]
(2.82a)

v = −1.5× 1
r2∞

sin 2θ ×
[

1− z2

H2

]
(2.82b)

w = 0 (2.82c)

were solved numerically by Kwan and Hsu [61] using the DNS method.
Figure 2.12 shows the numerical results of the normalized wall shear stress
τw (local friction coefficient) when H/R = 0.02 and ReD = UmD/ν = 100.
As a consequence of flow symmetry, the shear stress is symmetrical with
respect to the x-axis, and antisymmetrical with respect to the y-axis. Far
away from the cylinder, the computed stress is basically in the primary flow
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FIGURE 2.12
Direction and magnitude of normalized shear stress τw on the bottom wall of a Hele-Shaw cell.
Arrows: direction; Curves and numbers: equal shear stress lines and magnitude. Max = 5.496
(at θ = 90◦ and 270◦), Min = 0.030 near stagnation points (θ = 0◦ and 180◦).
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FIGURE 2.13
Comparison of the negative averaged circumferential velocity −uθ at the front of the cylinder.

direction and agrees with the Poiseuille solution for laminar channel flow
τwx/ρU2

m = 3/ReH where ReH = UmH/ν = [ReD(H/R)2]/(2H/R) = 1. Near
the cylinder, the shear stress changes due to redirection of the flow. At the
front and rear stagnation points (θ = 180◦ and 0◦), the velocity drops to zero
and lowest shear stress is located at the stagnation point. On the other hand,
at the upper and lower points (θ = 90◦ and 270◦), the flow converges to a
higher velocity near the cylinder surface and creates the highest shear stress.

To demonstrate the behavior of the Brinkman boundary layer, the aver-
aged circumferential velocity (−uθ ) at different θ is plotted in Figure 2.13.
Figure 2.13 also illustrates the development of the boundary layer on the peri-
pheral of the cylinder. With the flow symmetry, only the profiles on the upper
side of the cylinder front face (90◦ < θ < 180◦) are shown in Figure 2.13. In the
figure, when the fluid travels from the front stagnation point (θ = 180◦) to the
upper tip (θ = 90◦) of the cylinder, the velocity increases but the bound-
ary layer thickness is maintained at approximately r ≈ 1.05. Hence, the
present study confirms that the Brinkman boundary layer thickness along
the peripheral is nearly constant, at the order of 2.5H.

2.6.2 Oscillating Flows Past a Heated Circular Cylinder
in a Hele-Shaw Cell

Here we consider the case when Hs � H which corresponds to the limit
case of φ → 1. Under this condition, the temperature in the solid can
be approximated by its value at the solid–fluid interface and no heat flux
condition ∂Ts/∂z = 0 can be applied directly at the wall of the Hele-Shaw
cell. The far away boundary condition of the oscillating flow is given by
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the fully developed oscillating flow. Hence, u∞ = (u∞, 0, 0) where u∞ =
1
2 [uc(z, t) + c.c.] with uc(z, t) being a complex function and c.c. represents
the complex conjugate. The analytical expression for uc(z, t) can easily be
found as:

uc(z, t) =
[

1− exp(
√
β(1+ i)z)+ exp(−√β(1+ i)z)

exp(
√
β(1+ i))+ exp(−√β(1+ i))

]
exp

(
i
π

KC
t
)

(2.83)

where β = (π/4)(H/R)2ReD/KC and i=√−1 is the imaginary. The
Keulegan–Carpenter (KC) number is defined by KC = 2πA/D where A is
the displacement amplitude of fluid oscillation.

The results of the 3D oscillating flows in Hele-Shaw cell were obtained
numerically by Kwan and Hsu [62]. Figure 2.14 shows the evolution of the
z-vorticity (ωz) in half cycle of oscillation, for the case of ReD = 3200, KC = 3,

ReD = 3200, KC = 3, H/R = 0.1, Pr = 0.7 and Ro /R = 50

�t = �/5 + 2�n

�t = 3�/5 + 2�n

�t = � + 2�n

�t =2�/5 + 2�n

�t = 4�/5 + 2�n

FIGURE 2.14
Variation of the z-vorticity (ωz) field in a 3D view during the half cycle of oscillation when
ReD = 3200, KC = 3, and H/R = 0.1. The gray scales show the equal surfaces of vorticity
generated at different cycle of oscillations. Note that vorticity is anti-symmetric with x-axis.

© 2005 by Taylor & Francis Group, LLC



Dynamic Modeling of Convective Heat Transfer in Porous Media 75

and H/R = 0.1. It is interesting to see that the flow separates periodically
from the cylinder, even though the vorticity generated from flow separation
does not shed from the cylinder. The occurrence of periodic flow separations
also implies that the convective heat transfer in Hele-Shaw cell is confined
to the narrow band in the wakes behind the cylinder. This is illustrated in
Figure 2.15 which shows the variation during the half cycle of the temperature

Temperature field at z = 0 in 1/2 cycle (difference between contours = 0.05)
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FIGURE 2.15
Distributions of isothermal lines on the mid-plane of the Hele-Shaw cell during the half cycle of
flow oscillation, for the case of ReD = 3200, KC = 3, and H/R = 0.1.

© 2005 by Taylor & Francis Group, LLC



76 Chin-Tsau Hsu

t
310 315 320 325 330 335 340

0

10

20

30

40

50

60

70
N

u

FIGURE 2.16
Time variations of heat transfer from the heated circular cylinder in Hele-Shaw cell for different
Reynolds numbers, with fixed KC = 3 and H/R = 0.1. Solid line: ReD = 1000; Dotted line:
ReD = 3200; Dashed-dotted line: ReD = 6500. Note the amplification of the heat transfer as ReD
increases. The phase angles referenced to the free stream oscillation also change as ReD increases.

distribution on the mid-plane of the Hele-Shaw cell. The convection heat
transfer dominated by the periodic flow separation process is shown clearly
in Figure 2.15. The variation of the total heat transfer from the heated circular
cylinder as enhanced by the flow oscillations are shown in Figure 2.16 for dif-
ferent Reynolds numbers at ReD = 1,000, 32,000, and 6,500, with the Prandtl
number fixed at Pr = 0.7 for air. Here, KC and H/R are also fixed at KC = 3
and H/R = 0.1. The increase in Reynolds number has greatly enhanced the
heat transfer not only in overall mean value, but also the amplitude of oscil-
latory heat transfer (regeneration process). Interestingly, the phase of the
oscillatory heat transfer shifts continuously as the Reynolds number increases.

2.7 Concluding Remarks

In this chapter, the macroscopic equations that govern the convective heat
transfer in porous media are rigorously derived through the volumetric aver-
aging procedure on the microscopic equations over a REV. The average
procedure leads to the closure problem where the dispersion, the inter-
facial tortuosity, and the interfacial transfer become the new unknowns.
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The dynamic closure models with relation to closing the equation system
are composed by combining the earlier works by the author and others
for the dispersion, tortuosity, and the interfacial transfer. The equation
system plus proper boundary conditions then can be solved either analyt-
ically or numerically to predict the convective heat transfer in the porous
media. However, there exist several coefficients in the closure relations
that have to be determined experimentally (or numerically) a priori. Exper-
iments conducted earlier for the determination of these coefficients were
reviewed. These experimental results had basically confirmed the validity
of the closure relations; however, they were insufficient. This leads to the
conclusion that more experiments are needed for the determination of these
coefficients.

It is noted that the momentum closure relation for the interfacial force
as obtained by Hsu [52] contains all the components due to drag, lift,
and transient inertia to the first-order approximation. The relative import-
ance of these force components depend then on the ranges of Reynolds
number and timescale involved in the process. Therefore, the macroscopic
momentum equation is expected to be valid for all ranges of timescale
and Reynolds number. This to some extent has clarified the recent debate
on the validity as well as the limitations of the Brinkman–Forchheimer-
extended Darcy equation [63, 64]. On the other hand, the closure relations
for interfacial heat transfer as obtained by Hsu [52] were derived under the
assumption of steady flows. Further investigations are needed to assess the
suitability of such interfacial heat transfer model, particularly for unsteady
flows.

In this chapter, flows and heat transfer in Hele-Shaw cells in analog to
the convection heat transfer in porous media are explored in detail. In fact,
the Hele-Shaw cells represent one category of the simplified porous structure.
Although the averaged equations for Hele-Shaw flows bear great resemblance
to the macroscopic equations for flows in porous media, several features such
as form drag and thermal tortuosity are missing in the Hele-Shaw flow model.
Nevertheless, the simplified Hele-Shaw model provides a viable way for the
verification of the dynamic model through a DNS of the 3D flows in Hele-
Shaw cells. The numerical results presented in this chapter as obtained from
the DNS simulation of the 3D Hele-Shaw flows have shed light on a more
complete understanding of the flows and heat transfer in porous media. The
complexity of such flows and heat transfer remains a great challenge for the
years to come.
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Dispersion is a well-known phenomenon in porous media primarily for heat
and mass transfer. Like viscosity in momentum transfer, heat conductivity in
heat transfer, and diffusion coefficient in mass transfer, dispersion coefficient
is a property valid only under continuum assumptions. Dispersion causes
fluid (velocity, molecules, and temperature) to distribute evenly, which is
directly analogous to mass diffusion (Fickian diffusion) and viscous stress.
Fickiandiffusion causesmolecules todistribute evenly, whereasviscous stress
causes flow velocity to be distributed evenly. However, dispersion is caused
due to the fluctuations of bulk flow, whereas diffusion is caused due to
random molecular motion.
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3.1 Definition of Dispersion

To help us better understand dispersion, let us first examine the concept
of diffusion. For the first instance, let us restrict ourselves to the transport
of molecules. Diffusion is the spreading of “tracer molecules” among a
“continuum of molecules.” Two ingredients must coexist for diffusion to
occur: concentration gradient (“tracer molecules” are not evenly distributed)
and random motion (all the molecules are moving about in relative posi-
tions). If there is no concentration gradient, diffusion loses meaning as there
is no measure for the spreading (or the change of degree of mixedness) of
the molecules. If the molecules remain steadily motionless relative to each
other, spreading or mixing will not occur. Diffusion is a term reserved for the
spreading or mixing in the molecular level, where the motion is random (or
Brownian in fluids). To certain extent, dispersion is “identical” to diffusion.
However, dispersion is a more general term but occurs when macroscopic
motion (or flow) exists. In other words, dispersion is always associated with
flow. Either there is a velocity fluctuation (or distribution) or there is flow
stream splitting and rejoining along the path of the flow, it will cause disper-
sion to occur if a gradient exists. Dispersion is “convection” (or flow) induced
spreading or mixing.
Dispersion occurswhen convection exists.Awell-known example is shown

by Taylor [1], where the coupling of diffusion and velocity variation pro-
duces dispersion. Referring to Figure 3.1, when a pulse of tracer substance
is injected into a smooth circular pipe within which fully developed laminar
flowoccurs, the concentration of the tracerwill change from a near plug at the
feeding point to a Gaussian distribution at a downstream observation loca-
tion. This phenomenon can be exactly captured by convection and diffusion,

t

Steady
solvent
flow

Solute
pulse injection

Solute
detection

t

r

x

FIGURE 3.1
Taylor dispersion experiment set-up.
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or mass transport, equation. For fully developed laminar flow in a circular
pipe with a constant tracer diffusivity DA, the mass transport equation is
given by

∂c∗A
∂t
+ 2U

(
1− r2

R2

)
∂c∗A
∂x
−DA

(
∂2c∗A
∂r2
+ 1

r
∂c∗A
∂r
+ ∂

2c∗A
∂x2

)
= 0 (3.1)

where c∗A is the concentration of the tracer substance; t is time;U is the average
discharge velocity in the pipe; r is the radial coordinate; R is the radius of the
pipe; and x is the axial (longitudinal) coordinate. Equation (3.1) contains no
dispersion term, only a diffusion term. The velocity distribution is accounted
for by the parabolic velocity profile embedded in Eq. (3.1). If we were to
simplify the equation by averaging out the radial variation, that is, using a
constant velocity for the convection term, and averaging the concentration
on the pipe cross-section or in the lateral (or radial) direction, then

∂cA
∂t
+U

∂cA
∂x
−DA(1+ K‖)

∂2cA
∂x2
+DAFc(cA − cAs) = 0 (3.2)

where cA is the cross-sectional averaged concentration, cA = (2/R2)
∫ R
0 rc∗A dr;

cAs is the tracer concentration on the pipe wall; the parameter K‖ is termed as
the longitudinal dispersion coefficient; and DAFc is the mass transfer coeffi-
cient. In so doing, we have effectively reduced the two-dimensional problem
to a one-dimensional problem. The parameter Fc (or the product DAFc term)
accounts for the interaction between the pipe wall (solid) and the fluid. In
most cases, the pipe wall is smooth (no immobile fluid being trapped that
is in contact with the flowing fluid in the pipe), impermeable and not tracer
releasing, the whole mass transfer term (or the solid–fluid interaction term)
is zero. The longitudinal dispersion coefficient K‖ is used to account for the
additional effects due to the original velocity variation in the radial direction.
The value of K‖ can be determined by matching the solutions of Eq. (3.2)
and (3.1), with the same boundary and initial conditions.
Since there is only one pulse of tracer injected into the pipe for the Taylor

experiment, one can follow the movement of the isolated pulse downstream.
Let z = x −Ut, then Eq. (3.2) is reduced to

∂cA
∂t
= KT

∂2cA
∂z2

(3.3)

where KT = DA(1+ K‖) is the Taylor dispersion coefficient. By matching the
solutions of Eqs. (3.3) and (3.1), Aris [2] has shown that the Taylor dispersion
coefficient is given by

KT = DA + R2U2

48DA
(3.4)
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Taylor’s work [1] has been extended by Aris [2] to other straight ducts of
different shapes as well.
OncomparingEq. (3.3)withEq. (3.1), one can infer thedistinctiveadvantage

of averaging. Equation (3.3) is much easier to solve than Eq. (3.1). How-
ever, as a result of averaging, we loose the ability to examine the radial
variations. Owing to the averaging, additional closure parameters appear
and these parameters bear physical meaning as well. Based on Eqs. (3.2)
and (3.3), one can infer that dispersion is identical to diffusion, at least math-
ematically. Taylor dispersion shows that the coupling of diffusion and flow
(or convection) can produce dispersion.
Dispersion occurs not only in mass transport (tracer dispersion), but in

heat (thermal dispersion) and momentum (viscous dispersion) transports as
well. Dispersion can be termed as flow-induced diffusion for mass transport,
effective viscous dissipation for momentum transport, and effective thermal
diffusion for heat transport. Because dispersion is an effective phenomenon
occurring on a higher continuum level, where the velocity distributions or
fluctuations on the continuum level of fluid are averaged out, averaging plays
an important role in the studyof dispersion. For porousmedia, the continuum
approach by default involves the averaging above the continuum level of the
fluid saturating the medium. Therefore, dispersion is always associated with
porous media.
Dispersion can be caused by flowand geometrical obstruction aswell. Even

if the velocity variation and diffusion were absent at the level of fluid con-
tinuum(truly inviscidflow), theporousmatrixwould cause constant splitting
and rejoining of the flow streams and thus create spreading (or dispersion)
along the path of fluid traversingwhen the porousmedium is being treated at
continuum level. Figure 3.2 shows a sketch of such an example. In Figure 3.2,

More layers of disturbance in flow path

FIGURE 3.2
Flow and geometrical obstacle resulted dispersion.
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the length of arrow represents the magnitude of the property (e.g., tracer
concentration or temperature) under concern. Because of the splitting and
rejoining of the streams, the property under concern gets mixed along the
flow path and eventually resulted in an even distribution. This would occur
in the absence of velocity distribution. However, owing to the presence of
solid surfaces, the flow velocity distribution exists (zero on the solid wall).
Therefore, dispersion is always part of flow in porous media.

3.2 Volume Averaging

A porous medium is a medium that is partially filled with solid material,
which is interconnected and immobile. The portion of space that is not occu-
pied by the solid material is also mostly interconnected. The solid material is
normally called the solid matrix and the nonsolid portion is called pores or
voids. Owing to the very complex and unknown nature of the geometry of a
porous medium, the analysis of transport phenomena in porous media is dif-
ficult. It is for this reason that some averaging procedures have to be adopted
in the analysis of fluid flow, heat, and mass transfer. The volume averaging
concept of use today can be traced back to the continuum concept of fluid.
A possible approach for the study of fluid flow is to utilize the stochastic

motion of the individual molecules of the fluid. In this approach, if one pos-
sesses a velocity probe whose size is smaller than or at most of comparable
size to the dimension of the molecules, then at a given location in the flow
field themeasured or the “sensed point” velocitywill fluctuatewith time. The
measured point velocity can take the variation as presented in Figure 3.3. The
“sensed point” velocity can be taken to represent the individual motion of
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FIGURE 3.3
Local velocity readings with a probe of submolecular size.
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the molecules. Here the size of the “point” is of a scale smaller than the size
of the molecules themselves. Although the approach at this molecular scale
is fundamental in its formulation, it is impractical in its application. This is
simply due to the fact that the number of molecules in a gas or a liquid is
so overwhelmingly large that it is not possible to accommodate such a large
number of multibody interactions.
Similar to the case of a “point” velocity, other point fluid properties such

as density and composition will also violently vary with time where the fluid
at the molecular level is considered as being nonhomogeneous. However, in
most instances, we are interested in the flowbehavior on a larger scale, that is,
on a macroscopic scale which is several orders of magnitude larger than the
molecular dimension or the intermolecular distance. The macroscopic scale
for the study of fluids and their motion implies that the physical quantities
such as density, specific heat, and velocity associated with the matter con-
tained within the macroscopic volume are regarded as being averaged out
over the volume. Here, the macroscopic volume becomes the “point” within
thefluidunder consideration. Physically, themacroscopic volume canbe very
small, say ofO(103 nm3). Even at this small scale, the number of molecules it
contains is very large. For the case of a gas under atmospheric pressure and
room temperature, such a volume contains a large number of molecules of
the order of 104. As a consequence of this sweeping physical model, namely
the continuum hypothesis, it becomes very convenient to study fluidmotion.
Due to the introduction of the continuum hypothesis, quantities such as fluid
density, viscosity, thermal and electrical conductivities, and mass diffusiv-
ity are derived. These averaged quantities are essential in describing a fluid
continuum. Here, the averaging is taken over the macroscopic volume that
contains a large number of fluid molecules.
Mass conservation, momentum, and energy balance equations were

developed to describe fluid motion using the continuum hypothesis. Experi-
encehas shown that the continuumhypothesis is validundermost conditions.
Naturally, wewould expect it to break down under a situation, where say, the
free molecular path is of the same order of the magnitude as the flow channel
dimension.
Fluidflow inporousmedia can be studied by solving the alreadydeveloped

flow equations for a continuous fluid. Adifficulty arises in that the governing
equations must be solved subject to the prevailing boundary conditions, for
example, no-slip conditions at the solid surface of the porous mediummatrix
in contact with the flowing fluid. As the geometry of the porous medium
channels is extremely complex and by-and-large not known, the situation
becomes exceedingly difficult to obtain a flow solution even with the use of
today’s super-computers.
The approach outlined above will, of course, provide the local or the point

fluid velocity on the continuum fluid scale. However, if one is willing to
consider once again a continuum hypothesis, albeit on a much larger mac-
roscopic scale whereby averaging is taken over a large enough volume that
would embrace many pores and surfaces, then the second-order continuum
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hypothesis will provide a description of the fluidmotion in a porousmedium
in an “average sense.” Here, with this approach, one cannot provide the velo-
city profile between say two solid grainswithin theporousmedium, however,
the fluid velocity is provided on an averaged sense. While for the continuum
hypothesis for a fluid, themacroscopic scale was very small, sayO(102) of the
molecular dimension, themacroscopic scale as applied to the porousmedium
continuum hypothesis must also be, say O(10) of the pore dimension.
Averaging techniques are not unique either, all of which require certain

closures. Notably, there are two main classes of averaging techniques,
namely, ensemble averaging and volume averaging. While the ensemble
average starts with one fixed particle in the space and collects the influ-
ences from the surrounding particles, that is, cluster of particles [3–14],
the volume average starts with the continuum equations for a single phase
[15–54]. Since the ensemble averaging technique is primarily for dispersed
flow, only the volume average technique shall be discussed here. When-
ever possible, mathematical rigorousness will be maintained. However,
for practical applicability and simplicity, phenomenological approach on
closures will precede mathematical extreme. Empirical parameters will
be allowed to account for the unknown nature of porous structures. For
more rigorous approaches on volume averaging, the reader is referred to, for
example, Ref. [20].
Similar to the “mathematical point” concept in fluid continuumhypothesis,

the Representative Elementary Volume, REV, concept was implicitly used by
various authors such as Whitaker [15] and Slattery [22] and was formalized
by Bear [24] for studies of transport in porous media. An REV is a concep-
tual space unit, which is the minimum volume that can be located anywhere
inside the porous medium within which measurable characteristics of the
porous medium become continuum quantities. An REV can be regarded as
a macroscopic unit consisting of a large sum of microstructures. The sketch
of an REV is shown in Figure 3.4 for an unconsolidated porous medium (or
solid particle packs).
To help us understand the concept of the REV, we shall now go back to the

continuum treatment of fluids. When themotion of fluids or physical proper-
ties of a fluid is to be deduced, one often assumes an infinitesimal volume or
a “point” size. For example, the fluid density at a given local position is the
ratio of fluid mass over the volumewhen the volume approaches the volume
of the assumed point with its centroid at the local position of concern. How-
ever, no one really cares what the size of the point is quantitatively. The fluid
density is given as

ρ(P) = lim
�V→VP

�m
�V

(3.5)

The characteristic volume VP is called the physical point (or material point) of
the fluid at the mathematical point P. The concept of the mathematical point is
identical to an REV.When the volume of consideration is smaller thanVP, the
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REV

FIGURE 3.4
Planar section schematic of an REV.

continuum concept breaks down. We plotted the fluid mass over the volume
of sampling in Figure 3.5, where � = ρ. The molecules are assumed to be
uniformly placed in space. When the sampling volume is very small as it is
suggested by the term infinitesimal used routinely in this connection in fluid
mechanics texts, the fluid mass over volume ratio becomes undefined. When
the sampling volume is at least of VP, we obtain a fictitious smooth medium
(instead of the molecules). Unlike the porous medium in which the solid
matrix is immobile, the concept of fluid is also associated with time average
aswell since themolecules aremoving about at any given instant even though
the overall behavior is at a thermodynamic equilibrium. The time average is
also to be implied for suspension systems where the exact location of a given
particle is not to be tracked.
Knudsen [54] defines a dimensionless number, which is now known as the

Knudsen number to test the validity of fluid continua

Kn = λ

ρ

∂ρ

∂l
(3.6)

where λ is the mean free path of the fluidmolecules and l is the minimum lin-
ear dimension of the system. When Kn < 0.01, the fluid can be considered as
in continuum.WhenKn is of order unity, the fluid exhibits slip-flow near awall
andwhenKn is greater thanunity, wehavewhat is knownas theKnudsen flow.
In addition, when the molecules are large (macromolecules or polymers) and

the dimension between the confining walls is small, the continuum concept
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Φ

V

FIGURE 3.5
Variation of a physical property � in a porous medium with a volume V.

also breaks down. Under this circumstance, slip-flow can occur, for example,
flow of polymers in an ultra-fine capillary tube.
For porous media, the situation is slightly different. Since the solid matrix

is immobile, the extent of error is reduced as compared with a fluid when
continuum is imposed for systems near the border line of continua. The fact
that the solid matrix is immobile and is rigid or can sustain pressure and
stresses alsomakes a “point” inporousmediadifferent from themathematical
“point” in apurefluid. The overall pressure and stresses for thefluid and solid
matrixmixture aremeaningless. However, thepressure and stresses for afluid
phase at a given point are still valid measures as long as that, within an REV,
the void space is interconnected and there is no barrier to prevent the filling
fluid from moving around.
For a porous medium system, one can refer to Figure 3.5 as well. The

abscissa or sampling volume is of linear scale in the order of the grain
size. The ordinate � can be any measurable physical property in a volume
average sense, for example, the porosity. When the volume space is very
small, the value of� is not defined, that is, � can assume any value depend-
ing on the location under consideration. As the sampling volume increases,
� changes “periodically” for an orderly system and is randomly fluctuat-
ing for a random system. The amplitude of the oscillation decreases with
increasing sampling volume. The volume of an REV is defined for such a
sampling volume so that the amplitude of the oscillation is lower than certain
acceptable degree when the sampling volume is further increased.
Figure 3.4 shows a special case of single fluid saturated medium. When

multiple fluid phases each partially fill the open pores of a porous medium,
more interfaces can be identified. In other words, interfaces between
individual fluids will also enter into play.
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In a multi-fluid system, the volume fraction, εi, of fluid i is defined as

εi = Vi

V
= ε Vi

Vo
(3.7)

where V is the total volume of an REV, Vi is the volume occupied by fluid i,
and Vo is the total open pore space in the REV. The porosity of the porous
medium is a summation of the partial porosities, that is,

∑
εi = ε (3.8)

The intrinsic phase average of aquantity,�εi, is the averagevalueof aquantity
in terms of the partial volume of the phase (fluid) itself, that is,

�εi = 1
Vi

∫
Vi

�∗i dVi (3.9)

where �∗ is the local (microscopic) quantity. The deviation of a quantity, �̂i,
is the difference between the local value and the intrinsic phase average value
of that quantity,

�̂i = �∗i −�εi (3.10)

Here �i can be a scalar or a vector.
The volume average of a quantity for a fluid phase,�i, is the average taken

over the entire REV

�i = 1
V

∫
V
�∗i dV (3.11)

It can be shown that

1
V

∫
V
v∗�∗ dV = εvε�ε + 1

V

∫
V
v̂�̂dV (3.12)

Therefore, when products are to be volume averaged, the resultants are not
just direct products of their respective volume averages.
The relation between the volume average value and the intrinsic phase

average values depends on the physical quantity itself. For the flow velocity,
it is given by

vi = εivεi (3.13)

However, for fluid density, pressure, viscosity, and concentration of a com-
ponent, the strict definition by Eq. (3.13) loses its meaning. In other words,
vi is not to be generalized by �i in Eq. (3.13). As Liu et al. [51] and Liu and
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Masliyah [55] pointed out, the average pressure must take into account the
fact that the pressure inside the immobile solid material is not defined and is
also irrelevant to the flow system. The solid matrix can sustain pressure and
stresses. The fluids, on the other hand, will transmit the pressure and stresses
to adjacent fluid elements or the solid matrix. When a stress is applied, the
fluid will respond by flow and the solid matrix will deform according to its
rigidity. When the solid matrix is rigid, immobile, and not supported by the
fluid, it will not share the load with the saturated fluid. It is then logical to
define an average pressure in a fluid phase by

pi = pεi (3.14)

Equation (3.14) can be understood by considering the limiting case of no
flow (static condition). Figure 3.6 shows a sketch of a fluid–solid system.
When the solids are immobile and not supported by the fluid, the pressure
due to a single fluid saturated medium at the bottom can be evaluated by the
top pressure and the height between the bottom and the top, h, by

pb = pa + ρfgh (3.15)

where ρf is the density of the fluid.
The total pressure is the same as the fluid pressure. In other words, the

presence of the solids does not alter the pressure of the fluid systemwhen the
solids are connected and not suspended in the fluid phase as long as the fluid
height is maintained the same. Referring to Figure 3.6, when the solid matrix
is immobile, that is, not supported by the fluid,

(�p)f = (�p)T = pb − pa = ρfgh (3.16)

where (�p)f denotes the pressure difference contributed by the fluid phase
to the total (or overall) pressure difference (�p)T. Hence, Eq. (3.14) applies.

g

pa

pb

FIGURE 3.6
Evaluation of static pressure for fluid–solid systems.
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However, when the solids are mobile, or in other words, the solids are
suspended in the fluid. The solid phase is just like another fluid phase in the
mixture, and the total pressure at the bottom becomes

pb = pa + [ρfε + ρs(1− ε)]gh (3.17)

where ρs is the density of the suspended solids.
Equation (3.17) can also be interpreted as

(�p)T = pb − pa = (�p)f + (�p)s (3.18a)

where (�p)s is the part of the pressure difference due to the presence of the
mobile solid phase. The contributions of the pressure difference can be readily
split based on the density of the individual phases as

(�p)f = ε(ρfgh) (3.18b)

(�p)s = (1− ε)(ρsgh) (3.18c)

Equation (3.18) implies that Eq. (3.13) is applicable for the pressure. When
solids are suspended in the fluid phase(s), the collection of the solids is to be
regarded as a “fluid phase” that is dispersed and hence similar treatments
to a fluid phase are assumed. It is clear that the discontinuous nature of the
“phase” needs to be accounted forwhen such a system is under consideration.
The relation, Eq. (3.14), is also used for the definition of the volume aver-

aged pressure. It simply ignores the existence of the solid matrix since the
pressure is not associated with the solid blockage that is not supported by
the fluid as long as the fluid phase is connected. It should be noted that for
an immiscible multiphase flow system, a finite pressure jump, like the flow
velocities in different phases, is allowed between phases. As for the fluid vis-
cosity, the same rule as that given by Eq. (3.14) can be used. For fluid density
and concentration, the same rule as that given for velocity applies except that
the intrinsic average should be used at all times since the volume averaged
quantities lose their meaning.
On the other hand, the temperature is a different quantity. It is defined and

it does not necessarily have to assume a fixed value (as that in a fluid phase)
inside the solid material. Thermal energy can traverse through fluids as well
as solids. Furthermore, whenmultiple fluid phases contact each other, a tem-
perature jump between phases is less likely to occur. The same phenomenon
may hold true for the concentration in a fixed bed reactor. In some situations,
the continuity in the fluid and solid may allow for a single energy equation.
Hence, the energy equation should be treated differently from the governing
fluid flow (and mass transfer) equations.
It should be noted that the flow velocity is preferred in terms of a volume

averaged value (superficial) in the governing equations since the aver-
age flow rate should remain continuous. The pressure and concentration
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should be used in terms of their intrinsic values since no sudden increase
in these quantities are allowed in one phase. For example, considering a free
space–porousmedium interface, the volume averaged flow velocity is expec-
ted to be continuous, that is, the flow in and out of the interface are equal. The
pressure, electrical potential, andconcentration inaphasemust be continuous
irrespective of the free space–porous medium interface.

3.3 Volume Averaging of Transport Equation and Closures for
Isotropic Porous Media

The transport equation in a fluid phase can be represented by

∂�∗i
∂t
+ ∇ · J∗i = S∗�i (3.19)

with the flux J∗i being given by

J∗i = v∗i �
∗
i −Dfi∇�∗i (3.20)

whereDfi is the diffusivity,�i stands for the velocity field, concentration, and
absolute temperature, and S�i is the source term of the transport equation.
For the momentum transfer, S�i = ∇pi/ρi and for mass and heat transfer
equations, S�i = 0 if no reaction occurs. When heat transfer is considered, we
neglected the viscous dissipation besides assuming that the fluid properties
remain constant. For the momentum equation, Dfi is to be replaced by the
kinematic viscosity, Dfi = µi/ρi. For heat transfer equation, the term Dfi is
to be replaced by the thermal diffusivity, Dfi = ki/ρicpi. For mass transfer
(tracer displacement) equation, the diffusivity is given by Dfi = Di, that is,
the molecular diffusivity of the species.
For incompressible fluids with a constant diffusivity, the flux term in

Eq. (3.19) can also be written as

∇ · J∗i = v∗i · ∇�∗i −Dfi∇2�∗i (3.21)

Consider the volume average of Eq. (3.19) for incompressible flow in a
porousmediumof anonconductive andnonsurface active solidmatrix, which
gives

εi
∂�εi

∂t
+ ∇ · Ji = S�i (3.22)

∇ · Ji = 1
V

∫
V
∇ · J∗i dV =

1
V

∫
V
∇ · (v∗i �∗i −Dfi∇�∗i )dV

= − 1
V

∫
Si
(v∗i �

∗
i −Dfi∇�∗i ) · ni dS (3.23)
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where Si is the surface enclosing the ith fluid phase inside the REV and ni
is normal to the surface Si pointing out of the ith fluid phase. It should be
noted that,

− 1
V

∫
Si
v∗i �

∗
i · ni dS = ∇ · (vi�εi)+O(ε2i ) (3.24)

1
V

∫
Si
Dfi∇�∗i · ni dS =

τi

V

∫
Si
Dfi∇�εi · ni dS+O(ε2i )

= −τiεiDfi∇2�εi +O(ε2i ) (3.25)

While Eq. (3.24) is straightforward as illustrated by Eq. (3.12), Eq. (3.25) needs
further clarification. Inside the porous medium, transport does not occur
directly from point to point on the shortest distance. Because of the solid
matrix blockage, the transport passage is curved resulting in a longer path
than the point to point straight line distance. The ratio of the straight line
distance to the curvedpath length between the twopoints is termed tortuosity
and is denoted by τ . Thus, the apparent gradient in Eq. (3.25) is reduced and a
factor of τ is accessed to theoverall gradient. Further clarification canbe found
in Section 3.4. Equations (3.24) and (3.25) are served as guidance to the closure
of volume averaging. Higher order terms are not neglected completely and
will be incorporated into closure parameters. Based on Eqs. (3.24) and (3.25),
Eq. (3.23) can be reduced to

∇ · Ji = vi · ∇�εi − τiεiDfi∇2�εi + IIi +OIi (3.26)

where

IIi = 1
V

∫
Si−i
(v∗i �

∗
i − vεi�εi −Dfi∇�̂i) · ni dS (3.27)

OIi = 1
V

∫
Si−Ø

(v∗i �
∗
i − vεi�εi −Dfi∇�∗i ) · ni dS (3.28)

here Si−i is the part of Si with ith fluid to ith fluid contact and Si−Ø is the
surface where fluid i is contacting other phases and solid matrix.
Closures are necessary in evaluating and expressing the results of the sur-

face integrals: IIi and OIi. It is understood that the interaction of fluid i with
fluid i leads to a phenomenon similar to diffusion. Thus phenomenologically,

IIi = 1
V

∫
Si−i
(v∗i �

∗
i − vεi�εi −Dfi∇�̂i) · ni dS = τi∇ · (DfiKi · ∇�εi) (3.29)

The closure model in Eq. (3.29) has been widely used and perceived in deal-
ing with fluid flow at turbulent conditions. For example, the term “eddy
diffusivity” has been widely used although the fluctuations in turbulent flow
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are usually assumed to be temporal. For transport in porous media, a more
general term, dispersion coefficient tensor, Ki, is used.
The closure for evaluating the interactions of the i-fluid phase with other

phases and solid matrix can be given phenomenologically as

OIi = 1
V

∫
Si−∅

(v∗i �
∗
i − vεi�εi −Dfi∇�∗i ) · ni dS

=
∑
j

Fij(�εi −�εj)+DfiFsi(�εi −�si) (3.30)

where Fsi is the surface interaction coefficient of fluid i (at the solid–fluid or
flow–stagnant fluid interface), Fij is the interface interaction coefficient for
fluid j to fluid i and �si is the average value of �∗i at the ith fluid and solid
matrix (or stagnant fluid) interface. The closure model, Eq. (3.30), is in direct
analogy to mass transfer and heat transfer across interfaces (see transport
phenomena texts, e.g. [56–60]). Transfers across interface occurs if there exists
a driving force, �εi −�εj = 0.
Discrepancies can be found in earlier versions of the volume averaged

equations where the fluid–solid interaction term in Eq. (3.30) has been recog-
nized for the flow of fluid only and the dispersion term, Eq. (3.29), has been
recognized for heat andmass transports only. It should be realized that all the
terms in Eq. (3.26) have a pronounced effect on the fluid flow, that is, � = v,
when the flow is strong. However, when the transport of mass or heat is of
concern, the cross-phase interaction OIi may be small since the concentration
and temperature at the fluid–solid or flow–stagnant fluid interface can nor-
mally be assumed to be equal to that in the main flow stream if there is no
significant amount of dead-end pores in the porousmedium. Hence, formass
or heat equations, on can set

�εi = �si (3.31)

for simplicity.When theporousmediumhas a significant amount of dead-end
pores, the flow–stagnant fluid interactions may become significant.
Further modeling is necessary in evaluating the dispersion coefficients and

interaction coefficients for fluid flow, mass, and heat transports.

3.4 Tortuosity and Measurements

Tortuosity is a useful property of porous media. In the previous section, the
tortuosity is introduced to the volumeaveraged transport equations inporous
media through closuremodel, Eq. (3.25). Referring to Figure 3.7, one candraw
an analogy of the passages or voids in a porousmediumwith amodel curved
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FIGURE 3.7
A curved passage.
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FIGURE 3.8
Relationship of diffusive fluxes in the microscopic space and in the macroscopic space.

passage. In deriving at Eq. (3.25), the tortuosity is defined as

τ = dx
ds

(3.32)

The tortuosity is introduced into the volume averaged equation through the
diffusive flux term as illustrated in Figure 3.8:

∂�∗

∂x
= τ ∂�ε

∂x
+ ∂�̂
∂x

(3.33)

In this section, twoadditional transportprocesses: electrical conductionand
wave propagation, will be discussed in light of the tortuosity measurements.
In addition, the porous media are saturated with a single fluid. For these pro-
cesses, we shall restrict ourselves in the linear regimes (i.e., linear flux–force
relationships) and focus on the tortuosity relationships. The equationswill be
equally applicable if the system is a suspension rather than a porousmedium.
For example, in an electrical resistivity logging, the fluid movement is very
weak and there is no induced particle movement for a suspension. In the case
of a small amplitude wave propagation, the solid particles will not respond
to the vibration and thus the displacement in solid matrix is negligible.
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3.4.1 Volume Averaging of Electrical Conduction Equation

The electrical current density, i, through an ionic solution is governed by

i∗ = ev∗
∑
i

zin∗i − e
∑
i

Dizi∇n∗i −
e2
∑

i Diz2i n
∗
i

kBT
∇ψ∗ (3.34)

∇ · i∗ = 0 (3.35)

where i is the electric current density; e is the elementary charge of an electron,
e = 1.602× 10−19 C; zi is the valency of the ith ionic species; ni is the ith ionic
species number concentration; Di is the diffusivity of the ith ionic species;
kB is the Boltzmann constant, kB = 1.3806 × 10−23 J/K; and ψ is the electric
potential.
When the solution is electrically neutral and neither the solid matrix nor

the containing wall is charged, we have

∑
nizi = 0 (3.36)

When the solution is homogeneous throughout the system, there is no
concentration gradient. That is,

∇ni = 0 (3.37)

It should be noted that Eqs. (3.36) and (3.37) hold only under strict con-
ditions in a porous medium. Equation (3.37) specifies that the fluid is
homogeneous everywhere in the domain of concern. Equation (3.36) is a con-
tinuum equation in the microscopic space when a porous medium is present.
If the porous medium is charged or conductive, it will cause the ionic species
to distribute nonuniformly in the microscopic level and thus Eq. (3.36) will
not apply. Equation (3.36) holds only if the counter ionic species are equally
distributed at every “point” in the domain.
Substituting Eqs. (3.36) and (3.37) into Eq. (3.34), one obtains

i∗ = − e
2∑

i Diz2i n
∗
i

kBT
∇ψ∗ (3.38)

Equation (3.38) is termed Ohm’s law and is normally expressed as

i∗ = −σ ∗w∇ψ∗ = −∇ψ∗/R∗w (3.39)

where σw is the electric conductivity and Rw is the electric resistivity of the
pure fluid. They are defined as

σ ∗w =
1
R∗w
= e2

∑
i Diz2i n

∗
i

kBT
(3.40)
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Equation (3.39) describes the conduction of electricity in a pure fluid of ionic
solution. When such a fluid is introduced to saturate a porous medium of
a nonconducting and nonsurface active skeleton, Eq. (3.39) holds. Noting
that the concentration of the electron carrying ions in the porous medium is
affected by both the volume of the saturating fluid and the volume of the
nonconducting and nonsurface active solid matrix, one has

σw = 1
Rw
= e2

∑
i Diz2i nεi
kBT

(3.41)

Averaging of Eq. (3.35) with the current density given by Eq. (3.38) or (3.39)
is straightforward by following the same procedures as those for Eqs. (3.15)
and (3.16). If the porous medium skeleton is nonconducting, one obtains

1
V

∫
Si
εiε · ni dS = − 1

V

∫
V
∇ · i∗ dV = − 1

V

∫
Si
σ ∗w∇ψ∗ · ni dS

= −τε
V

∫
Si
σw∇ψε · ni dS− 1

V

∫
Si
(σ ∗w∇ψ∗ − σw∇∗ψε) · ni dS

(3.42)

Since the concentrations of the electrolyte ions are the same at solid–fluid
interface as those inside the fluid medium and there are no convective fluxes
contributing to the extra surface integral, it leads to a negligible extra surface
integral. Therefore,

1
V

∫
Si
εiε · ni dS = −τεV

∫
Si
σw∇ψε · ni dS (3.43)

which leads to

i = εiε = −τεσw∇ψε = −τεσw∇ψ = −τε∇ψ/Rw (3.44)

Equation (3.44) is Ohm’s law for a nonconducting and nonsurface active
porous medium saturated with an ionic solution. Traditionally, Eq. (3.44)
is given by

i = −σ0∇ψ = −∇ψ/R0 (3.45)

where σ0 and R0 are the electric conductivity and the electric resistivity,
respectively, of the porous medium saturated with an ionic solution. They
are given by

σ0 = τεσw and R0 = Rw/(τε) (3.46)
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Since one can setup an experiment to measure the electric conductivity in
the porous medium, the tortuosity is normally obtained through this means.
Based on Eqs. (3.39) and (3.45), one can define a formation (electric resistivity)
factor [61] as

Fε = σw

σ0
= R0

Rw
(3.47)

Using Eq. (3.46), we have

Fε = 1
τε

(3.48)

Equation (3.48) has been derived by, among others, Brown [62].
Hence, we have formally related the formation factor with the tortuos-

ity through volume averaging. The tortuosity and the formation factor are
inversely proportional. Equation (3.48) is valid for a porous medium of
nonconductive and nonsurface active solid matrix. The tortuosity is the ratio
of the apparent diffusion path length scale (i.e., in the volume averaged
space) to the actual curved diffusion path length scale (i.e., in themicroscopic
space).

3.4.2 Propagation of Small Amplitude Low-Frequency Waves

In the small amplitude limit, the wave equation can be simplified as

∂2u∗

∂t2
= c2∇2u∗ (3.49)

where u is the displacement vector of the propagating media and c is the
speed of the wave in the propagating medium.
In the low-frequency limit, the propagation ofwaves in the porousmedium

skeleton (solid matrix) can be neglected. Hence, when a wave propagation
is considered for a fluid-saturated porous medium under low frequency and
small amplitude limit, Eq. (3.49) can be averaged without the complication
of the porous medium skeleton. Under this limit, the porous medium can
be considered rigid and nonconductive. Similar to averaging Eqs. (3.19) and
(3.20), we have

1
V

∫
V

∂2u∗

∂t2
dV = 1

V

∫
V
c2∇2u∗ dV = − 1

V

∫
Si
c2∇u∗ · ni dS

= −c
2τε

V

∫
Si
∇uε · ni dS− c2

V

∫
Si
∇∗û · ni dS (3.50)
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Since the propagation of the wave into the solid matrix is neglected, the
displacement vector is similar to a concentration field that is defined only in
the fluid. Owing to the absence of convection terms as well, we have∫

Si
∇∗û · ni dS ≈ 0 (3.51)

Therefore, Eq. (3.50) is reduced to

ε
∂2uε
∂t2
= c2τε∇2uε (3.52)

Equation (3.52) can be rearranged to yield

∂2uε
∂t2
= c20∇2uε (3.53)

where c0 is the apparent wave propagation speed in the porousmediumwith
saturated fluid.

c0 = τ 1/2c (3.54)

Owing to the difference in the wave propagation speed, one can define a
reflection index for the porous medium. It is given by [63]

n = c0/c (3.55)

From Eq. (3.55), we obtain

τ = n2 (3.56)

The relation between the reflection index and the formation factor can be
obtained by substituting Eq. (3.56) into Eq. (3.48).

Fε = 1
n2ε

(3.57)

Although the relationwas not formally established, Eq. (3.57) has been known
as early as 1892 by Rayleigh [63].

3.4.3 Tortuosity Relations

In Sections 3.4.1 and 3.4.2, we have briefly discussed the electrical conduction
andwave propagation in porous media. The electrical resistivity logging and
sound logging are frequently applied to measure the tortuosity of a porous
medium.
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In the dilute limit, or when ε → 1, Maxwell [64] derived a formula for the
effective conductivity for the case in which both the fluid and the suspended
spheres are conducting

σ0/σw − 1
σ0/σw + 2

= (1− ε)σs/σw − 1
σs/σw + 2

(3.58)

where σs is the conductivity of the solids. Hence, the formation factor for an
isolated andfixed sphere can be deduced fromEqs. (3.58) and (3.47) assuming
σs = 0,

Fε = 3− ε
2ε

(3.59)

Equation (3.59) is now known as the Maxwell–Rayleigh equation and
can be adapted to calculate the tortuosity for systems of high porosity.
Equation (3.59) was also obtained by Rayleigh [63] for cubic array of spheres.
Correspondingly, the tortuosity is given by

τ = 2
3− ε (3.60)

Another formula for the high porosity cases is given by Bacri and Salin [65] as

τ = 2ε
1+ ε (3.61)

Bruggemann [66] employed a self-consistent treatment for a sphere
immersed in the Maxwell field. Since the surroundings (i.e., the suspen-
sion itself) are considered to be uniform, the dilute limit is satisfied and the
conductivity increase can be obtained for the addition of a sphere by

dσ0
dε
= −3σ0

ε

σ0 − σs
2σ0 + σs (3.62)

Solving Eq. (3.62) with the initial condition at ε = 1, one obtains

σ0 − σs
(σ0/σw)1/3(σw − σs) = ε (3.63)

In the limit of zero conductance for the spheres, the tortuosity equation can
be deduced and is given by

τ = ε1/2 (3.64)

Equation (3.64) may be called the Bruggemann equation. The Bruggemann
equation has been shown to be valid for a wide range of solid concentrations
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and various particle shapes for suspensions by De la Rue and Tobias [67].
Equation (3.64) has also been shown to hold for fused glass beads [68–70]. For
packed beds, Liu et al. [51] used geometrical arguments to arrive at Eq. (3.60).
Sen et al. [66] and Wong et al. [70] constructed a percolation argument to
arrive at a more general formula

τ = aτ εm (3.65)

where aτ is an empirical constant and m is termed the cementation factor.
Equation (3.65) was first proposed by Archie [61] and has also been known
as the Archie’s law. Based on Eq. (3.65), a correlation has been obtained for
natural consolidated media and is given by

τ = 1.61ε1.15 (3.66)

Equation (3.66) is known as the “Humble” formula [71].
Based on the formation factor data on fussed glass beads, the tortuosity in

the low porosity range is given by [70],

τ = 2.8ε5/4 (3.67)

In thehighporosity range, Eq. (3.64) is found tobe satisfactory. Equation (3.64)
and (3.67) may be combined asymptotically to give [55]

τ =
[

(0.2+ 0.8ε)ε20

ε13 + 1.4× 10−8(1− ε)

]1/16
(3.68)

Equation (3.68) can be used to estimate the tortuosity for suspensions, packed
beds, and artificial consolidated porous media.
For natural consolidated media, the tortuosity is generally lower than that

predicted by Eq. (3.68). Especially when the porosity is low, some of the pores
may be blocked and hence not accessible to fluid flow and mass transfer.
Depending on the degree of compaction, the tortuosity can be significantly
different. The lower limit of the tortuosity for natural consolidated media is
given by,

τ = ε4/3 (3.69)

When electrical conduction and wave propagation is considered, some of the
very fine micropores may be involved in the transport processes. The micro-
poresmay increase the tortuosity and the following expression is constructed
by [55]

τ = bτ ε0.1 + (1− bτ )ε4/3 (3.70)
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where bτ is an empirical constant to account for the fraction of finemicropores
in the total voids. The fine micropores may not be served as passages for the
transport of fluids, inwhich case a slightly lower effectiveporosity is rendered
and Eq. (3.69) applies.
Figure 3.9 shows the tortuosity variation with porosity for various model

solid–fluid systems: suspensions, packed beds, and fused glass beads. Exper-
imental data have been collected from various investigators. Among them,
only Johnson et al. [69] obtained somedata for fusedglass beadsbymeasuring
the propagation of low-frequency soundwaves (known as the fourth sound).
Thebulkof thedataarebasedonelectrical resistivitymeasurements. De laRue
andTobias [67]measured the formation factor for various suspension systems
by varying the suspended particle shape and sizes. Wyllie and Gregory [72]
measured the formation factor for packed beds of various particle shapes. Sen
et al. [68], Johnson et al. [69], and Wong et al. [70] measured the formation
factor for fused glass beads of various bead sizes. One can observe that the
Bruggemann equation, (3.64), predicts very well at least in the high-porosity
range, ε > 0.2. One can observe that the Maxwell–Rayleigh equation, (3.60),
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FIGURE 3.9
Tortuosity for various controlled systems: suspensions, packed beds, and fused glass beads.
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and “Humble” formula (3.66) are not valid for the systems under considera-
tion. To show more clearly the tortuosity variation at the lower spectrum of
porosity, Figure 3.10 depicts the tortuosity versus porosity again on a log–log
plane. One can observe that Eq. (3.67) fits the experimental data well when
ε < 0.2. For the entire porosity range, Eq. (3.68) is a good alternative. Hence,
Eqs. (3.64) for ε > 0.2, (3.67) for ε < 0.2, and (3.68) for all ε values can be used
to estimate the tortuosity for model systems of no inaccessible pores: suspen-
sions, packed beds, and artificial consolidated porous media (of minimum
pore blocking) such as fibrous/metallic foams and structural packings.
For natural consolidated porous media, the variation of tortuosity with

porosity is shown in Figure 3.11, where all the experimental data are
based on the formation factor (or electrical conductivity) measurements. The
experimental data ofWyllie and Spangler [73] andDullien [74]were extracted
from clean sandstone samples. Cornell and Katz [75] measured the formation
factors for sandstones, dolomites, and limestones. Except for two off-trend
data points, the experimental data show a definite trend of lower tortuosity
for lower porosity. One can observe that the Bruggemann equation, (3.64),
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FIGURE 3.10
Variation of tortuosity with porosity for various model systems: suspensions, packed beds, and
fused glass beads as compared with empirical correlations.
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FIGURE 3.11
Variation of tortuosity with porosity for consolidated porous media.

over-predicts the experimental data on the tortuosity for natural porous
media. The “Humble” formula (3.66), on the other hand, may be considered
as a best fit to the experimental data, while Eq. (3.69) represents the low limit
of the tortuosity data. This low-limit tortuositymay be usefulwhen fluid flow
is considered due to the inaccessibility of the very fine pores in the natural
consolidated media.
Figure 3.12 shows more experimental data (formation factor) for lime-

stone samples from Kuleshov deposit, Bashiriya, former USSR [76]. One
can observe that the fraction of the micropores for the particular limestone
samples is 7%, that is, bτ = 0.07. Equation (3.70) predicts the experimental
data well. Although the “Humble” formula (3.66) is still a best fit to the
experimental data in Figure 3.12, there is a definite trend deviation at the
low-porosity range, ε < 0.05. Figure 3.12 strongly suggests the validity of
Eq. (3.70), or the concept of very fine micropore existence in consolidated
media.
Figure 3.11 and Figure 3.12 show that the tortuosity equation for unconsol-

idated media, the Bruggemann equation, (3.64), represents the upper bound
for consolidated media. One can observe from Figures 3.9 through 3.12
that there are large scatters of the experimental data depending on the
sources of the data and the porous material. There are many factors that
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FIGURE 3.12
Variation of tortuosity with porosity for limestone samples from Kuleshov Deposit, Bashiriya,
formerUSSR. (Data sourceG.V.Chilingar, R.W.Mannon, andH.H.Rieke, II.Oil andGasProduction
from Carbonate Rocks. Elsevier: New York, 1972.)

cause experimental data scattering: difference in porous structure (from
one sample to another); anisotropy of porous medium material; as well
as the ability or degree of a particular substance (tracer molecules) and
physical phenomenon (thermal or sound wave, etc.) to penetrate a given
porous material, beside the experimental measurement errors. The diverse
source and structural complexity of porous media have been the main reason
for averaging and empiricism, whereby general trend behaviors are detec-
ted. However, an accurate prediction can be obtained by examining each
individual medium.

3.5 Volume Averaged Navier–Stokes Equation for
an Isotropic Porous Medium

For simplicity, we consider here that the fluid is Newtonian and the dynamic
viscosity is constant, and that the gravity can be included into the pressure
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term, that is, for the case of a constant fluid density. Furthermore, we confine
ourselves to the case of continuous (fluid) phases only. When no porous
medium is present, or the porosity is exactly unity, the flow for a phase is gov-
erned by the Navier–Stokes equation. The governing equations are referred
to as the continuity and momentum equations. These equations are given in
the following.
The continuity equation for free flow of the i-fluid phase is given by

∂ρ∗i
∂t
+ ∇ · (ρ∗i v∗i ) = ṁ∗i (3.71)

where ṁ∗i is the net mass generation in the i-fluid phase due to mass trans-
fer acquired from other fluid phases and solids, phase change and chemical
reactions, etc. In general, with the absence of a nuclear reaction, there is no
overall mass generation,

∑
i

ṁ∗i = 0 (3.72)

The momentum equation for free flow of the ith-fluid phase is given by

∂(ρ∗i v
∗
i )

∂t
+ ∇ · (ρ∗i v∗i v∗i )+ ∇p∗i − µ∗i ∇2v∗i = Ṁ∗i (3.73)

where Ṁ∗i is themomentum acquired from other phases. Although there is no
difference between the intrinsic phase averaged value and its corresponding
local value for flow in free space, the superscript * in the above equations is
used to distinguish them from the properties in a porous medium system.
The subscript i denotes the fluid phase under consideration and hence there
is no summation applicable unless otherwise specifically mentioned.
For a rigid porous medium and with no volumetric change in the fluid

phases, Eq. (3.71) is averaged to give

εi
∂ρi

∂t
+ ∇ · (ρivi) = εiṁi (3.74)

For a rigid stationary solid porous medium and without nuclear reactions
and net absorptions into or desorption from the solid matrix, the total
accumulation of mass is zero.

∑
i

εiṁi = 0 (3.75)
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For the case of no mass transfer between phases and no reactions, the
continuity equation (3.74), is further reduced to

εi
∂ρi

∂t
+ ∇ · (ρivi) = 0 (3.76)

Owing to the fact that a convectiveflux carries a constantproperty, all the extra
surface integral terms disappear. Hence, no dispersion, mass sink, or mass
generation terms come into play in the final averaged continuity equation,
when the fluid phase does not experience any volumetric change and the
porous medium matrix is rigid.
The momentum equation can be obtained by averaging Eq. (3.73). Follow-

ing the procedures for averaging Eqs. (3.19) and (3.20), we obtain

∂(ρivi)
∂t

+ ∇ · ρivivi
εi
+ εi
ε
∇pi + µi Fi

εi
vi − τiµi∇2vi

− τiµi∇ · Ki

εi
· ∇vi +

∑
j

Fij(vεi − vεj) = 0 (3.77)

It can be observed from Eq. (3.77) that any disturbance that is introduced
into the system will decay much faster than that for a zero shear factor
medium, that is, no solid matrix present. This is also an experimentally
observed fact. However, it has been recognized that the decaying speed for
flow in a porous medium is slower than that which would be predicted
by the traditionally used volume averaged governing equations, see for
example, Nield and Bejan [77]. Equation (3.77) does indicate a slower decay-
ing speed than that based on the straight passage model. The decaying speed
is still expected to be much faster than that for a medium free of solids.
It is also this characteristic that makes the flow in a porous medium more
stable than that in an infinitely permeable medium and delayed turbulence is
expected.
Owing to the presence of the momentum dispersion, the effective viscosity

of the fluid becomes larger when the flow in porous media is stronger. The
momentum dispersion allows disturbances introduced by the boundary to
carrymore influence to the flowdomain. Themomentumdispersion does not
allowa sharp change in the flowfield, wherebydecreasing the influence of the
porousmediumnear the freefluid-porousmediumandporousmedium-solid
wall interfaces. The momentum dispersion effects can extend into the free
fluid in the vicinity of the interface due to the existence of velocity fluctuation
near the interface [78].
The volume averaged equations can be summed up to yield one single

set of governing equations for a fluid phase mixture. When conditions are
appropriate, such an approach may be found very useful especially when
somephases aredispersed. Fewergoverningequations lead to less complexity
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in solving the flow problem. The volume averaged equations become:
The continuity equation,

ε
∂ρm

∂t
+ ∇ · (ρmvm) = 0 (3.78)

where

ρm = 1
ε

∑
i

εiρi; vm = 1
ρm

∑
i

ρivi (3.79)

Assuming that the intrinsic phase average velocity vector is nearly equivalent
for all the phases and the phase interactions can be reorganized to be included
in the internal shear loss term, the momentum equation can be written as

∂(ρmvm)
∂t

+ ∇ · ρmvmvm
ε

+ ∇pm + µm Fm
ε
vm

− τµm∇2vm − τµm∇ · Km

ε
· ∇vm = 0 (3.80)

where

µm = 1
τε

∑
i

τiεiµi; Fm = 1
µm

∑
i

µiFi (3.81)

The most significant assumptions made to arrive at Eqs. (3.78) to (3.81)
are that

vi
εi
= vm

ε
; τµmKm =

∑
i

τiµiKi (3.82)

Hence, the mixture (or homogeneous) model presented here is applicable
to systems with negligible slip flow velocities between fluid phases and all
the fluid phases are continuous, for example, stratified flow, with similar
streamlines.
For the limiting case where the inertial and diffusion effects can be

neglected, a different approach can be made on the mixture model.
For example, Wang and Beckermann [79] used a phase relative permeabil-
ity weighted pressure gradient to avoid the requirement of negligible slip
velocity for a two phase flow. The model of Wang and Beckermann [79] can
easily be generalized to multiphase flows as long as Darcy’s law is valid for
each phase.
For a single fluid flow, Eq. (3.77) is reduced to

∂(ρv)
∂t
+ ∇ · ρvv

ε
+ ∇p+ µFv − τµ∇2v − τµ∇ ·DTKh · ∇v = 0 (3.83)

© 2005 by Taylor & Francis Group, LLC



110 Shijie Liu and Jacob H. Masliyah

where DT is the transverse dispersivity and Kh is the normalized dispersion
coefficient tensor. For isotropic porous media,

Kh =

δL 0 0
0 1 0
0 0 1


 (3.84)

where δL is the normalized longitudinal dispersion coefficient. Although the
porous medium is isotropic, the value of δL may not be unity due to different
degree of mixing along the different directions. The existence of a main flow
itself manifests anisotropy.
When inertial effects can be neglected (creepingflow); the flow is in a steady

state, the volume averaged Navier–Stokes equation (3.83), is reduced to

∇p = −µFv + τµ∇2v (3.85)

Furthermore, if the tortuosity is near unity, Eq. (3.85) can be reduced to the
Brinkman equation

∇p = −µ
k
v + µ∇2v (3.86a)

where k is the permeability and it is the reciprocal of the shear factor, F.
It should be noted that, as a first estimation, the dispersion term has been
dropped out from Eq. (3.85). Equation (3.86a) is the working version of the
Brinkman equation where the viscosity associated with the viscous diffusion
term is the same as the viscosity of the fluid.
In his original study, Brinkman [3] added the diffusion term simply to

meet the boundary specifications and hence the viscosity was not defined.
Brinkman’s first version of the flow equation is given by

∇p = −µ
k
v + �

µ∇2v (3.86b)

where �
µ is a quantity having the dimension of viscosity and it was named

the effective viscosity. One should acknowledge that Eq. (3.86b) is a general
form of volume averaged Stokes equation. In general, the effective viscosity
is not expected to be the same as the viscosity of the fluid owing to the effect
of tortuosity and the dispersion of viscous diffusion flux.
Many investigators including Brinkman preferred the use of Eq. (3.86a)

for weak flow in porous media [80]. Although it is a debatable point
whether the viscosity is associated with the diffusion term or the effective
viscosity, or is the same as the viscosity of the fluid or not, there is no
definitive relation for the viscosity (or effective viscosity) when it is not
treated the same as the fluid viscosity. Depending upon the type of por-
ous media, numerical simulations showed that the effective viscosity may be
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either smaller or greater than the viscosity of the fluid [25,80–90]. Through
volume averaging of Navier–Stokes equation, Ochoa-Tapia and Whitaker
[91] showed that �

µ is identical to µ/ε. Other analyses [87–90] showed
an effective viscosity more close to τµ, which reinforces the validity of
Eq. (3.85).
While citing Ochoa-Tapia and Whitaker’s finding, Kuznetsov [92,93] rein-

stated the approach of Neale and Nader [94] by setting �
µ = γ 2µ, with γ

being a parameter. The inability in a model, such as the Brinkman equation,
to account for the additional energy dissipation due tomomentumdispersion
lends itself to the effective viscosity that differs from the intrinsic viscosity.
In other words, one can think of a difference between the effective viscosity
and the intrinsic viscosity being due to themomentumdispersion. It has been
generally accepted that �µ is strongly dependent on the type of porous media
as well as the strength of the flow. When the medium is not isotropic, the
flow behavior is different when viewed from different directions, which also
contributes to the variations in the effective viscosity. It has been generally
accepted that the effective viscosity in the Brinkman’s equation should be
taken to be the same as the viscosity of the flowing fluid for high porosity
cases (e.g., see [94,95]). Amore detailed discussion can be found in Masliyah
et al. [78].
Astudy byGivler andAltobelli [96] attempted to settle the question ofwhat

is the effective viscosity throughdirect experimentation on the velocity profile
for flow in a porous bed bounded by a solidwall. They carried out calculation
on the effective viscosity using themeasured velocity profile. They found that
the effective viscosity is dependent on the flow rate, which is the first evidence
of the momentum dispersion in porous media.
Originally, the Brinkman equation is a direct extension to the Darcy’s law.

Arbitration comes after the viscous diffusion term, which is an extension to
the Darcy’s law. The Darcy’s law is given by

∇p = −µ
k
v (3.87)

Equation (3.87) can be directly obtained from Eq. (3.86) when the porous
medium domain is very large and the boundary effects can be neglected. In
other words, the Darcy’s law can also be directly obtained under special con-
ditions at which Eq. (3.87) is valid from the volume averaged Navier–Stokes
equation. The Darcy’s law, however, was obtained empirically and exten-
ded from the pressure-drop measurements for unidirectional flow by
Darcy [97].
At this point, we should mention that the Brinkman–Forchheimer or

Darcy–Brinkman–Forchheimer equation that has been employed by various
investigators (e.g. [91,97–99]) in the literature have the following form,

−∇p = µ

k
v + cFρ|v|

k1/2
v − µ∇2v (3.88)
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where cF is the form drag coefficient. Equation (3.88) is thought as an exten-
sion from the Brinkman’s equation by accounting for the inertial effects on the
internal shear loss term, however, the dispersion ofmomentum is not accoun-
ted for. Owing to the omission of the momentum dispersion, one should note
that Eq. (3.88) is useful only for systems where the flow domain is large, that
is, when Darcy’s law is valid at creeping flow. Hence, strict restrictions apply
to the use of the Brinkman–Forchheimer equation [100]. If the porous media
domain is small, that is, free fluid-porous medium and solid-porous medium
interfaces have a large role to play through the momentum dispersion, the
form of Eq. (3.83) should be used.
When the diffusion term is dropped out, Eq. (3.88) becomes the

Darcy–Forchheimer equation. That is,

−∇p = µ

k
v + cFρ|v|

k1/2
v (3.89)

Darcy–Forchheimer equation, (3.89), is strictly empirical and has been used
by a large number of investigators.When an interface is encountered, an addi-
tional empiricalmodel on the velocity jump condition needs to be provided in
connection with the Darcy’s law or Darcy–Forchheimer equation to account
for the inconsistency of the governing equation and the physical description
of the flow. For researchers who prefer the empirical treatment throughout,
refer to Beavers and Joseph [101], Larson and Higdon [80], and Nield and
Bejan [77]. However, one should note that the empirical treatments are case
dependent, that is, different empirical coefficients should be used for different
systems.

3.6 Dispersion or Volume Averaged Advection–Diffusion
Equation

The advection–diffusion equation in a fluid phase i in the absence of the
porous medium is given by the following mass balance equation

∂c∗Ai
∂t
+ ∇ · (c∗Aiv∗i −DAi∇c∗Ai) = R∗Ai (3.90)

where R∗Ai is the mass generation of the component into the i-fluid phase.
cAi is the concentration of component A in fluid phase i and DAi is the
diffusivity.
Hence, the volume averaged advection–diffusion equation can be obtained

by following the same procedures as outlined for averaging Eqs. (3.19)
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and (3.20). The volume averaged species transport equation is given by

εi
∂cAi
∂t
+ ∇ · (vicAi − τiεiDAi∇cAi)− τi∇ · (DAiKi · ∇cAi)

+DAiFci(cAi − csA) = εiRAi (3.91)

Here, we have assumed that the tortuosity are the same for all directions
(isotropic). The term csA is the concentration cAi evaluated at the fluid–solid
or flow–stagnant fluid interface. Fci is the fluid–solid interaction factor, which
is similar to the shear factor for fluid flow. For single phase flows, Eq. (3.91)
can be simplified as

ε
∂cA
∂t
+ ∇ · (vcA − τεDA∇cA)− τ∇ · (DAKm · ∇cA)+DAFc(cA − csA) = RA

(3.92)

It should be pointed out thatwehave also separated the diffusion term from
the dispersion term, whereas they are traditionally treated together. Most
dispersion theories are derived based on the same principles as diffusion in
a medium, for example, the random walk theory [101], but mainly using
heuristic arguments. Others studied the dispersion using direct numerical
and theoretical simulations (e.g. [102–107]) based on certain porous medium
models. The dispersion theories are summarized by, among others, [74,
108–112].
When no reaction and no adsorption or desorption occur in the system,

the mass generation becomes zero. In this case, the single phase dispersion
equation takes the following form,

ε
∂cA
∂t
+ ∇ · (vcA − τεDA∇cA)− τ∇ · (DAKm · ∇cA)+DAFc(cA − csA) = 0

(3.93)

Normally, one can assume that at any local “point,” the concentration in the
main flow stream is the same as that on the fluid–solid interface, that is,

cA = csA (3.94)

ThenEq. (3.93) becomes similar to themass/tracer transport equationutilized
in the earlier literature. However, if there are dead-end pores and stagnant
fluid regions, or the solidmatrix is slightly diffusive or surface active, the con-
centration at the flow–stagnant fluid interface cannot be treated the same as
the concentration in the bulk flowing region. In this case, onemore equation is
needed tomodel the variation of csA. In the solidmatrix, the volume averaged
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transport equation can be written as

(1− ε)∂csA
∂t
= DAFc(cA − csA)− ∇ · (vscsA − τsDsA∇csA) (3.95)

The term vs is the intrinsic average fluid flow velocity inside the solid matrix,
it is identically zero if the solidmatrix is not conductive. For a double porosity
medium, the fine pores in the solid matrix can, however, be treated through
this equation and hence a nonzero flow velocity prevails. The term τsDsA is
the effective diffusivity of the component inside the solid matrix. When the
solidmatrix is not diffusive and the fluid hold-ups in themediumare isolated,
this termbecomes identically zero. Hence, Eq. (3.95) is an expression such that
the species acquired by transfer from the flowing stream is the only source
of the species accumulation inside the solid matrix/stagnant fluid regions
when the solid matrix is neither diffusive nor convective.

∂csA
∂t
= DAFc

1− ε (cA − csA) (3.96)

Now that Eqs. (3.93) and (3.96) are similar to the model of Coats and
Smith [113], who assumed a trap zone in the porous media. The Coats–Smith
model has been used widely to explain the trailing long tail of the concentra-
tion profile.
In a comprehensive review of earlier experimental studies, Perkins and

Johnston [114] presented correlations for both longitudinal and transversal
dispersion coefficients. Although early studies obtained a variety of disper-
sion coefficient dependence on the flow velocity [115], recent experimental
treatments seem to converge on a linear dependence. The dispersion coeffi-
cient is proportional to the flow velocity when inertia is strong, see among
others, Bear [24], Chang and Slattery [116], and Montillet et al. [117].

3.7 Volume Averaged Heat Equation

The differential heat or energy balance equation for a general case where the
temperatures between phases do not reach equilibrium, that is, heat transfer
between phases exists, can be written as

∂(ρicpiT∗i )
∂t

+ ∇ · (ρicpiv∗i T∗i − ki∇T∗i ) = R∗i (3.97)

where R∗i is the heat generation in the i-fluid phase, cpi is the specific heat
or heat capacity for i-fluid phase at constant pressure, T∗i is the absolute
temperature of phase i, and ki is the thermal conductivity.
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InwritingEq. (3.97), wehaveassumed thatviscousdissipationand thework
done by pressure changes are negligible. Similar to the advection–diffusion
equation, the volume averaged heat equation can be obtained as

εi
∂(ρicpiTi)

∂t
+ ∇ · (ρicpivTi − τhiεiki∇Ti)− τi∇ · (kiKi · ∇Ti) = εiRi + hi

(3.98)

where τhi is the tortuosity for heat fluxes of the i-fluid phase and hi is the
net heat transfer into the i-fluid phase, which includes the fluid–fluid and
fluid–solid interactions. In Eq. (3.98), the F-factor is included in the term hi.
Normally, the solid matrix is conductive to thermal energy, the fluid–solid
interactions are not to be neglected.
We distinguish the heat flux tortuosity from the tortuosity of the porous

medium because heat can travel through the void space as well as the solid
matrix. Only the degree of difference in the conductivity exists, resulting in
a tortuosity different from unity (free space) and the tortuosity of the porous
medium. Hence, the tortuosity for heat flux can be related to the tortuosity
of the porous medium and the thermal conductivity ratio of the solid mater-
ial, ks, to the i-fluid phase, ki. When ks � ki, the solid material is virtually
impenetrable to thermal energy, hence the exact advection–diffusion equation
applies. That is,

τhi = τi when ks � ki (3.99)

On the other hand, when the thermal conductivity of the solid is greater than
the thermal conductivity of the i-fluid phase, the thermal conduction path
will appear to be shorter than the passages in the porous medium voids.
Heat fluxes will tend to travel through the solid material instead of following
the solid boundary. That is,

τhi ≥ 1 when ks � ki (3.100)

For the solid matrix, the energy balance equation is given by

ρscps
∂Ts
∂t
+ ∇ · (ks∇Ts) = Rs + hs (3.101)

where cps is the heat capacity of the solids, ks is the thermal conduct-
ivity of the solid matrix, and hs is the net heat transfer into the solid
matrix.
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For a homogeneous fluid flow in a nondiffusive (nonconvective) porous
medium, Eqs. (3.98) and (3.101) reduce to

ερfcpf
∂T
∂t
+ ∇ · (ρfcpfvT − τεkmf∇T)− τ∇ · (kfKt · ∇T)+ kfFt(T − Ts) = Rf

(3.102)

(1− ε)ρscps ∂Ts
∂t
− ∇ · (ks∇Ts)− kfFt(T − Ts) = Rs (3.103)

where the subscript f denotes the fluid phase, the subscript s denotes the solid
phase, and kmf is the effective thermal conductivity in the fluid phase. The
term Ft is the F-factor for heat transfer. One should note that the convection
in porous media is normally negligible, except for a double porosity porous
medium. Hence, one is not to expect that the temperature be exactly governed
by the same equation for both the solid and the fluid phases. Owing to the
fluid–solid interaction, through the Ft term, the temperature may appear to
behave as if one equation is governing both the fluid phase and the solid
phase for pseudo-steady state at long times.
If the temperature can reach equilibrium between the phases instantan-

eously, then we can set

Ti = Ts = T (3.104)

Summation of the governing equations over the fluid phases and the solid
materials weighted by the volume fractions leads to

(ρcp)m
∂T
∂t
+ ∇ · [(ρcp)fmvmT − τεkm∇T] − τ∇ · (kfKt · ∇T) = Rm (3.105)

where

(ρcp)fm = 1
ε

∑
i

εiρicpi (3.106)

(ρcp)m = (1− ε)ρscps + ε(ρcp)fm (3.107)

vm =
∑

i ρicpivi
(ρcp)fm

(3.108)

Rm = (1− ε)Rs +
∑
i

εiRi (3.109)

km = (1− ε)ks +
∑
i

εiτhiki (3.110)

kf =
∑

i εiki
ε

(3.111)
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For single fluid flow in porous media, a one-equation model has been
discussed among others [26,118–120]. Two-equation model has been dis-
cussed among others [26,37,121–123].
Carbonell and coworkers [37–39] showed that in the limit of long time or

pseudo-steady state flows without internal heat generations, both the solid
matrix and the fluid phase are governed by the same equation except that
both can have their own averaged temperatures. Hence, either using a mix-
ture model or using continuum model for both solid matrix and fluid phase,
Eq. (3.105) is the volume averaged governing equation.
For the case of single phase convective heat transfer, the average heat con-

ductivity km may be computed from the self-consistent electrical conductivity
model, Eq. (3.64), of Bruggemann [66] for packed beds, or

ε = km − ks
(km/kf)1/3(kf − ks)

(3.112)

where kf is the fluid thermal conductivity. There are also some experi-
mental results and correlations available for km, see for example [84,124–126].
However, owing to the difficulty in obtaining a true stagnant (zero or negli-
gible) flow condition, the experimental values may not be fully reliable [77]
especially for a high thermal conductivity ratio of the fluid to the solid.
It is generally accepted that themixture (or effective) conductivity for single

phase heat transfer is of the following form

km = α
(
kf
ks
, ε
)
ks + β

(
kf
ks
, ε
)
kf (3.113)

where α() and β() are strong functions of porosity and the thermal conductiv-
ities. Models on the effective conductivity can be found in, for example, Hsu
[126]. Equation (3.113) forms the basis for correlating the effective conductiv-
ity with other known physical properties for single phase heat conduction in
packed beds.
The effective conductivity has been treated theoretically for suspensions

by, among others [63,127–130]. Batchelor and O’Brien [127] found that the
effective conductivity ratio is governed by

km/kf = 4.0 ln(ks/kf)− 11 (3.114)

when the spheres are highly conductive and the spheres are touching each
other with ε ≈ 0.37, which is confirmed by Sangani and Acrivos [129].
For simplicity, we may assume the following quick estimation formula

τhi =
(1− τi)k1/2s + τik1/2i

k1/2i

(3.115)
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Equation (3.115) can be used for estimating amixture (effective) conductivity.
At the extremes, Eq. (3.115) satisfies the conditions set by Eqs. (3.99)
and (3.100).
The thermal dispersion coefficient has a predominant effect on the heat

transfer in porous media, especially for strong convective heat transfer pro-
cesses. It should be noted that most researchers use an expression that is
similar toEq. (3.105). Like themomentumandmassdispersivities, the thermal
dispersivity is expected to be proportional to the flow strength. This behavior
has been confirmed by experimental observations, see for example [130–137].
When the flow is very weak, the secondary flow is negligible. Hence, like the
momentum dispersivity and dispersivity of species, the thermal dispersivity
is expected to remain close to zero at low flow strengths. Only when the flow
becomes strong, will the dispersivity be proportional to the flow strength.

3.8 Microscopic Inertia and Flow Induced Dispersion

Microscopic inertia and flow induced dispersion play a key role in the study
of transport processes in porous media. In the simplest case of a single fluid
flow in saturated porous media, the momentum dispersion governs the flow
distribution [55]. When a tracer species is introduced to the system, the dis-
persion of species comes into play. For nonisothermal processes, additional
dispersion of heat waves is encountered. The dispersion is also termed effect-
ive diffusivity. Hence, dispersion is a fundamental characteristic of transport
phenomena inporousmedia as shown in theprevious sections. In this section,
we shall discuss the origin of these dispersions.
For simplicity, let us consider a porous medium saturated with a single

fluid. The transport equation for the fluid phase is given by

∂�∗

∂t
+ ∇ · J∗ = S∗� (3.116)

with the flux J∗ given by

J∗ = v∗�∗ −Df∇�∗ (3.117)

For incompressible fluids with a constant diffusivity, the flux term in
Eq. (3.116) can also be written as

∇ · J∗ = v∗ · ∇�∗ −Df∇2�∗ (3.118)

Taking a volume average of Eq. (3.116) for incompressible flow in a
porous medium of a nonconductive and nonsurface active solid matrix,
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one obtains

ε
∂�ε

∂t
+ ∇ · J = S� (3.119)

∇ · J = v · ∇�ε − τDf∇2�ε − 1
V

∫
Si
(v∗�∗ − vε�ε −Df∇�̂) · ni dS

= v · ∇�ε + v̂ · ∇�̂− τDf∇2�ε −Df∇2�̂ (3.120)

The relationship for the fluctuation or deviatoric property is obtained by
subtracting Eq. (3.119) from Eq. (3.116),

∂�̂

∂t
+ v∗ · ∇�̂−Df∇2�̂ = v̂ · ∇�ε (3.121)

Here, we have written Eq. (3.121) in terms of the microscopic space. That
is, the derivatives are not in terms of the averaging space. This treatment
enables us to solve the problem using a unit cell approach, where the frame
of reference is in the microscopic level.
Equation (3.121) indicates that, in general, the deviatoric quantity �̂ is a

linear functional of the average quantity �ε when � = v and for �s = �ε.
That is,

�̂ = −B · ∇�ε (3.122)

where we have introduced the so-called “B-field” of Brenner [103], which is
denoted as the “vector field f” by Carbonell andWhitaker [37, 138]. It should
be mentioned here that we are using a negative sign before the B-field factor.
We assume that Eq. (3.122) is written in the microscopic space and is not

to be interpreted in the volume averaged space. For clarity, a superscript *
has been dropped out for the B-field factor. Since Eq. (3.122) is used for
the convenience of evaluating the dispersion tensor when the microscopic
velocity field can be obtained, using the microscopic space is a must.
In general, a deviatoric quantity is not a simple linear functional of its

average quantity. Equation (3.122) does not apply for flow velocity field or
�s = �ε. Hence, one must seek a more general solution (closure):

v̂ · ∇�̂ = χ |v|(�ε −�s)− v̂ · ∇(B · ∇�ε) (3.123)

where χ is an inertial parameter or Forchheimer parameter. Equation (3.123)
is written also in the microscopic space. In general, the inertial parameter χ
should be a tensor. However, for our purpose, a scalar is sufficient for an
isotropic randommedium. The superscript * has also been dropped out from
the inertial parameter χ for clarity.
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The general form of the volume averaged transport equation can be
written as

ε
∂�ε

∂t
+ v · ∇�ε − τDf∇ · (ε +K·)∇�ε = S� − τDfF�(�ε −�s) (3.124)

where F is the shear factor/flow–stagnant fluid interaction factor and K is
the dispersion coefficient tensor. Assuming the medium under concern is
isotropic, we set the dispersion coefficient tensor to be of the following form

K = DT


δL 0 0
0 1 0
0 0 1


 (3.125)

Here DT = K⊥ is the transverse dispersivity and δL is the normalized lon-
gitudinal dispersion coefficient, δL = K‖/K⊥. Equation (3.125) is written in a
set of orthogonal coordinates where the first axis corresponds to the direction
of the average flow. Although the porous medium is isotropic, anisotropy
appears in Eq. (3.125) due to the very fact that the existence of the main flow
(with a direction) makes the system anisotropic.
Making use of Eq. (3.123), one can write the F-factor as

F� = F�0 + |v|Df

1
V

∫
V
χ dV (3.126)

For simplicity, we shall focus on the determination of the dispersivity alone.
To avoid the complexity involving two unknowns: F-factor and dispersivity,
�ε = �s will be assumed when the dispersion properties are to be derived.
Substituting Eq. (3.122) into Eq. (3.119) and comparing the resulting

equation with Eq. (3.124), one obtains the relationship between the B-field
and the dispersion coefficient tensor,

DfK = 1
V

∫
V
v̂BdV (3.127)

Equation (3.127) indicates that the dispersivity is proportional to the mag-
nitude of the deviatoric velocity or the velocity fluctuation. Since the velocity
fluctuations are not expected to be sensitive in the direction of the flow or
the direction of the reference for an isotropic media, the deviatoric velocity is
expected to be proportional to the norm of the velocity in the inertial dom-
inant flow. Hence, when the flow rate is high, or for inertial dominant flows,
the dispersivity is expected to be proportional to the velocity norm.
For dispersion of mass and heat, substituting Eq. (3.122) into Eq. (3.121),

one obtains

−v∗ · ∇B+Df∇2B = v̂ (3.128)
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As it is pointed out by Koch et al. [139], the B-field is time-independent. Like
Eq. (3.121), Eq. (3.128) is written in the microscopic space. There have been a
number of investigations thatwere set forth tomodel the tracer (mass) disper-
sion coefficient using the B-field or some similar concept [103–107,138–146].
These authors assumed a model unit cell structure for the porous media. In
addition, they applied a creeping flow field, that is, there is no nonlinearity
in the flow velocity field. Normally, a uniform overall (average) flow field is
employed.
The equation for the flow velocity is much more complicated due to the

microscopic inertial effects on the shear factor. If one considers the creeping
flow velocity as a first estimate and applies Eq. (3.122) for the deviatoric
velocity for the second estimation, then Eq. (3.128) still applies to the velocity
field as well. Hence, one may use the transverse dispersion coefficient as an
estimate for the momentum dispersion coefficient as that suggested by Liu
and Masliyah [55]. A rigorous study of the inertial effects (shear factor and
momentum dispersion) for a model structure requires numerical solutions.
In addition, an overall (i.e., in a continuum sense) simple shear field may be
applied in order to study the momentum dispersion.
To deduce the governing inertial group, we start with rendering the gov-

erning equations dimensionless. Using the norm of the velocity, |v|, the
characteristic length of the porous matrix, ds, and the diffusivity, Df , as the
basic dimensions, Eq. (3.127) can be reduced to

K = RN
1
V

∫
V

v̂
|v|

B
ds

dV (3.129)

where RN is a governing dimensionless inertial group and is given by

RN = ds|v|
Df

(3.130)

Equation (3.128) can be written in dimensionless form as

− v
∗

|v| · ds∇
B
ds
+ 1

RN
(ds∇)2 Bds =

v̂
|v| (3.131)

From Eq. (3.131), one can observe that the B-field is not a function of the
governing inertial group RN when RN →∞. When this information is used
for Eq. (3.129), one can draw the following conclusion

DT = DHRN, when RN →∞ (3.132)

where DH is a constant.
Owing to the linear relationship between the dispersion coefficients and the

governing inertial group at high flow rates, it becomes convenient to define
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a dispersivity based on the longitudinal dispersion coefficient

ld = τK‖Df

|v| =
δLτDTDf

|v| (3.133)

The dispersivity ld as defined above has a length scale. Owing to the diffi-
culty inobtaining a characteristic dimension for anatural consolidatedporous
medium, ld becomes quite handy in dealing with transport phenomena in
consolidated media.
The solution to Eqs. (3.129) and (3.131) with proper boundary conditions

(zero flow and conduction inside solids) can be obtained at least for periodic
porous media [103] or by using heuristic models such as the swarmmodel of
Brinkman [3] and self-consistent models. The flow velocity field for creeping
flow in terms of the swarm model was given by Brinkman [3] and more
accurately byAcrivos et al. [147]. However, it becomes “technical” when one
attempts to determine the dispersivity. Koch and Brady [104] found that there
is no contribution to the transverse diffusivity from the one-particle (sphere),
purely mechanical, analysis. Here, the term “mechanical” is an empirical
description of the region of the dispersion where the effective diffusivity is
not a function of the microscopic (molecular) diffusivity of the fluid. The
null result occurs because of the integral of the transverse component of the
velocity fluctuation along any streamline is zero, as it must be for streamlines
bearing for-aft symmetry. Hence, particle interactions must be considered.
Although Koch and Brady [104] employed ensemble averaging to arrive at

a macroscopic transport equation, there appears to be a difference by a factor
of ε on the convection term between the macroscopic equation of Koch and
Brady [104] and traditionally used empirical dispersion equation. Assuming
that the discrepancy does not affect the general trend, the asymptotic solu-
tion of Koch and Brady [104] for tracer dispersion in beds of spheres may be
cast as

DT = (63
√
2/640)ε1/2(1− ε)1/2

1− (9√2/20)(1− ε)1/2 RN when RN →∞ (3.134)

where RN is defined by Eq. (3.130) with ds being the diameter of the spherical
particles in the packed bed.

1The dispersion equation traditionally used to derive dispersivity is given by (e.g. [115]):

∂�ε

∂t
+ vε · ∇�ε − K′∇ · ∇�ε = 0

where K′ denotes the dispersion coefficient used in most experimental oriented studies.
Compared with Eq. (3.124), the dispersion coefficient is given by

DT = ε

τ
K′⊥ −Df
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Equation (3.134) is strictly valid for tracer dispersion and ε → 1 in the
analysis of Koch and Brady [104]. Owing to the analogies among these trans-
port processes, the momentum dispersion, the thermal dispersion, and the
dispersion of species should share the same transverse dispersivity based on
the above discussions.
Although the order of the inertial group in the longitudinal dispersivity is

higher than one when the tracer dispersion is dominated by inertial effects
as predicted by Koch and Brady [104], there is no experimental evidence
to support this behavior. Koch and Brady [104] used interparticle interaction
(stagnant flow region hold-up), conductance of the particles (or particle hold-
up), and theboundary layerdistributionof concentrationnearparticle surface
to arrive at the higher order terms. These contributions are also termed
the nonlocal, nonmechanical dispersion. Owing to the interrelation between
the longitudinal and the transverse dispersivities, the higher order depend-
ence should appear for transverse dispersion as well [148]. One situation
where this analysis should prevail is the thermal dispersion since the particles
are conductive, whereby a second-order dependence for high Péclet number
flowswould be expected. However, only afirst-order dependence is observed
[37,133,137]. Koch and Brady [106,107] explained that the nonappearance of
the higher order dominant terms in dispersion is due to its long relaxation
time. Normally, these higher order terms onlymanage tomake their contribu-
tion in the transient behavior and cannot reach steady state (or pseudo-steady
state) in experiments. If we go back to the general case where �s = �ε,
Eq. (3.124), one can note that the stagnant flow region hold-up and particle
hold-up are not contributing to the dispersion directly. The hold-ups act as
buffers and are attributed to a nonlinear time variation, especially at long
times. Owing to the resistance to change due to the hold-ups, a long trailing
tail is expected. Hence when inertial effects are dominant, the linear relation
for the dispersivity and the inertial group should hold.

HereK′⊥ is the transverse dispersion coefficient associatedwith the traditionally used dispersion
equation.
The dispersion equation of Koch and Brady [104] is given by

∂(ε�ε)

∂t
+ v · ∇(ε�ε)− ∇ · –D · ∇(ε�ε) = 0

Ensemble averaging was utilized by Koch and Brady [104]. There is a factor of ε different on the
convection term as the fluid velocity in the equation of Koch and Brady [104] was claimed to be
volume averaged. Therefore, the dispersion equation of Koch and Brady [104] is incompatible
with the traditionally used dispersion equation. It may be assumed that the velocity of the
convection term in thedispersionequationofKochandBrady [104] is the intrinsicphase averaged
(not the volume averaged) velocity, and the velocity in their dispersion coefficient is the volume
averaged velocity. When the mistake in Koch and Brady [104] is corrected, one would have

DfK =
ε

τ
–D− 1Df

which puts the dispersion tensor, –D, of Koch and Brady [104] to be the same as the traditionally
used one.

© 2005 by Taylor & Francis Group, LLC



124 Shijie Liu and Jacob H. Masliyah

For fluid flow, the governing inertial group RN is replaced by the Reynolds
number

Red = RN|Flow = ds|v|ρ
µ

(3.135)

The inertial group for heat transfer is governed by the thermal Péclet number,
that is

Pet = RN|Heat =
ds|v|ρcp

kf
(3.136)

and the inertial group for mass transfer is given by

Pem = RN |Mass = ds|v|
Di

(3.137)

The variation of the F-factor at high flow rates can also be deduced through
nondimensionalization of the closure equations. Rendering Eq. (3.124) into a
dimensionless form, one obtains

v̂
|v| · (ds∇)

�

�
= (dsχ)�

∗ −�s

�
− v̂
|v| ·

B
ds
· (ds∇)�ε

�
(3.138)

where � is some average of � in the system.
From Eq. (3.138), one can observe that the inertial parameter χ is not a

function of the magnitude of the flow velocity when Reynolds number is
high. The dimensionless F-factor can be written as

d2sF� = d2sF�0 + RN
1
V

∫
V
(dsχ)dV (3.139)

Hence, the F-factor is also linearly proportional to the governing inertial
group when RN →∞.
In this section, we have arrived at the following conclusions: both the

momentum dispersivity and the shear factor are proportional to the norm of
the velocity or the Reynolds number when Re is large; when Pet is large, both
the effective thermal dispersivity and the solid–fluid interaction factor Ft are
proportional to Pet; and both the effective tracer dispersivity and fluid–solid
interaction factor Fc are proportional to Pem when Pem is large. In addition,
all the dispersion coefficients should bear similar functional forms except for
the difference in the governing inertial group.
Figure 3.13 shows the transverse dispersivity for packed beds, where ε =

0.34 is assumed if not specified. The experimental data are extracted from
the thermal dispersion measurements [39,133] and the tracer dispersion data
[115]. All the experimental data have been treated as being consistent with
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FIGURE 3.13
Transverse dispersivity in packed beds.

the governing equations we have seen earlier. One can observe that there
is no significant difference between the thermal dispersion and the tracer
dispersion. They can all be predicted by the following equation

DT = 0.14RN (3.140)

One should note that the dispersion shown here is for inertia induced
dispersion only. In particular, the thermal dispersion data shown in
Figure 3.13 have subtracted the stagnant effective conductivity or diffusiv-
ity at zero flow condition. For the experimental data of Levec and Carbonell
[39], the strength of convection is also corrected.
Figure 3.14 shows the axial dispersivity, K‖/RN, for packed beds. The sym-

bols represent the experimental data extracted for both the tracer dispersion
measurements and the thermal dispersion measurements. The lines are pre-
dictions based on Eq. (3.140) for the transverse dispersivity. From Figure 3.14,
one can note that

δL = 20 (3.141)
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FIGURE 3.14
Axial dispersion in packed beds.

can represent the experimental data well for 50 < RN < 5× 105. As is in the
current stage, the axial dispersion has to be determined by correlating with
experimental data. For a wider range of applicability, the value of δL can be
given by

δL = 4+ 25RN

(100+ RN)(1+ 2× 10−6RN)
(3.142)

Equation (3.142) can best represent the average trend of the experimental
data in Figure 3.14. There are large scatters of experimental data in both
Figure 3.13 and Figure 3.14. The source of the experimental data scattering is
not solely the experimental observational error. Other sources, as mentioned
previously when discussing the scattering of tortuosity data that is also evid-
ent herewhenRN is very small, exist aswell. The diversity of porousmedium
structure from sample to sample as well as the transport medium (fluid) have
been regarded as the major sources of data scattering.
For fibrous beds and metallic foam beds, the dispersivity is much higher

than that for a packed bed of spheres. Since Eq. (3.140) is derived based on
the analysis of Koch and Brady [104] for media of spheres, one can fit other
media with the same equation while treating the constant as a parameter of
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FIGURE 3.15
Axial dispersion coefficient in packed beds and particle dispersion in fluidized beds. All the
symbols are data points of Martin et al. for glass beads fluidized by glycerol–water corrected for
velocity scales [155].

property of the media. Using the experimental data of Montillet et al. [117],
one obtains the axial tracer dispersivity for a metallic foam bed

K‖ = δLDT = 14RN (3.143)

The higher dispersivity for fibrous foam is due to its better pore connections.
Figure 3.15 shows the variation of longitudinal dispersivity with porosity

for different transport processes: particle dispersion in fluidized beds (data
of Martin et al. [155]); mass (or tracer, data of Montillet et al. [117]) and
momentum (data of Givler and Altobelli [96]) dispersions of flow in porous
fibrous foam beds; as well as the tracer and thermal dispersions in packed
beds of spheres (data in Figure 3.14) as summarized by Liu [156]. One can
observe that the longitudinal dispersivity may be represented by

K‖ = δLDT = 160ε11/3(1− ε)2/3RN (3.144)

Thus, the dispersion coefficient is a strong function of the porosity.

3.9 Summary and Discussions

The transport equation in porous media for the case of no internal generation
can be obtained from Eq. (3.125),

ε
∂�ε

∂t
+ v · ∇�ε − τDf∇ · (ε +K·)∇�ε + τDfF�(�ε −�s) = 0 (3.145)
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where the value of the transporting quantity in the solid matrix is governed
by Eq. (3.96) or in general,

(1− ε)∂�s

∂t
= DfF�(�ε −�s)− vs · ∇�s + τsDs∇2�s (3.146)

When the solid matrix is neither diffusive (Ds = 0) nor convective (vs = 0),
then the right-hand side of Eq. (3.146) is left with one term only, the solid-
flowing fluid interaction term. The traditional dispersion equation approach
prevails only if the value of �s is exactly the same as the value of �ε.
In general, for heat transfer, solidmatrix-flowingfluid interaction is import-

ant as well as the flow-induced dispersion due to the thermal conductivity
in the solid matrix. The coupling of the F-factor with the thermal disper-
sion can be used to explain the large deviations of the interpretation of the
experimental data in dispersion. Owing to the fact that the F-factor is linearly
dependent on the flow rate when the Péclet number is large, Eq. (3.139), the
effective thermal dispersivity becomes much higher than its real value.
Owing to the coupling of the F-factor (solid matrix–flowing fluid

interaction) and flow induced dispersion effects, the transport processes
cannot normally be treated by the dispersion equation alone without losing
accuracy.
For single fluid flow alone, the F-factor has a predominant effect on the

flowbehavior, whereas thedispersioneffect is a clear secondary effect. Inmost
applications, thedispersion canbeneglected alongwith the other effects, such
as the macroscopic viscous diffusion and the macroscopic inertial effects.
For mass transfer or displacement of fluids, the F-factor is normally not as

large since in most cases the solid matrix can be considered as nondiffusive,
that is, negligible concentration or thermal gradient on the solid surface.
The F-factor effect enters into play because of the heterogeneity and stagnant
fluid zones and closed stream lines in the media. When F-factor effect is sig-
nificant, the transport of species differs from that described by the dispersion
equation (i.e., assuminga zeroF-factor) and the resultant behavior is normally
termed anomalous dispersion. The solidmatrix–flowing fluid interaction can
be significant when the flow rate is high. The F-factor effect is normally
observed in experiments through a nonsymmetrical breakthrough curve;
especially, the long tail response to a pulse or step input. The asymmetrical
breakthrough curve has been noted and studied since the 1950s, for example
[113,157–161]. When equilibrium is reached the F-factor effect becomes min-
imal. The long tail breakthrough curve is observed in consolidated media
[162,163], in unconsolidated media [148,164], and in double porosity media
[165,166].
Modeling of flow in porous media relies on the closure models for the

momentum dispersivity as well as shear factor. For shear factor models,
please refer to Liu and Masliyah [55]. One should note that the shear factor
models are commonly converted from pressure drop correlations. Therefore,
attention should be paid on the form of the averaged equations used as the
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FIGURE 3.16
The axial velocity profile in a fibrous bed. (Taken from S.Liu and J.H. Masliyah. Chem. Eng.
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volume averaged equation determines the exact forms of the shear factor and
momentum dispersivity models, especially porosity dependence. To show
the effect of momentum dispersion on single phase flow, Figure 3.16 shows
the experimental data of the axial velocity profile (u is the volume averaged
axial velocity and U is the average volumetric flux) variation with the radial
distance (r is the radial coordinate andR is the bed radius) for flow in a porous
foam bed. One can observe that the effect of momentum dispersion is signi-
ficant as it affects the velocity distribution, especially near a bounding wall.
Mathematically, the origin of thedispersion is due to themicroscopic spatial

velocity variation. Physically, dispersion occurs because of constant joining
and splitting of flow streams when the fluid is traversing through the porous
structure. It is the blockage on the straight pass way of the solid matrix to
fluid that leads to shear losses; curved streamlines for the fluid; as well as the
dispersion or scattering of the fluid. The shear losses represent the fluid–solid
matrix interaction. Curved streamlines are well characterized by the tortuos-
ity of the porous media, which directly affects the strength of fluxes that are
generic tomicroscopic flows. Dispersion causes extra fluxes to occur. The dis-
persion coefficient is a tensorial quantity with a higher dispersivity value in
the general direction of flow.

Nomenclature

aτ constant
B B-field of Brenner
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bτ fraction of micropores
c wave speed
cA concentration of A
cp heat capacity
c0 apparent wave speed
cF drag coefficient factor, in Eq. (3.89)
D diffusivity
DH constant
DT dimensionless transverse dispersivity
ds solid particle diameter
e elementary charge
F solid–fluid interaction coefficient or shear factor
Fε formation factor
g gravitational acceleration
h height
hi heat transfer into the ith phase
II Intraphase interaction
i electric current vector
J flux
K dispersivity
K dispersion coefficient tensor
Kn Knudsen number
KT Taylor dispersion coefficient
K‖ longitudinal dispersion coefficient
K⊥ transversal dispersion coefficient
k thermal conductivity, normally with a subscript indicating the

phase
k permeability
kB Boltzmann constant
l minimum system length dimension
ld dispersivity, defined by Eq. (3.133)
M momentum
n reflective index
ni number concentration of ionic species i
ni out normal of surface i (pointing out of phase i)
O order of
OI Interface interaction
P point P
p pressure
Pem mass Péclet number
Pet thermal Péclet number
R radius of pipe
RA rate of generation for component A
Ri heat generation in the ith phase
RN dimensionless inertia parameter
Rw electric resistivity of pure fluid
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R0 apparent electric resistivity
r radial coordinate
Red Reynolds number, Eq. (3.135)
REV Representative Elementary Volume
m mass
S Surface
s principal coordinate in microscopic space
T temperature
t time
U cross-sectional averaged velocity
u volume averaged axial velocity
u displacement vector
V volume
VP volume of “a point”
v velocity vector
x axial coordinate, or x-coordinate
z z = x −Ut
zi valency of ionic species i

Greek Symbols

α() a function of, Eq. (3.113)
β() a function of, Eq. (3.113)
� difference
δL normalized longitudinal dispersivity
ε porosity
λ mean free path length
µ viscosity
�
µ effective viscosity
ρ density
σs electric conductivity of the solid matrix
σw electric conductivity of pure fluid
σ0 apparent electric conductivity
τ tortuosity
� a property, normally stands for v, T, or cA
χ Forchheimer parameter, Eq. (3.123)
ψ electric potential
∇ gradient

Superscript or above

m power law index
* local value
∧ fluctuation or deviation from volume averaged value
· rate change of time
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Subscript

A component A
a point a
b point b
c for mass transfer
f fluid
h for heat transfer
i the ith fluid
i−i the ith fluid with ith fluid interface
i−Ø the interface between the ith fluid and other phases
j the jth fluid
ij interaction between the ith fluid and the jth fluid
m overall; mixture
s solid matrix or solid phase
T overall; transversal
t thermal
0 overall; apparent or mixture
ε intrinsic average
� for �
‖ longitudinal
⊥ transversal
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Summary

Recent analytical studies on thermal development and transverse heterogen-
eity effects on forced convection in channels and ducts are surveyed.

4.1 Transverse Heterogeneity

4.1.1 Introduction

Applications of the material in this chapter include the cooling of electronic
equipment using devices made of compressed metallic foam material that
is highly porous even after compression. The compression may not be uni-
form, and the channel length may be relatively short so that the thermal
development effects are important.

In this section we survey analytical studies on the effect on forced convec-
tion, in channels and ducts, of the variation in the transverse direction of
permeability and thermal conductivity. Both parallel-plate channels and cir-
cular ducts are considered, and walls at uniform temperature and uniform
heat flux are treated in turn. Basic work using the Darcy model for thermal
equilibrium is extended in some cases to the Brinkman equation and to the
case of local thermal nonequilibrium. The standard work is for symmetric
property variation and symmetric thermal boundary conditions, but some
exceptions are also discussed.

4.1.2 Parallel-Plate Channel

We allow the permeability K and the thermal conductivity k to be nonuniform
in space, and define

K̃ = K

K
, k̃ = k

k
(4.1)

where an overbar denotes a mean value taken over the volume occupied by
the porous medium.

For the steady-state fully developed situation we have unidirectional
flow in the x∗-direction between impermeable boundaries at y∗ =−H and
y∗ =H, as illustrated in Figure 4.1(a). The steady-state Dupuit–Forchheimer–
Brinkman equation is (for theoretical background and range of applicability,
see [1])

G = µu∗

K
+ cLρu∗2 − µeff

d2u∗

dy∗2
(4.2)
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Isoflux or isotemperature boundary

y*

r*

0 x*

x*

�H

(a)

Isoflux or isotemperature boundary

0

�R

R

(b)

Porous medium of permeability K2
and effective conductivity k2 

Porous medium of permeability K1
and effective conductivity k1

Porous medium of permeability K2
and effective conductivity k2

Porous medium of permeability K1
and effective conductivity k1

u*
2

u*
1

u*
2

u*
1

H

FIGURE 4.1
Definition sketch: (a) parallel-plate channel, (b) circular duct.

whereµeff is an effective viscosity,µ is the fluid viscosity, K is the permeability,
and G is the applied pressure gradient and the coefficient cL is related to the
Forchheimer coefficient cF used in Nield and Bejan [2] by

cL = cFK−1/2 (4.3)

We define dimensionless variables

x = x∗

H
, y = y∗

H
, u = µu∗

GH2 (4.4)

so that the dimensionless form of Eq. (4.2) is

M
d2u
dy2 −

u

K̃Da
− L̃Fru2 + 1 = 0 (4.5)
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where the viscosity ratio M, the Darcy number Da, and the Forchheimer
number Fr are defined by

M = µeff

µ
, Da = K

H2 , Fr = cLρGH4

µ2 (4.6a,b,c)

while

K̃ = K

K
, L̃ = cL

cL
(4.7a,b)

where the bar denotes the mean value. If cL can be taken as a constant, then

L̃ = K̃−1/2 (4.8)

and thus there is a simplification if this approximation is valid.
The mean velocity U∗ and the bulk mean temperature T∗m are defined by

U∗ = 1
H

∫ H

0
u∗ dy∗, T∗m =

1
HU∗

∫ H

0
u∗T∗ dy∗ (4.9)

Further dimensionless variables are defined by

û = u∗

U∗
, T̂ = T∗ − T∗w

T∗m − T∗w
(4.10)

This implies that

û = u∫ 1
0 ud y

(4.11)

The Nusselt number Nu is defined as

Nu = 2Hq′′

k(T∗w − T∗m)
(4.12)

The Nusselt number is the traditional nondimensional measure of the
rate of heat transfer from the boundaries into the bulk of the fluid. The
thermal energy equation for the case of local thermal equilibrium, with axial
conduction and viscous dissipation ignored, is

u∗ ∂T∗

∂x∗
= k
ρcp

∂2T∗

∂y∗2
(4.13)

The reader should note that in the weak variation case considered below
(dk/dy)(∂T∗/∂y∗) is negligible in comparison with k(∂2T∗/∂y∗2), and for the
piecewise constant layered case considered below it is zero in each layer.
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4.1.2.1 Darcy model

In the Darcy flow case, corresponding to Fr→ 0, Da→ 0 we have

û = K̃ (4.14)

(For the Forchheimer model, the problem reduces to the Darcy case but with
a different distribution of permeability.)

4.1.2.1.1 Isoflux boundaries

Before proceeding, we note that the analysis for the case considered in this
section has been extended, to include the effect of a viscosity varying in the
transverse direction, by Sundaravadivelu and Tso [3]. However, here we
ignore this effect.

The first law of thermodynamics leads to

∂T∗

∂x∗
= dT∗m

dx∗
= q′′

ρcpHU∗
= constant (4.15)

In this case the thermal energy equation may be written as

d2T̂
dy2 = −

1

2k̃
Nu û (4.16)

For the Darcy flow case this becomes

d2T̂
dy2 = −

1

2k̃
Nu K̃ (4.17)

The boundary conditions on T̂(y) are

dT̂
dy
(0) = 0, T̂(1) = 0 (4.18a,b)

4.1.2.1.1.1 Continuous weak variation — We first consider the case where the
permeability and thermal conductivity distributions are given by

K = K0

{
1+ εK

( |y∗|
H
− 1

2

)}

k = k0

{
1+ εk

( |y∗|
H
− 1

2

)} (4.19a,b)
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The coefficients εK and εk are each assumed to be small compared with unity.
The mean values of K, k are thus K0, k0, respectively, and so

K̃ = 1+ εK

(
|y| − 1

2

)
k̃ = 1+ εk

(
|y| − 1

2

) (4.20a,b)

The velocity distribution is given by

û = K̃ = 1+ εK

(
|y| − 1

2

)
(4.21)

and Eq. (4.17) gives, to first order in small quantities,

d2T̂
dy2 = −

1
2

Nu
{

1+ (εK − εk)

(
y − 1

2

)}
(4.22)

The solution of Eq. (4.22) subject to the boundary conditions in
Eq. (4.18) is

T̂ = − 1
24 Nu{6(y2 − 1)+ (εK − εk)(2y3 − 3y2 + 1)} (4.23)

The compatibility condition (an identity required by the definitions of û
and T̂) is

∫ 1

0
ûT̂ dy = 1 (4.24)

Substitution of the expressions (4.21) and (4.23) into (4.24) leads, to first
order, to

Nu = 6
(

1+ 1
4εK − 1

8εk

)
(4.25)

4.1.2.1.1.2 Stepwise variation (double layer) — Suppose that

K = K1 and k = k1 for 0 < |y∗| < ξH (4.26a)

K = K2 and k = k2 for ξH < |y∗| < H (4.26b)

The mean values are given by

K = ξK1 + (1− ξ)K2

k = ξk1 + (1− ξ)k2
(4.27a,b)

© 2005 by Taylor & Francis Group, LLC



Forced Convection in Porous Media 149

We write

K̃i = Ki

K
and k̃i = ki

k
for i = 1, 2 (4.28)

The velocity distribution is given by

û1 = K̃1 for 0 < y < ξ

û2 = K̃2 for ξ < y < 1
(4.29a,b)

We have now to solve the differential equations

d2T̂1

dy2 = −
NuK̃1

2k̃1
for 0 < y < ξ

d2T̂2

dy2 = −
NuK̃2

2k̃2
for ξ < y < 1

(4.30a,b)

subject to the symmetry and boundary conditions

dT̂1

dy
(0) = 0, T̂2(1) = 0 (4.31)

and the matching conditions (for temperature and heat flux, which are
assumed to be continuous)

T̂1(ξ) = T̂2(ξ), k̃1
dT̂1

dy
(ξ) = k̃2

dT̂2

dy
(ξ) (4.32)

The solution is

T̂1 = Nu
4

{
K̃1

k̃1
(ξ2 − y2)+ K̃1

k̃2
(2ξ − 2ξ2)+ K̃2

k̃2
(ξ2 − 2ξ + 1)

}

T̂2 = Nu
4

{
K̃2

k̃2
(1− 2ξ + 2ξy − y2)+ K̃1

k̃2
(2ξ − 2ξy)

} (4.33a,b)

Substitution into the integral compatibility condition

∫ 1

0
ûT̂dy =

∫ ξ

0
û1T̂1 dy +

∫ 1

ξ

û2T̂2 dy = 1 (4.34)

© 2005 by Taylor & Francis Group, LLC



150 D.A. Nield and A.V. Kuznetsov

then yields the Nusselt number expression,

Nu = 6

/{
ξ3 K̃2

1

k̃1
+ 3ξ2(1− ξ) K̃2

1

k̃2
+ 3ξ(1− ξ)2 K̃1K̃2

k̃2
+ (1− ξ)3 K̃2

2

k̃2

}
(4.35)

For the homogeneous case, K̃1 = K̃2 = k̃1 = k̃2 = 1, this expression reduces
to Nu = 6, independent of the value of ξ , as expected.

4.1.2.1.1.3 Stepwise variation (triple layer) — The analysis has been exten-
ded to three layers (one of which may be solid, so that one has a conjugate
conduction–convection problem) by Kuznetsov and Nield [4].

Suppose that

K = K1 and k = k1 for 0 < |y∗| < ξH

K = K2 and k = k2 for ξH < |y∗| < ηH

K = K3 and k = k3 for ηH < |y∗| < H

(4.36a,b,c)

Then, corresponding to Eq. (4.35), one finds that

Nu = 6

/{
ξ3 K̃2

1

k̃1
+ 3ξ2(η − ξ) K̃2

1

k̃2
+ 3ξ2(1− η) K̃2

1

k̃3
+ 3ξ(η − ξ)2 K̃1K̃2

k̃2

+ 6ξ(η − ξ)(1− η) K̃1K̃2

k̃3
+ 3ξ(1− η)2 K̃1K̃3

k̃3
+ (η − ξ)3 K̃2

2

k̃2

+3(η − ξ)2(1− η) K̃2
2

k̃3
+ 3(η − ξ)(1− η)2 K̃2K̃3

k̃3
+ (1− η)3 K̃2

3

k̃3

}

(4.37)

For the expressions for T̂1, T̂2, and T̂3 the reader is referred to [4]. The expres-
sion for the conjugate problem is obtained by putting K̃3 = 0. (In order to
conform with the usual definition of the Nusselt number for the conjugate
problem, it is necessary to alter the temperature scale in the definition, and
this means rescaling Nu. For details, see Kuznetsov and Nield [4].)

Kuznetsov and Nield [4] have hypothesized that, in the case of N layers,
with interfaces at y = ξ1, ξ2, . . . , ξN−1, that

Nu = 6
/∑

cPQRzPzQzRK̃PK̃Q/k̃R (4.38)

where

zj = ξj − ξj−1 for j = 1, 2, . . . , N; ξ0 = 0 and ξN = 1 (4.39)
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and the coefficients cPQR are those that appear in the trinomial expansion

(z1 + z2 + · · · + zN)
3 =

∑
cPQRzPzQzR (4.40)

If this hypothesis is correct (and it is certainly true for N = 2 and N = 3), then
one can immediately deduce, using some elementary inequalities, bounds
on the value of the Nusselt number for a general transversely heterogeneous
porous medium. Let K̃max, K̃min, k̃max, k̃min be the maximum, minimum values
of K̃, k̃, respectively, within the porous medium. Then

6k̃min/K̃2
max ≤ Nu ≤ 6k̃max/K̃2

min (4.41)

4.1.2.1.2 Isotemperature boundaries

For the case where the wall temperature T∗w is held constant, Eq. (4.16) is
replaced by

d2T̂
dy2 = −

1

2k̃
Nu ûT̂ (4.42)

The extra factor T̂ on the right-hand side arises because now the excess tem-
perature decays exponentially in the axial direction, and so the axial excess
temperature gradient is proportional to the excess temperature. The bound-
ary conditions, Eq. (4.18a,b), remain unchanged, but the integral compatibility
condition is replaced by the differential compatibility condition

Nu = −2
dT̂
dy
(1) (4.43)

This condition is also an identity arising from the definition of T̂. We believe
that our publications are the first in which the integral and differential com-
patibility conditions are explicitly discussed. In the case of isotemperature
boundaries the first condition is satisfied automatically and the second must
be imposed, while in the isoflux case the roles of the two conditions are
reversed.

4.1.2.1.2.1 Continuous weak variation — Equations (4.19) through (4.21) are
pertinent. In place of Eq. (4.22) we now have

d2T̂
dy2 = −

1
2

Nu
{

1+ (εK − εk)

(
y − 1

2

)}
T̂ (4.44)
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This is to be solved subject to the boundary conditions (4.18a,b). A perturba-
tion expansion in terms of the small parameter ε = εK − εk leads to

Nu = π2

2

{
1+ 2

π2 (εK − εk)

}
(4.45)

4.1.2.1.2.2 Stepwise variation (double layer) — Equations (4.26) though (4.29)
are still pertinent, but instead of Eq. (4.30) we now have

d2T̂1

dy2 = −λ2
1T̂1 for 0 < y < ξ

d2T̂2

dy2 = −λ2
2T̂2 for ξ < y < 1

(4.46a,b)

where

λi =
(

NuK̃i

2k̃i

)1/2

, for i = 1, 2 (4.47)

The solutions of Eqs. (4.46a,b) satisfying the boundary conditions (4.18a,b)
are

T̂1 = A1 cos λ1y

T̂2 = A2 sin λ2(1− y)
(4.48a,b)

The continuity of temperature and heat flux at the interface y = ξ then implies
the matching conditions

A1 cos λ1ξ = A2 sin λ2(1− ξ)
k̃1λ1A1 sin λ1ξ = k̃2λ2A2 cos λ2(1− ξ)

(4.49a,b)

The condition that Eqs. (4.49a,b) have a nontrivial solution is that

tan λ1ξ tan λ2(1− ξ) = k̃2λ2

k̃1λ1
(4.50)

In view of Eq. (4.47), this equation may be regarded as an eigenvalue equation
for Nu. As soon as the value of Nu has been found, the compatibility
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condition gives

A2 = Nu
2λ2

(4.51)

and then either (4.49a) or (4.49b) gives A1 to complete the solution.
In general, Eq. (4.50) must be solved numerically. For the homo-

geneous case, K̃1= K̃2= k̃1= k̃2= 1, one can check that λ1= λ2=π/2
makes Eq. (4.50) an identity in ξ , so that Nu=π2/2 and A1=A2=π/2,
and so

T̂ = π

2
cos

πy
2

(4.52)

as expected.
Immediately from Eqs. (4.25) and (4.45), we can see the prime effects of

permeability variation and conductivity on the Nusselt number. If the per-
meability is above average in the region adjacent to the wall (and consequently
is below average in the mid-channel region), so that εK is positive, then the
Nusselt number is thereby increased. Also from Eqs. (4.25) and (4.45) we see
that the prime effect of thermal conductivity variation is in the opposite dir-
ection to that of permeability variation. An above average conductivity near
the wall leads to a reduction in Nu.

We now consider the stepwise variation situation. For the case of isoflux
boundaries, and for the case where ξ = 0.5 so that each medium occupies
half the channel, plots of the Nusselt number Nu are displayed in Figure 4.2.
In accordance with the trend noted in Section 4.1.2.1.1.1, Nu increases as
K2/K1 increases, because above average permeability and hence above aver-
age velocity near the wall leads to a smaller difference between the bulk mean
temperature and the wall temperature. In contrast, the way in which Nu var-
ies with k2/k1 is more complex. As k2/k1 increases, Nu at first increases but
then goes through a maximum. It is only at large values of k2/k1 that Nu
decreases as k2/k1 increases in line with the trend observed for the case of
continuous variation. Besides the effect of thermal conductivity on curvature
of the temperature profile, there is an effect resulting from the change in slope
of that profile at the interface.

The difference between the effects of permeability variation and conductiv-
ity variation is strikingly shown in the plots of temperature profiles presented
in Figure 4.3. Figure 4.3(a) shows that in the absence of conductivity variation,
the effect of increase of permeability near the wall leads to profiles with lar-
ger mean values but with continuously varying slopes. On the other hand,
the effect of conductivity variation leads to profiles having a discontinuity in
slope, and whether this leads to an increase or decrease in the value of the
mean temperature depends on the relative magnitudes of slope increment
and curvature variation.
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FIGURE 4.2
Nusselt number for the parallel-plate channel with isoflux boundaries: (a) effect of permeability
variation, (b) effect of thermal conductivity variation.

The corresponding results for the case of isotemperature boundaries are
presented in Figure 4.4 and Figure 4.5. Compared with the isoflux case,
the major change is that, for most values of the permeability and con-
ductivity parameters, the Nusselt number is reduced (and the temperature
profiles become more peaked) as expected. The exception is when con-
ductivity near the wall is much less than average, and in this case the
Nusselt number is already small. The trends relating to permeability and
conductivity variation are similar for the two types of thermal boundary
conditions.
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Temperature profiles for the parallel-plate channel with isoflux boundaries: (a) effect of
permeability variation, (b) effect of thermal conductivity variation.

4.1.2.1.2.3 Stepwise variation (triple layer) — For the three layer case,
Eq. (4.50) generalizes to

det




cos λ1ξ −cos λ2ξ −sin λ2ξ 0
k̃1λ1 sin λ1ξ −k̃2λ2 sin λ2ξ k̃2λ2 cos λ2ξ 0

0 cos λ2η sin λ2η −sin λ3(1− η)
0 −k̃2λ2 sin λ2η k̃2λ2 cos λ2η k̃3λ3 cos λ3(1− η)


 = 0

(4.53)

For details see Kuznetsov and Nield [4].
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FIGURE 4.4
Nusselt number for the parallel-plate channel with isotemperature boundaries: (a) effect of
permeability variation, (b) effect of thermal conductivity variation.

This last result has been exploited by Nield and Kuznetsov [5] to model
a situation in which there is gross heterogeneity and anisotropy, namely, the
experimental work reported by Paek et al. [6].

4.1.2.2 Brinkman model

The analysis is similar to that for the Darcy model, but the algebra is more
complicated and has been carried out just for the case of uniform flux bound-
aries. For details refer to Nield and Kuznetsov [7]. Some results are presented
in Figure 4.6 and Figure 4.7. These are for the case of Da = 1, and so are rep-
resentative of a hyperporous medium. These figures may be compared with
Figure 4.2 and Figure 4.3 that apply to the Darcy model, that is, the limiting
case Da tends to zero. For the hyperporous case, as for the near Darcy case, the
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Nusselt number increases monotonically with K2/K1, but now the increase
is only gradual. This gradual change is as expected, because now the velo-
city profile is strongly influenced by the Laplacian viscous term as well as
the Darcy term in the momentum equation (4.2), and the velocity profiles
are more parabolic than slug-like. Again the Nusselt number goes through a
maximum as the conductivity ratio k2/k1 increases. The temperature profiles
are shown in Figure 4.8. It is noteworthy that the temperature profile changes
little with variation of the permeability ratio but a lot with variation of the
conductivity ratio. In fact, the trends shown in Figure 4.8(b) are very sim-
ilar to those shown in Figure 4.3(b). This illustrates the obvious fact that the
variation of the Darcy number is essentially a hydrodynamic change rather
than a thermal one, and so the temperature profiles should be qualitatively
independent of Da.
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thermal conductivity variation (M = 1, ξ = 0.5).

In Figure 4.9 we present the variation of Nusselt number with the Darcy
number. As Da increases there is a change from the Darcy flow situation,
in which permeability variation plays a dramatic role, to the hyperporous
situation in which permeability variation is not important, and for which the
value of Nu is smaller than for the Darcy case. In the case where there is no
conductivity variation, Nu tends to the clear-fluid value 4.12 as Da tends to
infinity, independent of the permeability variation, as expected. The effect of
conductivity variation is just as important for the hyperporous case as it is
for the Darcy case, again as expected.

4.1.2.3 Asymmetric heterogeneity

So far we have been considering the case of symmetric heterogeneity, which
is the most interesting case (when one swaps the core and sheath there is
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obviously a significant change). However, the case of asymmetric heterogen-
eity is of interest when coupled with asymmetric heating. This situation has
been studied by Nield and Kuznetsov [8]. They found that for the case of
uniform heat flux boundaries, both permeability variation and conductivity
variation lead to a reduction in the value of the Nusselt number Nu, but for
the uniform temperature case the situation is more complicated. For the iso-
flux case and permeability variation alone, Nu is independent of the degree of
asymmetric heating as represented by a flux ratio τ , but in the case of conduct-
ivity variation Nu is strongly dependent on τ and the degree of conductivity
variation. In the case of uniform temperature boundary conditions no fully
developed solution exists when both the property variation and the heating
are asymmetric.
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4.1.2.4 Interaction between the effects of conductivity heterogeneity
and local thermal nonequilibrium

Nield and Kuznetsov [9] have considered the case of a parallel-plate channel
divided into core and sheath layers occupied respectively by two porous
media, of the same porosity φ and permeability K, and saturated by the same
fluid of thermal conductivity kf , but with the solid thermal conductivity ks
being given by

ks = ks1 for 0 < |y∗| < ξH

ks = ks2 for ξH < |y∗| < H
(4.54a)

Some results are shown in Figure 4.10.
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4.1.3 Circular Duct

The analysis for the case of a circular duct (for symmetric property variation)
closely follows that for a parallel-plate channel, so we can omit most of the
details. Figure 4.1(b) is applicable. The boundary is now at r∗ =R, and R
replaces H as the length scale used in dimensionless quantities. For example,
the Nusselt number is now defined as

Nu = 2Rq′′

k(T∗w − T∗m)
(4.54b)

The results in the following sections are all for the Darcy model.
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4.1.3.1 Isoflux boundaries

4.1.3.1.1 Continuous weak variation

We now consider the case where the permeability and thermal conductivity
distributions are given by

K = K0

{
1+ εK

(
r∗

R
− 2

3

)}

k = k0

{
1+ εk

(
r∗

R
− 2

3

)} (4.55a,b)

The velocity and temperature distributions, and the Nusselt number, are
given by

û = K̃ = 1+ εK

(
r − 2

3

)
(4.55)

T̂ = − 1
36 Nu{9(r2 − 1)+ (εK − εk)(4r3 − 6r2 + 2)} (4.56)

Nu = 8
(

1+ 4
15εK − 2

15εk

)
(4.57)

4.1.3.1.2 Stepwise variation

Suppose that

K = K1 and k = k1 for 0 < |y| < ξR (4.58a)

K = K2 and k = k2 for ξR < |y| < R (4.58b)

The velocity and temperature distributions, and the Nusselt number, are
given by

û1 = K̃1 for 0 < r < ξ

û2 = K̃2 for ξ < r < 1
(4.60a,b)

T̂1 = Nu
4

{
K̃1

k̃1
(ξ2 − r2)+ K̃1

k̃2
(−2ξ2 ln ξ)+ K̃2

k̃2
(−ξ2 + 2ξ2 ln ξ + 1)

}

T̂2 = Nu
4

{
K̃2

k̃2
(1+ 2ξ2 ln r − r2)− K̃1

k̃2
(2ξ2 ln r)

}
(4.61a,b)
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Nu = 8

/{
ξ4 K̃2

1

k̃1
− 4ξ4 ln ξ

K̃2
1

k̃2
+ (4ξ2 − 4ξ4 + 8ξ4 ln ξ)

K̃1K̃2

k̃2

+(1− 4ξ2 + 3ξ4 − 4ξ4 ln ξ)
K̃2

2

k̃2

}
(4.62)

For the homogeneous case, K̃1 = K̃2 = k̃1 = k̃2 = 1, this expression reduces
to Nu = 8, independent of the value of ξ , as expected.

4.1.3.2 Isotemperature boundaries

For the case of continuous weak variation

Nu = 5.783 {1+ 0.243(εK − εk)} (4.63)

For the case of stepwise variation, the eigenvalue equation for Nu is found
to be

J1(λ1ξ)

J0(λ1ξ)

[
Y0(λ2)J0(λ2ξ)− J0(λ2)Y0(λ2ξ)

Y0(λ2)J1(λ2ξ)− J0(λ2)Y1(λ2ξ)

]
= k̃2λ2

k̃1λ1
(4.64)

where

λi =
(

NuK̃i

k̃i

)1/2

, for i = 1, 2 (4.65)

For the homogeneous case, K̃1= K̃2= k̃1= k̃2= 1, one can check that
λ1= λ2= 2.40483= λ̃ (the smallest positive zero of J0(x)) makes Eq. (4.64) an
identity in ξ , so that Nu= (2.40483)2= 5.783 and

T̂ = λ̃J0(λ̃r)

2J1(λ̃)
(4.66)

The results for the circular duct are closely similar to those for the
parallel-plate channel, the most prominent difference being that the Nusselt
numbers for the circular duct are higher than those for the parallel-
plate channel. This arises because of the additional weighting factor r
involved in averages for the case of circular geometry. For detailed results,
see [10].

4.2 Thermal Development

4.2.1 Introduction

In forced convection in a porous medium, hydrodynamic development is
not normally of importance. This is because the hydrodynamic development
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length is readily shown to be of order of magnitude (K/φ)1/2 and usually
this is very small compared with the channel width. In contrast, the thermal
development length can be much greater.

For the Darcy model one has slug flow and the classical Graetz solution for
thermal development is applicable. The following analysis is for the Brinkman
model. The additional effect of a Forchheimer term has not yet been treated.
The addition would involve an extra parameter but nothing fundamental
would be changed. An increase in Forchheimer number would produce a
more slug-like flow, and thus have an effect similar to that produced by a
reduction in Darcy number.

4.2.2 Walls at Uniform Temperature

4.2.2.1 Parallel-plate channel

For the steady-state hydrodynamically developed situation we have unidirec-
tional flow in the x∗-direction between impermeable boundaries at y∗ = −H
and y∗ = H. The temperature on each boundary is held constant at the uni-
form value T∗w. At x∗ = 0 the inlet temperature T∗IN is assumed constant and
uniform.

We now scale the longitudinal coordinate as

x̃ = x∗

PeH
(4.67)

where the Péclet number Pe is defined as

Pe = ρcPHU∗

k
(4.68)

The dimensionless form of the momentum equation (see Eq. (4.5)) is in this
case

M
d2u
dy2 −

u
Da
+ 1 = 0 (4.69)

The solution of Eq. (4.69) subject to the boundary condition u = 0 at y = 1,
and the symmetry condition du/dy = 0 at y = 0 is

u = Da
(

1− cosh Sy
cosh S

)
(4.70)

where

S =
(

1
MDa

)1/2

(4.71)
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Further dimensionless variables are now defined by

û = u∗

U∗
, θ = T∗ − T∗w

T∗IN − T∗w
(4.72)

This implies that

û = S
S− tanh S

(
1− cosh Sy

cosh S

)
(4.73)

For the moment we assume local thermal equilibrium and that the Péclet
number is sufficiently large for axial conduction to be neglected. The steady-
state thermal energy equation then becomes

û
∂θ

∂ x̃
= ∂2θ

∂y2 (4.74)

Equation (4.15) holds with the heat transfer coefficient related by

q′′ = h(T∗w − T∗m) (4.75)

Since here the wall temperature T∗w is held uniform, it follows that

T∗w − T∗m = (T∗w − T∗IN)e
−βx̃ (4.76)

where T∗IN is the inlet temperature and the Biot number β is defined as

β = hH
k

(4.77)

The problem now is to solve Eq. (4.74) subject to the conditions

θ = 1 at x̃ = 0, θ = 0 at y = 1, dθ/dy = 0 at y = 0 (4.78a,b,c)

Separation of variables, following the assumption that

θ = �(x̃)Y(y) (4.79)

leads to two linear and homogeneous equations for � and Y,

�′ + λ2� = 0 (4.80)

Y′′ + λ2ûY = 0 (4.81)

Equation (4.81) together with the homogeneous boundary conditions

Y′(0) = Y(1) = 0 (4.82)
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defines an eigenvalue problem of Sturm–Liouville type with eigenvalues λn
and corresponding eigenfunctions Yn(y) for n = 1, 2, 3, . . . . In particular,

Y′′n + λ2
nûYn = 0 (4.83)

The general solution of Eqs. (4.79) to (4.82) is the series

θ =
∞∑

n=1

CnYn(y) exp(−λ2
nx̃) (4.84)

where the constants Cn are determined by the condition (4.78a). Since the
eigenfunctions satisfy the orthogonality condition

∫ 1

0
ûYmYn dy = 0 if m �= n (4.85)

it follows that

Cn =
∫ 1

0 ûYn dy∫ 1
0 ûY2

n dy
(4.86)

If θm is defined by

θm = T∗m − T∗w
T∗IN − T∗w

(4.87)

then it follows that

θm =
∫ 1

0
ûθ dy =

∞∑
n=1

Gn

λ2
n

exp(−λ2
nx̃) (4.88)

where

Gn =
∫ 1

0
Cnλ

2
nûYn dy = −CnY′n(1) (4.89)

In obtaining the last equality the differential equation (4.81) and one of the
boundary conditions satisfied by Yn have been used.

Equation (4.75) leads to

Nu = −2
θm

∂θ

∂y

∣∣∣∣
y=1
= 2

∑∞
n=1 Gn exp(−λ2

nx̃)∑∞
n=1(Gn/λ2

n) exp(−λ2
nx̃)

(4.90)
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This gives the local Nusselt number. The mean Nusselt number, averaged
over a length x̃, is

Nu = 1
x̃

∫ x̃

0
Nu dx̃ = −2

x̃
ln

(
1
θm

)
(4.91)

This mean Nusselt number can be expressed as

Nu = 2Hq′′

k�Tml
(4.92)

where �Tml is the log–mean temperature difference given by

�Tml = 1
x∗

∫ x∗

0
(T∗m − T∗w)dx∗ = (T∗w − T∗IN)− (T∗w − T∗m)

ln[(T∗w − T∗IN)/(T∗w − T∗m)]
(4.93)

Equation (4.76) has been used to derive the last equality.
The eigenvalues and eigenfunctions can be obtained by a shooting method

(see [11]) and then the coefficients Cn and Gn can be obtained by simple numer-
ical integration of the integrals that are involved, and the solution is readily
completed. Results are presented in Figure 4.11. A careful inspection of the
figure reveals that the thermal entry length (the value of the longitudinal
coordinate at which the Nusselt number differs from its asymptotic value by
a given small amount) decreases slightly as Da increases. The results show
that the curves for Da = 1 or larger are effectively coincident with those
for infinite Da. We also see that the flow becomes fully developed thermally
when the dimensionless coordinate x̃ becomes of order unity, that is when
x∗/H = O(Pe), as expected. (Strictly speaking, the figure indicates that the
flow becomes fully developed when (x̃/16)1/2 = 0.1.)

4.2.2.2 Circular tube

The analysis is much the same as that for the parallel-plate channel, so we
briefly note the changes. The boundary is now at r∗ = r0.

We define dimensionless variables

x̃ = x∗

Per0
, r = r∗

r0
, u = µu∗

Gr2
0

(4.94)

The Péclet number Pe is now defined as

Pe = ρcPr0U∗

k
(4.95)
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FIGURE 4.11
Plots of (a) local Nusselt number, and (b) average Nusselt number, versus longitudinal coordinate,
for the parallel-plate channel problem, uniform temperature boundaries. The values displayed
on the right-hand side of the figure are the fully developed values (attained asymptotically as
x̃→∞) for the limiting cases of Da→ 0 (slug flow) and Da→∞ (plane Poiseuille flow).
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Now the dimensionless velocity (with unit mean) is

û = S{I0(S)− I0(Sr)}
SI0(S)− 2I1(S)

(4.96)

and the Nusselt number Nu is defined as

Nu = 2r0q′′

k(T∗w − T∗m)
(4.97)

The Biot number β is defined as

β = 2hr0

k
(4.98)

Figure 4.12 presents the results found by Nield et al. [11].

4.2.3 Walls at Uniform Heat Flux

In the case of walls held at constant heat flux the wall boundary conditions
on the temperature deviation are not homogeneous, and this means that the
analysis has to proceed in two steps: first, the fully developed solution to the
problem must be found, and then the problem involving the perturbation
temperature can be tackled using the method of separation of variables.

Thus we now assume that the heat flux takes a constant value q′′ on the walls.
We use the subscript FD to distinguish the solution of the full-developed
problem.

4.2.3.1 Parallel-plate channel

The dimensionless thermal energy equation is

d2θFD

dy2 = −
1
2

NuFDû (4.99)

The solution of this equation subject to the boundary conditions

dθFD

dy
(0) = 0, θFD(1) = 0 (4.100)

is

θFD = SNuFD

S− tanh S

{
1
4
(1− y2)− cosh S− cosh Sy

2S2 cosh S

}
(4.101)
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FIGURE 4.12
Plots of (a) local Nusselt number, and (b) average Nusselt number, versus longitudinal coordinate,
for the circular tube problem, uniform temperature boundaries. The values displayed on the
right-hand side of the figure are the fully developed values (attained asymptotically as x̃→∞)
for the limiting cases of Da→ 0 (slug flow) and Da→∞ (Poiseuille flow).

Substitution in the integral compatibility condition yields

NuFD = 12S(S− tanh S)2

2S3 − 15S+ 15 tanh S+ 3S tanh2 S
(4.102)
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In order to tackle the thermally developing problem, it is convenient to work
in terms of a new dimensionless temperature θ , now defined by

T∗ − Tm

Hq′′/k
= 2(1− θ)

Nu
(4.103)

From integration of Eq. (4.15), one finds that

Tm − TIN

Hq′′/k
= x̃ (4.104)

From Eqs. (4.103) and (4.104), by addition, and specification to the fully
developed case, one has

T∗FD − TIN

Hq′′/k
= x̃ + 2(1− θFD)

NuFD
(4.105)

Here T∗FD is the dimensional temperature corresponding to the fully
developed case.

We now introduce a perturbation temperature defined by

T+ = T∗ − T∗FD (4.106)

and define

θ+ = T+

Hq′′/k
(4.107)

Since T+ also satisfies Eq. (4.13), it follows that

û
∂θ+

∂ x̃
= ∂2θ+

∂y2 (4.108)

Moreover, we have the boundary conditions

∂θ+

∂y
(x̃, 0) = 0,

∂θ+

∂y
(x̃, 1) = 0 (4.109)

and the initial condition

θ+(0, y) = 2(θFD − 1)
NuFD

≡ −f (y) (4.110)

We can now proceed as above, but with the boundary conditions (4.82) for
the eigenvalue problem now replaced by

Y′(0) = Y′(1) = 0 (4.111)
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We obtain a solution of the form

θ+ =
∞∑

n=1

CnYn(y) exp(−λ2
nx̃) (4.112)

where now the constants Cn are determined by the condition (4.110).
At the wall,

T∗w − TIN

Hq′′/k
= x̃ + f (1)+

∞∑
n=1

CnYn(1) exp(−λ2
nx̃) (4.113)

It follows that the local Nusselt number is given by

Nu = 2
f (1)+∑∞

n=1 CnYn(1) exp(−λ2
nx̃)

(4.114)

Results obtained by Nield et al. [12] are presented in Figure 4.13.

4.2.3.2 Circular tube

The analysis is much the same as that for the parallel-plate channel, so we
briefly list the main changes.

In place of Eq. (4.99) one has

d2θFD

dr2 +
1
r

dθFD

dr
= −NuFDû (4.115)

The solution of this equation subject to the boundary conditions

dθFD

dr
(0) = 0, θFD(1) = 0 (4.116)

is

θFD = SNuFD

SI0(S)− 2I1(S)

{
I0(S)

4
(1− r2)− I0(S)− I0(Sr)

S2

}
(4.117)

Substitution in the compatibility condition

2
∫ 1

0
rûθFD dr = 1 (4.118)

yields

NuFD = 8S{SI0(S)− 2I1(S)}2
(S3 − 24S)[I0(S)]2 + 48I0(S)I1(S)+ 8S[I1(S)]2 (4.119)
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FIGURE 4.13
Plots of (a) local Nusselt number, and (b) average Nusselt number, versus longitudinal coordinate,
for the parallel-plate channel problem, uniform heat flux boundaries. The values displayed on the
right-hand side of the figure are the fully developed values (attained asymptotically as x̃→∞)
for the limiting cases of Da = 0 (slug flow) and Da = ∞ (plane Poiseuille flow).

For the thermally developing flow one finds that the Nusselt number is
now given by Eq. (4.114) with Yn replaced by Rn, the eigenfunctions of the
eigenvalue problem

R′′ + (1/r)R′ + λ2ûR = 0, R′(0) = R′(1) = 0 (4.120)

Results obtained by Nield et al. [12] are presented in Figure 4.14.
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FIGURE 4.14
Plots of (a) local Nusselt number, and (b) average Nusselt number, versus longitudinal coordinate,
for the circular tube problem, uniform heat flux boundaries. The values displayed on the right-
hand side of the figure are the fully developed values (attained asymptotically as x̃ → ∞) for
the limiting cases of Da = 0 (slug flow) and Da = ∞ (Poiseuille flow).

4.2.4 Local Thermal Nonequilibrium

We now consider the more general situation when there is no longer local
thermal equilibrium, for the case of a parallel-plate channel with uniform
temperature on the boundary walls. We assume that the Péclet number is
sufficiently large for axial conduction to be neglected. We also assume that
T∗s and T∗f are governed by the steady-state heat transfer (energy) equations

(1− φ)∇ · (ks∇T∗s )+ hfs(T∗f − T∗s ) = 0 (4.121)
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φ∇ · (kf∇T∗f )+ hfs(T∗s − T∗f ) = (ρcP)fv∗ · ∇T∗f (4.122)

Here hfs is a fluid–solid heat transfer coefficient. We define

θ∗f = T∗f − Tw, θ∗s = T∗s − Tw (4.123)

For the case of unidirectional flow in the axial direction, where the Darcy
velocity v∗ has the value u∗ in the axial direction, and when axial conduction
is neglected, Eqs. (4.121) and (4.122) reduce to

[
(1− φ)ks

∂2

∂y∗2
− hfs

]
θ∗s + hfsθ

∗
f = 0 (4.124)

[
φkf

∂2

∂y∗2
− hfs − (ρcP)fu∗

∂

∂x∗

]
θ∗f + hfsθ

∗
s = 0 (4.125)

Equations (4.124) and (4.125) must be solved subject to the wall boundary
conditions

θ∗f = θ∗s = 0 at y∗ = H (4.126)

the symmetry conditions

∂θ∗f
∂y∗
= ∂θ∗s
∂y∗
= 0 at y∗ = 0 (4.127)

and the inlet condition

θ∗f = θIN at x∗ = 0 (4.128)

We now introduce dimensionless variables. We take H as length scale and
θIN as the temperature scale. We will present our results in terms of a Nusselt
number, the porosity φ, and four other dimensionless parameters, namely a
Péclet number, Pe, a porous medium conductivity ratio, kr, and a solid–fluid
heat exchange parameter, η, defined as follows:

Pe = U∗H(ρcP)f/kf , kr = ks/kf , η = hfsH2/keff (4.129)

where

keff = φkf + (1− φ)ks (4.130)

For convenience, we perform the algebra in terms of the parameters

Nf = φ/Pe, Ns = (1− φ)kr/Pe, Nh = η[φ + (1− φ)kr]/Pe (4.131)
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We let

x = x∗/PeH, y = y∗/H, θf = θ∗f /θIN, θs = θ∗s /θIN (4.132)

We then get

[Ns∂
2/∂y2 −Nh]θs +Nhθf = 0 (4.133)

Nhθs + [Nf∂
2/∂y2 −Nh − û∂/∂x]θf = 0 (4.134)

θf = 0 and θs = 0 at y = 1 (4.135)

∂θf/∂y = 0, ∂θs/∂y = 0 at y = 0 (4.136)

θf = 1 at x = 0 (4.137)

Since the differential equations (4.133) and (4.134) and the boundary condi-
tions (4.135) and (4.136) are all homogeneous, we can immediately separate
the variables. We write

θf = F(y)e−λ2x, θs = S(y)e−λ2x (4.138)

Then we have an eigenvalue problem constituted by

NsS′′ −NhS+NhF = 0 (4.139)

NfF′′ −NhF + λ2ûF +NhS = 0 (4.140)

F′(0) = 0, S′(0) = 0, F(1) = 0, S(1) = 0 (4.141)

Here the primes denote derivatives with respect to y.
We denote the eigenvalues by λn and the corresponding eigenfunction pairs

by Fn(y), Sn(y) for n = 1, 2, 3, . . . . In particular,

NsS′′n −NhSn +NhFn = 0 (4.142)

NfF′′n −NhFn + λ2
nûFn +NhSn = 0 (4.143)

For the local thermal nonequilibrium (LTNE) case we no longer have a
Sturm–Liouville system to deal with, but from Eqs. (4.142) and (4.143),
and the corresponding boundary conditions, it is still easy to establish the
orthogonality result

∫ 1

0
ûFmFn dy = 0 if m �= n (4.144)

It is noteworthy that the Sn are not involved in this condition.

© 2005 by Taylor & Francis Group, LLC



178 D.A. Nield and A.V. Kuznetsov

The general solution of Eqs. (4.133) to (4.136) is the pair of series

θf =
∞∑

n=1

CnFn(y) exp(−λ2
nx) (4.145)

θs =
∞∑

n=1

DnSn(y) exp(−λ2
nx) (4.146)

where the constants Cn are determined by the entrance condition (4.137).
Using the orthogonality condition (4.144) it follows that

Cn =
∫ 1

0 ûFn dy∫ 1
0 ûF2

n dy
(4.147)

With the solution for θf completed, one can obtain θs from Eq. (4.134). One
quickly finds that

Dn = Cn (4.148)

With the temperature distribution completely found, one can then compute
the heat transfer. Matching the heat flux at the channel wall gives

q′′ = φkf(∂T∗f /∂y∗)y∗=H + (1− φ)ks(∂T∗f /∂y∗)y∗=H (4.149)

The Nusselt number is defined by

Nu = 2Hh/keff (4.150a)

where, in turn,

h = q′′/(Tw − Tb,eff) (4.150b)

where the effective bulk temperature

Tb,eff = 1
U∗H

∫ H

0
u∗{φT∗f + (1− φ)T∗s }dy∗ = 1

H

∫ H

0
û{φT∗f + (1− φ)T∗s }dy∗

(4.151)
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It follows that

Nu = 2{φkf(∂θf/∂y)y=1 + (1− φ)ks(∂θs/∂y)y=1}
keff

∫ 1
0 û[φθf + (1− φ)θs]dy

= 2
∑∞

n=1 Cn{φkfF′n(1)+ (1− φ)ksS′n(1)}e−λ2
nx

keff
∑∞

n=1 Cn[
∫ 1

0 û{φFn + (1− φ)Sn}dy]e−λ2
nx

(4.152)

where, from Eqs. (4.142) and (4.143),

F′n(1) =
1

Nf

{
Nh

∫ 1

0
(Fn − Sn)dy +

∫ 1

0
λ2

nûFn dy

}

S′n(1) =
−Nh

Ns

∫ 1

0
(Fn − Sn)dy

(4.153a,b)

In order to express our results in terms of kr we can also use

kf/keff = 1/{φ + (1− φ)kr}, ks/keff = kr/{φ + (1− φ)kr} (4.154)

Nield et al. [13] solved the system of Eqs. (4.142) and (4.143), subject to the
appropriate boundary conditions (4.141), by reduction to a system of first-
order equations and shooting.

Some of their results are presented in Figures 4.15, 4.16, and 4.17. All these
results are for a porous medium of porosity φ = 0.5. In Figure 4.15 and
Figure 4.16 the value of Pe (=1) is fixed and there are presented, first for a
relatively dense porous medium (Da = 10−8) and then for a relatively sparse
one (Da = 10−3), plots of the local Nusselt number versus the longitudinal
coordinate for representative values of the solid/fluid conductivity ratio kr
and the solid–fluid heat exchange parameter η. In the case of fully developed
convection, the special cases kr = 1 and very large η each correspond to local
thermal equilibrium. One can observe that for the developing convection
situation there is a small LTNE effect apparent even when kr = 1. The most
prominent features shown in Figure 4.15 and Figure 4.16 are: (a) a variation
in the Darcy number has little effect on the Nusselt number, (b) the effect of
the variation of heat exchange parameter is small, and the direction of change
depends on the value of kr; as η decreases from large values; the trend is for
Nu to decrease if kr is small and for Nu to increase if kr is not small, and
(c) the Nusselt number decreases markedly as the solid/fluid conductivity
ratio increases.

In Figure 4.17 we present the effect of variation of the Péclet number. In
the case of local thermal equilibrium, the dependence on Pe is confined to the
scaling of the horizontal coordinate, but in the case of LTNE there is a further
substantial effect. For a given value of x = x∗/PeH, the local Nusselt number
increases as Pe increases, and this effect is particularly large if the solid/fluid
conductivity ratio is small.
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FIGURE 4.15
Plots of local Nusselt number Nu versus longitudinal coordinate x for various values of the
fluid–solid heat exchange parameter η, and conductivity ratios (a) kr = 0.1, (b) kr = 1, (c) kr = 10.
All results are for porosity φ = 0.5, Péclet number Pe = 1, and Darcy number Da = 10−8.
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FIGURE 4.16
As for Figure 4.15, but for Da = 10−3.
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FIGURE 4.17
Plots of local Nusselt number Nu versus longitudinal coordinate x for various values of the Péclet
number Pe, and conductivity ratios (a) kr = 0.1, (b) kr = 1, (c) kr = 10. All results are for porosity
φ = 0.5, fluid–solid heat exchange parameter η = 1, and Darcy number Da = 10−3.
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4.2.5 Effects of Axial Conduction and Viscous Dissipation

The incorporation of the effect of axial conduction requires a major change
in approach (because of the upstream propagation of temperature changes).
However, once this change has been made it is also comparatively simple to
incorporate the effect of viscous dissipation.

For the steady-state hydrodynamically developed situation we have uni-
directional flow in the x∗-direction between impermeable boundaries at
y∗ = −H and y∗ = H, as illustrated in Figure 4.18. For x∗ > 0 the (down-
stream) temperature on each boundary is held constant at the value T∗w. For
x∗ < 0 the inlet (upstream) wall temperature T∗IN is assumed constant on each
boundary. We now use the notation

ξ = x∗

PeH
, η = y∗

H
, u = µu∗

GH2 (4.155)

Local thermal equilibrium is now assumed. The steady-state thermal energy
equation is then

ρcpu∗ ∂T∗

∂x∗
= k

(
∂2T∗

∂x∗2
+ ∂

2T∗

∂y∗2

)
+� (4.156)

where � is the contribution due to viscous dissipation. The modeling of this
viscous term is controversial. The simplest expression, which is appropriate
to the Darcy equation, in the present case is

� = µu∗2

K
(4.157a)

Nield [1,14] argued that the viscous dissipation should remain equal to the
power of the drag force when the Brinkman equation is considered, and in
the present case this implies that

� = µu∗2

K
− µeffu∗

d2u∗

dy∗2
(4.157b)

0 x*

y* = H

y* = – H

T* = TIN
T* = Tw

(upstream)
x* > 0x* < 0

(downstream)

y*

FIGURE 4.18
Definition sketch.
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On the other hand, Al-Hadhrami et al. [15] proposed a form that is compatible
with an expression derived from the Navier–Stokes equation for a fluid clear
of solid material, in the case of a large Darcy number, and in this case we have

� = µu∗2

K
+ µ

(
du∗

dy∗

)2

(4.157c)

In each case the added Brinkman term is O(Da) in comparison with the Darcy
term. Consequently, in the case of small Da the three models are effectively
equivalent to each other. In this survey the form (4.157a) alone is treated, for
simplicity. The other cases are discussed by Nield et al. [16].

In nondimensional form Eq. (4.156) becomes

û
∂θ

∂ξ
= 1

Pe2
∂2θ

∂ξ2 +
∂2θ

∂η2 + BrD(S, η) (4.158)

where the Brinkman number Br is defined as

Br = µU∗2H2

k(T∗IN − T∗w)K
(4.159)

D(S, η) =
[

S cosh S− S cosh Sη
S cosh S− sinh S

]2

(4.160)

The problem now is to solve Eq. (4.158) subject to the conditions

θ1 = 1 at η = 1 for ξ < 0

θ2 = 0 at η = 1 for ξ > 0

∂θi

∂η
= 0 at η = 0 for all ξ (i = 1, 2)

θ1 = θ2 at ξ = 0 for 0 < η < 1

∂θ1

∂ξ
= ∂θ2

∂ξ
at ξ = 0 for 0 < η < 1

(4.161a,b,c,d,e)

Equations (4.161d) and (4.161e) express the continuities of the temperature
and the heat flux at the entrance section ξ = 0. For infinitely large values of
|ξ |, the dimensionless temperature is the particular solution of the equation

∂2θi

∂η2 = −BrD(S, η) (4.162)

Following Lahjomri et al. [17], one can use a separation of variables method to
generate the general solution of Eq. (4.158) in the upstream and downstream
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regions satisfying the conditions (4.161a,b,c) and (4.162). This solution can be
represented by

θ1(ξ , η) = 1+
∞∑

n=1

Anfn(η) exp(λ2
nξ)+ BrF(S, η) for ξ < 0

θ2(ξ , η) =
∞∑

n=1

Bngn(η) exp(−β2
nξ)+ BrF(S, η) for ξ > 0

(4.163a,b)

where,

F(S, η) = (1/4)S2(1+ 2 cosh2 S)(1− η2)+ 2 cosh S(cosh Sη − cosh S)− (1/8)(cosh 2Sη − cosh 2S)
(S cosh S− sinh S)2

(4.164)

The λn and βn are eigenvalues associated with the eigenfunctions fn and gn,
respectively, and the An and Bn are coefficients to be determined from the
matching condition (4.161d,e) (see below). The eigenfunctions fn and gn are
the solutions of the following differential equations:

d2fn
dη2 + λ2

n

[
λ2

n

Pe2 − û(η)

]
fn = 0

d2gn

dη2 + β2
n

[
β2

n

Pe2 + û(η)

]
gn = 0

(4.165a,b)

satisfying the boundary conditions

f ′n(0) = 0 and fn(1) = 0

g′n(0) = 0 and gn(1) = 0
(4.166a,b)

From the matching conditions (4.161d,e), one obtains the following equations
determining the coefficients An and Bn:

1+
∞∑

n=1

Anfn(η) =
∞∑

n=1

Bngn(η)

∞∑
n=1

λ2
nAnfn(η) = −

∞∑
n=1

β2
nBngn(η)

(4.167a,b)

The eigenvalue problem constituted by Eqs. (4.165) and (4.166) is not of the
classical Sturm–Liouville type and so the usual orthogonality formula is not
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valid. However, as Lahjomri et al. [17] showed, the coefficients can still be
isolated from each other, and are given by the formulas

An = −
∫ 1

0
[
(λ2

n/Pe2)− û(η)
]

fndη∫ 1
0
[
(2λ2

n/Pe2)− û(η)
]

f 2
n dη

Bn =
∫ 1

0
[
(β2

n/Pe2)+ û(η)
]

gndη∫ 1
0
[
(2β2

n/Pe2)+ û(η)
]

g2
ndη

(4.168a,b)

For large values of the Péclet number (Pe→∞) and when S = 0 and Br = 0,
the solution tends to the classical Graetz problem without axial conduction,
and one finds that θ1(ξ , η) tends to 1 (a uniform temperature profile in the
upstream region), as expected.

The dimensionless bulk temperature θb,i(ξ) and the local Nusselt number
Nui(ξ , η) (based on the gap width 2H rather than the hydraulic diameter) for
the upstream and downstream regions are given by

θb,i(ξ) =
∫ 1

0
û(η)θidη (4.169)

Nui = −2[∂θi/∂η]η=1

θb,i − [θi]η=1
(i = 1, 2) (4.170)

In particular, from Eqs. (4.169), (4.170), (4.165b), and (4.166b), the local Nusselt
number for the downstream region (ξ > 0) is given by

Nu2(ξ) =
2
∑∞

n=1 Bng′n(1) exp(−β2
nξ)+ 2BrF′(S, 1)∑∞

n=1 Bn exp(−β2
nξ)

[
( g′n(1)/β2

n)+ (β2
n/Pe2)

∫ 1
0 gn(η)dη

]
− Br

∫ 1
0 û(η)F(S, η)dη

(4.171)

where

F′(S, 1) = 3S sinh S cosh S− S2 − 2S2 cosh2 S
2(S cosh S− sinh S)2

(4.172)

Again one can solve the eigenvalue system by reduction to first-order
equations and shooting. By this means Nield et al. [16] obtained results for
the downstream Nusselt number. First we consider the case in which viscous
dissipation is negligible (Br = 0). Plots of the downstream Nusselt number
are presented in Figure 4.19 and Figure 4.20. It is clear that an increase in
Da results in an increase of the thermally developing Nusselt number by a
comparatively small amount. (The increase is not surprising, since one would
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FIGURE 4.19
Plots of downstream local Nusselt number versus dimensionless axial coordinate, for the case
of negligible viscous dissipation and for small Darcy number, for various values of the Péclet
number.
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FIGURE 4.20
Plots of downstream local Nusselt number versus dimensionless axial coordinate, for the case
of negligible viscous dissipation and for large Darcy number, for various values of the Péclet
number.
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expect that a less restrictive medium would lead to greater convection.) The
Nusselt number for large ξ is the fully developed value. The value 4.920 for
the case Da = 10−5 is close to the known value 4.935 (π2/2) for the Darcy flow
(slug flow) limit. The value 3.806 for the case Da = 1 is close to the known
value 3.770 for the plane Poiseuille flow limit.

In contrast, the developing Nusselt number is strongly dependent on the
value of the Péclet number Pe. The case of the large Pe number (Pe = 106)

illustrates the situation where the axial conduction term is negligible. As one
would expect, our results for this case agree with results based on our previous
analysis. In Figure 4.19 and Figure 4.20 the plot for Pe = 10 is not far from
that for Pe = 106, but for smaller values of Pe the increase in the value of the
developing Nu (for a fixed value of ξ ) is quite dramatic, the value varying
with 1/Pe approximately.

We now move on to consider the effect of viscous dissipation. Figure 4.21
and Figure 4.22 are for the case of very large Pe, where the effect of axial
conduction is negligible (and again for the small Da and large Da cases,
respectively). A feature of considerable interest is that even a small amount of
viscous dissipation (nonzero Br) leads to a jump in the fully developed Nu2 to
a value that is then independent of Br, and this effect is especially noticeable
in the case of the small Darcy number. (The jump is not too surprising when
one observes that the change from zero Br to nonzero Br changes Eq. (4.158)
from a homogeneous equation into a nonhomogeneous equation, and this
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FIGURE 4.21
Plots of downstream local Nusselt number versus dimensionless axial coordinate, for the case
of negligible axial conduction (large Péclet number) and for small Darcy number, for various
values of the Brinkman number.

© 2005 by Taylor & Francis Group, LLC



Forced Convection in Porous Media 189

�

N
u 2

10–2 10–1 100 101
0

1

2

3

4

5

6

7

8
Br = –100
Br = –10
Br = 0
Br = 1
Br = 10
Br = 100
Pe = 106

Da = 1

3.860

3.802

FIGURE 4.22
Plots of downstream local Nusselt number versus dimensionless axial coordinate, for the case of
negligible axial conduction (large Péclet number) and for large Darcy number, for various values
of the Brinkman number.

is analogous to changing a free oscillation problem into a forced oscillation
problem. Viscous dissipation provides a heat source distribution that persists
downstream [unlike the heat flux at walls subject to a constant-temperature
boundary condition, which decays downstream] and changes the nature of
the fully developed temperature distribution.) We also see a dramatic differ-
ence between the effect of positive Br and the effect of negative Br. The case
Br > 0 corresponds to incoming fluid being heated at the walls. The viscous
dissipation produces a (generally nonuniform) distribution of positive heat
sources, and this reinforces the heating effect as the fluid moves downstream.
As ξ increases the value of the Nusselt number passes through a minimum.
For very large values of Br the value of Nu changes only slowly with ξ . The
case Br < 0 corresponds to incoming fluid being cooled at the walls, and
this cooling at the walls is opposed by the heating due to viscous dissipation
in the bulk of the fluid. This opposition is particularly dramatic for the case
Br = −1, for which the difference between the wall temperature and the bulk
temperature changes sign at some value of ξ . This means that the Nusselt
number based on that difference becomes quantitatively meaningless, and
for that reason we have not plotted in our figures any curve for that value of
Br. For Br = −10 or less, the plots for Nu2 are regular and exhibit a maximum
value at some value of ξ .

In Figure 4.23 and Figure 4.24 we present companions to Figure 4.21 and
Figure 4.22, for the cases of Pe = 1. When Pe = 1, the effect of axial conduction
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FIGURE 4.23
As for Figure 4.21, but with Pe = 1.
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As for Figure 4.22, but with Pe = 1.
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is more dramatic. It results in a significant increase in the variation of Nu2 as
the flow develops. In particular, it results in Nu2 becoming negative for small
values of ξ when Br is moderately large and negative. In the circumstance of
Figure 4.24 (Pe = 1, Da = 1) the jump in the value of the fully developed
Nusselt number as Br goes from zero to a nonzero value is very small.

The analysis just described has an important limitation. The ansatz assumed
in writing down Eq. (4.163) implies that the temperature at a great distance
downstream is independent of the axial coordinate. This assumption is a
sensible one for a discussion of thermally developing flow. It is also a sensible
assumption to apply at the exit cross-section when using numerical model-
ing. However, it is not a good assumption when considering the limit as the
thermal convection becomes fully developed. In fact, it violates the First Law
of Thermodynamics when the viscous dissipation is not zero. Thus the jump
in the value of the fully developed Nusselt number as Br goes from zero to
a nonzero value should be regarded as an artifact of mathematical model-
ing. Likewise, not much should be read into the fact that the fully developed
Nusselt number for nonzero Br is independent of Pe (compare Figure 4.21
and Figure 4.23 with Figure 4.22 and Figure 4.24).

The foregoing analysis for a parallel-plate channel has been repeated for
the case of a circular tube by Kuznetsov et al. [18].

Nomenclature

An, Bn coefficients
cF Forchheimer coefficient
cP specific heat at constant pressure
Cn coefficients
Da Darcy number, K/H2 for a channel and K/r2

0 for a circular tube
Fr Forchheimer number
G applied pressure gradient (−dp∗/dx∗)
Gn functions
h heat transfer coefficient
H half channel width
I0 modified Bessel function of zero order
I1 modified Bessel function of first order
k fluid thermal conductivity
k mean value of k
k̃ k/k
K permeability
K mean value of K
K̃ K/K
M µeff/µ
Nu local Nusselt number
Nu mean Nusselt number
p∗ pressure
Pe Péclet number
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q′′ wall heat flux
r0 tube radius
Rn eigenfunctions for a circular tube
S (M Da)−1/2

T∗ temperature
T∗IN inlet temperature
T∗m bulk mean temperature
T∗w wall temperature
T̂ (T∗ − T∗w)/(T∗m − T∗w)
u µu∗/GH2 for a channel and µu∗/Gr2

0 for a circular tube
u∗ filtration velocity
û u∗/U∗
U∗ mean velocity
x∗ longitudinal coordinate
x̃ x/Pe
y y∗/H
y∗ transverse coordinate
Yn eigenfunctions for a channel

Greek symbols

β Biot number
εk , εK coefficients
ξ dimensionless coordinate for the layer interface (Section 4.1)
ξ dimensionless axial coordinate (Section 4.2)
η interphase heat exchange parameter
θ

(
T∗ − T∗w

)
/
(
T∗IN − T∗w

)
θm

(
T∗m − T∗w

)
/
(
T∗IN − T∗w

)
λn eigenvalues
µ fluid viscosity
µeff effective viscosity in the Brinkman term
ρ fluid density
φ porosity
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Summary

A review of recent studies on the hydrodynamics and heat-transfer effects
of variable viscosity flows in saturated porous media is presented in the
restricted context of a liquid, whose viscosity variation is strongly depend-
ent on the temperature variation, flowing through porous media bounded
by solid wall(s) on one (flat plate) or two sides (parallel-plates channel).
Section 5.2 on Hydrodynamics unravels the effects of temperature-dependent
viscosity on the Hazen–Dupuit–Darcy (HDD) model, and on the departure
from Darcy flow. This section also presents the need for fundamental modi-
fications necessary to correct both the viscous- and form-drag effects, leading
to the introduction of the Modified-HDD (M-HDD) model. Also, the inlet
temperature effects on the variable viscosity-affected transition parameter
are explained in detail. Influence of variable viscosity on the Nusselt number,
defined suitably for the chosen porous medium configuration, the power gain
in the pump used to maintain flow in a heated porous configuration, and other
aspects related to heat-transfer enhancements, are reviewed in Section 5.3.
Substantial effects on the local velocity variation but surprisingly small effects
on the heat transfer (Nusselt numbers) are the noteworthy outcomes of previ-
ous studies. Section 5.4 reviews the analytical efforts to address the problem
of both hydrodynamics and heat transfer in porous medium channels with
temperature-dependent viscosity flows. Before concluding, a brief section is
devoted on the experimental validation of the proposed models.

5.1 Introduction

What are the hydrodynamics and heat-transfer effects of variable viscosity
flows in saturated porous media? In this chapter, this question is answered
in the restricted context of a liquid, whose viscosity variation is strongly
dependent on the temperature variation, flowing through porous media
bounded by solid wall(s) on one (flat plate, Figure 5.1[a]) or two sides (parallel-
plates channel, Figure 5.1[b]). The pressure-dependency of a liquid’s viscosity
is usually negligible and is not considered here.

The chapter is divided into three major sections. Section 5.2 enunciates
recent studies on the effects of temperature-dependent viscosity on the
Hazen–Dupuit–Darcy (HDD) model (also referred to as the Darcy–
Forchheimer model), and on the departure from Darcy flow. Here the review
of porous medium channel flows with temperature-dependent viscosity is
done in line with the historical development of the present-day HDD model,
from Darcy’s experiments (1856) to the ad hoc generalization to three dimen-
sions by Stanek and Szekely (1973) — which were all done essentially, with
porous channels. Section 5.3, titled Heat Transfer reports on the effects of
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FIGURE 5.1
Schematic of (a) flat-plate bounded porous medium flow; (b) parallel-plates channel sandwiching
porous medium flows.

temperature-dependent viscosity on the Nusselt number suitably defined
for flat-plates and parallel-plates channel, bounding porous medium flows.
Section 5.4 explains the analytical perturbation models addressing the prob-
lem of both hydrodynamics and heat transfer in porous medium channels
with temperature-dependent viscosity flows. Before the conclusion, there is
a brief section on the experimental validation of the proposed models.

5.2 Hydrodynamics

5.2.1 HDD Model and Temperature-Dependent Viscosity

The presently accepted global HDD model (see Kaviany, 1991; Nield and
Bejan, 1992 and 1999) normally used to predict the global pressure-drop across
the channel of Figure 5.1(b), if it were to be filled with a porous medium is

�P
L
= µ(T)

K0
U + C0ρU2 (5.1)

The subscript “0” in K and C signifies that these properties of the porous
medium are obtained from the results of isothermal flow experiments, where
the fluid viscosity is uniform throughout the channel, µ(T) = µ(Tin) = µin.
Observe that the choice of Tin value is irrelevant as long as the fluid is neither
heated nor cooled during the flow experiment.

To test the validity of the HDD model, Eq. (5.1), as such, in capturing the
temperature-dependent viscosity effects, we can perform a forced convec-
tion experiment through the channel shown in Figure 5.1(b), sandwiching a
low-permeability, high form-coefficient porous medium. Forced convection
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FIGURE 5.2
Thermo-physical properties of PAO with temperature, from Chevron (1981): y-axis numbers
represent values, which are normalized with respective properties at 20◦C.

of a fluid with temperature-dependent viscosity µ(T), entering the channel
with uniform temperature T0 and uniform longitudinal speed U0, is achieved
through isoflux heating from the walls. The convecting fluid with strong
temperature-dependent viscosity is chosen to be the organic liquid PAO,
whose properties are given in Figure 5.2. In addition, as required by Eq. (5.1),
the permeability and form coefficient of the porous medium filling the channel
is assumed to be known. These values are obtained by using the same Eq. (5.1)
but with pressure-drop versus velocity data obtained from isothermal experi-
ments in which case, the viscosity is a constant. We use here and in the rest
of the chapter, K0 = 4.1× 10−10 m2, C0 = 1.2× 105 m−1.

Results from the forced convection “numerical” experiment with this
coolant at Tin = 7◦C, flowing through the porous channel of Figure 5.1(b), are
shown in Figure 5.3, for the heat flux q′′ = 0.01 MW/m2. The performance
of Eq. (5.1) in predicting these experimental results, for what is essentially a
nonisothermal flow, is also shown in Figure 5.3. The relative absolute error,
|(�P/L)num − (�P/L)eq.(5.1)|/(�P/L)num, between the experimental data and
the various predictions from Eq. (5.1) is also shown as in the inset.

All the results obtained by using Eq. (5.1), with an averaged viscosity
(obtained by various viscosity evaluation options involving the bulk
temperature of the channel — see Narasimhan and Lage, 2001a, for details),
evidently fail to predict the experimental results. Hence a suitable modi-
fication to the HDD model, Eq. (5.1), is required for nonisothermal porous
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FIGURE 5.3
Longitudinal pressure-drop versus cross-section averaged velocity: comparison of numerical
results with predictions by Eq. (5.1) for various viscosity alternatives.

medium flow situations to include the variable viscosity effects in the accurate
determination of the global pressure-drop.

5.2.2 The HDD Model and Velocity Profiles for Temperature-Dependent
Viscosity

To better understand why the HDD model, Eq. (5.1), fails for temperature-
dependent viscosity, let us retrace its evolution from the differential
counterpart and in the process, try to suggest modification of Eq. (5.1)
that incorporates the temperature-dependent viscosity effects into it. The
general macroscopic differential mass, momentum, and energy conservation
statements for the porous channel flow of Figure 5.2 are, respectively,

∇ · u = 0 (5.2)

0 = −∇p−
[
µ(T)

K0

]
u− ρC0|u|u (5.3)

ρcpu · ∇T = ke∇2T (5.4)

The absence of the convective inertia and Brinkman terms in the momentum
equation, Eq. (5.3), is in accordance with the low-permeability (K0) and high
form-coefficient (C0) porous medium assumption made earlier.
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For isothermal porous medium channel flows, the velocity profile (local
velocity variation along y-direction, u(y), in Figure 5.1[b]) mimics a slug flow
profile. Hence, barring the entrance effects that normally subside well within
a short channel length, the local velocity u(y) everywhere inside the channel
is identical to U, the channel cross-section averaged longitudinal velocity.
This fact allows us to integrate the differential HDD model, Eq. (5.3), easily
for the entire channel, resulting in the global HDD model, Eq. (5.1). However,
while doing so, we have assumed the local viscosity to be uniform everywhere
inside the channel. In other words, the viscosity in Eqs. (5.1) and (5.3) are the
same, evaluated at a suitable reference temperature, usually the inlet temper-
ature. However, when the channel is heated/cooled, the spatial variation of
fluid viscosity distribution distorts the velocity profile in the x-direction as the
fluid flows along the channel, thus affecting the energy transport equation.
The resulting altered temperature profile from the energy equation affects
in turn, the local fluid viscosity, owing to the coupling between energy and
momentum transport equations.

Using PAO as the convecting liquid through the channel, upon heating, the
viscosity of PAO flowing near the heated channel wall will reduce markedly
than the centerline (see Figure 5.4). For holding the same pressure-drop across
the heated channel, since the viscosity is reduced everywhere (the average
viscosity of the heated channel is less than the isothermal constant viscosity),
we can expect an increase in the average velocity of the channel (as the local
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FIGURE 5.4
Channel velocity profiles for several heat fluxes (q′′ values in MW/m2): (a) low (U0 =
1× 10−3 m/sec) and (b) high (U0 = 1× 10−2 m/sec) velocities.
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velocity would have increased everywhere). In other words, for the same
longitudinal pressure-drop, we expect an increased discharge for viscosity
reduction.

In the numerical experiment, constant average velocity (same mass flow
rate) is imposed (see Narasimhan and Lage, 2001a), and hence the velocity
profile behaves in the fashion shown in Figure 5.4 (i.e., vary about a mean
velocity value), with a consequent reduction in the longitudinal pressure-
drop. Notice also the stretch and shrink in the velocity profile, along the length
of the channel. As the fluid progressively gets hotter along the length of the
channel, the viscosity reduces and hence velocity profiles distort (from slug
flow) continuously with a resulting stretch in the distorted velocity profiles.
However, when the local viscosity has reduced to a very low (limiting) value,
further heating would result in the complete obliteration of the global viscous-
drag and Eq. (5.1) will be governed more by the form-drag term alone. These
result in a shrink in the profile, an indication of the approach back to the slug-
flow profile. Notice, this effect can be achieved either by heating sufficiently
a local cross-section in the channel or by having a sufficiently long channel
heated with a constant heat flux, with the stretch and shrink resulting along
the channel. The velocity profiles in Figure 5.4 amply portray both of these
effects (see also Narasimhan et al., 2001b).

5.2.3 Limiting Case of the HDD Model

Notice in Eq. (5.1), viscosity is present only in the linear term. With the forced
convection experiments that led to Figure 5.4, for further higher heating, we
would expect the viscosity variation to affect only this linear viscous-drag
term. Therefore, for liquids like PAO, we may infer, when q′′ → ∞, viscosity
µ→ 0 and hence the viscous-drag term in Eq. (5.1) may be neglected to read

�P
L
= ρC0U2 (5.5)

Equation (5.5) is for a limiting case. The physical situation akin to this model is
a flow with small, nonzero positive local viscosity that renders, in Eq. (5.1), the
global viscous-drag term negligible in comparison with the global form-drag.
It is important to remember that when viscosity is zero (µ = 0), there is no
drag on the flow because of the porous medium. The fluid is ideal, and hence
the flow is inviscid (recall, inviscid flow requires (µ∇2u) = 0; this can happen
even for µ �= 0, with ∇2u = 0) and should not experience any drag, form or
otherwise.

5.2.4 Modified-HDD Model for Temperature-Dependent Viscosity Flows

Obviously, the local viscous-drag term, second term in the RHS of Eq. (5.3),
is affected when the fluid is heated and the velocity profile is no longer flat.
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Moreover, the local velocity influenced by the local viscosity alters also the
local form drag as it depends on the local velocity. Particularly, when u is
only a function of y, the unidirectional differential equation (5.3), written with
uniform viscous- and form-coefficients α0 = µ0/K0 and β0 = ρC0, becomes

−∂p(y)
∂x
=
(
µ(T)
µ0

)
α0u(y)+ β0u(y)2 (5.6)

with µ0 being the fluid dynamic viscosity evaluated at the inlet temperature
T0. An algebraic representation is obtained by the cross-section averaging of
Eq. (5.6), that is,(

1
H

∫ H

0
−∂p(y)

∂x
dy

)
= α0

(
1
H

∫ H

0

µ(T)
µ0

u(y)dy

)
+ β0

(
1
H

∫ H

0
u(y)2 dy

)
(5.7)

The first term of Eq. (5.7) can be replaced by the cross-section averaged
quantity ∂P/∂x. In the second term, since µ(T) is also a function of y, similar
averaging is not that simple while for the third term it cannot be done as the
integral of u(y)2 does not equal HU2 when u is function of y. This last observa-
tion is interesting because, it yields the quadratic term indirectly dependent
on the fluid viscosity, something not anticipated by the form of Eq. (5.1).

Proceeding to obtain an algebraic representation of Eq. (5.6) we now average
Eq. (5.7) along the channel length L to obtain

1
L

∫ L

0
−∂P
∂x

dx = α0
1
L

∫ L

0

(
1
H

∫ H

0

µ(T)
µ0

u(y)dy

)
dx

+ β0
1
L

∫ L

0

(
1
H

∫ H

0
u(y)2 dy

)
dx (5.8)

Integrating the first term of Eq. (5.8) leads to �P/L. The second and third
integrals cannot be resolved because the integrands are functions of x, and
we cannot resolve the integrals unless we know the temperature and velocity
variations in x and y. Equation (5.8) has to be suitably altered to fulfill the
experimental need for an algebraic representation of the pressure-drop versus
the fluid speed in terms of global, cross-section averaged quantities, which
can be easily measured in experiments. This is done by the introduction of
two new coefficients, namely ζµ and ζC, defined as

ζµ = (1/L)
∫ L

0
(
(1/H)

∫ H
0 (µ(T)/µ0)u(y)dy

)
dx

U

ζC = (1/L)
∫ L

0
(
(1/H)

∫ H
0 u(y)2 dy

)
dx

U2

(5.9)
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allowing us to rewrite Eq. (5.8) as

�P
L
= ζµ

(
µ0

K0

)
U + ζC(ρC0)U2 (5.10)

The algebraic model presented in Eq. (5.10) retains the same form of Eq. (5.1)
describing the transport of fluids with temperature-dependent viscosity
through porous media. The coefficients ζµ and ζC represent the lumped
local effect of temperature-dependent viscosity and the effect of viscosity
on the fluid velocity profile, respectively. Obviously, for uniform viscosity
(no heating), ζµ= ζC= 1 and Eq. (5.1) is recovered. Comparing Eq. (5.10)
with Eq. (5.1), it is apparent that the inappropriateness of the global HDD
model, Eq. (5.1), is because it is unable to capture the indirect viscos-
ity effect on the global form-drag term, a term originally believed to be
viscosity-independent.

In Figure 5.5, the M-HDD model, Eq. (5.10), is tested using the numer-
ical results for various heat flux values. In the first situation envisioned, the
form-coefficient correcting factor ζC equals unity, and curve-fit the numer-
ical results with the corresponding Eq. (5.10) determining the value of ζµ
that yields the best curve-fit. The result is presented as the dashed curves in
Figure 5.5. This first trial is done to isolate the temperature effect on the fluid
viscosity (the effect responsible for ζµ). Then, we consider a curve-fit to the
numerical results allowing both ζµ and ζC to vary. The results are also shown
in Figure 5.5 as the continuous-line curves. It is evident from Figure 5.5 that
model (5.10), with ζµ and ζC different from unity, satisfactorily correlates the
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FIGURE 5.5
Verification of one (ζµ, ζC = 1) and two (ζµ, ζC) coefficients model, Eq. (2.22).
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numerical results. Setting ζC = 1, does not yield good curve-fitting result.
Moreover, the curve-fit using ζC = 1 deteriorates when the heat flux is
between 0.01 and 1.0 MW/m2. The maximum deviation is found to be as
high as 20% when using the model with ζC = 1, and only 3.8% when using ζµ
and ζC (see Narasimhan and Lage, 2001a, for more details).

5.2.5 M-HDD Model Coefficients

Figure 5.6 presents ζµ and ζC, for several heat flux values, leading to the best
curve-fit results of Figure 5.5. Observe by following the circles, for increasing
heat flux, ζµ reaches zero asymptotically, beyond q′′ ∼ 0.5 MW/m2 (circles).
The region beyond this heat flux values, where ζµ ∼ 0, is referred as the null
global viscous-drag regime, as shown in Figure 5.6. As it is difficult to precisely
identify the switch by ζµ, from nonzero (positive) to zero value, it is presented
as a transition region. Based on these results, predictive empirical relations
for correcting the viscous- and form-drag terms, complementing the algebraic
global (M-HDD) model, were obtained by Narasimhan and Lage (2001a), as
functions of the surface heat flux,

ζµ =
[

1−
(

Q′′

1+Q′′

)0.325
](

1
1+Q′′

)18.2

ζC = 2+Q′′0.11 − ζ−0.06
µ (5.11)
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ζµ and ζC for several heat fluxes.

© 2005 by Taylor & Francis Group, LLC



Variable Viscosity Forced Convection 205

with the nondimensional Q′′ given by

Q′′ = q′′

(ke/K0C0)µ0

∣∣∣∣dµdT

∣∣∣∣
T0

(5.12)

Notice in Eq. (5.12) that the viscosity,µ0, and its derivative are evaluated at the
inlet temperature T0. In other words, the parameters necessary to estimate
the dimensionless group in Eq. (5.11), using Eq. (5.12), are already known,
once we perform the isothermal pressure-drop experiment to determine K0
and C0. Therefore, for a heat flux input q′′, by using Eqs. (5.11) and (5.12), we
can estimate the viscosity variation effects from the M-HDD model, Eq. (5.10),
on the total pressure-drop along the channel.

5.2.6 Hydrodynamics of Temperature-Dependent Viscosity Channel Flows

A summary of the fundamental implications of temperature-dependent
viscosity effects on the global porous media flow models is presented in
Figure 5.7. The uppermost curve is for a nonheating (uniform viscosity)
configuration, where the HDD model, Eq. (5.1), is fully valid. When the heat
flux is progressively increased (following the block arrow) we immediately
get into a viscous-drag and form-drag regime. Here, due to the nonuniformity
of the velocity profile (a result of spatially varying local viscosity), both the
global viscous- and form-drag terms are affected. That is, the coefficients ζµ
and ζC of the M-HDD model, Eq. (5.10), take nonzero positive values (ζµ < 1
and ζC > 1).
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Summary of the hydrodynamics of temperature-dependent viscosity flows through heated
porous medium channels.
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This regime is then followed by a transition beyond which a form-drag
regime is achieved where only the form-drag term is affected by the viscosity
variation. Notice the interesting aspect of this transition, which is similar but
not identical to the transition from Darcy flow achieved even in unheated
flows (constant viscosity) by merely increasing the flow speed. Both these
transitions make the flow form-drag dominant, that is, the pressure-drop is
balanced (more) by global form-drag. However, the transition by heating
makes it even more so, because it almost entirely nullifies the viscous-drag
term. Recall, in the constant viscosity case, we simply neglect the viscous-
drag term (but is always present) in comparison with the form-drag term that
gains magnitude for higher velocities.

Moreover, transition by heating can happen for a particular velocity (notice
in Figure 5.7, the curve drops vertically) even well within the Darcy flow
limit of the constant viscosity flow. This suggests that a Darcy flow can be
made to become form-drag dominant at practically any speed, by merely
sufficiently heating the fluid. This gives an interesting new perspective on
the departure from Darcy flow in light of temperature-dependent viscosity
effects, discussed in Section 5.2.7.

Proceeding with Figure 5.7, finally, when the heat flux is large enough, the
viscosity effect on the form drag becomes negligible and the fluid velocity
profile becomes uniform again. At this limit, the flow becomes essentially
independent of viscosity effects and the plot of global pressure-drop versus
average fluid speed reaches a minimum. Further heating will have no hydro-
dynamic effect through viscosity. This limit (at which ζC = 1 and ζµ = 0) is
termed the heating form-drag limit, as the global form-drag becomes independ-
ent of the viscosity effect. For this limiting case, the longitudinal pressure-drop
will be equal to the form drag when the channel is not heated. In other
words, this limit can be predicted by the simple equation, Eq. (5.5). Notice
that this result, as shown earlier, can be obtained from the HDD model,
Eq. (5.1), itself. Moreover, this result is fundamental in nature — true for
all fluids with viscosity inversely dependent on temperature — and of great
practical importance, as it sets an upper bound for the magnitude of the
reduction in the global pressure-drop achievable by heating a fluid with
temperature-dependent viscosity.

The last assertion, Eq. (5.5), sets a limitation on the analogy between Hagen–
Poiseuille flow through capillary beds and flow through porous media, for
flows with temperature-dependent viscosity. In Hagen–Poiseuille flow, the
pressure-drop decreases without limit, with an increase in the heat flux. In
porous medium flow, the decrease in pressure-drop by increasing the heat
flux is limited by the ever-existing pressure-drop caused by the form drag.

5.2.7 Transition from Darcy Flow

For an isothermal flow through the porous channel of Figure 5.1, with DC0 =
ρC0U2 representing the global form-drag and Dµ0 = µ0U/K0, the global
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viscous-drag (with viscosity evaluated at the inlet fluid temperature, that is,
µ0 = µ(T0 = Tin)) acting within the porous medium, the global HDD model,
Eq. (5.1), reads

�P
L

∣∣∣∣
0
= µ(Tin)

K0
U + ρC0U2 = Dµ0 +DC0 (5.13)

Here �P/L|0 refers to the pressure-drop across the channel for isothermal
flows.

It is widely understood that the flow through porous media is characterized
by two distinct regimes (see Dullien [1979] and Nield and Bejan [1992] for
further details). The transition from linear Darcy flow (i.e., �P/L|0 ∼ Dµ0 ) to
the nonlinear flow (i.e., �P/L|0 ∼ DC0 ), is estimated using the parameter λ,
the ratio of global form-drag and global viscous-drag forces along a porous
channel with uniform cross-section, defined using scaling arguments in Lage
(1998). It is given by

λ = form drag
viscous drag

= DC0

Dµ0

=
(
ρC0K0

µ0

)
U (5.14)

where K0 and C0 are the permeability and form coefficient of the porous
medium obtained from isothermal experiments and U is the cross-section
averaged Darcy (or seepage) fluid speed. The parameter λ should not be
confused with the Reynolds number, as the latter is dependent upon a single
length scale independent of the hydraulic properties (K0 and C0) of the porous
medium.

From Eqs. (5.13) and (5.14), when λ > 1, the flow is said to have departed
from Darcy flow, into the quadratic-flow regime. The tacit assumption behind
the use of λparameter for establishing the transition criterion is that the global
HDD model, Eq. (5.13), is fundamentally valid for the flow configuration
considered.

The increase in λ is prompted by the increase in U, the flow velocity.
However, λ can be increased by another means as well. Decreasing the
viscosity by heating the channel flow would result in the increase of λ for
a liquid whose viscosity decreases with increasing temperature. However,
as seen in Section 5.2.6, in this situation the HDD model is no longer valid.
Hence, it is imperative we study the transition from Darcy flow, utilizing
the M-HDD model, Eq. (5.10). Using the drag terminology introduced earlier
with Eq. (5.13), the M-HDD model reads

�P
L
= ζµ

(
µ0

K0

)
U + ζC(ρC0)U2 = ζµDµ0 + ζCDC0 = Dµ +DC (5.15)

The global pressure-drop results of Eqs. (5.13) and (5.15) are for the constant
(and uniform) viscosity and variable viscosity cases, respectively. We can
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define a nondimensional pressure-drop through the ratio between them,

� = (�P/L)
(�P/L)|0 =

Dµ

(Dµ0 +DC0)
+ DC

(Dµ0 +DC0)
= �µ +�C (5.16)

This nondimensional pressure-drop quintessentially highlights the viscosity
variation effect, as it compares the pressure-drop obtained by considering
viscosity variation, Eq. (5.15), to that of uniform viscosity, Eq. (5.13). For the
case of a fluid flowing with uniform viscosity then ζµ = ζC = 1, and, from
Eq. (5.15), �P/L equals �P/L|0, thus yielding � = 1 from Eq. (5.16). Using
Eqs. (5.14) to (5.16), we can recast Eqs. (5.13) and (5.15), respectively, as

�0 = 1
(1+ λ) +

λ

(1+ λ) = 1 (5.17)

and

� = ζµ
(

1
1+ λ

)
+ ζC

(
λ

1+ λ
)

(5.18)

Figure 5.8 displays the viscosity effects on the transition with increasing
heat flux (for 0 and 0.10 MW/m2), for an inlet temperature of 21◦C. The con-
tinuous line that starts from close to zero on the y-axis and increases for
higher λ values, represent the corresponding global form-drag value (�C0).
This pair portrays the gaining dominance of the nonlinear, form-drag effect as
λ increases. Furthermore, the curves cross for λ = 1(λT), marked in Figure 5.8
with a square, representing the equivalence in strength of the drags. Beyond
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Shift due to heating (q′′ = 0.01 MW/m2) in the transition point for Tin = 21◦C.
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this point (i.e., for all higher velocities) the global form-drag predominates.
For any velocity (λ), the sum of these corresponding drag values (�µ0 +�C0)

will give the total nondimensional pressure-drop experienced by the flow
across the channel (� = 1) for the no heating, constant viscosity case, rep-
resented by the horizontal continuous thick line at unity, in the y-axis. This
result, a direct consequence of the scaling used in Eq. (5.17), clearly suggests
that there is no viscosity variation effect on the total pressure-drop.

The dash-lined curves represent cases for q′′ = 0.1 MW/m2. For heating
with q′′ = 0.1 MW/m2, (µ = µ(T)), the global viscous-drag reduces from its
no heating value (continuous curve, �µ0 ) to the dashed curve �µ0.10 , and a
corresponding increase takes place in the form drag (compare curve �C0 to
�C0.10 ). Similar to the explanation given for the constant viscosity case, in the
previous paragraph, the sum of the viscosity influenced drags (�µ0.10+�C0.10)

give the total pressure-drop (�0.10 < 1), represented by the dash-lined curve
�0.10 just below the top horizontal line, marked with µ = µ(T). In other
words, following the vertical block arrows, the net result of variable viscosity
is to reduce the pressure-drop, as expected.

Some important observations that are relevant to the above events of heating
with q′′ = 0.1 MW/m2 are: (1) in contrast to the global form-drag, the global
viscous-drag starts reducing immediately, even for low velocities; (2) the
global form-drag slowly increases; and (3) the viscosity influenced drag curve
pairs meet at an earlier point (in terms of λ) when compared to the constant
viscosity case (λ = 1). Specific to the results displayed in Figure 5.8, the
location of the transition for q′′ = 0.10 MW/m2 happens around λ ∼ 0.57.

Clearly, observation (1) is a direct consequence of the presence of the vis-
cosity in the global viscous-drag term. Since it is getting reduced because of
heating, the global viscous-drag starts to decrease immediately. The increase
in the form drag, as noted in observation (2), is unexpected. It is caused
primarily because of the nonuniformity of the velocity profile, a consequence
of the variation in the local viscosity everywhere inside the channel. These
two observations are promptly captured in the correction coefficients of the
M-HDD model, Eq. (5.15) (i.e., ζµ < 1 and ζC > 1).

In observation (3), the shift in the transition point, is of particular interest to
us. It results as a combination of the two earlier observations of the direct influ-
ence of viscosity reduction with temperature and of the change in the global
form-drag. It is worthwhile at this point to note that the use of a Reynolds
number, as explained in connection with Eq. (5.14), will invariably fail to
provide us with correct information about the transition point. The transition
point for fluids with viscosity decreasing with temperature occurs at lesser
and lesser velocity values as the heat flux increases. As the local viscosity
decreases further, for sufficiently higher heat fluxes, the effect of the global
viscous-drag would become so negligible that the flow practically is always
form-drag dominant.

In general, for a particular heat flux crossing the channel wall, for a chosen
velocity (λ, in the figure) the fluid can be in linear (viscous-drag dominant) or
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nonlinear (form-drag dominant) regime based on the fluid inlet temperature
(see Narasimhan and Lage, 2002). Further, as the heat flux increases, the
transition, for fluids with viscosity decreasing with temperature, occurs at
lesser and lesser velocity values. As the local viscosity decreases further, for
sufficiently higher heat fluxes, the effect of the global viscous-drag would
become so negligible that the flow practically is always form-drag dominant.
This conclusion is particularly useful from an engineering standpoint.

5.2.8 Prediction of Transition in Temperature-Dependent Viscosity Flows

From the definition given in Eq. (5.14), it is clear that λ assumes the validity
of the HDD model, which in turn requires uniform viscosity flow. However,
when the HDD model is superseded by the more general M-HDD model,
Eq. (5.15), which accounts for temperature-dependent viscosity effects, it fol-
lows that the transition point happens only when the global drag terms of
Eq. (5.15) are comparable. In other words, we must use the balance of the two
drag terms on the RHS of Eq. (5.15) instead of Eq. (5.13). Doing so

ζµDµ0 ∼ ζCDC0 (5.19)

would result in

λT |µ(T) = ζµ

ζC
(5.20)

Equation (5.20) gives the λT |µ(T), beyond which the flow becomes form-
drag dominant for flows with temperature-dependent viscosity effects. Since
ζµ < 1 and ζC > 1 always (see Eqs. [5.11] and [5.12]), the transition point for
temperature-dependent viscosity flows, as predicted by Eq. (5.20), is always
less than that for the constant viscosity case (i.e., λT = 1).

In addition, for uniform viscosity, that is, when we do not heat the channel
(q′′ = 0), ζµ and ζC are identically equal to unity, as seen earlier. This makes the
prediction of Eq. (5.20) consistent with the previous result, that is, λT |µ(T) =
λT = 1. Recall that the previous result (of λ ∼ 1 for transition to begin) is
obtained by using the equivalence of drags in the HDD model, Eq. (5.13).

Figure 5.9 depicts the variation of λT |µ(T) with heat flux, for different inlet
temperatures. The curves show how for increasing heat flux the transition
point is shifted (from 1, for constant viscosity — no heating — case) to values
less than 1, when temperature-dependent viscosity effects are included. It
is worth noting that irrespective of the inlet temperature of the flow, if we
assume viscosity is constant, λT |µ(T) is always equal to unity. Immaterial of
the amount of heating, once the properties (here, viscosity) are assumed con-
stant, the HDD model (momentum equation) gets de-coupled from the energy
transport equation. However, for heating, with a particular heat flux, we can
observe from Figure 5.9 that the flow with Tin = 7◦C becomes form-drag dom-
inant earlier than for other higher inlet temperatures. In addition, the flow
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FIGURE 5.9
Transition parameter versus heat flux.

with Tin = 7◦C asymptotically reaches zero for q′′>1.0 MW/m2. This means
temperature-dependent viscosity effects on the viscous-drag term makes it
practically equal to zero (i.e., in Eq. [5.20], λT |µ(T) → 0 as the numerator
ζµ→ 0). This makes the flow purely form-drag dependent (notice the use of
the word "dependent" as against the original "dominant") for all higher heat
fluxes. Moreover, this assertion, as shown in the figure, is theoretically true
for q′′ → ∞ immaterial of the inlet temperature, once we assume throughout
the heating the flow remains in the liquid phase.

Further, although the temperature-dependent viscosity effect cannot affect
the global viscous-drag term anymore, it is not restricted in influencing the
global form-drag. The global form-drag can still be influenced by the velo-
city profile variation caused by the local viscosity variation (i.e., ζC can
still be a nonzero positive number). This effect, as we saw in the earlier
sections, is the main claim of the M-HDD model. It can be viewed as a funda-
mental signature to the physics of flow through porous media, by fluids with
temperature-dependent viscosity.

5.3 Heat Transfer

5.3.1 Nusselt Number

Reconsider the problem of PAO, with temperature-dependent viscosityµ(T),
flowing through a channel of length L formed by two parallel isoflux sur-
faces, spaced by a distance 2H (or D), and filled with a low-permeability
porous medium, as was shown in Figure 5.1(b). PAO enters the channel with

© 2005 by Taylor & Francis Group, LLC



212 Arunn Narasimhan and José L. Lage

uniform temperature T0 and uniform longitudinal speed U0. We define two
nondimensional heat-transfer coefficients, one the local (can vary along the
channel) Nu, and the other, NuL, as an overall heat-transfer coefficient that
represents the heat transfer in the entire channel, respectively,

Nu = 2Hq′′

ke[Tw(x)− Tb(x)] (5.21)

NuL = 2Hq′′

ke

[
Tw − Tbin

] (5.22)

In Eqs. (5.21) and (5.22), q′′ is the constant heat flux from the surfaces of the
channel (Figure 5.1[b]); Tw in Eq. (5.22) is the wall temperature averaged over
the length L of the channel and ke is the effective thermal conductivity, which
based on the chosen porous medium, is suitably evaluated using one of the
existing models (see Kaviany, 1991).

For fully developed (see discussion of Nield and Bejan, 1992, p. 57), Darcy
flow with constant viscosity, the Nusselt number in Eq. (5.21) can be obtained
from Rohsenow and Hartnett (1973) for parallel-plates porous channel as
equal to 4.93, when the wall temperature Tw is constant and equal to 6, when
the heat flux q′′ is constant. Even though it is commonly used, observe that
the local Nusselt number, Nu, Eq. (5.21), is defined in terms of the local
wall temperature and the local fluid bulk temperature — a value, as poin-
ted out earlier, difficult to measure accurately. By implicitly assuming fully
developed flow, and applying the First Law of Thermodynamics for the chan-
nel of Figure 5.1(b) to find the channel length averaged bulk temperature, we
can find a useful relation between Nu and NuL as

NuL = 1
(1/Nu)+ (L/4H2λPre)

(5.23)

5.3.2 Temperature Profiles for µ(T ) in Porous Media

Before proceeding to check how the Nusselt numbers defined in Section 5.3.1
behave for temperature-dependent viscosity flows, we will first study the
temperature profiles. We discussed earlier, in Section 5.2.3, the effect of
increasing the wall heat flux on the local (at mid-channel, i.e., x = L/2, and
at the end of the heated section of the channel, i.e., x = L) longitudinal fluid
speed, u, profile, for a chosen minimum and maximum inlet fluid speed (see
Figure 5.4). The temperature profiles corresponding to these velocity profiles
are shown in Figure 5.10.

Interestingly, for heating the PAO flow, Figure 5.10 reveals a very modest
effect of temperature-dependent viscosity on the temperature distribution
along the channel, even though the velocity profile is dramatically altered
as shown in Figure 5.4. In fact, the shapes of the fluid temperature profiles
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FIGURE 5.10
Channel temperature profiles for several heat fluxes (q′′ values in MW/m2): (a) low (U0 =
1× 10−3 m/sec) and (b) high (U0 = 1× 10−2 m/sec) velocities.

obtained by heating the fluid with uniform viscosity (shown with dashed line,
for µ = µ0) are preserved along the channel. Particularly in Figure 5.10(a),
deviations from the no heating results are observable only when the wall
heat flux equals 1.0 MW/m2. Results for the maximum inlet fluid speed,
Figure 5.10(b), show a slower increase of the fluid temperature along the
channel, than the temperature profile for the uniform viscosity case. This
effect is apparent at wall heat flux values of 0.1 MW/m2 or higher.

When combined with the velocity profiles of Figure 5.4, we can infer more
on the stretch and shrink effect discussed in Section 5.2.3. Recall that the inlet
velocity profile remains unchanged (slug-flow profile) throughout the entire
channel when the viscosity is assumed uniform and equal to µ0. Even in this
case of uniform viscosity, the temperature of the channel will vary because of
forced convection. The higher temperature can be verified in Figure 5.10(a)
and (b), when the fluid temperature near the center of the channel is, in most
cases, in fact higher than the inlet fluid temperature (T0 = Tin = 21◦C).

However, the increase in the fluid velocity near the heated surface (at y = H,
in Figure 5.4), caused by the increase in the fluid temperature and correspond-
ing decrease in the viscosity, is compensated by a corresponding decrease in
the velocity near the center of the channel (at y = 0). Because the fluid is
convecting (being heated) over the entire cross-section of the channel, we
might expect the resulting viscosity decrease to cause an increase in the fluid
velocity, everywhere. However, this would violate the conservation of mass
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principle. A consequence of this cross-section mass-flow conservation, which
must be satisfied along the channel, is observed in Figure 5.4 as a decrease in
velocity near the center of the channel, even when the fluid is heated in this
region.

5.3.3 Nusselt Number and µ(T ) in Porous Media

Figure 5.11 shows the local Nusselt number, Nu, calculated for the max-
imum inlet fluid speed (U = 1 × 10−2 m/sec). It shows a very small effect
of temperature-dependent viscosity, with the effect pronounced only when
the heat flux is high (q′′ = 1.0 MW/m2), and only near the entrance of the
channel. By comparing Figure 5.11 (for q′′ = 1.0 MW/m2) and Figure 5.4 (exit
profile, for q′′ = 1.0 MW/m2)we can infer that the local Nusselt number, Nu,
is insensitive to the local velocity profile. Even though the velocity profile is
not yet fully developed (not slug, see Figure 5.4) the local Nusselt number has
already achieved almost the value predicted for the slug-flow configuration
(i.e., Nu = 6) of a fluid with uniform viscosity.

For increasing heat flux, there will be a stronger variation on the viscosity
value along the channel. With minimum inlet fluid speed, this viscosity vari-
ation will be even stronger (as the fluid resides more inside the channel to get
its viscosity affected by the heat seepage), a result of the relatively weak con-
vection (heat transport, as against heat storage) effect. This aspect influences
the heat-transfer process, as it induces upstream conduction. The fluid flow
being weak allows the fluid temperature near the inlet to change drastically.

As the fluid temperature just outside the inlet (i.e., about to enter the
channel) is a constant, a large temperature gradient appears near the inlet
boundary. Hence, heat energy can be transferred by conduction out of the
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FIGURE 5.11
Evolution of Nu along the length (L) of the channel for Umax = 10−2 m/sec.
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channel through the inlet boundary. This phenomenon, termed back-diffusion,
has been observed experimentally and discussed in detail in Porneala (1998).
It is nevertheless, independent of the fluid having a temperature-dependent
viscosity. One particular effect of back-diffusion is the reduction of the local
temperature difference between the wall-temperature and bulk-temperature,
causing the local Nusselt number, Eq. (5.21), to appear higher than normal.
This is seen in Figure 5.12, for q′′ = 0.01 MW/m2. As the heat flux increases, the
back-diffusion effect becomes relatively weaker because the variation in the
bulk fluid temperature (from channel inlet to outlet) becomes stronger. This
also is captured in Figure 5.12, for q′′ = 1.0 MW/m2. Observe in this case that
the local Nusselt number tends to the known value, Nu = 6, which is valid
for fully developed profile, Darcy flow, and uniform properties, as stated in
Section 5.3.2.

Figure 5.13 presents NuL, defined in Eq. (5.23). The overall effect of
temperature-dependent viscosity is to increase the surface-averaged heat
transfer by as much as 10% when compared with the Nusselt number obtained
by heating a fluid with uniform viscosity. A further increase in the wall heat
flux would decrease NuL towards the value obtained for the uniform vis-
cosity case. From Eq. (5.23), we can infer that when 4H2λPre � 6L, NuL
tends to the uniform (fully developed) value of the local Nusselt number,
that is, Nu = 6. Evaluating PAO (fluid used) properties at 21◦C and consid-
ering the channel geometry (L = 1 m; H = 10 cm) that is used to generate
Figure 5.13, this requirement translates into: λ � 0.18. This is confirmed by
the results shown in Figure 5.13. Included in Figure 5.13 are results using
Eq. (5.23) with Nu = 6, the NuL for fully developed flow. The deviation
of the numerical results when λ increases is due to the longer developing
length necessary to achieve fully developed flow (see Narasimhan and Lage,
2001d).
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Ling and Dybbs (1987, 1992) investigated theoretically, the temperature-
dependent fluid viscosity influence on the forced convection through a
semi-infinite porous medium bounded by an isothermal flat plate. The fluid
viscosity was modeled as an inverse linear function of the fluid temperature,
which is a very good model for many liquids, including water and crude oil.
Their study, with fluid flow governed by the Darcy equation was restricted to
heat-transfer analysis. It showed a strong influence of temperature-dependent
viscosity on the heat transfer from the flat plate.

For a similar flat-plate configuration, Postelnicu et al. (2001) considered the
effect of heat generation as well. For non-Darcy flow in the same flat-plate
porous medium flow configuration, Kumari (2001a, 2001b), provided similar
solutions for mixed convection with variable viscosity, under constant and
variable wall heat flux. When compared with the constant viscosity case,
increased heat transfer for liquids while a decreased heat transfer for gases is
observed in both of these works.

5.3.4 Temperature-Dependent Viscosity and Pump Power

For sustaining a desired flow rate in a thermo-hydraulic engineering system
(channels, ducts, etc.), the required pressure-drop is achieved by means of
a pump. Reduction in the power required by this pump, without adversely
affecting the pressure-drop value, is obviously an important issue, which
is given careful thought by the design engineer. Heating the channel for
liquid flow reduces the viscosity, and the M-HDD model predicts the resulting
pressure-drop. Obviously, we might then consider the benefit of heating the
flow as a means to reduce the pumping power. In what follows, we present
the findings of Narasimhan and Lage (2004).
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Taking into consideration that we are forced to spend energy in one form
(heating of the channel) to achieve savings in another form (pump power
reduction), we can define a figure of merit R to establish the energy efficiency
of the entire thermo-hydraulic process as

R = Ẇµ0 − Ẇh

Q̇
(5.24)

where Ẇµ0 is the power necessary to pump the fluid without heating, and
Ẇh is the power necessary to pump the fluid when heating the fluid with a
certain amount of energy Q̇. In terms of nondimensional quantities,� and λ,
given by Eqs. (5.18) and (5.14), respectively, Eq. (5.24) becomes

R = H(1−�)(λ+ 1)A (5.25)

with

A = DµU
q′′

(5.26)

Figure 5.14 is obtained by calculating R for several heat fluxes and plotting
the results versus λ. The process of heating the fluid to reduce the pump
power becomes increasingly more efficient as λ increases, or equivalently,
when the fluid speed increases. In addition, for the same λ value, the increase
in heat flux reduces the energy efficiency of the process. This is because of
the nonlinearity of the degree of viscosity reduction with temperature (or
with heat flux). As the heat flux progressively increases by a fixed amount,
the corresponding reduction in fluid viscosity becomes smaller and smaller.
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Overall energy gain due to µ(T) versus fluid speed (λ).
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Hotter the fluid becomes; more heat energy is necessary to keep reducing
the viscosity by the same amount. As a result, the reduction in pumping
power, numerator of Eq. (5.24), becomes smaller and smaller for the same
increase in heat flux, denominator of Eq. (5.24). Moreover, hotter the fluid
becomes smaller is the impact (reduction) on the viscous drag. When the fluid
temperature is high enough to render the effect of viscous drag negligible, an
increase in the heating will have no effect on the pump power, whatsoever.

5.4 Perturbation Models

In this section, we will exposit for the same heated porous channel flow
problem, perturbation analysis based predictive models, as presented in
Nield (1999) and Narasimhan et al. (2001a). In essence, these analyses res-
ult in series type modifications to the HDD model, Eq. (5.1), to account for
temperature-dependent viscosity effects. As will be seen, heat-transfer effects
(i.e., µ(T) influence on Nusselt number) also evolve simultaneously, along
with the hydrodynamic effects. While Nield et al. (1999) considered only the
viscous-drag effects (i.e., the macroscopic form of Eq. [5.1], with C0 = 0, is
the starting point for the analysis), Narasimhan et al. (2001a) included the
form-drag effects (i.e., macroscopic form of Eq. [5.1], the HDD model, is the
starting point of the analysis). We proceed to explain here, the more gen-
eral analysis from Narasimhan et al. (2001a), done with the HDD model,
Eq. (5.1).

5.4.1 Physical Model and the Zero-Order Perturbation Solution

Reconsider the unidirectional, parallel-plate porous channel flow of PAO,
being heated by a constant heat flux, q′′, at the top and bottom walls (as
depicted in Figure 5.1[b]). Owing to the symmetry of the configuration, we
limit our attention to the top half of the channel, with half-channel distance, H
and length L. Assuming fully developed flow, that is, ∂u/∂x = 0, and combin-
ing it with the continuity equation, Eq. (5.2), and the impermeable boundary
condition at the channel surface, would yield v = 0. The momentum equation,
Eq. (5.3), written with G = −∂p/∂x, hence becomes

C0ρK0u2 + µ(T)u− GK0 = 0 (5.27)

The energy equation, Eq. (5.4), with the assumption of negligible longitudinal
conduction (or high Péclet number) is,

∂2T
∂y2 =

ρcp

ke
u
∂T
∂x

(5.28)
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For thermally fully developed flow, the temperature variation along the
channel, ∂T/∂x in the RHS of Eq. (5.28), can be related to the bulk-temperature
variation as ∂T/∂x = ∂Tb/∂x (see section 3.4 of Bejan, 1995). Applying the
First Law of Thermodynamics for the channel shown in Figure 5.1(b), to
express ∂Tb/∂x in terms of the constant heat flux q′′ and using the result in
Eq. (5.28) yields

∂2T
∂y2 =

( u
U

) q′′

keH
(5.29)

Solving Eq. (5.29) would need us to determine the ratio u/U, where U is
the channel cross-section averaged fluid speed. The quadratic equation given
by Eq. (5.27) when solved for u will result in a positive root, which will be
a function of µ(T). The solution would resemble

u = F(µ(T)) (5.30)

To learn more from this equation, we have to somehow represent, in general,
the temperature dependency of the dynamic viscosity of the fluid. This is
done as an approximation through the second-order Taylor series expansion,
enabling us to express the RHS of Eq. (5.30) as,

F(µ(T)) = F(µr)+ F′(µr)(µ− µr)+ 1
2

F′′(µr)(µ− µr)
2 (5.31)

whereµr is the reference viscosity value, evaluated at T = Tr, a suitable refer-
ence temperature (for the channel flow configuration) that is yet to be defined.
Expanding the individual terms in Eq. (5.31) as functions of temperature,
we get

F(µ(T)) = F(µr)+ F′(µr)µ
′
r(T − Tr)+ 1

2

[
F′(µr)µ

′′
r + F′′(µr)µ

′2
r

]
(T − Tr)

2

(5.32)

By substituting for F(µ(T)) in Eq. (5.30), we can get progressively, the zero-,
first-, and second-order solutions for u when we use, respectively, the first,
the first and second, or all the terms of Eq. (5.32). The zero-order result, that
is, substituting F(µ(T)) = F(µr) in Eq. (5.30), corresponds to the uniform
viscosity case where u = U0. Hence, from Eq. (5.27),

G = µr

K0
U0 + C0ρU2

0 (5.33)

Moreover, simplifying the energy equation using u = U0 and integrating it
in y, with ∂T/∂y = 0 at y = 0 and T = Tw at y = H as boundary conditions,
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we get the zero-order temperature distribution

T0 = Tw − q′′H
2ke

[
1−

( y
H

)2
]

(5.34)

Using the result for T from Eq. (5.34) to rewrite the bulk temperature in
terms of Tw, and substituting the result in the definition of the local Nusselt
number Nu, Eq. (5.21), we can show that Nu = 6, the expected result for
isoflux parallel-plate channel. Clearly, this value remains unchanged along
the channel for fluids with constant and uniform viscosity.

5.4.2 First- and Second-Order Perturbation Solution

Proceeding further to determine the first-order solution, we need to find a
suitable expression for (T − Tr) in the second term of Eq. (5.32). Implicit in
the way Eq. (5.32) is written, is the assumption that the reference temperature
Tr is always higher than T. Therefore, a natural candidate for Tr is the wall
temperature Tw, which is higher than T, the fluid temperature inside the
channel. Using the zero-order solution for T, Eq. (5.31), and Tw for Tr in
Eq. (5.32), allows us to evaluate u in Eq. (5.30) as

u1 = a1 + a2N
2

[
1−

( y
H

)2
]

(5.35)

where a1, a2, and N are defined as

a1 = GK0

2µw

[−1+√1+ 4ζ
ζ

]
, a2 = GK0

2µwζ

[
1− 1√

1+ 4ζ

]

N = q′′H
ke

1
µw

(
dµ
dT

)
Tw

(5.36)

with

ζ = ρC0K2
0G

µ2
w

(5.37)

The local (defined on the macroscopic porous continuum) u, derived in
Eq. (5.35), can be integrated along y, to find the global, cross-section averaged
fluid speed,

U1 = a1 + a2N
3

(5.38)
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Using Eqs. (5.35) and (5.38) in Eq. (5.29), we find the first-order temperature
distribution as

T1 = Tw − q′′H
ke

{
1
2

(
1− y2

H2

)
+ a2N

a1

[
1
12

(
1− y2

H2

)
− 1

24

(
1− y4

H4

)]}
(5.39)

Upon similar use of Eq. (5.39), we get from Eq. (5.30) the second-order
solutions as

u2 = a1 + a2N
2

[
1−

( y
H

)2
]
+
[

a2
2N2

24a1
+ 1

8
(a3N2 − a2M)

][
1−

( y
H

)2
]2

(5.40)

U2 = a1 + a2N
3
+ a2

2N2

45a1
− a2M

15
+ a3N2

15
(5.41)

T2 = Tw − a1

U2
�1(y)− a1q′′H

U2ke

[
1

24

(
a2N
a1

)2

− a2M
8a1
+ a3N2

8a1

]
�2(y) (5.42)

where the �1 and �2 of Eq. (5.42) are

�1(y) = Tw − q′′H
ke

{
1
2

(
1− y2

H2

)
+ a2N

a1

[
1
4

(
1− y2

H2

)
− 1

24

(
1− y4

H4

)]}

�2(y) =
[

1
2

(
1− y2

H2

)
− 1

6

(
1− y4

H4

)
+ 1

30

(
1− y6

H6

)]

(5.43)

and a3 and M are defined as

a3 = 2GK0

µw(1+ 4ζ )3/2
, M =

(
q′′H
ke

)2 1
µw

[
d2µ

dT2

]
Tw

(5.44)

The corresponding first- and second-order Nusselt numbers, upon using
Eq. (5.30), are given, respectively, by

Nu1 = 6
[

1− 2a2N
15a1

]
(5.45)

and

Nu2 = Nu1 + 6

[
68a2

2N2

1575a2
1

+ 4
105a1

(a2M − a3N2)

]
(5.46)
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Finally, to complete the solution, one must find a proper value for the
wall temperature Tw for calculating the viscosity and its derivatives in
Eqs. (5.36), (5.37), and (5.44). Accounting for the fact that the chosen Tw must
be higher than the maximum fluid temperature anywhere in the channel, we
must use the wall temperature at x = L, Tw(L) = Tmax, given as

Tw(L) = q′′
(

L
ρcpUH

+ H
3ke

)
+ T0 (5.47)

Moreover, as an immediate validation of the higher order solutions, notice
when the form-drag coefficient C0 is negligible then from Eq. (5.37), ζ → 0.
In this case, from Eq. (5.36), a1 = a2 → GK0/µw and the first-order solutions
of Eqs. (5.38) and (5.45), reduce to

U =
(
�P
L

)
K0

µ(Tmax)

[
1+ N

3

]
(5.48)

Nu = 6
(

1− 2
15

N
)

(5.49)

These results are identical to the results reported in Nield et al. (1999), who
developed a similar predictive theory for a fluid with temperature-dependent
viscosity, but starting with the linear Darcy flow regime, that is, Eq. (5.27)
replaced by u = [K0/µ(T)]G, as stated in the beginning of this section.

5.4.3 Pressure-Drop Results and Velocity Profiles

Again, to facilitate easy understanding and useful comparison, the numer-
ical simulations details and results used here, are identical to those that were
used in the previous sections, in discussing the M-HDD model. Figure 5.15
shows a comparison between the theoretical predictions and the results from
the numerical simulations for q′′ = 0.01 MW/m2. The simplest theoretical
predictions are obtained first from the HDD model, restated here as

�P
L
= µ(Tr)

K0
U + C0ρU2 (5.50)

assuming: (1) µ(Tr) = µr = µ(Tin) = µ(Tmin) and (2) µ(Tr) = µr =
µ(Tw(L)) = µ(Tmax). These two options are plotted in Figure 5.15. They are,
respectively, the lower-bound and upper-bound limits for the fluid speed U,
with a fixed pressure-drop �P/L along the channel, because they are calcu-
lated using the minimum, Tin, and maximum, Tw(L), temperatures attained
by the fluid along the channel. Any other temperature chosen will fall between
these two limits. Observe that the result from the HDD model using a viscos-
ity evaluated at the minimum temperature (inlet), is independent of the heat
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FIGURE 5.15
Comparison of theoretical and numerical pressure-drop versus fluid speed results for q′′ =
0.01 MW/m2 (Narasimhan et al., 2001a).

flux (thereby, of variation in temperature inside the channel) thus representing
both no heating and uniform viscosity situations.

The analyses performed in this section, on the unidirectional, differential
HDD model, Eq. (5.27), leads to a theory that improves on the lower-bound
velocity results predicted by Eq. (5.50). From Figure 5.15, we can observe that
the first- and second-order solutions, Eqs. (5.38) and (5.41), predict velocities
that compare extremely well with the numerical results. Also plotted in the
same figure is the theoretical prediction of the linear model, from Eq. (5.48).
Observe that the predicted pressure-drop, for a given fluid speed, is smaller
than the pressure-drop predicted from Eqs. (5.38) and (5.41). This is expected
from a model that does not include the form-drag effects.

Figure 5.16 presents similar results, but for q′′ = 0.10 MW/m2. Compar-
ison of Figure 5.15 and Figure 5.16 indicates that the curve obtained from
Eq. (5.50) with µ(Tr) = µ(Tmax) is unchanged when the heat flux increases.
This is surprising because Tmax certainly changes (increases) with the heat
flux. However, the results show that the fluid temperature is irrelevant to the
fluid speed versus pressure-drop relation Eq. (5.50). This, as we know, hap-
pens only when the viscous-drag effect is negligible as compared with the
form-drag effect. Hence we can conclude that Tmax, even for the low heat flux
considered in Figure 5.15, is already high enough to yield a negligible viscous
drag. In this regard, the curves forµ(Tr) = µ(Tmax) from Eq. (5.50), presented
in Figure 5.15 and Figure 5.16, are the lower-bound curves for pressure-drop
versus fluid speed. Keep in mind, however, that this is true only when we
account for the form-drag effect.
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Comparison of theoretical and numerical pressure-drop versus fluid speed results for q′′ =
0.10 MW/m2 (Narasimhan et al., 2001a).

When the form-drag effect is ignored, as in the linear model based on
the Darcy equation, Eq. (5.48), the decrease in pressure-drop with heat
flux has no limit. Observe, for instance in Figure 5.16, how the curve
obtained from Eq. (5.48) lies even below the curve obtained by Eq. (5.50) with
µ(Tr) = µ(Tmax)! This situation is analogous to the Hagen–Poiseuille flow
configuration or to flow through a porous medium with zero form coefficient
(C0 = 0).

In contrast to Figure 5.15, the agreement between first-order, second-order,
and numerical results is not so good in Figure 5.16. We can now see the
improvement in going from first-order to second-order analysis. The devi-
ation between first-order results and the numerical results is either because
of the inaccuracy of the first-order truncation or from the fully developed flow
assumption.

Figure 5.17 shows the local velocity variation u(y) predicted by the linear
model (from Nield et al. 1999), and the second-order HDD model, Eq. (5.40),
results for q′′ = 0.01, 0.05, and 0.10 MW/m2, respectively. Also shown is
the velocity profile for no heating (q′′ = 0), labeled µ = µin. All curves are
obtained with the same pressure-drop G, equivalent to U = 1 × 10−1 m/sec
when the channel is not heated. Increased fluid speed is expected when
heating the channel.

Compare this situation with the discussion under the M-HDD model
section. There, the imposition of constant cross-section averaged speed U
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Velocity profiles u(y) from second-order HDD theory (left side profiles) and linear theory (right
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FIGURE 5.18
Comparison of temperature profiles from second-order HDD theory with those of uniform
viscosity case, for several heat fluxes.

(mass conservation) yielded from the numerical simulations, velocity profiles
shown in Figure 5.4, which vary about the mean speed value. However,
a decrease in the global pressure-drop G was observed.

The linear model neglects the influence of the form-drag term, the fluid velo-
city profile is expected to follow the temperature profile, having a maximum
velocity at the wall (where the viscosity is minimum because the temperature
is maximum) and decreasing progressively toward the axis of the channel.
This is observed in Figure 5.17 (also, compare this figure with the next one
for temperature profiles, Figure 5.18).
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The second-order HDD result for q′′ = 0.01 MW/m2, however, indicates
a slug-flow profile, with a reduction in the fluid speed (as compared to the
linear fluid speed) caused by the form-drag effect. This makes the curvature
of the velocity profile (as predicted by the linear theory) to flatten near the
walls, as indicated in the right side profiles of Figure 5.17. When the heat
flux is increased, the second-order HDD results indicate a pronounced velo-
city increase of the fluid near the channel surface. This aspect is due to the
influence of viscosity variation on the viscous drag. The variation in viscosity
reduces the viscous drag to a greater extent near the wall, where the reduction
in viscosity, because of the higher temperature, is more dramatic. This is ably
captured by the second-order HDD theory, as evident from Figure 5.17.

5.4.4 Temperature Profiles and Nusselt Numbers

Temperature profiles, similar in style and corresponding to the second-order
velocity profiles in Figure 5.17, are shown in Figure 5.18, obtained from
Eq. (5.42). For the flow of a fluid with decreasing viscosity for increasing tem-
perature, we deduced from Figure 5.17, that increasing the heat flux increases
the local velocity near the wall relative to that at the axis. This results in an
increase in the curvature of the temperature profile near the wall and a cor-
responding decrease toward the axis, resulting in a net flattening of the entire
profile, as shown in Figure 5.18.

Nusselt numbers from the linear model, Eq. (5.49), and from the second-
order HDD model Eq. (5.46), are compared in Figure 5.19. Also shown in the
figure is the curve Nu = 6, the uniform viscosityµin result. Recall that the fluid
bulk temperature Tb and the reference (maximum wall) temperature Tmax, on
which Eqs. (5.46) and (5.49) are based, are both functions of the fluid speed.
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FIGURE 5.19
Nusselt numbers obtained by the two theories as a function of λ.
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From Figure 5.19, the linear model yields a Nusselt number that increases
with the fluid speed (represented byλ) and the heat flux. This is a consequence
of the increased fluid bulk temperature estimated by this model as the fluid
speed and/or the heat flux increase. As noticed earlier from Figure 5.17 and
Figure 5.18, for the linear model, the predicted velocity distribution parallels
the temperature distribution. Therefore, the high fluid temperature adjacent
of the heated surface (wall) has more significance in the computation of the
bulk temperature than the low temperature near the center of the channel.
In addition, the Nusselt number predicted by the linear model, Eq. (5.49), is
higher than the Nusselt number predicted by the second-order HDD model,
Eq. (5.46). This is a consequence of the inclusion of the form-drag effect by
the second-order HDD model, which leads to a smaller fluid speed and bulk
temperature.

In general, as the fluid speed increases, the viscous drag decreases in import-
ance as compared with the form drag. Hence, we can expect Nu to evolve
toward Nu = 6. This decrease in the Nu as the fluid speed increases, can
also be seen from the results of the second-order model, Eq. (5.46), shown in
Figure 5.19. Even for fully developed flow assumption, the theory presented
here predicts a Nu dependent on the fluid speed still invariant in x. However,
a real situation with undeveloped flow has local Nusselt number varying in
x. This fact makes the comparison between these two Nusselt numbers less
effective and cumbersome, as the comparison in principle should be done for
all fluid speeds considered.

As seen earlier, the alternative global Nusselt number, NuL, Eq. (5.22)
and related to the previous Nusselt number, Nu, through Eq. (5.23), sub-
sumes the x-dependency of Nu, therefore making the comparison with results
from developing flow configurations straightforward. The results plotted in
Figure 5.20 demonstrate that the theoretical results are very accurate for λ
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FIGURE 5.20
Comparison of NuL from theoretical result with the numerical result.
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smaller than 0.3. Observe that NuL is relatively insensitive to the inclusion
of the form-drag effect (linear or second-order HDD) as opposed to what
happens in the pressure-drop versus fluid speed, Figure 5.15. Moreover, the
results of Figure 5.20 demonstrate that the fully developed assumption behind
the second-order HDD model affects the accuracy of the thermal results much
more than it affects the accuracy of the hydraulic results (Figure 5.15 and
Figure 5.16).

It is important to note the implicit assumption of a rigid porous mat-
rix, one in which the temperature change does not affect (by volumetric
expansion or contraction) the structure of the medium vis-à-vis porosity,
topology, etc.

5.5 Experimental Validation

We now briefly focus on the experimental validation of the hydraulic
performance (i.e., pressure-drop versus fluid speed relationship) of the
models, in lieu of the minimal temperature-dependent viscosity effect on the
heat-transfer aspects. A micro-porous cold plate with a porous insert made
of compressed aluminium-alloy porous foam sandwiched (brazed) between
rectangular (102× 508 mm) plate sections was designed and manufactured
for cooling a phased-array radar slat. For detailed explanation of this design,
see Lage et al. (1998, 2004). It is sufficient to realize at present that this cold
plate, using PAO as the coolant flow through the porous insert resembles
the parallel plate isoflux channel of Figure 5.1(b). This makes it appropriate
for the hydraulic results from this cold plate to be used for appraising our
theoretical models.

The effective permeability K0 and the form coefficient C0 of the porous
insert were determined (by fitting the experimental no heating results in the
HDD model, Eq. [5.1]) to be K0 = 4.01×10−10 m2 and C0 = 33.458×103 m−1,
respectively. This low permeability and high form-factor of the chosen porous
medium make it particularly suitable for verifying the theoretical models,
because of their negligible convective inertia and viscous diffusion effects.
Further details of the experimental apparatus and procedure are documented
in Porneala (1998). By heating the cold plate with electric heaters generating a
constant heat flux, the volumetric flow rate and the total PAO pressure-drop
across the cold plate are measured.

The results for two heat flux values are presented in Figure 5.21 and
Figure 5.22. Figure 5.21 compares the experimental pressure-drop results
with that predicted by the second-order perturbation model, Eq. (5.41), and
the M-HDD model, Eq. (5.10), for a reference coolant temperature T0 = 21◦C,
and q′′ = 1 kW/m2. To highlight the influence of form-drag effects, predic-
tions by the linear-Darcy model, Eq. (5.48) is also shown. The comparison for
a higher heat flux, q′′ = 5.8 kW/m2, is shown in Figure 5.21. From Figure 5.21
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we see, for lower velocities (Q < 2 × 10−5 m3/sec), both the perturbation
theories, Eqs. (5.48) and (5.41), agree well in their predictions. However, for
higher velocities (Q > 2×10−5 m3/sec), with the gaining strength of the form
drag, the linear-Darcy model, Eq. (5.48) deviates, as expected.

The results validate the two theoretical models, subject to their respective
limitations. The second-order HDD model, Eq. (5.41), due to the inclu-
sion of the form-drag effects, is better than the earlier model, Eq. (5.48),
based on the simpler Darcy equation. However, Eq. (5.41) is accurate only
for fully developed (hydrodynamic and thermal) flow situations with very
small temperature variation along the channel. For higher heat fluxes (such
as in Figure 5.22), the temperature distribution along the channel grows in
strength making the perturbation model assumption of small temperature
variation along the channel invalid. This prompts a systematic deviation of
the second-order HDD model from the experimental results. The M-HDD
model, Eq. (5.10), agrees well with the experimental results for both heat
fluxes (Figure 5.21 and Figure 5.22). However, note that the high-heat flux
correlation for ζµ and ζC, the null-global viscous-drag regime has not been
tested.

5.6 Conclusions

The M-HDD hydrodynamic model proposed by Narasimhan and Lage
(2001a) is believed to be valid universally for all porous medium configura-
tions, that is, independent of the fluid and the porous medium used. However,
the empirical correlations predicting the correction coefficients, ζµ and ζC, to
be used in the M-HDD model, has some restrictions. These correlations are
proposed with simulation results for PAO. Hence, they can be recommended
only for liquids that show similar viscosity functional dependency on tem-
perature. Further, the analysis assumes the structure of the porous medium to
be rigid (incompressible), and other thermo-physical properties such as the
density of the liquid to be constant. Relaxing the constant density assumption
can lead to an alternate study in which the form drag will directly be affected
by the density variation, apart from being indirectly influenced by the vis-
cosity via the velocity. Suitable experimental configurations (with different
geometry, porous medium characteristics) can be used to test the full range
of validity of the correlations proposed. A parametric study of the results
should give proper information necessary for further experiments and alter-
ations in the correlation functions, while generalizing them to include other
fluids. In association with existing advanced CFD software for simulation
and design, these suggestions, once implemented, should allow consistent
prediction of the thermal-hydraulic performance of a large number of porous
media based systems and devices, including cold plates and self-lubricating
bearings.
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Nomenclature

A heat-transfer area, m2

Af flow cross-section area, m2

cF Forchheimer coefficient
cP specific heat capacity at constant pressure, J kg/K
C form coefficient (= cFK−1/2), per m
D global drag, Pa/m
De average particle diameter, m
G pressure-drop across a length of the channel, Eq. (5.27)
H half-channel spacing, m
HDD Hazen–Dupuit–Darcy
k thermal conductivity, W/K/m
ke effective thermal conductivity (= φkf + (1− φ)ks), W/K/m
K permeability, m2

L channel length, heated section, m
M-HDD modified-Hazen–Dupuit–Darcy
Nu local Nusselt number, Eq. (5.21)
NuL channel average Nusselt number, Eq. (5.22)
p macroscopic pressure, Pa
P global (cross-section averaged) pressure, Pa
Pe Péclet number (= QL/Afαe)
Pre effective Prandtl number (= µincP/ke)

q′′ heat flux, W/m2

Q volumetric flow rate, m3/sec
Q′′ nondimensional heat flux, Eq. (5.12)
R figure of merit, Eq. (5.24)
T temperature, ◦C
Tw average wall temperature, ◦C, Eq. (5.22)
u x-component, seepage macroscopic velocity, m/sec
U global (cross-section averaged) longitudinal velocity, m/sec
U�P/�P experimental pressure-drop uncertainty
UQ/Q experimental volumetric flow rate uncertainty
u seepage macroscopic velocity vector
v y-component, seepage macroscopic velocity, m/sec
V voltage supplied to the heating strips of the cold plate, V
Ẇ pump power (as work per unit time), Eq. (5.24)

Greek Symbols

αe effective thermal diffusivity (= ke/ρcP), m2/sec
η relative pressure-drop error (= |(�PHDD − �Pnum)|/�Pnum),

Figure (5.3)
φ porosity
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� nondimensional pressure-drop ratio, Eq. (5.16)
λ transition parameter, form- and viscous-drag ratio, Eq. (5.14)
λT|µ(T) transition parameter for µ(T) flows, Eq. (5.20)
µ dynamic viscosity, Nsec/m2

ρ density, kg/m3

ζ drag correction factor, Eq. (5.11)

Subscripts

b bulk
C form
e effective
f fluid
in inlet
max maximum value
min minimum value
num numerical simulation result
r, ref reference
s solid
w wall
µ viscous
ζ drag correction factor based result
0 inlet

Superscripts

′ first derivative of a variable
′′ flux of a variable

Other Symbols

| | absolute value
|w evaluated at wall conditions
|0 evaluated at inlet conditions
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6.1 Introduction

In order todesign efficient heat transfer equipment, onemust know thedetails
of both flow and temperature fields within the equipment. Such detailed
flow and temperature fields within a manmade assembly may be investig-
ated numerically by solving the set of governing equations based on the first
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principles (i.e., continuity, momentum, and energy balance equations), so as
to resolve all scales of flowandheat transfer in the system.However, in reality,
it would hardly be possible to reveal such details even with the most power-
ful super computer available today. For example, a grid system, designed
for a comparatively large scale of heat exchanger systems, would not be fine
enough to describe the details of flow and heat transfer around a fin in a heat
transfer element.
It has been recently pointed out by DesJardin (personal communication,

2001) and many others [1,2] that the concept of local volume-averaging the-
ory, namely, VAT, widely used in the study of porous media [3–5] may be
exploited to investigate the flow and heat transfer within such a complex
heat and fluid flow equipment. These complex assemblies usually consist of
small-scale elements, such as a bundle of tubes and fins, which one does
not want to grid. Under such a difficult situation, one may resort to the
concept of VAT instead, so as to establish a macroscopic model, in which
these collections of small-scale elements are treated as highly anisotropic
porous media. There are a number of situations in which one has to intro-
duce macroscopic models to describe complex fluid flow and heat transfer
systems.
Nakayama and Kuwahara [6] appealed to VAT and derived a set of mac-

roscopic governing equations for turbulent heat and fluid flow through
an isotropic porous medium in local thermal equilibrium. The resulting
set of governing equations was generalized by Nakayama et al. [7], to
treat highly anisotropic porous media by integrating the microscopic gov-
erning equations, namely, the Reynolds averaged versions of continuity,
Navier–Stokes, and energy equations. One can conveniently use thesemacro-
scopic equations designed for highly anisotropic porousmedia, to investigate
the flow and heat transfer within complex equipment, since a single set of the
volume-averagedgoverning equations canbe applied to the entire calculation
domain within the complex heat transfer equipment consisting of both large-
and small-scale elements. All that one has to do is to specify the spatial distri-
butions of macroscopic model parameters such as porosity and permeability.
The clear fluid flow regionwithout small-scale obstructions, for example, will
be treated as a special case, as one sets the porosity for unitywith an infinitely
large permeability.
In order to utilize these macroscopic equations for such large-scale numer-

ical computations, one must close the macroscopic equations by modeling
the flow resistance associated with individual subscale solid elements and
also the heat transfer rate between the flowing fluid and the subscale ele-
ments, in terms of the macroscopic velocity vector and relevant geometrical
parameters. Such subscale models can be established by carrying out dir-
ect numerical experiments at a pore scale for individual subscale elements.
Since the subscale structure is often periodic, the numerical experiment
can be performed economically, focusing on one structural unit and util-
izing periodic boundary conditions there. The microscopic results, thus
obtained, are processed to extract the macroscopic hydrodynamic and
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thermal characteristics, and eventually to determine the unknown model
constants of the subscale models associated with permeability tensor, inertial
(Forchheimer) tensor, and interfacial heat transfer coefficient. Kuwahara
et al. [8], Nakayama and Kuwahara [9], Nakayama et al. [10], and
De Lemos andPedras [11,12] have conducted suchmicroscopic computations
successfully. The unknown model constants including the interfacial heat
transfer coefficient, permeability, and Forchheimer constants were determ-
ined by carrying out exhaustive numerical experiments using a periodic
array of square and circular cylinders. A review on the research towards
this endeavor may be found in chapter 10 of the first edition of the
handbook [13].
All these investigations, however, were limited to the cases of the cross-

flows over two-dimensional structures. In reality, allmanmade elements such
as those in plate fin heat exchangers are three-dimensional in nature. Natur-
ally, themacroscopic velocity vector is not always perpendicular to the axis of
the cylinder. The deviating angle between the velocity vector and the plane
perpendicular to the axis of the cylinder is called “yaw” angle. Thus, the
three-dimensional yaw effects on the permeability tensor, inertial tensor, and
interfacial heat transfer coefficient must be elucidated beforehand, in order
to design such heat transfer elements and systems. Nakayama et al. [14]
used a bundle of rectangular cylinders to describe such three-dimensional
anisotropic porous media, and showed that, under macroscopically uniform
flow, the three-dimensional governing equations reduce to quasi-three-
dimensional forms, in which all derivatives associated with the axis of the
cylinder can be either eliminated or replaced by other determinable expres-
sions. Thus, only two-dimensional storages are required for the dependent
variables. This quasi-three-dimensional numerical calculation procedure has
been exploited to investigate the three-dimensional effects on the permeab-
ility tensor, inertial tensor, and interfacial heat transfer coefficient, which are
needed to close the proposed set of the macroscopic governing equations.
In what follows, we shall review a series of extensive investigations on

three-dimensional flow and heat transfer within highly anisotropic porous
media. A bank of long cylinders is considered as one of fundamental geo-
metrical configurations often found in heat exchangers and many other
manmade anisotropic porousmedia. Numerical determination of the import-
ant subscale model parameters, such as permeability tensor, inertial tensor,
and interfacial heat transfer coefficient, will be described in detail, so as
to elucidate the three-dimensional yaw effects on these macroscopic hydro-
dynamic and thermal parameters. The results are compared with available
experimentaldata to substantiate thevalidityof thepresentmodeling strategy
for three-dimensional flow and heat transfer within highly anisotropic por-
ous media. Upon correlating these macroscopic results, a useful set of
explicit expressions will be established for the permeability tensor, inertial
Forchheimer tensor, and interfacial heat transfer coefficient, so as to charac-
terize three-dimensional flow and heat transfer through a bank of infinitely
long cylinders in yaw.
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6.2 Volume-Averaged Governing Equations

According to Nakayama et al. [2,15], the set of the macroscopic equations
based on VAT for the case of laminar flow through an anisotropic porous
medium runs as

∂〈uj〉f
∂xj

= 0 (6.1)

ρf

(
∂〈ui〉f
∂t
+ ∂

∂xj
〈uj〉f〈ui〉f

)
=− ∂〈p〉

f

∂xi
+ ∂

∂xj

[
µf

(
∂〈ui〉f
∂xj

+ ∂〈uj〉
f

∂xi

)]

− φ
(
µfK

−1
f ij + φρfbfij

(〈uk〉f〈uk〉f)1/2) 〈uj〉f (6.2)

ρfcpf

(
∂〈T〉f
∂t
+ ∂

∂xj
〈uj〉f〈T〉f

)
= ∂

∂xj

[
kf
∂〈T〉f
∂xj
+ 1
Vf

∫
Aint

kfTnj dA− ρfcpf
〈
u′jT
′〉f]

+ hfaf
(〈T〉s − 〈T〉f) (6.3)

where

a = 〈a〉f + a′ (6.4a)

and

〈a〉f = 1
Vf

∫
Vf

adV (6.4b)

in general denotes the intrinsic averaged value of a over the volume space
Vf occupied by the fluid, whereas a′ denotes its spatial deviation. In fact, the
idea of VAT is quite near to that of the representative elementary volume.
However, the size of the elementary volume V should be large enough to
cover the microscopic structure, but, at the same time, much smaller than the
macroscopic scale. The sub- and superscripts f and s stand for the fluid and
solid phases, respectively. In the foregoingmomentum and energy equations,
the terms associatedwith themicroscopic structure aremodeled according to

1
Vf

∫
Aint

µf

(
∂ui
∂xj
+ ∂uj
∂xi

)
nj dA− ρf ∂

∂xj

〈
u′ju
′
i
〉f

≡ −φ
(
µfK

−1
fij + φρfbfij

(〈uk〉f〈uk〉f)1/2) 〈uj〉f (6.5)
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and

1
V

∫
Aint

kf
∂T
∂xj

nj dA ≡ hfaf
(〈T〉s − 〈T〉f) (6.6)

whereφ = Vf/V is theporosity, andnj is theunit vector normal to the interface
pointing from the fluid side to solid side. Equation (6.5) is a generalized form
of Forchheimer-extended-Darcy’s law. The net heat transfer between the fluid
and solid is given by hfaf

(〈T〉f − 〈T〉s) upon introducing the interfacial heat
transfer coefficient hf , where af = Aint/V is the specific interfacial area.
In order to close the foregoing set of the macroscopic governing equations,

we must determine the permeability tensor Kfij and Forchheimer tensor
bfij appearing in Eq. (6.5) and also the interfacial heat transfer coefficient
hf appearing in Eq. (6.6), for a given microscopic structure. As will be
demonstrated later, such subscale models can be established by conducting
microscopic numerical experiments for individual subscale elements. Then,
the microscopic results are fed into the LHS terms of Eqs. (6.5) and (6.6) to
determine these unknown tensors and coefficient as functions of the mac-
roscopic quantities. When the structure is geometrically periodic, only one
structural unit may be taken as a calculation domain.

6.3 Preliminary Consideration of Macroscopically Uniform
Flow Through an Isothermal Porous Medium

In order to appreciate the foregoing macroscopic governing equations, we
consider one of the most fundamental flows through a manmade structure,
namely, a macroscopically uniform steady flow through an isothermal three-
dimensional periodic structure of infinite extent as shown in Figure 6.1.
The body shape of the structural element is arbitrary, and its arrangement
can be aligned as in Figure 6.1 or staggered in an arbitrary fashion. Let us
find the macroscopic pressure and temperature solutions using the foregoing
macroscopic momentum and energy equations.
Upon referring to the orthogonal unit vectors (�l, �m, �n) as shown inFigure 6.1,

the macroscopically steady and uniform velocity field may be presented by

〈�u〉 = ∣∣〈�u〉∣∣ (cosα�l+ cosβ �m+ cos γ �n) (6.7)

where

〈�u〉 = 1
V

∫
V
�udV (6.8)

is theDarcian velocity, which differs from the intrinsic average velocity (given
by Eq. 6.4[b]) by the factor φ, such that 〈�u〉 = φ〈�u〉f . The local volume V for
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FIGURE 6.1
Three-dimensional periodic structure.

integration may be taken as the structural volume element as indicated by
dashed lines in the figure. The directional cosines of the volume-averaged
macroscopic velocity vector satisfy the obvious relationship, namely,

cos2 α + cos2 β + cos2 γ = 1 (6.9)

This relation may be rewritten equivalently using the cross-flow angle α′
projected onto the x – y plane as

cosα = sin γ cosα′ and cosβ = sin γ sin α′ (6.10)

Under the macroscopically uniform velocity as given by Eq. (6.7), the
volume-averaged momentum equation (6.2) reduces to

−∂〈p〉
f

∂xi
= (µfK−1fij + ρfbfij|〈�u〉|

)〈uj〉 (6.11)

where

〈uk〉〈uk〉 = |〈�u〉|2 (6.12)

Thus, the macroscopic momentum equation leads to the Forchheimer exten-
ded Darcy’s law [16], generalized for the case of anisotropic porous media.
We shall assume that the wall surfaces of the structure are maintained

at a constant temperature. Then, the microscopic temperature field, when

© 2005 by Taylor & Francis Group, LLC



Three-Dimensional Flow and Heat Transfer 241

averaged spatially within a local structural control volume V, should
lead to the macroscopic temperature field whose gradient aligns with the
macroscopic velocity vector in the s direction, such that the volume-averaged
energy equation (6.3), under themacroscopically steady anduniformvelocity
field with negligible macroscopic longitudinal conduction reduces to

ρfcpf|〈�u〉|d〈T〉
f

ds
= −hfaf(〈T〉f − 〈T〉s) (6.13)

where

ds = cosα dx + cosβ dy + cos γ dz (6.14)

Since the surface temperature of the structure 〈T〉s is constant, Eq. (6.13)
naturally yields the macroscopic temperature field as

〈T〉f − 〈T〉s = (〈T〉f − 〈T〉s)ref exp
(
− afhf
ρfcpf |〈�u〉|

(s− sref)
)

(6.15)

Note that the interfacial heat transfer coefficient hf is expected to be constant
for the periodically fully developed heat and fluid flow, as in the cases of
thermally fully developed tube and channel flows. The correct set of the peri-
odic boundary conditions should lead to the microscopic temperature field
compatible with the macroscopic temperature field as given by Eq. (6.15).
(In other words, the resulting microscopic temperature field, when averaged
spatially, must yield the macroscopic temperature field given by Eq. [6.15].)

6.4 Periodic Boundary Conditions for Three-Dimensional
Periodic Structure

The periodic boundary conditions needed to conduct microscopic numerical
experiments for manmade structures must be compatible with the foregoing
macroscopic solutions for themacroscopically uniformflow. The prescription
of the periodic boundary conditions for the velocity field (or pressure field
instead) is rather straightforward, since the profiles at both upstream and
downstream boundaries must be identical. Patankar et al. [17] prescribed the
pressuredropoverone structuralunit to attack theproblemof fullydeveloped
flow and heat transfer in ducts having streamwise-periodic variations of
cross-sectional area, while Nakayama et al. [18] and Kuwahara et al. [19]
chose to prescribe themass flow rate (rather than the pressure drop) to obtain
the fully developed velocity and temperature fields within two-dimensional
periodic arrays. However, the prescription of the periodic temperature field
requires some consideration, when the surface wall temperature is kept con-
stant. Naturally, the temperature difference between the fluid and solid wall
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Fully developed channel flow.

becomes vanishingly small at the fully developed stage, as in the case of
thermally fully developed tube flow with uniform surface temperature.
In what follows, we shall seek an appropriate set of the periodic boundary

conditions to impose along such periodic boundaries of the structure. Let us
consider one of the simplest temperature fields, namely, the fully developed
temperature field for the case of forced convection from isothermal parallel
plates with a channel height H, as shown in Figure 6.2.
The thermally fully developed flow of this kind may be regarded as one of

the special periodically fully developed flows, since the temperature profile
at x = x0 is similar to that at x = x0 + L, such that

T(x0 + L, y)− Tw
TB(x0 + L)− Tw =

T(x0, y)− Tw
TB(x0)− Tw (6.16)

where L is any axial distance of arbitrary size (whichmay be unlimitedly large
or small), and TB is the bulk mean temperature. This can be rearranged as

T(x0 + L, y)− Tw
T(x0, y)− Tw = TB(x0 + L)− Tw

TB(x0)− Tw = exp

(
− 2hfL
ρfcpfuBH

)
(6.17)

where uB is the bulkmean velocity. The last expression in the RHS comes from
the macroscopic temperature solution given by Eq. (6.15), as we note that∣∣〈�u〉∣∣ = uB, 〈T〉f = TB, 〈T〉s = Tw, and af = 2/H for this case. Selecting a
reference axial distance L0 along an arbitrary level at y = y0 gives

T(x0 + L0, y0)− Tw
T(x0, y0)− Tw = exp

(
− 2hfL0
ρfcpfuBH

)
(6.18)

Upon combining Eqs. (6.17) and (6.18), we obtain

T(x0 + L, y)− Tw = (T(x0, y)− Tw)τL/L0 (6.19)
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where

τ ≡ T(x0 + L0, y0)− Tw
T(x0, y0)− Tw (6.20)

Hence, Eq. (6.19) is one of the many possible expressions for the thermally
periodic boundary condition for this simple case, which guarantees us to
provide the microscopic temperature field compatible with the macroscopic
temperaturefield as givenbyEq. (6.15). It is straightforward to extend the case
to an infinite series of flat plates of finite length, to the two-dimensional peri-
odic structure of arbitrary shape, and finally to a general three-dimensional
periodic structure, as shown in Figure 6.1, as done by Nakayama et al. [14].
Thus, the steady-state microscopic governing equations and their correct

set of the boundary conditions for periodically fully developed heat and fluid
flow through a three-dimensional periodic structure are given as follows:

∇ · �u = 0 (6.21)

ρf(∇ · �u)�u = −∇p+ µf∇2�u (6.22)

ρfcpf∇ · (�uT) = kf∇2T (6.23)

On the solid walls:

�u = �0 (6.24a)

T = Tw(=〈T〉s) (6.24b)

On the periodic boundaries:

�u∣∣x=−L/2 = �u∣∣x=L/2 (6.25a)

�u∣∣y=−H/2 = �u∣∣y=H/2 (6.25b)

�u∣∣z=−M/2 = �u∣∣z=M/2 (6.25c)

where the origin of the Cartesian coordinates (x, y, z) is set in the center of the
structural unit (−L/2 ≤ x ≤ L/2,−H/2 ≤ y ≤ H/2,−M/2 ≤ z ≤ M/2), as
indicated in Figure 6.1. The mass flow rate constraints based on Eq. (6.7) are
given by:

∫ M/2

−M/2

∫ H/2

−H/2
udy dz

∣∣
x=−L/2 =

∫ M/2

−M/2

∫ H/2

−H/2
udy dz

∣∣
x=L/2 = HM cosα〈|�u|〉

(6.26a)∫ M/2

−M/2

∫ L/2

−L/2
vdxdz|y=−H/2 =

∫ M/2

−M/2

∫ L/2

−L/2
vdxdz|y=H/2 = LM cosβ〈|�u|〉

(6.26b)
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∫ H/2

−H/2

∫ L/2

−L/2
wdxdy

∣∣
z=−M/2 =

∫ H/2

−H/2

∫ L/2

−L/2
wdy dx

∣∣
z=M/2 = LH cos γ 〈|�u|〉

(6.26c)

Finally, the thermal boundary conditions for the periodic boundaries are
given by

(T − Tw)|x=L/2 = τ (L cosα)/(L cosα+H cosβ+M cos γ ) (T − Tw)|x=−L/2 (6.27a)

(T − Tw)|y=H/2 = τ (H cosβ)/(L cosα+H cosβ+M cos γ ) (T − Tw)|y=−H/2 (6.27b)

(T − Tw)|z=M/2 = τ (M cos γ )/(L cosα+H cosβ+M cos γ ) (T − Tw)|z=−M/2 (6.27c)

where

τ = (T − Tw)|x=L/2,y=H/2,z=M/2
(T − Tw)|x=−L/2,y=−H/2,z=−M/2 (6.28)

The literature survey [14] has revealed that no explicit periodic thermal
boundary conditions (such as given by Eqs. [6.27]) have been reported before
for three-dimensional periodic heat and fluid flows of this kind.

6.5 Quasi-Three-Dimensional Numerical
Calculation Procedure

The foregoing set of governing equations and corresponding boundary con-
ditions may greatly be simplified for the case of the three-dimensional heat
and fluid flow through a two-dimensional periodic structure such as a bank
of cylinders in yaw, as illustrated in Figure 6.3(a) and more specifically in
Figure 6.3(b) to show the cross-sectional plane of the square cylinder bank
subject to thepresent numerical experiment.All square cylinders in thefigure,
whichmaybe regarded as heat sinks (or sources), aremaintained at a constant
temperature Tw(=〈T〉s), which is lower (or higher) than the temperature of
the flowing fluid. Since the cylinders are infinitely long, the set of the gov-
erning equations (6.21) to (6.23) reduces to a quasi-three-dimensional form,
in consideration of the limiting case, namely,M→ 0:

∂u
∂x
+ ∂v
∂y
= 0 (6.29)

∂

∂x

(
u2 − ν ∂u

∂x

)
+ ∂

∂y

(
vu− ν ∂u

∂y

)
= − 1

ρ

∂p
∂x

(6.30)
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FIGURE 6.3
Two-dimensional periodic structure; (a) bank of circular cylinders, (b) bank of square cylinders
(cross-sectional view).

∂

∂x

(
uv− ν ∂v

∂x

)
+ ∂

∂y

(
v2 − ν ∂v

∂y

)
= − 1

ρ

∂p
∂y

(6.31)

∂

∂x

(
uw− ν ∂w

∂x

)
+ ∂

∂y

(
vw− ν ∂w

∂y

)
= ν

Afluid

∮
Pint

∂w
∂n

dP (6.32)

∂

∂x

(
uT − ν

Prf

∂T
∂x

)
+ ∂

∂y

(
vT − ν

Prf

∂T
∂y

)
= Sw (6.33)

whereP is the coordinate along thewettedperiphery,whereasn is the coordin-
ate normal to P pointing inward from the peripheral wall to fluid side. Afluid
is the passage area of the fluid, and

Sw = − ∂
∂z

(
wT − ν

Prf

∂T
∂z

)

= −
(
w− ν

Prf

cos γ ln τ0
L cosα +H cosβ

)
cos γ ln τ0

L cosα +H cosβ
(T − Tw)|z=0 (6.34)
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since

∂T
∂z
= (T − Tw)|z=0 lim

M→0

τ (M cos γ )/(L cosα+H cosβ+M cos γ ) − 1
M

= (T(x, y, 0)− Tw) cos γ
L cosα +H cosβ

ln τ0 (6.35)

where

τ0 ≡ τ |z=0 =
(T − Tw)|x=L/2,y=H/2,z=0
(T − Tw)|x=−L/2,y=−H/2,z=0 (6.36)

The boundary and compatibility conditions for the periodic planes are
given by

�u∣∣x=−L/2 = �u∣∣x=L/2 (6.37a)

�u∣∣y=−H/2 = �u∣∣y=H/2 (6.37b)

∫ H/2

−H/2
udy

∣∣∣∣∣
x=−L/2

=
∫ H/2

−H/2
udy

∣∣∣∣∣
x=L/2

= H cosα〈|�u|〉 (6.38a)

∫ L/2

−L/2
vdx

∣∣∣∣∣
y=−H/2

=
∫ L/2

−L/2
vdx

∣∣∣∣∣
y=H/2

= L cosβ〈|�u|〉 (6.38b)

∫ H/2

−H/2

∫ L/2

−L/2
wdxdy = LH cos γ 〈|�u|〉 (6.38c)

(T − Tw)|x=L/2 = τ (L cosα)/(L cosα+H cosβ)
0 (T − Tw)|x=−L/2 (6.39a)

(T − Tw)|y=H/2 = τ (H cosβ)/(L cosα+H cosβ)
0 (T − Tw)|y=−H/2 (6.39b)

In this way, all derivatives associated with z can be eliminated. Thus, only
two-dimensional storages are required to solve Eqs. (6.29) to (6.33). (Note that
both Eqs. (6.32) and (6.33)may be treated as two-dimensional scalar transport
equation.)

6.6 Method of Computation and Preliminary Numerical
Consideration

Thegoverning equations (6.29) to (6.31) subject to the foregoingboundary and
compatibility conditions (6.37a), (6.37b), (6.38a), and (6.38b)were numerically
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solved using SIMPLE algorithm proposed by Patankar and Spalding [20]. As
the u and v velocity fields were established, the remaining equations (6.32)
and (6.33) subject to the boundary conditions (6.37c), (6.38c), (6.39a), and
(6.39b) were solved to find w and T. Convergence was measured in terms
of the maximum change in each variable during an iteration. The maximum
change allowed for the convergence checkwas set to 10−5, as the variables are
normalized by appropriate references. The hybrid scheme has been adopted
for the advection terms. Further details on this numerical procedure can be
found in Patankar [21] and Nakayama et al. [22]. For the cases of square
cylinder banks, all computations have been carried out for a one structural
unitL×H, as indicatedbydashed lines inFigure6.3(b), usingnonuniformgrid
arrangementswith 91×91, after comparing the results against those obtained
with 181 × 181 for some selected cases, and confirming that the results are
independent of the grid system. All computations were performed using the
computer system at Shizuoka University Computer Center.
In order to confirm the validity of the present numerical procedure based

on the periodic boundary conditions, preliminary computations were also
conducted for the case of forced convection from isothermal parallel plates
with a channel height H, as shown in Figure 6.2. Since α = 0,β = γ = π/2
for this case, we find w = Sw = 0, and

Nu2H = hf(2H)
kf

= ρcpfuBH2

Lkf
ln
(
1
τ0

)
(6.40)

fromEqs. (6.18) and (6.39a). The computationsweremade for 10 ≤ Re2H ≤ 103

andPr = 1, and thenumerical results forNu2H arepresented inFigure 6.4. The
predicted Nusselt number attains its fully developed value, namely, Nu2H =
7.54, which coincides with the exact solution.

101 102 103
7.0

7.5

8.0

7.54

N
u 2

H

Re2H

Present prediction
(Isothermal parallel plates)

FIGURE 6.4
Fully developed Nusselt number in a channel.
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6.7 Validation of Quasi-Three-Dimensional Calculation
Procedure

The efficiency and accuracy of the quasi-three-dimensional calculation pro-
cedure, proposed for the two-dimensional structure, may be examined by
comparing the results based on the procedure with those based on the full
three-dimensional calculation procedure. Extensive calculations have been
carried out using the full three-dimensional governing equations (6.21) to
(6.23) for macroscopically uniform flow through a bank of square cylinders
in yaw, as illustrated in Figure 6.3(b).
Computations may be made using the dimensionless equations based on

the absolute value of the Darcian velocity vector |〈�u〉|, and the longitud-
inal center-to-center distance L as reference scales. For carrying out a series
of numerical calculations, it may be convenient to use the Reynolds num-
ber based on L as ReL = |〈�u〉|L/νf , which can readily be translated into the
Reynolds number based on the size of square rod D as follows:

ReD = |〈�u〉|D/νf =
(
(1− φ)H

L

)1/2
ReL (6.41)

where the porosity is given by

φ = 1− (D2/HL) (6.42)

In this numerical experiment, the Reynolds number is varied from 10−2 to
6×103, as in the study for the cross-flows (i.e., with γ = π/2)[10]. For this time,
both cross-flow angle α′ and yaw angle γ are varied from 0 to π/2 with an
increment π/36 to cover all possible macroscopic flow directions in the three-
dimensional space, such that entire solution surfacesmay be constructed over
the domain 0 ≤ α′ ≤ π/2 and 0 ≤ γ ≤ π/2. Moreover, the ratio H/L is set to
1, 32 , and 2 to investigate the effects of the degree of the anisotropy, whereas
the ratio D/L is fixed to 1

2 for all calculations.
In Figures 6.5, the resulting velocity and temperature fields obtained for the

case of H/L = 1,α′ = 45◦, γ = 45◦,ReL = 600, and Pr = 1 using the full
three-dimensional calculation procedure (Figure 6.5[a]) are compared with
those based on the quasi-three-dimensional calculation procedure based
on the simplified governing equations (6.29) to (6.33) (Figure 6.5[b]). Excellent
agreement between the two sets of the results can be seen, which verifies the
accuracy and efficiency of the proposed quasi-three-dimensional calculation
procedure. The CPU time required for the convergence using the full three-
dimensional calculation turned out to be roughly 3 h, 6 times more than that
using the quasi-three-dimensional calculation. This proves the effectiveness
of the quasi-three-dimensional calculation procedure.
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FIGURE 6.5
Comparison of two distinct three-dimensional calculation procedures (H/L = 1, α′ = 45◦, γ =
45◦, ReL = 600, Pr = 1). (a) Results based on the full three-dimensional calculation procedure.
(b) Results based on the quasi-three-dimensional calculation procedure.

This economical quasi-three-dimensional calculation procedure has been
used to conduct a numerical experiment for macroscopically uniform flow
through a bank of square cylinders in yaw over a wide range of the Reynolds
number and flow angle.

6.8 Determination of Permeability Tensor

The gradient of the intrinsic average pressuremay readily be evaluated using
the microscopic results as

− ∂〈p〉
f

∂s
= cosα
L(H −D)

∫ (H−D)/2

−(H−D)/2
(
p|x=−L/2 − p|x=L/2

)
dy

+ cosβ
H(L−D)

∫ (L−D)/2

−(L−D)/2
(
p|y=−H/2 − p|y=H/2

)
dy + µ cos γ

(HL−D2)

∮
Pf

∂w
∂n

dP

(6.43)
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When the velocity (i.e., Reynolds number) is low, the proposed model
equation (6.11) reduces to Darcy’s law as

−∂〈p〉
f

∂xi
=
(
µfK

−1
fij
+ ρfbfij |〈�u〉|

)
〈uj〉 ∼= µfK−1fij

〈uj〉 (6.44)

For the orthotropicmedia, the permeability tensormay bemodeled following
Dullien [23] as

K−1fij
= (lilj)/Kf1 + (mimj)/Kf2 + (ninj)/Kf3 (6.45)

such that

−∂〈p〉
f

∂xi
∼= µfK−1fij 〈uj〉 =

(
cosα
Kf1

li + cosβ
Kf2

mi + cos γ
Kf3

ni

)
|〈�u〉| (6.46)

where

cosα = lj〈uj〉
|〈�u〉| , cosβ = mj〈uj〉

|〈�u〉| , cos γ = nj〈uj〉
|〈�u〉| (6.47)

Thus, the directional permeability measured along the macroscopic flow
direction s is given by

1
Kfn
= cos2 α

Kf1
+ cos2 β

Kf2
+ cos2 γ

Kf3
(6.48)

such that

−∂〈p〉
f

∂s
= µf

Kfn
|〈�u〉| (6.49)

or, in dimensionless form, as

−∂〈p〉
f

∂s
L2

µf|〈�u〉| =
L2

Kfn
(6.50)

Thus, the directional permeability Kfn may readily be determined by read-
ing the intercept of the ordinate variable, as we plot − (∂〈p〉f/∂s) (L2/µf|〈�u〉|)
against ReL, as done in the study on the cross-flow case [10]. The solution
surfaces of the directional permeability are constructed using the numerical
values and presented in terms of L2/Kfnagainst the projected angle α′ and the
yaw angle γ for the cases ofH/L = 1 and 3

2 in Figure 6.6(a). The solution sur-
face changes drastically as the ratioH/L departs fromunity. It is interesting to
note that the effect of the projected angle α′ on the directional permeability is
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FIGURE 6.6
Solution surfaces for directional permeability; (a) numerical experiments, H/L = 1, H/L = 3

2 ,

(b) correlations, H/L = 1, H/L = 3
2 .

TABLE 6.1

Coefficients for Macroscopic Pressure Gradient

H/L (φ) L2/Kf1 L2/Kf2 L2/Kf3 bf1L bf2L bbf1L

1 (0.750) 76 76 41 0.2 0.2 8.2
3
2 (0.833) 16 55 13 0.1 0.6 3.2
2 (0.875) 7 42 6 0.05 0.8 1.2

totally absent for the arrangement H/L = 1. The coefficients Kf1 , Kf2 , and Kf3
in the proposed expression (6.48) may be determined by fitting the numer-
ical results against the solution surfaces based on Eq. (6.48). Such solution
surfaces generated by the proposed Eq. (6.48) are presented in Figure 6.6(b)
for comparison. The numerical values of Kf1 , Kf2 , and Kf3 determined in this
manner are listed in Table 6.1. The validity of the proposed Eq. (6.48) with
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FIGURE 6.7
Directional permeability at γ = π/2.

the values listed in Table 6.1 can be examined further by plotting L2/Kfn as
shown in Figure 6.7 for the case of γ = π/2, where the fluid flows perpen-
dicularly to the rods. It is seen that the numerical results closely follow the
curves generated from Eq. (6.48).

6.9 Determination of Forchheimer Tensor

When the velocity (i.e., Reynolds number) is sufficiently high, the inertial
Forchheimer term describing the form drag predominates over the Darcy
term such that

−∂〈p〉
f

∂xi
=
(
µfK

−1
fij
+ ρfbfij |〈�u〉|

)
〈uj〉 ∼= ρfbfij |〈�u〉|〈uj〉 (6.51)

Usually, the principal axes of the permeability tensor K−1fij
do not coincide

with those of the inertial Forchheimer tensor bfij . For the orthotropic media
in consideration, however, the tensors bfij should be symmetric, and hence,
they must satisfy the following symmetric conditions:

∂bfn
∂α

∣∣∣∣
α=0,π/2

= ∂bfn
∂β

∣∣∣∣
β=0,π/2

= ∂bfn
∂γ

∣∣∣∣
γ=0,π/2

= 0 (6.52)
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where

bfn ≡ bfij
〈ui〉〈uj〉
|〈�u〉|2 (6.53)

is the directional Forchheimer coefficient measured along the macroscopic
flow direction s. One of the simplest functions that satisfy these conditions
may be:

bfij = bf1(lilj)+ bf2(mimj)+ bf3(ninj)+ bbf1 cosα cosβ((limj)+ (ljmi))
+ bbf2 cosβ cos γ ((minj)+ (mjni))+ bbf3 cos γ cosα((nilj)+ (njli))

(6.54)

which results in

bfn = bf1 cos2 α + bf2 cos2 β + bf3 cos2 γ + 2bbf1 cos2 α cos2 β

+ 2bbf2 cos2 β cos2 γ + 2bbf3 cos2 γ cos2 α (6.55)

such that

−∂〈p〉
f

∂s
= µf

Kfn
|〈�u〉| + ρfbfn |〈�u〉|2 (6.56)

or, in dimensionless form, as

−∂〈p〉
f

∂s
L

ρf|〈�u〉|2 =
L2

KfnReL
+ bfnL (6.57)

Plotting the results of macroscopic pressure gradient in terms of
−(∂〈p〉f/∂s)(L/ρf|〈�u〉|2) and reading the horizontal asymptotes, we can readily
determine the directional Forchheimer constant.
The numerical values of the directional Forchheimer constant for the cases

of H/L = 1 and 3
2 are shown in terms of the solution surfaces of bfnL in

Figure 6.8(a). These figures clearly show that, for fixed γ , the directional
Forchheimer constant attains its peak around α′ = π/2, while, for fixed α′, it
decreases monotonically from γ = π/2 to 0.
From this observation, we find that the coefficients and bbf1 is nonzero

while bf3 , bbf2, and bbf3 in Eq. (6.55) should vanish for the bank of cylinders,
such that

bfn = bf1 cos2 α + bf2 cos2 β + 2bbf1 cos2 α cos2 β

= (bf1 cos2 α′ + bf2 sin2 α′ + 2bbf1 cos2 α′ sin2 α′ sin2 γ ) sin2 γ (6.58)
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FIGURE 6.8
Solution surfaces for directional Forchheimer coefficient; (a) numerical experiments, H/L = 1,
H/L = 3

2 , (b) correlations, H/L = 1, H/L = 3
2 .

The corresponding bfnL surfaces based on the proposed expression (6.58)
with the values of bf1 , bf2 , and bbf1 as listed in Table 6.1 are presented in
Figure 6.8(b) for comparison. Furthermore, the numerical results of the dir-
ectional Forchheimer constant obtained with γ = π/2 for H/L = 1, 3

2 , and
2 are presented in Figure 6.9 as a function of the cross-flow angle α(=α′). In
the same figure, the solid curves generated from the proposed Eq. (6.58) are
presented to elucidate the validity of the proposed expression. Note that, for
this case of γ = π/2, the foregoing equation reduces to

bfn = bf1 cos2 α + bf2 sin2 α + 2bbf1 cos2 α sin2 α (6.59)

It is interesting to note that the numerical results for the cases H/L = 3
2 and

2 show two consecutive peaks, while the model Eq. (6.59) yields only one
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FIGURE 6.9
Directional Forchheimer coefficient at γ = π/2.

peak (the first peak). The second peak appears when the macroscopic flow
angle, α, reaches roughly tan−1(H/L). Note that, for the case of H/L = 1, this
second peak coincides with the first one. Unfortunately, the model equation
is incapable of describing the second peak.
Zukauskas [24] assembled the experimental data for the fully developed

pressure drop across the tube banks in both inline-square and staggered-
triangle arrangements, and presented a chart for the Euler number
(i.e., the dimensionless macroscopic pressure drop over a unit). His inline-
square arrangement corresponds to the present arrangement with α = 0,
γ = π/2, and L/D = 2. However, it is noted that, in reality, the mac-
roscopic flow direction rarely coincides with the principal axes, since even
small disturbances at a sufficiently high Reynolds number deviate the flow
from the axis. Thus, it is understood that the chart provided by Zukauskas
gives only the average level of the pressure drop within a range of small
α (say 0◦ < α < 5◦). The dimensionless macroscopic pressure gradient
−(∂〈p〉f/∂s)(L/ρf|〈�u〉|2) for the case of γ = π/2 and L/D = 2 is plotted against
ReL in Figure 6.10, where the curves generated from themodel Eq. (6.57) with
the numerical values taken from Table 6.1 and Figure 6.9 (note that bfnL = 0.2
and 0.6, for α = 0◦ and 5◦, respectively) are drawn together with the empir-
ical chart provided by Zukauskas for the inline-square arrangement. The
agreement between these curves appears fairly good.
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Dimensionless macroscopic pressure gradient.

6.10 Determination of Interfacial Heat Transfer Coefficient

The interfacial heat transfer coefficient as defined byEq. (6.6)may be obtained
by substituting the microscopic temperature results into the following
equation:

hf ≡
(1/V)

∫
Aint

kf∇T · d �A(〈T〉s − 〈T〉f) =
1

Afluid

∮
Pint
(−kf(∂T/∂n))dP(〈T〉s − 〈T〉f) (6.60)

where Aint is the total interface between the fluid and solid, while d �A is its
vector element pointing outward from the fluid to solid side. In Figure 6.11,
the heat transfer results obtained at α = 0 andπ/4 for the cross-flows (i.e., γ =
π/2) are presented in terms of the interfacial Nusselt number NuL = hfL/kf
against the Reynolds number ReL. The figure suggests that the lower and
higher Reynolds number data follow two distinct limiting lines for the case of
nonzero α, namely, α = π/4. The lower Reynolds number data stay constant
for the given array and flow angle, whereas the high Reynolds number data
vary in proportion to Re0.6L .
Another series of computations changing the Prandtl number, conducted

following Kuwahara et al. [19], revealed that the exponents associated with
the Reynolds and Prandtl numbers are the same as those Wakao and Kaguei
[25] observed as collecting and scrutinizing reliable experimental data on
interfacial convective heat transfer coefficients in packed beds. The simil-
arity, albeit the difference in the Reynolds number dependence, between
the Nusselt number NuL and the macroscopic pressure gradient as given by
Eq. (6.56) is noteworthy, which prompts us to model the directional Nusselt
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FIGURE 6.11
Effect of Reynolds number on directional Nusselt number (Pr = 1).

number as follows:

NuL ≡ hfL
kf
= cf + dfRe0.6L Pr1/3f (6.61)

In the figure, the experimental correlation proposed by Zukauskas [26] for
the heat transfer from the circular tubes in staggered banks is compared
with the present results obtained for the case of α = π/4, γ = π/2, and
H/L = 1. (Note Nuf ∼= NuL/2 and Ref ∼= ReL in Eq. (6.39) of Zukauskas since
D/L = 1

2 .) The present results follow closely along the experimental correla-
tion of Zukauskas as increasing the Reynolds number. Grimison [27] carried
out an exhaustive experiment to investigate heat transfer from tube rows of a
bank in both staggered andaligned arrangementswith respect to thedirection
of the macroscopic flow. His case, in which the ratio of the transverse pitch to
tube diameter and that of the longitudinal pitch to tube diameter are 3 and 1.5,
respectively, gives a configuration close to the present orthogonal configura-
tion with α = π/4, γ = π/2, andH/L = 1. Thus, the experimental correlation
established by Grimison for the case is also presented in the figure, which
agrees very well with the present numerical results. These correlations are
believed to hold for a comparatively wide Reynolds number range, covering
from a predominantly laminar flow regime to turbulent flow regime.
Following the procedure similar to the one adopted for determining the

directional permeability, the coefficient cf ≡ NuL|ReL→0 for each macroscopic
flow angle is evaluated and plotted in terms of the solution surfaces in
Figure 6.12(a), using the low Reynolds number data. It is noted that the effect
of the projected angle α′ on the interfacial heat transfer coefficient is totally
absent for the arrangement H/L = 1.
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FIGURE 6.12
Solution surfaces for directional heat transfer coefficient at small Reynolds number; (a) numerical
experiments, H/L = 1, H/L = 3

2 , (b) correlations, H/L = 1, H/L = 3
2 .

The similarity between the solution surfaces of cf and those of L2/Kfn is
obvious, which leads us to introduce a functional form as follows:

cf =
(
cncf1 cos

2 α + cncf2 cos2 β + c
nc
f3
cos2 γ

)1/nc
(6.62)

such that cf reduces to cf1 , cf2 , and cf3 for α = 0, β = 0, and γ = 0, respectively,
as it should.
Careful examination of the numerical results over thewhole domainwithin

0 ≤ α′ ≤ π/2 and 0 ≤ γ ≤ π/2 suggests that nc is close to minus one, which
leads us to a harmonic mean expression as

1
cf
= cos2 α

cf1
+ cos2 β

cf2
+ cos2 γ

cf3
(6.63)
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TABLE 6.2

Coefficients for Directional Nusselt Number

H/L (φ) cf1 cf2 cf3 nc df1= df2 nd

1 (0.750) 11 11 8.6 −1.0 0.90 4.5
3
2 (0.833) 4.8 14 5.2 −1.0 0.77 4.5
2 (0.875) 3.2 16 3.6 −1.0 0.67 4.5
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FIGURE 6.13
Effect of the cross-flow angle α on the coefficient cf at γ = π/2.

The values of cf1 , cf2 , and cf3 listed in Table 6.2 have been determined by
fitting the numerical results against the foregoing equation. The resulting sur-
faces based on the proposed expression (6.63) are presented in Figure 6.12(b)
for their comparison with the surfaces based on the numerical experiments
shown in Figure 6.12(a). Furthermore, Figure 6.13 shows the numerical res-
ults of cf obtained at γ = π/2 for the three distinct arrangements, namely,
H/L = 1, 32 , and 2. The solid curves in the figure are generated from the
proposed Eq. (6.63) with the values of cf1 and cf2 as listed in Table 6.2.
The second coefficient df may be determined using the dataNuL/Re0.6L Pr1/3f

in the high Reynolds number range. The resulting solution surfaces of df are
presented inFigure 6.14 forH/L = 1 and 3

2 . Unlike theForchheimer coefficient
bfn , the coefficient df stays roughly constant for a fixed yaw angle γ .
More careful observation on the solution surfaces reveals that the coefficient

df drops abruptly as the projected angle α′ reaches close to either 0 or π/2
(in which the fluid flows along the principal axis of the structure). However,
as already pointed out, it is quite unlikely to have the macroscopic flow align
perfectly with the principal axes. Thus, wemay assume that df is the function
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Solution surfaces for directional heat transfer coefficient at large Reynolds number; (a) numerical
experiments, H/L = 1, H/L = 3

2 , (b) correlations, H/L = 1, H/L = 3
2 .

of the yaw angle γ alone, namely, df = df(γ ). It is interesting to note that
df = df(γ ) is consistent with the idea of the effective velocity ueff = |〈�u〉| sin γ
used in the hot-wire anemometry. Thus, we may model df as

df =
(
dndf1 sin

2 γ + dndf3 cos2 γ
)1/nd

(6.64)

A careful observation on the solution surfaces leads us to df3 ∼= 0, and also
reveals the values of df1 and nd as listed in Table 6.2. Thus, we propose the
expression as follows:

NuL =
(
cncf1 cos

2 α + cncf2 cos2 β + c
nc
f3
cos2 γ

)1/nc + df1 sin2/nd γRe0.6L Pr1/3f

(6.65a)
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or

NuD = 1
2

(
cncf1 cos

2 α + cncf2 cos2 β + c
nc
f3
cos2 γ

)1/nc + df1
20.4

sin2/nd γRe0.6D Pr1/3f

(6.65b)

Note that the exponentsnc = −1 andnd = 9
2 irrespectively of the value ofH/L,

while the coefficients cf1 , cf2 , cf3 , and df1 depend on that particular geometrical
configuration.
Zukauskas [24] investigated the effect of the yaw angle on the interfacial

heat transfer rate. He varied the yaw angle γ for both staggered and aligned
arrangements, and compared the corresponding heat transfer rates for the
same Reynolds number. He pointed out that the data when normalized by
the value obtained at γ = π/2 for all staggered and inline arrangements,
namely, NuD/NuD|γ=π/2, can be approximated by a single curve irrespective
of the Reynolds number. His data for both staggered and inline arrangements
are plotted in Figure 6.15 together with the expression based on the model
Eq. (6.65b), namely,

NuD
NuD|γ=π/2

∼= sin2/nd γ = sin4/9 γ (6.66)

for the case of sufficiently high Reynolds number. The agreement between
the experimental data and the curve based on Eq. (6.66) is fairly good, which
indicates the validity of the model Eq. (6.65b). It should also be noted that
the staggered arrangement corresponds to the case of α′ = π/4 while the
inline arrangement to the case in which α′ is close to zero (but α′ �= 0 since
the macroscopic flow direction never coincides with the principal axis of the
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structure). Thus, these experimental data substantiates our finding based on
the numerical experiment, namely, that the multiplicative constant for the
interfacial Nusselt number df stays virtually constant (irrespective of α′) for
a fixed yaw angle, as illustrated by the solution surfaces in Figure 6.14.

6.11 Conclusions

Anumerical modeling strategy for dealing with three-dimensional flow and
heat transfer within highly anisotropic porous media has been proposed to
attack complex fluid flow and heat transfer associated with heat transfer
equipment. An appropriate set of the periodic boundary conditions has been
derived appealing to the concept of VAT, and applying it to a macroscopic-
ally uniform flow through an isothermal porous medium of infinite extent.
For three-dimensional heat and fluid flow through a two-dimensional struc-
ture, a quasi-three-dimensional calculation procedure is found possible. The
procedure can be exploited to investigate three-dimensional heat and fluid
flow through a bank of cylinders in yaw, which represents a numerical model
for manmade structures such as plate-fin heat exchangers. Only one struc-
tural unit was taken as a calculation domain, noting the periodicity of the
structure. This inexpensive and yet efficient numerical calculation procedure
based on one structural unit along with periodic boundary conditions was
employed to conduct extensive three-dimensional calculations for a number
of sets of the porosity, degree of anisotropy, Reynolds number, Prandtl num-
ber, and macroscopic flow direction. The numerical results, thus obtained
at the pore level, were integrated over a structural unit to determine the
permeability tensor, Forchheimer tensor, and interfacial heat transfer coeffi-
cient, so as to elucidate the effects of yaw angle on these macroscopic flow
and heat transfer characteristics. Upon examining these numerical experi-
mental data, a useful set of explicit expressions for the permeability tensor,
Forchheimer tensor, and interfacial heat transfer coefficient have been estab-
lished for the first time, such that one can easily evaluate the pressure drop
and heat transfer rate from the bank of cylinders in yaw. The systematic mod-
eling procedure proposed in this study can be utilized to conduct subscale
modeling of manmade structures needed in the possible applications of a
VAT to investigate flow and heat transfer within complex heat and fluid flow
equipment consisting of small elements.

Nomenclature
�A surface area vector
Aint total interface between the fluid and solid
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bfij , bfn Forchheimer coefficient tensor, directional Forchheimer coefficient
cpf specific heat capacity at constant pressure
cf , df coefficients associated with directional Nusselt number
D size of square rod
H,L size of structural unit
hf interfacial convective heat transfer coefficient
kf thermal conductivity
Kfij ,Kfn permeability tensor, directional permeability
Prf Prandtl number
u, v,w microscopic velocity components in the x, y, and z directions
T microscopic temperature
p microscopic pressure
ReL Reynolds number based on L and the Darcian velocity
ReD Reynolds number based on D and the Darcian velocity
V elementary representative volume
x, y, z Cartesian coordinates
α,β, γ angles between themacroscopic velocity vector and principal axes
α′ projected angle, cross-flow angle
νf kinematic viscosity
ρf density
µf viscosity
φ porosity

Subscripts and superscripts

f fluid
s solid

Special symbols

〈 〉 volume-average
〈 〉f,s intrinsic average
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7.1 Introduction

7.1.1 Definitions

Natural convectionflow inporousmedia, due to thermal buoyancy alone, has
been widely studied (Combarnous and Bories, 1975) and well-documented
in the literature (Cheng, 1978; Bejan, 1984; Nield and Bejan, 1992, 1998) while
only a fewworks have been devoted to double-diffusive convection in porous
media. This type of convection concerns the processes of combined (simul-
taneous) heat and mass transfer which are driven by buoyancy forces. Such
phenomena are usually referred to as thermohaline, thermosolutal, double-
diffusive, or combined heat and mass transfer natural convection, in this case
the mass fraction gradient and the temperature gradient are independent
(no coupling between the two). Double-diffusive convection frequently
occurs in seawater flow and mantle flow in the earth’s crust, as well as in
many engineering applications.

Soret-driven thermosolutal convection results from the tendency of solute
to diffuse under the influence of a temperature gradient. The concentration
gradient is created by the temperature field and is not the result of a bound-
ary condition (see De Groot and Mazur, 1961; Patil and Rudraiah, 1980).
For saturated porous media, the phenomenon of cross-diffusion is further
complicated due to the interaction between fluid and porous matrix, and
accurate values of cross-diffusion coefficients are not available. This makes
it impossible to proceed to a practical quantitative study of cross-diffusion
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effects in porous media. The Dufour coefficient is an order of magnitude
smaller than the Soret coefficient in liquids, and the corresponding contri-
bution to the heat flux can be ignored. Knobloch (1980) and Taslim and
Narusawa (1986), demonstrated in a fluid medium and a porous medium,
respectively, that there exists a close relationship between cross-diffusion
problems (taking into account the Dufour effect and Soret effect) and
double-diffusion problems.

Recent interest in double-diffusive convection through porous media has
been motivated by its importance in many natural and industrial problems.
Some examples of thermosolutal convection can be found in astrophysics,
metallurgy, electrochemistry, and geophysics. Double-diffusive flows are
also of interest with respect to contaminant transport in groundwater and
exploitation of geothermal reservoirs.

Two regimes of double-diffusive convection are commonly distinguished.
When the faster diffusing component is destabilizing, as it is when stably
stratified saltwater is heated from below in a horizontal cell, the system is in
the diffusive regime. When the slower diffusing component is destabilizing,
as is the case when cold fresh water is overlain by hot salty water, the system
is in the fingering regime.

In such binary fluids, the diffusivity of heat is usually much higher than
diffusivity of salt; thus, a displaced particle of fluid loses any excess heat
more rapidly than any excess solute. The resulting buoyancy force may
tend to increase the displacement of the particle from its original position
causing instability. The same effect may cause overstability involving oscil-
latory motions of large amplitudes since heat and solute diffuse widely at
different rates.

The current state of knowledge concerning double-diffusive convection in
a saturated porous medium is summarized in the overviews by Nield and
Bejan (1998) and recent developments and reviews are given by Ingham and
Pop (2000, 2002).

The double-diffusion problem is interesting and exhibits quite complicated
nonlinear phenomena, which depend on the boundary layer thickness.
In general, three kinds of boundary layers are associated with the double-
diffusion process: hydrodynamic, thermal, and species concentration
boundary layers. The relative thickness of those boundary layers defines the
rate of the heat and mass transfer process and the dynamics of the flow.
Also, the local density of the fluid depends on the temperature and species
concentration. Accordingly the dynamics of the flow can be complicated due
to density reversal.

7.1.2 Experimental Studies

We consider, here, the most significant experimental studies in thermosolutal
convection in porous media. The first was carried out by Griffith (1981). He
used both aHele-Shaw cell and a sand-tankmodelwith salt and sugar or heat
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and salt as the diffusing components and porous medium of glass spheres to
study the “diffusive” configuration (a thin diffusive interface). He measured
salt–sugar and heat–salt fluxes through two-layer convection systems and
compared the results with predictions from a model. This was applied to the
Wairakei geothermal system, and the observed values were consistent with
those found in laboratory experiments.

The second work was carried out by Imhoff and Green (1988). They stud-
ied double-diffusive groundwater fingers, using a sand-tank model and a
salt–sugar system. They observed that double-diffusive groundwater fingers
can transport solutes at rates of, as much as, two orders of magnitude larger
than those associated with molecular diffusion in motionless groundwater.
This could play amajor role in the vertical transport of near-surface pollutants
in groundwater.

The third experimental work, by Murray and Chen (1989), is closer
to our study, Charrier-Mojtabi et al. (1997), and concerns the onset of
double-diffusive convection in a finite box filled with porous medium. The
experiments were performed in a horizontal layer consisting of 3 mm dia-
meter glass beads contained in a box 24 × 12 × 4 cm3 high. The rigid top
and bottom walls of the box provide a linear basic-state temperature pro-
file but only allow a nonlinear time-dependent basic-state profile for salinity.
They observed that when a porous medium is saturated with a fluid hav-
ing a stabilizing salinity gradient, the onset of convection was marked by
dramatic increase in heat flux at the critical �T, and the convection pattern
was three-dimensional, while two-dimensional rolls are observed for single-
component convection in the same apparatus. They also observed ahysteresis
loop reducing the temperature difference from supercritical to subcritical
values.

7.1.3 Linear Stability Analysis

Concerning the theoretical studies, various modes of double-diffusive con-
vection can be developed depending not only on how both thermal and
solutal gradients are imposed relative to each other but also on the numerous
nondimensional parameters involved.

Many of the published works regarding double-diffusive convection in
porous media concern linear stability analysis. The linear stability charac-
teristics of the flow in horizontal layers with imposed vertical temperature
and concentration gradients have been the subject of many studies. The onset
of thermosolutal convection was predicted by Nield (1968), on the basis of
linear stability analysis. This flow configuration was later studied by many
investigators. Tanton et al. (1972) extended Nield’s analysis and considered
salt-fingering convection in a porous layer. Trevisan and Bejan (1985) studied
mass transfer in the casewhere buoyancy is entirely due to temperature gradi-
ents. Rudraiah et al. (1986) applied linear and nonlinear stability analysis and
showed that subcritical instabilities are possible in the case of two-component
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fluids. Brand et al. (1983) obtained amplitude equations for the convective
instability of a binaryfluidmixture in aporousmedium. They foundan exper-
imentally feasible example of a codimension-two bifurcation (intersection of
stationary and oscillatory bifurcation lines).

With regard to porous layers heated from the side, the focus has been
on the double-diffusive instability of double boundary-layer structures that
form near a vertical wall immersed in a temperature and concentration strat-
ified porous medium. The stability of this problem was studied by Gershuni
et al. (1976) and independently by Khan and Zebib (1981). The occurrence
of both monotonic and oscillatory instability was predicted. Raptis et al.
(1981) constructed similar solutions for the boundary layer near a vertical
wall immersed in a porous medium with constant temperature and con-
centration. Nield et al. (1981) analyzed the convection induced by inclined
thermal and solutal gradients in a shallow horizontal layer of a porous
medium.

Recently, Mahidjiba et al. (2003) have examined the effect of mixed thermal
and solutal boundary conditions (constant temperatures and mass fluxes,
or vice versa, prescribed on the horizontal boundaries). The thresholds for
oscillatory and stationary convection are obtained. It is also demonstrated
that, when the thermal and solute effects oppose each other, the flow patterns
becomemuch different from the classical Benard convective flows.Amahmid
et al. (2000) developed analytical and numerical linear stability studies for
double-diffusive flow in a horizontal Brinkmann porous layer subjected to
constant heat and mass fluxes. Considering the work of Mamou and Vasseur
(1999a), Kalla et al. (2001b) have studied the effect of lateral heating on the
bifurcation phenomena present in double-diffusive convection within a hori-
zontal enclosure and found that the lateral heating acts as an imperfection
superimposed on the bifurcation curves.

The case of vertical or inclined enclosures subjected to opposing and equal
buoyancy forces (N = −1) has been extensively studied during the last
decade. For this situation, on the basis of both linear and nonlinear stabil-
ity analysis, Charrier-Mojtabi et al. (1997), Mamou et al. (1997, 1998a, 1998b),
Marcoux et al. (1998), Karimi-Fard et al. (1999), and Mojtabi and Charrier-
Mojtabi (2000) have demonstrated that there exists a threshold for the onset
of oscillatory or stationary convection. Different convective regimes such as
subcritical, overstable, and stationary convective modes were delineated in
terms of the governing parameters (Lewis number, enclosure aspect ratio,
normalized porosity of the porous medium, inclination angle, and thermal
and solutal boundary conditions). Subcritical convection was found to occur
in a wide range of Lewis numbers.

However, the overstable regime was found to occur in a narrow range
of Lewis number (close to 1, as in the case of many gases) depending on
the normalized porosity. In an infinite layer, the wavelength at the onset of
stationary convection was found to be independent of the Lewis number and
this has been verified by Mamou (2002) but it is not the case at the onset
of overstability. It has also been demonstrated, when the Lewis number is
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close to unity, that the system remains conditionally stable, provided that the
normalized porosity is lower than unity.

Considering vertical enclosure subject to constant fluxes of heat and solute,
Amahmid et al. (2000) have studied the situation where the buoyancy
forces are nearly equal: N = −1 + ε where ε � 1 is a very small
positive number. As expected, multiple unicellular convective flows were
predicted.

The present chapter is devoted to a two-dimensional study of double-
diffusive convective flowswithin tiltedporous enclosures subject to opposing
thermal and solutal gradients. The situation where the thermal and solutal
buoyancy forces are equal and opposing each other (N = −1) is considered.
The case of an arbitrary buoyancy ratio is introduced for a horizontal enclos-
ure, subject to vertical gradients of heat and solute. Similar andmixed thermal
and solutal boundary conditions are considered. A reliable numerical tech-
nique is developed for determining the critical parameters for the onset of
convection and, for comparison, a finite element solution of the full govern-
ing equations is obtained and the effects of the governing parameters on the
convective flow behavior are studied.

7.1.4 Numerical and Analytical Studies

As far as the relation between thermal and concentration buoyancy forces is
concerned, theproblemofdoublediffusion canbe classified into the following
categories (Mohamad, 2003; Mohamad et al., 2004):

Type I — Temperature and species concentration or their gradients are
imposed horizontally along the enclosure, either aiding or opposing each
other.
Type II — Temperature and species or their gradients are imposed vertic-
ally, again either aiding or opposing each other (modified Rayleigh–Benard
convection; stratified medium).
Type III — Temperature (or species concentration) or their gradient is
imposed vertically and species concentration (or temperature) or their gradi-
ent imposed horizontally. It is important to note that most of these works are
theoretical.

7.1.4.1 Type I

Horizontally imposed gradients. Sezai and Mohamad (1999) presented results
for three-dimensional flow in a cubic cavity filled with porous medium and
subjected toopposingahorizontal thermal and concentrationgradients. Their
results revealed that, for a certain rangeof the controllingparameters, theflow
becomes three-dimensional and multiple solutions are possible within this
range. In the following paragraphs a few results will be shown to illustrate
the flow pattern and their effects on heat and mass transfer.
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FIGURE 7.1
Stream functions atX = 0.25 (upper), X = 0.5 (middle), andX = 0.75 (bottom) for aspect ratio of
unity (left) with N = −0.2 and N = −0.5 (middle) and aspect ratio of two (right) with N = −0.2.
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Figure 7.1 compares flow patterns for N = −0.2 and N = −0.5, for aspect
ratios of 1.0 and 2.0. The results at different lateral planes X = 0.25, 0.5, and
0.75, are illustrated in this figure. The flow is complex for N = −0.2 and the
complexity decreases for N = −0.5.

7.1.4.2 Type II

Vertical and inclined porous layer subjected to constant heat and mass fluxes.
Although the most basic geometry for the study of simultaneous heat and
mass transfer from the side is the vertical wall, most of the available studies
dealing with double-diffusion convection are in confined porous media and
concern rectangular cavities subjected to constant heat and mass fluxes at
their vertical walls.
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For a vertical wall immersed in an infinite porous medium, Bejan and
Khair (1985) studied the vertical natural convective flows due to the com-
bined buoyancy effects of thermal and species diffusion. They presented
an order of magnitude analysis of boundary layer equations, which yields
functional relations for the Nusselt and Sherwood numbers in limiting cases.
This fundamental problem was reexamined by Lai and Kulacki (1991). Their
solutions cover a wide range of governing parameters. The similar approach
employed by Bejan and Khair (1985) was generalized by Jang and Chang
(1988a, 1988b) to consider the effect of wall inclination on a two-layer struc-
ture. Recently, NakayamaandHossain (1995) obtainedan integral solution for
aiding-flow adjacent to vertical surfaces. Rastogi and Poulikakos (1995) con-
sidered non-Newtonian fluid saturated porous media and presented similar
solutions for aiding-flows with constant wall temperature and concentration
as well as constant wall flux conditions. Benhadji and Vasseur (2001) also
studied the double-diffusive convection in a shallowporous cavity filledwith
non-Newtonian fluid.

Rectangular cavitieswith imposed uniform heat andmass fluxes have been
the subject of numerous works. Trevisan and Bejan (1986) developed an ana-
lytical Oseen-linearized solution for boundary-layer regimes for Le = 1, and
proposed a similarity solution for heat transfer driving flows for Le > 1.
They also performed an extensive series of numerical experiments that val-
idate the analytical results and provide heat and mass transfer data in the
domain not covered by analytical study. The same configuration was con-
sidered by Alavyoon (1993) for cooperative (N > 0) buoyancy forces and
Alavyoon et al. (1994) for opposing (N < 0) buoyancy forces. They presented
an analytical solution valid for stratified flow in slender enclosures (A � 1)
and scale analysis that agrees with the heat driven and solute driven lim-
its, using numerical and analytical methods and scale analysis. Comparisons
between fully numerical and analytical solutions are presented for a wide
range of parameters. They also show the existence of oscillatory convection
with opposing buoyancy forces. Transient heat and mass transfer in a square
porous enclosure has been studied numerically by Lin (1993). He showed
that an increase of the buoyancy ratio N improves heat and mass transfer
and causes the flow to approach steady-state conditions in a short time. An
extension of these studies to the case of the inclined porous layer subjected
to transverse gradients of heat and solute was carried out by Mamou et al.
(1995a). Their results are presented for 10−3 ≤ Le ≤ 103, 0.1 ≤ RaT ≤ 104,
−104 ≤ N ≤ 104, 2 ≤ A ≤ 15, and −180◦ ≤ φ ≤ 180◦ where φ corres-
ponds to the inclination of the enclosure. They obtained an analytical solution
by assuming parallel flow in the core region of the tilted cavity. The exist-
ence of multiple steady-state solutions, for opposing buoyancy forces, has
been demonstrated numerically. Mamou et al. (1995b) have also numerically
shown that, in square cavities where the thermal and solutal buoyancy forces
counteract each other (N = −1), a purely diffusive (motionless) solution is
possible even for Lewis numbers different from unity.
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RecentlyAmahmid et al. (2000) analyzed the transition between aiding and
opposing double-diffusive flows in vertical porous matrix.
Vertical and horizontal cavities with imposed temperature and concentration.

The configuration of a vertical cavity with imposed temperature and con-
centration along the vertical sidewalls was considered by Trevisan and Bejan
(1985, 1990), Charrier-Mojtabi et al. (1997) and by Angirasa et al. (1997).
Trevisan and Bejan (1985) considered a square cavity submitted to horizontal
temperature and concentration gradients. Their numerical simulations are
compared to scaling analysis. They found that the onset of the convective
regime depends on the cell aspect ratio, A, the Lewis number, the thermal
and solutal Rayleigh number RaT and RaS or the buoyancy ratio N. Their
numerical simulations were carried out for the range 0.01 ≤ Le ≤ 100,
50 ≤ RaT ≤ 104, and −5 ≤ N ≤ +3 for A = 1. Angiraza et al. (1997), without
making approximations of boundary layer character, numerically solved the
Darcy type equation. They found that for highRayleighnumber aiding-flows,
the numerical solutions match the similar solutions very closely. However,
they differ substantially for opposing flows and for low Rayleigh numbers.
Flow and transport follow complex patterns depending on the interaction
between the diffusion coefficients and the buoyancy ratio N = RaS/RaT. The
Nusselt and Sherwood numbers reflect this complex interaction.

7.1.4.3 Type III

The first analytical solution for this configuration has been proposed by Kalla
et al. (1999), for the case of shallowcavity subjected to crossfluxes of heat. This
was followed by the analytical and numerical studies for double-diffusive
convection by Kalla et al. (2001a).

This problem has also been recently considered byMohamad and Bennacer
(2001, 2002) and Bennacer et al. (2001). They assume that the flow is two- and
three-dimensional and analysis is performed for an enclosure of aspect ratio
two, Pr = 0.71, Le = 10, GrT = 106–108, Da = 10−4–10−6 and for buoyancy
ratio, 0.25 ≤ N ≤ 2.0. Flow bifurcation is predicted for N values in the range
of about 0.8 to 1.0. The bifurcation occurs when the concentration buoyancy
force starts to overcome the thermally induced flow. One main circulation
observed for thermally driven flow is suppressed and flow breaks into two
thermally driven circulations. These circulations appear at the near horizontal
boundaries. With further increase to a strong stable concentration gradient
(N), the flow is totally suppressed. Also, Bennacer et al. (2001) explore the
stability of the same problem, where oscillatory flow is predicted for a limited
range of buoyancy ratios. The oscillatory flow is attributed to interaction
between concentration plume and thermal cells. The difference between two-
and three-dimensional results is not that significant as far as the rate of heat
and mass transfer is concerned, even though the flow structure is different.
This suggests that the lateral flow is not that significant compared with axial
and vertical flows. Despite the fact that the flow patterns are complex and
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three-dimensionality of the flow is obvious, the average Nu and Sh numbers
for two- and three-dimensional simulations are almost the same. Figure 7.2
shows the effect of the buoyancy ratio on the average rate of heat and mass
transfer. For absolute N greater than or equal to one, the heat transfer is
diffusive, while the rate of mass transfer is enhanced by advection of the
momentum induced by thermal buoyancy.

The effects of Rayleigh and Lewis number of the average heat and mass
transfer is illustrated in Figure 7.3 and Figure 7.4, respectively, for N = −0.5,
Pr = 10, Da = 10−3. There is clear evidence from these figures that the
difference between predictions of two- and three-dimensional simulations is
not that significant as far as average heat andmass transfer are concerned. For
more detailed analysis and discussion, the reader should consult the paper
by Mohamad and Bennacer (2002).

Furthermore, Mohamad et al. (2004) examined the effect of lateral aspect
ratio on the flow development and heat transfer in three-dimensional enclos-
ures filled with binary fluids. The effect of thermal Ra, Sc, aspect ratio,
and buoyancy ratio on the heat and mass transfer and flow structure were
addressed. Using particular initial conditions, they found, that the flow may
duplicate itself if the aspect ratio increased by an integer number for a certain
range of the controlling parameters. In other words, longitudinal rolls form
similar to Rayleigh–Benard but with different local structures.
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FIGURE 7.2
The effect of N on Nu and Sh, Ra = 105, Pr = 10, Le = 10, Da = 10−3.
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7.1.5 Other Geometrical Configurations

The double diffusive case of natural convection in a vertical annular porous
layer under the condition of constant heat and mass fluxes at the vertical
boundaries was analyzed by Marcoux et al. (1999). The system of governing
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equations was solved numerically to obtain a detailed description of the
velocity, temperature, and concentration within the cavity in order to
emphasize the influence of the dimensionless parameters RaT, Le, N, and
curvature on steady and unsteady convective flows. For the case of high
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isotherms (a) and isohalines (b) at steady state for RaT = 100, Le = 10, A = 1 and 10, γ = 0
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aspect ratios (A � 5), an analytical solution is proposed on the basis of a
parallel flow model. The good agreement of this solution with numerical res-
ults shows that the analytical model can be faithfully used to obtain a concise
description of the problem for these cases as seen in Figure 7.5 and Figure 7.6.

Double-diffusive convectionover a spherewas analyzedbyLai andKulacki
(1990), while Yucel (1990) similarly treated the flow over a vertical cylinder.
Flow over a horizontal cylinder, with the concentration gradient being
produced by transpiration, was studied by Hassan and Mujumdar (1985).
All the above studies (Sections 7.1.3, 7.1.4, 7.1.5) describe the momentum
conservation in the porous medium using the Darcy model.

The effect of the curvature on the necessary N value to pass from the
clockwise to the anticlockwise rolls was analyzed by Beji et al. (1999) and
by Bennacer et al. (2001).

7.1.6 Other Formulations and Physical Problems

7.1.6.1 Brinkmann and Brinkmann–Forchheimer model

Poulikakos (1986) studied the criterion of onset of double-diffusive con-
vection using the Darcy–Brinkmann model to describe momentum conser-
vation in the porous medium: the results clearly show the influence of
Darcy number. F. Chen and C.F. Chen (1993) also used the Brinkmann and
Forchheimer terms to consider nonlinear two-dimensional horizontally peri-
odic, double-diffusive fingering convection. The stability boundaries, which
separate regions from different regimes of convection, are identified. The
Darcy–Brinkmann formulation was adopted recently by Goyeau et al. (1996)
for a vertical cavity with imposed temperature and concentration along
the vertical sidewalls. This study deals with natural convection driven by
cooperating thermal and solutal buoyancy forces. The numerical simulations
presented span a wide range of the main parameters (Ra and Darcy num-
ber, Da) in the domain of positive buoyancy numbers, N and Le > 1. This
contribution completes certain observations on the Darcy regime already
mentioned in the previous studies. It is shown that the numerical results
for mass transfer are in excellent agreement with scaling analysis over a very
wide range of parameters. Recently, the Darcy–Brinkmann model was also
analyzed for thermosolutal convection in a vertical annular porous layer by
Bennacer et al. (2000).

Multiphase transport is another aspect of double-diffusive convection.
Vafai and Tien (1989) and Tien and Vafai (1990) studied phase change effects
and multiphase transport in porous materials. They used the Darcy law
for flow motion without the Boussinesq approximation. The problem was
modeled by a system of transient intercoupled equations governing the two-
dimensional multiphase transport process in porous media. It should be
noted that (aside from non-Darcian effects) the problem of double-diffusive
convection within a porous medium will then be a special case of multi-
phase transport in porous media as analyzed in Vafai and Tien (1989) and
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Tien and Vafai (1990). The more recent work by Karimi-Fard et al. (1997)
studied double-diffusive convection in a square cavity filled with a porous
medium. Several different flow models for porous media, such as Darcy
flow, Forchheimer’s extension, Brinkmann’s extension, and generalized flow
are considered. The influence of boundary and inertial effects on heat and
mass transfer is analyzed to determine the validity of Darcy’s law in this
configuration. It is shown that the inertial and boundary conditions have
a profound effect on the double-diffusive convection.

A comparison between different models is presented in Figure 7.7. The
plots clearly show that the difference between the models increases with an
increase inDa. Figure 7.8 shows the influence of Le on heat transfer for Pr = 1,
10, and 20. Boundary and inertial effects are also shown in Figure 7.4. It
can be seen that the use of the Darcy results induces an overestimation for
Nu compared to models based on Forchheimer extension and Brinkmann
extension. The essential non-Darcian effect is the boundary effect. The plots
clearly show that the generalized model and Brinkmann extension of the
Darcy model give almost the same Nu. An interesting effect is observed for
double-diffusive convection.As seen in Figure 7.8, heat transfer ismaximized
for a critical value of the Lewis number. This behavior exists for all models
but is more significant for the Darcy model and Forchheimer’s extension of
theDarcymodel than for Brinkmann’s extension and the generalizedmodels.
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7.1.6.2 Double-diffusive convection in an anisotropic or
multidomain porous medium

Tyvand (1980) was the first to study double-diffusive convection in an
anisotropic porous medium. He considered a horizontal layer, which retains
horizontal isotropy with respect to permeability, thermal diffusivity, and
solute diffusivity. It was shown that for porous media, with a thermally
insulating solid matrix, the stability diagram has the same shape as in the
case of isotropy. The onset of double-diffusive convection in a rotating porous
layer of infinite horizontal extent was investigated numerically by Patil et al.
(1989) for anisotropic permeability and horizontal isotropy. Double-diffusive
convection in layered anisotropic porous media was studied numerically by
Nguyen et al. (1994). A rectangular enclosure, consisting of two anisotropic
porous layers with dissimilar hydraulic and transport properties, was con-
sidered. The problemwas solved numerically. Four different sets of boundary
constraints were imposed on the system, including aiding diffusion, oppos-
ing diffusion, and the two modes of cross diffusion. The results show that
each set of boundary conditions produces distinct flow, temperature, and
concentration fields. The overall heat transfer rates may or may not be sens-
itive to the Rayleigh numbers, depending on the orientation of the boundary
conditions of the temperature and concentration fields. Recently, double-
diffusive convection in dual permeability, dual porosity media was studied
by Saghir and Islam (1999). The Brinkmann model is used as the momentum
balance equation and solved simultaneously with mass and energy balance
equations in the two-dimensional domain. Special emphasis is given to the
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study of double-diffusive phenomena in layered porous bedwith contrasting
permeabilities. The study is completed for a wide range of permeability con-
trasts. A numerical and analytical approach (scale analysis) are also used by
Bennacer et al. (2001) to take into account the thermal and hydrodynamic
anisotropy using the Darcy and Darcy–Brinkmannn models. The effect of
permeability and buoyancy ratios on mass transfer (comparison between
the numerical and analytical results) is studied by these authors. Double-
diffusive convection in a vertical multilayer saturated porous medium has
been recently studied by Bennacer et al. (2003a).

7.2 Mathematical Formulation

7.2.1 Governing Equations Describing the Conservation Laws

7.2.1.1 Momentum equation

The basic dynamic equations for the description of the flow in porous media
have been the subject of controversial discussion for several decades. Most
of the analytical andnumericalworkpresented in the literature is basedon the
Darcy–Oberbeck–Boussinesq formulation. Darcy’s law is valid only when
the pore Reynolds number, Re, is of the order of 1. Lage (1992, 1998) studied
theeffect of the convective inertia termforBénardconvection inporousmedia.
He concluded that the convective term, included in the general momentum
equation, has no significant effect on the calculation of overall heat transfer.
Chan et al. (1970) utilized Brinkmann’s extension to study natural convection
in porous media with rectangular impermeable boundaries. However, they
essentially concluded that non-Darcian effects have very little influence on
heat transfer results. For many practical applications, however, Darcy’s law
is not valid, and boundary and inertial effects need to be accounted for. Afun-
damental study of boundary and inertial effects can be found in the work of
Vafai and Tien (1981) and Hsu and Cheng (1985). A systematic study of the
non-Darcian effects in natural convection is presented in thework of Ettefagh
et al. (1991). These authors report a formal derivation of a general equation
for fluid flow through an isotropic, rigid, and homogeneous porous medium.
The general final equation for an incompressible fluid is:

ρ

[
∂ 	V′

ε∂t′
+ 1
ε2

	V′ · ∇ 	V′
]

= −∇P′ + ρ	g + µe∇2 	V′ − µ

K
	V′ − bρ

K1/2 ‖ 	V′‖ 	V′ (7.1)

where ρ, µ, µe, K, b, and ε are fluid density, dynamic viscosity, effective
viscosity, permeability, form coefficient, and porosity respectively.

We suppose that the medium is homogeneous and spatially invariant
and the viscosity is taken as a constant. Double-diffusive convection is
often studied using the Darcy formulation and Boussinesq approximation,
provided the fluid moves slowly so that the inertial effects are negligible
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and one can usually drop the time derivative term completely based on the
analysis given by Nield and Bejan (1992, 1998), as:

	V′ = K
µ
(−∇P′ − ρg	k) (7.2)

where 	V′ = (u′, v′,w′) and P′ are the seepage (Darcy) velocity and pressure
respectively. 	k = − sin(ϕ)	x + cos(ϕ)	y defines the tilt of the cavity.

7.2.1.2 Continuity equation

Conservation of fluid mass, assuming that an incompressible fluid and no
sources or sinks, can be expressed as:

∇ · 	V′ = 0 (7.3)

7.2.1.3 Energy equation

The macroscopic description of heat transfer in porous media by a single
energy equation implies the assumption of local thermal equilibriumbetween
the moving fluid phase and the solid phase

(
T′

s = T′
f = T′). This hypothesis

has been investigated by several authors (Sözen and Vafai, 1990; Gobbé and
Quintard, 1994; Kaviany, 1995; and Quintard and Whitaker, 1996a, 1996b).
For situations in which local thermal equilibrium is not valid, models have
been proposed based on the concept of twomacroscopic continua, one for the
fluid phase and the other for the solid phase; see Quintard et al. (1997).

The temperature differences imposed across the boundaries are small,
and consequently the Boussinesq approximation is valid. The single-energy
equation is:

(ρc)m
(ρc)f

∂T′

∂t′
+ 	V′ · ∇T′ = αe∇2T′ (7.4)

where c is the specificheat, αe is the effective thermal conductivity of saturated
porous medium divided by the specific heat capacity of the fluid. Subscript f
refers to fluid properties while subscript m refers to the fluid–solid mixture
and s to the solid matrix, where

(ρc)m = ε(ρc)f + (1 − ε)(ρc)s (7.5)

αe = ε
kf
(ρc)f

+ (1 − ε)
ks
(ρc)f

= εαf + (1 − ε)
ks
(ρc)f

(7.6)

which corresponds to effective thermal conductivity obtained as weighted
arithmetic mean of the conductivities ks and kf . In general, the effective
thermal conductivity depends, in a complex fashion, on the geometry of the
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medium. Many others expressions given k∗ do exist like geometric mean
k∗ = kεsk

1−ε
f and many others listed in the book of Kaviany (1995).

7.2.1.4 Mass transfer equation

For a porous solid matrix saturated by a fluid mixture we have:

ε
∂C′

∂t′
+ 	V′ · ∇C′ = Dm∇2C′ (7.7)

Parameter Dm represents the diffusity of a constituent through the fluid-
saturated porous matrix. One finds several expressions in the literature (Bear,
1972; de Marsily, 1986; Nield and Bejan, 1992, 1998) for the link between
diffusion coefficients in free layers and in porous medium, like D∗ = εD or
D∗ = D/τ 2 where ε is the porosity and τ the tortuosity of the porousmedium.
Sometimes more complex expressions based on homogenization theory are
proposed by Adler (1992), but are not always of practical application.

7.2.1.5 Combined heat and mass transfer

Generally, the transport of heat and mass are not directly coupled and
Eqs. (7.4) and (7.6) hold without change. In thermosolutal convection, coup-
ling takes place because the density of the binary fluid depends on both
temperature T′ and mass fraction C′. For small density variations due to
temperature and mass fraction changes at constant pressure, the density
variations can be expressed as:

ρ(T′,C′) = ρr(1 − βT(T′ − Tr)− βC(C′ − Cr)) (7.8)

where Tr and Cr are taken as the reference state, and the coefficients of
volumetric expansion with temperature βT = −(1/ρr)(∂ρ/∂T′)C′ or with con-
centration βC = −(1/ρr)(∂ρ/∂C′)T′ are assumed constant. It is noted that the
expansion coefficient βT is usually positive and the expansion coefficient βC
is negative if C corresponds to the mass fraction of the denser component.

In some circumstances there is direct coupling. This occurs when cross
diffusion (Soret and Dufour effects) is not negligible. The Soret effect refers
to the mass flux produced by temperature gradients, and the Dufour effect
refers to the heat flux produced by a concentration gradient. With no heat or
mass sources, instead of Eqs. (7.4) and (7.6), we have:

(ρc)m
(ρc)f

∂T′

∂t′
+ 	V′ · ∇T′ = αe

(
∇2T′ + αm

αe
∇2C′

)
(7.9)

ε
∂C′

∂t′
+ 	V′ · ∇C′ = Dm

(
∇2C′ + DT

Dm
∇2T′

)
(7.10)
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where (αm/αe) = Dd and (DT/Dm) = ST are, respectively, the Dufour and
Soret dimensional coefficient of the porous medium. Independent of which
expression is used, the value of the thermodiffusion coefficient DT is also
affected by the solid matrix. One finds in the literature (Jamet et al., 1992) the
statement that the Soret coefficient should have the same value in a porous
medium and in a free liquid layer, based on the argument that since both
coefficients DT and Dm are of the same nature, the corrections should be the
same and therefore their ratio should be unaffected by the porous medium.
This argument seems intuitively correct at first sight and could be true, but on
the other hand could be incorrect owing to the fact that the thermodiffusion
coefficient could also depend on the ratio of the thermal conductivity of the
liquid mixture to that of the solid matrix see, Platten and Costeseque (2004).

7.2.2 Nondimensional Equations (Case of Darcy Model)

Thefluidflowwithin theporousmediumis assumed tobe incompressible and
governed by Darcy’s law. The contribution to the heat flux by Dufour effect
is assumed negligible in liquids. The Oberbeck–Boussinesq approximation
is applicable in the range of temperatures and concentrations expected. We
introduce nondimensional variables with the help of the following scales:
L for distance, L2(ρc)m/ke for time, αe/L for velocity, �T for temperature,
�C for concentration, keµ/K(ρcp)f for pressure. Thus we obtain the system
of governing equations for nondimensional variables:

∇ · 	V = 0

	V = −∇P + (RaTT + RaSC)	k
∂T
∂t

+ 	V · ∇T = ∇2T

ε
∂C
∂t

+ 	V · ∇C = 1
Le

(
∇2C + S∗

T∇2T
)

(7.11)

	k = − sin(ϕ)	x + cos(ϕ)	y defines the tilt of the cavity.
The problem formulated involves the following nondimensional para-

meters: the thermal Rayleigh number, RaT, the solutal Rayleigh number, RaS,
the Lewis number, Le, the parameter of Soret effect, S∗

T, the normalized poros-
ity, these five dimensionless parameters governing the convective dynamics
are defined by:

RaT = KgβT(ρc)f�TL
k∗ν

, RaS = KgβC(ρc)f�CL
k∗ν

Le = a
D

, S∗
T = DT

D
�Tr, ε = ε∗ (ρc)f

(ρc)m
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If we introduce the buoyancy ratio

N = RaS
RaT

= βC�Cr

βT�Tr

N is positive for cooperative buoyancy forces and negative for opposing
buoyancy forces.

The Darcy equation becomes:

	V = −∇P + RaT(T + NC)	k (7.12)

7.3 Onset of Double-Diffusive Convection in a Tilted Cavity

7.3.1 Linear Stability Analysis

The purpose of this paragraph is to analyze the linear stability of a purely
diffusive solution, in a tilted rectangular or infinite box with porous medium
saturated by binary fluid. We complete the previous results obtained for hori-
zontal layers by Nield (1968), Charrier-Mojtabi et al. (1997), Mamou et al.
(1999a), and Mahidjiba et al. (2000). The influence of the tilt of the cavity
on the bifurcation points is analyzed. We show the existence of oscillatory
instability even for the case where Le = 1, and for various tilts of the cavity.

With reference to Figure 7.9, we consider a Cartesian framewith an angle of
tilt ϕ with respect to the vertical axis. We assume that the rectangular porous
cavity (height H, width L, aspect ratio A = H/L) is bounded by two walls
at different, but uniform temperatures and concentrations, respectively, T′

1
and T′

2 (C′
1 and C′

2); the other two walls are impermeable and adiabatic. We
assume that the medium is homogeneous and isotropic, that Darcy’s law is
valid, and that the Oberbeck–Boussinesq approximation is applicable. The
Soret and Dufour effects are assumed to be negligible (see Section 7.4).

The dimensionless thermal, species, and velocity boundary conditions are
given by the equations:

∂C
∂y

= ∂T
∂y

= V = 0 for y = 0, A ∀x

T = C = U = 0 for x = 0 ∀y
T = C = 1;U = 0 for x = 1 ∀y

(7.13)

The motionless double-diffusive solution ( 	V0 = 0,T0 = x,C0 = x) is a partic-
ular solution of the set of Eqs. (7.11) and (7.13) for horizontal cell. To study the
stability of this solution we introduce infinitesimal three-dimensional per-
turbations (	v, θ , c) defined by: 	v = 	V∗ − 	V0; θ = T∗ − T0; c = C∗ − C0,
where 	V∗, T∗, C∗ indicate the disturbed flow and 	V0, T0, C0 indicate the basic
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v*= 0

∂T */∂y* = 0

∂C*/∂y* = 0
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∂T */∂y* = 0
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T * = T *
2

C* = C*
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T * = T *
1
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g
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�

H

FIGURE 7.9
Definition sketch.

flow. We assume that the perturbation quantities (	v, θ , c) are small and we
ignore the smaller second-order quantities and after linearization we obtain
the following system of equations for small disturbances:

	v = −∇p + RaT(θ + Nc)	k
∂θ

∂t
= ∇2θ − u

ε
∂c
∂t

= ∇2c
Le

− u

(7.14)

Operating first on Eq. (7.14) twice with curl, using the continuity equation
and taking only the x component of the resulting equation, we obtain:

∇2u = −RaT

(
∂2(θ + Nc)
∂x∂y

cos(ϕ)+
(
∂2(θ + Nc)

∂y2 + ∂2(θ + Nc)
∂z2

)
sin(ϕ)

)
(7.15)

with the following boundary conditions:

∂u
∂y

= ∂c
∂y

= ∂θ

∂y
= 0; for y = 0,A ∀x,∀z,∀t

u = c = θ = 0; for x = 0, 1 ∀y,∀z,∀t
(7.16)
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7.3.1.1 Linear stability analysis for an infinite horizontal cell

We first consider the two limit cases of horizontal cells (ϕ = ±(π/2)). In this
situation the cross-derivative term in Eq. (7.15) is simplified. The problem can
be solved by direct calculation and no numerical approximation is needed.
Equations (7.14) and (7.15) become

∇2u = −JRaT

(
∂2(θ + Nc)

∂y2 + ∂2(θ + Nc)
∂z2

)

∂θ

∂t
= ∇2θ − u

ε
∂c
∂t

= ∇2c
Le

− u

(7.17)

where J is defined by



ϕ = +π

2
→ J = 1

ϕ = −π
2

→ J = −1

The boundary conditions associated with this problem are:

∂u
∂y

= ∂c
∂y

= ∂θ

∂y
= 0; for y = 0,A ∀x,∀z,∀t

u = c = θ = 0; for x = 0, 1 ∀y,∀z,∀t
(7.18)

When we consider a cell of infinite extension in directions y and z, the
perturbation functions are written as follows:

(u(x, y, z, t), θ(x, y, z, t), c(x, y, z, t)) = (u(x), θ(x), c(x))eσ t+ I(ky+�z) (7.19)

where u(x), θ(x), and c(x) are the amplitude, k and � are the wave numbers
in directions y and z, respectively, I is the imaginary unit and σ defined by:
σ = σr + Iω. The marginal state corresponds to σr = 0.

We substitute expansion (7.19) into (7.17) and then obtain the following
linear differential equations for amplitude:

(D2 − α2)u = JRaTα2(θ + Nc)

(D2 − α2 − σ)θ − u = 0

(D2 − α2 − εσLe)c − Le u = 0

(7.20)

where D is the operator: D = d/dx and α2 = k2 + �2.
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In these equations α is an overall horizontal wave number. System of
Eqs. (7.20) must be solved subject to the boundary conditions:

u(x) = c(x) = θ(x) = 0 for x = 0 and x = 1 (7.21)

Solutions of the form:

(u, c, θ) = (u0, c0, θ0) sin(iπx) (7.22)

are possible if:

B(B + σ)(B + σεLe)− JRaTα2(NLe(B + σ)+ B + εσLe) (7.23)

where B = (iπ)2 + α2.
At marginal stability, σ = Iω where ω is real. The real and imaginary parts

of Eq. (7.23) become:

(B2 − εLeω2)− JRaTα2(NLe + 1) = 0

ω[(1 + εLe)B2 − JRaTα2Le(N + ε)] = 0
(7.24)

Two solutions are possible



ω = 0

RaT = JB2

α2(NLe + 1)

and



RaT = JB2(1 + εLe)

α2Le(N + ε)

ω2 = −B2(1 + εNLe2)
εLe2(N + ε)

(7.25)

since B2/α2 has the minimum value 4π2, attained when i = 1 and α = π .

1. Case ϕ = +π/2 (J = 1). The saturated porousmedium is heated from below
where the highest concentration is imposed. The two critical solutions are:



ω = 0

RaTc = 4π2

NLe + 1

and



RaTc = 4π2(1 + εLe)

Le(N + ε)

ω2
c = −4(1 + εNLe2)π4

εLe2(N + ε)

(7.26)

For cooperativebuoyancy forces (N > 0),ω2
c < 0, then themotionless solution

loses its stability via stationary bifurcation with RaTc = 4π2/(NLe + 1).
For opposing buoyancy forces (N< 0) stationary bifurcation is possible if

N > −(1/Le) and Hopf bifurcation is possible if N ∈ �−ε,−1/(εLe2)�. The
pulsationωc must be positive, this latter relation is acceptable for Le > 10, that
is, for liquids. We can verify that if the Hopf bifurcation occurs it will appear
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before the stationarybifurcation. ForN < −ε, themotionlessdouble-diffusive
solution is infinitely linearly stable for all values of ε and Le.

2. Case ϕ = −π/2 (J = −1). The saturated porous medium is now heated
from the top where the highest concentration is imposed.

For cooperative buoyancy forces (N > 0), ω2
c < 0, the motionless double-

diffusive solution is infinitely linearly stable for all values of ε and Le.
For opposingbuoyancy forces (N < 0), the stationarybifurcation is possible

if N < −(1/Le) and Hopf bifurcation is possible only if N ∈ �−ε,−1/(εLe2)�.
The pulsationωc must be positive, this latter relation is acceptable for Le > 10,
that is, for liquids. In this case if the Hopf bifurcation occurs it will appear
after the stationary bifurcation.

It was also demonstrated by Mamou et al. (1999a) and Bahloul et al. (2003)
that the rest flow yields to the supercritical Rayleigh numberRsupac, the over-
stable Rayleigh number Roverac and the oscillating Rayleigh number Roscac
given by:

Roscac = (εLe + 1)
Le(ε + N)2

− [
(ε − N)+ 2

√−εN]Rsupac

The value of the constant Rsupac depends upon the types of boundary con-
ditions (Dirichlet or Newman) and the aspect ratio of the layer. For infinite
layer it is found that Rsupac = 4π2 for Dirichlet conditions and Rsupac = 12
for Neumann conditions. The onset of convection in horizontal cell subject
to mixed boundary conditions has been investigated by Bahloul et al. (2003).
The resulting expressions for Rsupac, Roverac, Roscac are function of the aspect
ratio A of the layer and parameters N, Le, and ε. The linear stability analysis
can also be used to investigate the stability of steady convective flow in order
to predict the onset of oscillating flow (Hopf bifurcation RHopfac). Such an
analysis was carried out by Mamou et al. (1999a) and Bahloul et al. (2003)
and numerical results were obtained for RHopfac = f (A, ε,N,Le).

7.3.1.2 Linear stability analysis for a general case

In the general case, for any tilt, the motionless double-diffusive steady-state
linear distribution ( 	V0 = 0, T0 = x, C0 = x) is not a solution of Eq. (7.11)
with S∗

T = 0. When the thermal and solutal buoyancy forces are of the same
order but have opposite signs (RaT = −RaS ⇐⇒ N = −1), the steady linear
distribution ( 	V0 = 0,T0 = x,C0 = x) is a particular solution of Eq. (7.11) for
any aspect ratio and for any tilt. To study the stability of this solution, we use
a numerical approach based on the Galerkin method, analytical resolution of
the stability problem is not possible. Three situations are considered, Le = 1,
Le > 1, and Le < 1.

Case Le = 1. A complete analysis of this situation shows that the motion-
less solution can lose its stability via a Hopf bifurcation. Figure 7.10 and
Figure 7.11 show the influence of normalized porosity on the critical Rayleigh
number and the pulsation corresponding to the Hopf bifurcation for a
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FIGURE 7.10
Influence of the normalized porosity ε on the critical Rayleigh number RaTc of the Hopf bifurca-
tion for A = 1 and Le = 1. (Taken from M. Karimi-Fard, M.C. Charrier-Mojtabi, and A. Mojtabi.
Phys. Fluids 11(6): 1346–1358, 1999. With permission.)
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FIGURE 7.11
Influence of the normalized porosity ε on the pulsation ωc for A = 1 and Le = 1. (Taken from
M. Karimi-Fard, M.C. Charrier-Mojtabi, andA. Mojtabi. Phys. Fluids 11(6): 1346–1358, 1999. With
permission.)

square cavity and Le = 1. We can see that the critical Rayleigh number
increases with the normalized porosity. This means that ε has a stabilizing
effect. In this case, the mass and thermal diffusion coefficients are identical
and they do not cause instability. The cause of instability is the difference
between the unsteady temperature and concentration profiles. The difference
increases when ε decreases, which is consistent with the results presented in
Figure 7.10. Moreover, for ε = 1, the temperature and concentration profiles
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are identical and there are no sources of instability. The motionless double
diffusive-solution is then infinitely linearly stable.
Le > 1. In this case the thermaldiffusivity is higher than themassdiffusivity,

which means that the concentration perturbations has the most destabiliz-
ing effect. Thus, the stability of the motionless solution depends directly on
the destabilizing effects of the concentration. Karimi-Fard et al. (1999) have
shown that the lowest critical parameter is obtained for ϕ = −π/2 (the upper
wall is maintained at the highest concentration) which corresponds to the
case where the concentration field is the most destabilizing. This destabiliz-
ing effect decreaseswithϕwhich induces the increase of the critical parameter.
These authors demonstrated that the first primary bifurcation creates either
branches of steady solutions or time-dependent solutions via Hopf bifurca-
tion. They identified two types of steady bifurcation: transcritical or pichfork
bifurcations depending on the aspect ratio of the box as seen in Figure 7.12.
The nature of bifurcation depends on ε, Le, and A. The porosity of the por-
ous medium was found to have a strong influence on the nature of the first
bifurcation and there exists a threshold for convective motion even when
Le = 1. These results agree with those obtained by Mamou et al. (1999a) for a
vertical cavity subjected to constant fluxes of heat and solute on the vertical
walls when the two horizontal walls are impermeable and adiabatic. Trevisan
and Bejan (1985) however found that convection was strongly attenuated in
the vicinity of N = −1 and that the flow disappeared completely if Le = 1
and N = −1.

The numerical resolution of the perturbation equations shows the existence
of two zones in the (Le, ε) parameter space separated by the curve εLe2 = 1.
When εLe2> 1, the first primary bifurcation creates steady-state branches
of solution and for εLe2< 1, the first bifurcation is a Hopf bifurcation. It is
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FIGURE 7.12
Evolution of transcritical (solid line) and pitchfork (dashed line) bifurcations with respect to the
aspect ratio for ϕ = 0. The streamfunctions associated to the first bifurcation are drawn on the left
side (A = 2, 3, and 4).
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FIGURE 7.13
Domains of the existence of stationary and Hopf bifurcation in (Le, α) parameter space forA = 1.
(Taken fromM.Karimi-Fard,M.C.Charrier-Mojtabi, andA.Mojtabi.Phys. Fluids11(6): 1346–1358,
1999. With permission.)

important to observe that these results do not depend on either the aspect
ratio or the tilt of the cavity. As can be observed in Figure 7.13, the same curve
(solid line) was obtained for all tested angles of tilt.
Le < 1. For Lewis numbers lower than one, the stability of the solution will

dependon thedestabilizing effect of the temperature. In this case the situation
is more complicated. There are still two zones in the (Le, ε) parameter space,
but they are separated by a curve depending on both the angle of tilt and the
aspect ratio. Figure 7.13 shows the results obtained for a square cavity and
for three angles of tilt (ϕ = −15◦, ϕ = 0◦, and ϕ = 15◦). Each discontinuous
line represents a codimension-two bifurcation curve and delimits with the
curve defined by εLe2 − 1 = 0 the zone where the first bifurcation occurs is
a Hopf one. A section of Figure 7.13 for ε = 0.5 is presented in Figure 7.14.
This figure shows the evolution of critical Rayleigh numbers associated to
transcritical and Hopf bifurcation as a function of Lewis number for A = 1
and ϕ = 0◦. The curve of Hopf bifurcation crosses the transcritical curve at
a codimension-two bifurcation point.

Mamou et al. (1998a) analyzed the linear stability in a vertical Brinkmann
porous layer. Critical Rayleigh number is obtained in terms of the aspect ratio
of the cavity and the Darcy number of the porous medium. Both Dirichlet
and Neumann conditions are considered.

7.3.1.3 Comparisons between fluid and porous medium

Three recent papers have been published in Physics of Fluids (Gobin and
Bennacer, 1997; Ghorayeb and Mojtabi, 1997; and Xin et al., 1998) on the
same problem in a fluid medium with the same boundary conditions and
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FIGURE 7.14
Critical Rayleigh number versus Lewis number, for A = 1, ϕ = 0, and ε = 0.5. (Taken from
M. Karimi-Fard, M.C. Charrier-Mojtabi, andA. Mojtabi. Phys. Fluids 11(6): 1346–1358, 1999. With
permission.)

for N = −1. In a fluid medium, the first primary bifurcation is never a
Hopf one.

The existence of a Hopf bifurcation in a porous medium may be explained
through normalized porosity. This parameter induces different evolution
in time between the temperature and the concentration. The difference is
enhanced when the normalized porosity decreases. Indeed, diffusion and
advection of concentration can only be carried out in space occupied by fluid
and thus both diffusion and advection are magnified by ε−1, compared to
diffusion and advection of heat.

On the contrary, results concerning the bifurcations which lead to steady
states are very similar to the ones obtained in a fluidmedium: the bifurcations
are transcritical or pitchfork depending on the aspect ratio A and the tilt of
the cavity. The perturbation equations also have centro-symmetry.

Mamou et al. (1998a) discussed the transition between porous medium
and fluid medium. The critical Rayleigh number is predicted in terms of
Da for which Da → 0 corresponds to Darcy law and Da → ∞ to pure fluid
situation.

7.3.2 Weakly Nonlinear Analysis

The purpose of this paragraph is to get the normal form of the amplitude
equationand todetermine the characteristicsof supercritical solutions (stream
function, Nusselt number, and Sherwood number) near the bifurcation point
for square vertical cavity. The weakly nonlinear analysis that we are going to
carryout is basedon themultiscale technique. Thenonlinear stabilityproblem
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formulated in terms of (ψ , θ , c), for N = −1, gives:

0 = ∇2ψ − Ra
(
∂c
∂x

− ∂θ

∂x

)
∂θ

∂t
= ∇2θ − ∂ψ

∂y
− ∂ψ

∂y
∂θ

∂x
+ ∂ψ

∂x
∂θ

∂y
(7.27)

ε
∂c
∂t

= ∇2c
Le

− ∂ψ

∂y
− ∂ψ

∂y
∂c
∂x

+ ∂ψ

∂x
∂c
∂y

Let us rewrite Eq. (7.27) in the form:

∂ 	̃u
∂t

= L(	u)− N(	u, 	u) (7.28)

where 	u = (ψ , θ , c), 	̃u = (0, θ , εc),

L =

 ∇2 Ra∂/∂x −Ra∂/∂x

−∂/∂y ∇2 0
−∂/∂y 0 ∇2/Le


 (7.29)

and

N(	u, 	u) =
(
0,
∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y
,
∂ψ

∂y
∂c
∂x

− ∂ψ

∂x
∂c
∂y

)

L and N represent the linear and nonlinear parts of the evolution operator,
respectively.

In order to study the onset of convection near the critical Rayleigh number,
we expand the linear operator and the solution into power series of the
positive parameter η defined by:

η = Ra − Rac
Rac

⇒ Ra = Rac(1 + η) with η � 1 (7.30)

Thus:

L = L0 + ηL1

	u = η	u1 + η2	u2

(7.31)

where:

L0 =




∇2 Rac∂/∂x −Rac∂/∂x

−∂/∂y ∇2 0

−∂/∂y 0 ∇2/Le


 and L1 =



0 Rac∂/∂x −Rac∂/∂x

0 0 0

0 0 0




It can be noted that L0 is the operator which governs the linear stability.
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By introducing Eqs. (7.30) and (7.31) into (7.28), with the classical
transformation of time τ = ηt, we obtain after equating like powers of η,
the sequential system of equations:

0 = L0(	u1) at order η

∂ 	̃u1

∂τ
= L0(	u2)+ L1(	u1)− N(	u1, 	u1) at order η2

∂ 	̃u2

∂τ
= L0(	u3)+ L1(	u2)− N(	u1, 	u2)− N(	u2, 	u1) at order η3

(7.32)

etc.
The first-order equation leads us to solve the linear system:

0 = ∇2ψ1 − Rac

(
∂c1
∂x

− ∂θ1

∂x

)

0 = ∇2θ1 − ∂ψ1

∂y

0 = ∇2c1
Le

− ∂ψ1

∂y

(7.33)

Taking into account the boundary conditions (7.18), Eq. (7.33) yields: c1 = Leθ1
such that we have:

	u1 = A(τ )(ψ1, θ1, c1 = Leθ1) = A(τ ) 	φ

where 	φ is the eigenmode of the linear stability problem andA its amplitude.
The solution of system (7.33) at the first-order of approximation, does not
allow us to determine the amplitude (A). Only the minimum value of Rac is
found. The eigenmode 	φ may be written for square cavity:

ψ1 =
∑
i=1

∑
j=1

a1i,j sin(iπx) sin( jπy)

θ1 =
∑
i=1

∑
j=0

b1i,j sin(iπx) cos(jπy) and c1 = Leθ1
(7.34)

Substituting Eq. (7.34) into Eq. (7.33) we obtain, by direct identification:
b1n,0 = 0 ∀n.

The amplitude A(t) of the first-order solution is known by using the solv-
ability of the Fredholm alternative or compatibility condition. Before solving
the problem for each 	ui, it is necessary to determine the eigenmode of the
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adjoint operator L∗
0 of L0 defined by:

L∗
0 =


 ∇2 ∂/∂y ∂/∂y

−Rac∂/∂x ∇2 0
Rac∂/∂x 0 ∇2/Le




The second equation of system (7.32) leads to:

d(A(τ ))
dτ

	φ = L0(	u2)+A(τ )L1( 	φ)−A2(τ )N( 	φ, 	φ) (7.35)

The existence of a solution for Eq. (7.35) requires the compatibility equation
to be satisfied such that:

d(A(τ ))
dτ

〈 	φ∗, 	̃φ〉 = A(τ )〈 	φ∗, L1( 	φ)
〉−A2(τ )

〈 	φ∗,N( 	φ, 	φ)〉 (7.36)

where 	φ∗ is the eigenvector of L∗
0 adjoint of L0 and the inner product is

defined as:

〈ψ , θ〉 =
∫ 1

0

∫ 1

0
ψθ dxdy

To determine the coefficients of amplitude Eq. (7.36), we must first solve the
adjoint linear problem:

0 = ∇2ψ∗
1 +

(
∂c∗

1
∂y

+ ∂θ∗
1

∂y

)

0 = ∇2θ∗
1 − Rac

∂ψ∗
1

∂x

0 = ∇2c∗
1

Le
+ Rac

∂ψ∗
1

∂x

(7.37)

Taking into account the boundary condition relative to the adjoint problem
we obtain c∗

1 = −Leθ∗
1 .

The eigenmode 	φ∗ for the adjoint problem may be written as:

ψ∗
1 =

∑
i=1

∑
j=1

a1
∗
i,j sin(iπx) sin( jπy)

θ∗
1 =

∑
i=1

∑
j=0

b1
∗
i,j sin(iπx) cos( jπy) and c∗

1 = −Leθ∗
1

(7.38)
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After introducing the expression of the two eigenmodes 	φ and 	φ∗ into (7.36)
one obtains: 〈 	φ∗,N( 	φ, 	φ)

〉
�= 0 and

〈 	φ∗,L1( 	φ)
〉

�= 0

When dA(τ )/dτ = 0, the two steady solutions for the square cavity are:

A = 0 and A =
〈 	φ∗,L1( 	φ)

〉
〈 	φ∗,N( 	φ, 	φ)

〉
The stationary bifurcation is then transcritical. If we consider that: θ∗

1 =
[θ̄1/(Le − 1)] and after some algebraic manipulations, we obtain the
amplitude A:

A =
〈 	φ∗,L1( 	φ)

〉
〈 	φ∗,N( 	φ, 	φ)

〉 = Rac(Le − 1)
(Le + 1)

〈
ψ∗

1 ,
∂θ1

∂x

〉
〈
θ̄1,
(
∂θ1

∂x
∂ψ1

∂y
− ∂θ1

∂y
∂ψ1

∂x

)〉

Weverify that near the bifurcation point the stream function and temperature
are proportional to the following: (Ra − Rac)[(Le − 1)/(Le + 1)] which is in
good agreement with the numerical results (Figure 7.15[a]).

The importance of thermal and mass exchange are given by the over-
all Nusselt and Sherwood numbers respectively at the vertical walls. The
dimensionless Nu and Sh numbers are defined in a square cavity by:

Nu =
∫ 1

0
−∂T
∂x

∣∣∣∣∣
x= 0 or 1

dy and Sh =
∫ 1

0
−∂C
∂x

∣∣∣∣∣
x= 0 or 1

dy (7.39)

Substituting T and C by their expressions into Eq. (7.39), we obtain:

Nu = 1 + η

∫ 1

0
−∂θ1
∂x

∣∣∣∣
x= 0,1

dy + η2
∫ 1

0
−∂θ2
∂x

∣∣∣∣
x= 0,1

dy + · · ·

Sh = 1 + η

∫ 1

0
−∂c1
∂x

∣∣∣∣
x= 0,1

dy + η2
∫ 1

0
−∂c2
∂x

∣∣∣∣
x= 0,1

dy + · · ·
(7.40)

If we now introduce θ1 and c1 given by (7.34) into (7.40) we verify that:

∫ 1

0

∂θ1

∂x

∣∣∣∣
x= 0,1

= 1
Le

∫ 1

0

∂c1
∂x

∣∣∣∣
x= 0,1

=
∑
n= 1

b1n,0 = 0 since: b1n,0 = 0 ∀n
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FIGURE 7.15
Le = 4, N = −1, A = 1
(a) Stream function at the center of the cavity versus Ra, near Rac
(b) Average Nusselt number versus Ra, near Rac
(c) Average Sherwood number versus Ra, near Rac.
(Taken from M.C. Charrier-Mojtabi, M. Karimi-Fard, M. Azaiez, and A. Mojtabi. J. Porous Media
1: 104–118, 1997. With permission.)
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The final expressions of Nu and Sh are then:

Nu = 1 + η2
∫ 1

0
−∂θ2
∂x

∣∣∣∣
x= 0,1

dy + · · ·

Sh = 1 + η2
∫ 1

0
−∂c2
∂x

∣∣∣∣
x= 0,1

dy + · · ·
(7.41)

These results show that the (Nu − 1) and (Sh − 1) are proportional to η2. The
numerical simulation performed in this study confirms this analytical result
(Figure 7.15[b] and Figure 7.15[c]).

7.3.3 Numerical Results

7.3.3.1 Numerical procedure

Two numerical models, based on formulation with primitive variables, first
one with a spectral collocation method and the second one with a finite
volume method have been performed, Charrier-Mojtabi et al. (1997).

The validity of the two codes was first established by comparing our
results to those obtained by Goyeau et al. (1996) and Trevisan and Bejan
(1985). For fluxes of heat and mass prescribed at vertical walls, we also com-
pared our results to those obtained by Alavyoon et al. (1994). We found, like
these authors, that oscillatory flows occur for sufficiently large values of the
Rayleigh number.

7.3.3.2 Numerical determination of the critical Rayleigh number Rac
for different values of the Lewis number

For the present case (constant temperatures and concentrations imposed at
the vertical walls) the study of the transition between the purely diffusive
regime and the thermosolutal convective regime, obtained for N = −1, was
carried out for Le = 0.1, 0.2, 0.3, 2, 3, 4, 7, 11, in a square cavity (A = 1) and
for ϕ = 0◦.

The transition between the equilibrium solution and the convective regime
systematically occurs for a critical thermal Rayleigh number satisfying the
relation:

Rac|Le − 1| = 184.06

This is in very good agreement with the stability analysis performed in
Section 7.3.1 as indicated in Table 7.1 and Figure 7.16. The thermosolutal
supercritical convective regime obtained just after the transition is symmet-
rical with respect to the center of the cavity as shown in Figure 7.17. For
Le = 4, A = 1, N = −1, the stream function at the center of the cavity, the
global Nusselt number, and the Sherwood number are plotted as functions
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TABLE 7.1

Rac|Le − 1| as Function of the Aspect Ratio A

A = 0.5 N × M 6 × 6 7 × 7 8 × 8 20 × 10 40 × 20
Rac|Le − 1| 517.36 517.12 517.01 516.87 516.85

A = 1 N × M 6 × 6 7 × 7 8 × 8 20 × 20 30 × 30
Rac|Le − 1| 184.33 184.15 184.13 184.06 184.06

A = 2 N × M 6 × 6 7 × 7 8 × 8 8 × 16 20 × 40
Rac|Le − 1| 129.34 129.38 129.25 129.22 129.21

A = 5 N × M 6 × 6 7 × 7 8 × 8 5 × 25 14 × 70
Rac|Le − 1| 109.71 109.55 109.31 109.21 109.16

A = 10 N × M 7 × 7 8 × 8 3 × 30 6 × 60 10 × 100
Rac|Le − 1| 117.75 111.01 106.77 106.37 106.35
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FIGURE 7.16
Rac = f (Le) for A = 1, ϕ = 0: analytical and numerical results. (Taken from M.C. Charrier-
Mojtabi, M. Karimi-Fard, M. Azaiez, and A. Mojtabi. J. Porous Media 1: 104–118, 1997. With
permission.)

of the Rayleigh number (Figure 7.15) near the bifurcation point. We observe
that the stream function depends linearly on the Rayleigh number while the
global Nusselt number and Sherwood number vary quadratically with the
Rayleigh number. These variations are in good agreement with the results
obtained by nonlinear stability analysis (Eq. 7.41). The bifurcation diagrams
for the value of the stream function in the center of the cavity, the global
Nusselt, and Sherwood number are presented in Figures 7.17(a) to 7.17(c),
respectively, for Le = 4, N = −1, and A = 1. One can observe the presence
of two other branches of solution (branch I and III), different to the one cor-
responding to the transition described in the previous sections (branch I), see
Figure 7.18.
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FIGURE 7.17
Diagrams bifurcation for Le = 4, N = −1, A = 1:
(a) Stream function = f (Ra), at the center of the cavity
(b) Nusselt number = f (Ra)
(c) Sherwood number = f (Ra).
(Taken from M.C. Charrier-Mojtabi, M. Karimi-Fard, M. Azaiez, and A. Mojtabi. J. Porous Media
1: 104–118, 1997. With permission.)
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FIGURE 7.18
Isotherms, streamlines, and isoconcentrations for Le = 4, N = −1, A = 1
branch I: (a) Ra = 70
branch II: (b) Ra = 38, (c) Ra = 60, (d) Ra = 94
branch III: (e) Ra = 95 , (f) Ra = 150
(dashed lines correspond to clockwise rotations).
(Taken from M.C. Charrier-Mojtabi, M. Karimi-Fard, M. Azaiez, and A. Mojtabi. J. Porous Media
1: 104–118, 1997. With permission.)
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7.3.4 Scale Analysis

Scale analysis was applied to double-diffusive convection in order to
determine the heat and mass transfer at the wall.

7.3.4.1 Boundary layer flow

Bejan and Khair (1985) studied the phenomenon of naturally convective heat
andmass transfer near avertical surface embedded in afluid saturatedporous
medium. The vertical surface is maintained at a constant temperature T0 and
constant concentration C0 different than the porous medium temperature
T∞ and concentration C∞ observed sufficiently far from the wall. The scale
of the flow, temperature, and concentration fields near the vertical wall are
determined, based on order-of-magnitude analysis.

This study shows that the vertical boundary-layer flux is driven by heat
transfer when (|βT�T| � |βC�C| ⇐⇒ |N| � 1) or by mass transfer when
(|βC�C| � |βT�T| ⇐⇒ |N| � 1), or by a combination of heat and mass
transfer effects.

These authors have distinguished four limiting regimes depending on
N and Le numbers:

1. For heat transfer driven flow (|N| � 1) they found for Le � 1:
Nu ≈ Ra1/2 and Sh ≈ (Ra Le)1/2; and for Le � 1: Nu ≈ Ra1/2 and
Sh ≈ Ra1/2Le.

2. For mass transfer driven flow (|N| � 1) they found for Le � 1:Nu ≈
(Ra|N|/Le)1/2 and Sh ≈ (Ra Le|N|)1/2 and for Le � 1:Nu ≈ (Ra|N|)1/2
and Sh ≈ (Ra Le|N|)1/2.

7.3.4.2 Effect of the buoyancy ratio N on the heat and mass
transfer regimes in a vertical porous enclosure

Previous works have dealt with vertical boxes with either imposed temperat-
ures and concentrations along the vertical side-walls (Trevisan and Bejan,
1985; Charrier-Mojtabi et al., 1997; and Karimi-Fard et al., 1999), or pre-
scribed heat and mass fluxes across the vertical side walls (Trevisan and
Bejan, 1986; Alavyoon et al., 1994; Mamou et al., 1995b, 1998b). For both of
these boundary conditions, when the ratio of the solutal to thermal buoyancy
forces, N, is equal to (−1), a purely diffusive state (equilibrium solution)
can be obtained at low thermal Rayleigh numbers and any Lewis number
(Karimi-Fard et al., 1999).

In general, flow and transport follow complex patterns depending on the
aspect ratio of the cell, the interaction between the diffusion coefficients (Le)
and the buoyancy ratio (N). These groups account for the many distinct heat
and mass transfer regimes that can exist. Trevisan and Bejan (1985) identified
these regimes on the basis of scale analysis and numerical experiments.

For heat driven flows (|N| � 1) there are five distinct regimes and in each
subdomain of the two-dimensional domain (Le, RaT/A2) they give the overall
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heat and mass transfer rates as follows:

subdomain 1: Sh ≈ 1
A (RaTLe)

1/2, Nu ≈ 1
A (RaT)

1/2.

In the case N = 0 and A = 1, the numerical simulations conducted by
Goyeau et al. (1996) show that the Nusselt number does not depend on the
Lewis number for given RaT, since the flow is totally driven by the thermal
buoyancy force. On the other hand, the Sherwood number increases with Le
andRaT. The power law deduced from the computed values of the Sherwood
number gives: Sh = 0.40(RaTLe)0.51 which is in close agreement with the
precedent scaling law.

subdomain 2: Sh ≈ 1
A (LeRaT)

1/2, Nu ≈ 1
ARa

1/2
T

subdomain 3: Sh ≈ 1, Nu ≈ 1
ARa

1/2
T

subdomain 4: Sh ≈ 1, Nu ≈ 1
subdomain 5: Sh ≈ 1

A (RaTLe)
1/2, Nu ≈ 1

For mass driven flows (|N| � 1) five distinct regimes are also possible
and in each subdomain of the two-dimensional domain (Le, RaT|N|/A2) the
authors give the overall heat and mass transfer rates as:

1. Sh ≈ 1
A (RaT|N|Le)1/2, Nu ≈ 1

ALe1/2
(RaT|N|)1/2

A regression of numerical results obtained by Goyeau et al. (1996)
for higher values of N and A = 1 leads to the following correlation:
Sh = 0.75(RaTLeN)0.46 where the exponent is in fairly goodagreement
with the value 0.5 assessed by the scale analysis.

2. Sh ≈ 1
A (RaT|N|Le)1/2, Nu ≈ 1

A (RaT|N|)1/2
3. Sh ≈ 1, Nu ≈ 1

A (RaT|N|)1/2
4. Sh ≈ 1, Nu ≈ 1
5. Sh ≈ 1

A (RaT|N|Le)1/2, Nu ≈ 1

It is shown by Goyeau et al. (1996) that numerical results for mass trans-
fer are in good agreement with the scaling analysis over the wide range
of parameters. As a conclusion of the analysis presented by these authors,
it is clear that more investigations are required in order to derive the
appropriate scaling laws in the domains where the flow is neither fully
dominated by the thermal nor by the solutal component of the buoyancy
force.

The vertical cavity subject to heat and mass fluxes across the vertical side
walls was discussed by Mamou et al. (1995b) and by Amahmid et al. (1999).
For this boundary conditions analytical models are presented for Nu and
Sh such that the range of validity of asymptotic expressions (obtained for
Ra → ∞, N → 0, N → ∞, Le → 0, Le → ∞, . . . etc.) can be identified
through the complete solution. It is noted by Amahmid et al. (1999) that
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boundary-layer regime is obtained for N < 0 which is quite different from
that found for N > 0.

7.4 Soret Effect and Thermogravitational Diffusion in
Multicomponent Systems

7.4.1 Soret Effect

A review of these studies may be found in the monograph by Platten and
Legros (1984) and Turner (1985). Binary fluids in a horizontal porous cell,
initially homogeneous in composition, heated from below, will, in the steady
state, display a concentration gradient due to the so-called thermal diffusion
or Soret effect. Therefore, depending on the sign of the Soret coefficient, the
onset of convection can be delayed or anticipated. The Soret coefficient is
strongly dependent on composition of the binary fluids. In the last decade, a
renewed interest was given to this problem due to the rich dynamic behavior
involved in the stabilizing concentration gradient. The first instability sets in
as oscillations of increasing amplitude, while the first bifurcation is stationary
in horizontal cells saturated by a pure fluid in the Rayleigh–Bénard configur-
ation. Finite amplitude convection is characterized by traveling waves, and
sometimes by localized travelingwaves, etc. Next, by increasing the Rayleigh
number, there is a bifurcation towards steady overturning convection.

The critical Rayleigh number, deduced from the linear stability theory, for
themarginal stateof stationary instability, in theabsenceof an imposedsolutal
gradient, is given by:

Rac = 4π2

1 + S∗
T(1 + Le)

(7.42)

We find for free, permeable, and conductive boundaries in a fluid medium
a similar relation:

Rac = 27π4/4
1 + S∗

T(1 + Le)

where Rac is the critical Rayleigh number corresponding to exchange of
stability. Marginal oscillatory instability occurs for:

Rac = 4π2(σ + ε∗Le)
Le
(
ε∗ + σS∗

T
) (7.43)

The general situation, with both cross diffusion anddouble diffusion (thermal
and solutal gradients imposed), was studied by Patil and Rudraiah (1980).
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Brand and Steinberg (1983) pointed out that with the Soret effect it is possible
to have oscillatory convection induced by heating from above.

Generally, the mass and heat fluxes are given, respectively, by:

	Jc = −ρD∇C′ − ρC′
0
(
1 − C′

0
)
DT∇T′ (7.44)

	jT = −λ∇T′ − ρC′T′DT
∂µ

∂C
∇C′ (7.45)

where µ is chemical potential of the solute.
The two contributions to the mass flux are of opposite sign: the temperat-

ure gradient is responsible for thermo-migration, thus molecular separation,
while isothermal diffusion tends to homogenize the solution. There exists a
convectionless steady statewhere these two contributions are of equal intens-
ity (	Jc = 0) and the resulting mass fraction gradient is then proportional to
the temperature gradient

∇C′ = −DT

D
C′

0
(
1 − C′

0
)∇T′

The ratioST = DT/D (thermal diffusion coefficient/isothermal diffusion coef-
ficient) is commonly referred to as the Soret coefficient (inK−1). Itsmagnitude
and sign, usually in the 10−3 to 10−2 K−1 range, may vary to a large extent
from one chemical to another and, for a given chemical; ST is a complicated
function of state variables.

Recently, Platten et al. (2004), obtained experimentally, for a particular
namely the system 1, 2, 3, 4-tetrahydronaphtalene-dodecane (THN-C12),
50wt% in each component around room temperature (mean temperature:
25◦C), that the Soret coefficient is the same in a free fluid and in a por-
ous medium, since the two values found experimentally are identical but
there are experimental errors, discussed in details in a recent Ph.D. thesis
(Dutrieux, 2002). They are estimated to be of the order of 5% both for
D and for DT. The same should be true in a porous medium. Thus the
error on the Soret coefficient could be as high as 10% (by the way, when
looking at the literature, this is not too bad for cross effect). Thus the
extraordinary agreement between ST and S∗

T is certainly fortuitous. If for
any theoretical reason there is a difference (e.g., due to the difference in
the thermal conductivities of the solid matrix and the fluid), then this dif-
ference should be smaller than 10%. This error that we have today on
the Soret coefficient is due to the strategy adopted; measuring independ-
ently D and DT. An alternative way would be to measure directly the ratio
DT/D in a horizontal layer. Research in this direction is now undertaken in
Toulouse.

When we impose a concentration gradient (C = 0 at x = 0 and C = 1
at x = 1) in the dimensionless form, it is common to ignore the Soret effect
(i.e., the concentration gradient induced by the temperature gradient). This is
due to the low values of the Soret coefficient, for the classical binary mixtures

© 2005 by Taylor & Francis Group, LLC



310 Abdelkader Mojtabi and Marie-Catherine Charrier-Mojtabi

ST is between 10−4 and 10−2 K−1. We have what is called the thermosolutal
problem. In this case the concentration gradient exists even in the absence of
a thermal gradient.

Bahloul et al. (2003) studied the stability of a horizontal layer for both
double diffusive and Soret effects. They found general analytical relations
covering these two cases. This work includes an analytical model for finite
amplitude convection yielding an expression for subcritical Rayleigh num-
ber and numerical results for critical Hopf bifurcation. For finite amplitude
convection a comparison is made to illustrate the difference between double-
diffusive convection and Soret induced convection in terms of ψmax, Nu,
and Sh.

Soret instability in a vertical Brinkmann porous layer (N = −1) has been
considered by Joly et al. (2001). Analytical model is proposed for finite amp-
litude convection. Both the supercritical and subcritical Rayleigh numbers are
obtained in term of Darcy number. Also, a comparison between Soret-driven
and double-diffusive convection has been discussed by Boutana et al. (2004)
for convection in a vertical cavity.

The existence of multiple solutions and the influence of Soret effect on
convection in a horizontal porous domain under cross temperature and
concentration gradients is discussed by Bennacer et al. (2003b).

Knobloch (1980) and Taslim and Narusawa (1986) demonstrated in a fluid
medium and porous medium respectively that a close relationship exists
between cross-diffusion problems (taking into account the Dufour effect and
Soret effect) and double-diffusion problems. In fact, they demonstrated that
these two problems are mathematically identical.

7.4.2 Thermogravitational Diffusion

Thermogravitational is a physical process occurring when a thermal gradi-
ent is applied on a fluid mixture. It might contribute to large number
of natural physical processes. A fluid mixture saturating a vertical por-
ous cavity under a gravity field, and exposed to a uniform horizontal
thermal gradient, is subject not only to convective transfer, but also to
thermodiffusion, corresponding to a concentration gradient associated to the
Soret effect. The coupling of these two phenomena is called thermogravita-
tional diffusion and leads to species separation. The convective steady state
obtained in this case is characterized by large concentration contrast between
the top and the bottom of the cell. This contrast is measured by the sep-
aration factor, which is defined as the ratio of the mass fraction of the
denser component at the bottom of the cell to its mass fraction at the top
(q = Cbottom/Ctop).

This phenomenon, well known for more than a hundred years, has been
lately under investigation owing to its involvement in several natural phys-
ical processes in geophysics and mineralogy, where a fluid saturates a porous
medium (Jamet et al., 1992). Industrial projects using this thermogravitational
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Vertical separation versus Rayleigh number. (Taken from P. Jamet, D. Fargue, and P. Costesque.
Transp. Porous Media 30(3): 323–344, 1998. With permission.)

diffusion phenomenon coupled to convection in order to separate or to
concentrate species have been developed.

The different analytical studies by Fury et al. (1939) and by Estebe and
Schott (1970) into this phenomenon have shown the existence of a max-
imumseparation ratio obtained for the corresponding optimumpermeability.
Marcoux and Charrier-Mojtabi (1998) consider a thermogravitational cell
bounded by temperature-imposed vertical walls and adiabatic horizontal
walls and filled with homogeneous isotropic porous medium saturated
by a two-component incompressible fluid. The dimensionless form of the
equations considered, in that work, lead to five parameters: the thermal
Rayleigh number, the buoyancy ratio N, the normalized porosity, the Lewis
number, and the dimensionless Soret number. These authors have numeric-
ally studied the influence of each of these parameters in species separation.
The numerical results show the expected existence of a maximum separa-
tion corresponding to an optimal Rayleigh number. But till now there is no
agreement between numerical and experimental results, already observed by
Jamet et al. (1992) and Marcoux et al. (1996), and as seen in Figure 7.19 and
this remains an open questions still to be solved. The numerical curves in
Figure 7.20 shows the influence, on the optimal Ra number, of vertical separ-
ation of the Lewis number, the Soret number. They confirmed, rather simple,
previous analytical results established by Estebe and Schott (1970) who
evaluated the maximum separation ratio and the corresponding optimum
permeability as functions of the different physical parameters. Recently, Plat-
ten et al. (2002), have clearly demonstrated that when a thermogravitational
column is inclined, the molecular separation increases.
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7.5 Conclusions and Outlook

Severalmodernengineeringprocesses canbenefit fromabetterunderstanding
of double-diffusive convection in saturated porous medium where the flow
and transport followcomplexpatterns thatdependon the interactionbetween
diffusion coefficients and buoyancy ratio.

In geophysics, recent effort are focused more on heat and mass trans-
fer flows in regions below geothermal reservoirs in order to provide better
understanding of the processes which transfer heat and chemicals from deep
magmatic sources to the base of reservoirs and to surface discharge features
(McKibbin, 1998).
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Another important area of practical interest is one in materials science,
namely in the casting and solidification ofmetal alloywhere double-diffusive
convection in mushy zone, characterized by high variation of porosity,
can have important effect on the quality of the final product (Sinha and
Sundararajan, 1992; Gobin et al., 1998).

The double-diffusive convection phenomena described in this chapter
depend essentially on the gravity field, but they can also be observed in the
case of pureweightlessness in a cavity filledwith a saturated porousmedium
subjeted to vibrations (Khallouf et al., 1995). It is the coupling between these
two external force field (gravity and inertia) and the diffusion that organ-
izes the flow into a form which permits its control (Gershuni and Lyubimov,
1998).

In microgravity conditions, the surface tension effect can induce stable
convective motions when the conductive situation becomes instable. A linear
and nonlinear stability analysis of Marongoni double-diffusive convection
in binary mixtures, saturated porous media, subjected to the Soret effect,
are needed for a better understanding and better control of fluid motions in
microgravity.

Comprehensive predictions made possible by means of the thermogravita-
tional diffusionmodel require experimental values of the Soret coefficient. For
most binary mixtures the Soret coefficient is unknown. Till date, quantitative
experimental data suitable for model validation are quite scarce and, thus,
coordinated efforts between modeling and experimentation are needed to
provide an ultimate understanding of double-diffusive convection in porous
media.

Nomenclature

Roman Letters

A aspect ratio of the cell H/L
a thermal diffusivity
C mass fraction
C1 (C2) mass fraction at cold (hot) vertical wall, �C = C2 − C1
Cr reference mass fraction = C1
c disturbance concentration
H height of the cavity
L width of the cavity
Le Lewis number; Le = a/D
D mass diffusivity of the constituent through the fluid mixture
g intensity of gravity ( 	g = −−→gey)
k wavenumber
kc critical wavenumber
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k∗ effective thermal conductivity of the porous medium
I

√−1
M, N orders of approximation
N Buoyancy ratio (N = RaS/RaT)
Nu average Nusselt number
q vertical separation
RaS solutal Rayleigh number based on L; RaS = (KgβC(ρc)f�CL/k∗ν)
RaT thermal Rayleigh number based on L; RaT = (KgβT(ρc)f�TL/k∗ν)
Rac critical thermal Rayleigh number
ri inner cylinder radius
ro outer cylinder radius
ST dimensionless Soret number
Sh average Sherwood number
T dimensionless temperature
T′

1 (T
′
2) temperature at cold (hot) vertical wall, �T = T′

2 − T′
1

Tr reference temperature = T′
1

U dimensionless horizontal component of the velocity
V dimensionless vertical component of the velocity

Greek Letters

α wavenumber
αe effective thermal diffusivity of the porous medium
βT coefficient of volumetric expansion with respect to the

temperature
βc coefficient of volumetric expansion with respect to the

concentration
γ curvature parameter = (ro − ri)/ri
ε normalized porosity, ε = ε∗(ρc)f/(ρc)∗
σ heat capacity ratio, σ = (ρc)f/(ρc)∗
ε∗ porosity of the porous matrix
ν kinematic viscosity of fluid
(ρc)f heat capacity of fluid
(ρc)∗ heat capacity of saturated porous medium
θ disturbance temperature
ψ disturbance stream function
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8.1 Introduction

8.1.1 Definition

Natural convection is a fluid flowmechanism inwhich the convectivemotion
is produced by the density difference in a fluid subjected to a body force. This
difference is usually caused by thermal and/or chemical species diffusion.
Consequently, to obtain natural convection, two necessary conditions should
be satisfied; the existenceof adensityvariationwithin afluidand the existence
of a body force. Some common examples of body forces include gravitational,
centrifugal, and electromagnetic forces, which may be constant, like gravita-
tional force or may exhibit spatial variation as in centrifugal force. It should
be noted that the existence of the body force and the density variation do not
guarantee the appearance of convective motion. The relative orientation of
the density gradient to the body force provides the sufficient condition for
the onset of convection.
The possibility of controling the hydrodynamic stability of flows by mod-

ulation has attracted the attention of researchers for many years [1]. Two
types of modulations have been extensively studied; the temperature mod-
ulation and the gravity modulation. It is shown that by proper selection of
the modulation parameters, dramatic modification in the stability behavior
of the dynamic system can be observed [2].
In some applications, it may be desirable to operate at Rayleigh num-

bers higher than the critical one at which the convection occurs and yet
have no convection. Also it is advantageous to suppress undesired chaotic
motions in order to remove temperature oscillations which may exceed safe
operational conditions. In the context of the temperature or heat flux modu-
lation in porous media, we may mention the study of Caltagirone [3] and
of Rees [4], Rudariah and Malashetty [5] in the Rayleigh–Bénard config-
uration by temperature modulation and Antohe and Lage [6] in a square
cavity heated laterally by flux modulation. Thermo-vibrational convection
belongs to a special class of periodic flows in which the buoyancy force is
time dependent. In this class, which is different from the problems concern-
ing spatial variations of body forces [7–9], the action of external force field
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(namely, mechanical vibration) in the presence of a nonhomogeneous scalar
field (e.g., temperature or concentration) may be used to control the onset
of convective motion. Under microgravity conditions, the gravitational force
will be reduced drastically and consequently the buoyancy induced convec-
tion. However this situation may cause other forces, which under normal
conditions are of secondary importance, to become significant.
Therefore, residual vibration, which naturally exists in a spacecraft, may

be used to increase the rate of heat or mass transfer. In its simplest form,
the imposed vibration can be considered as a harmonic oscillation having
zero average over a vibration period. Aswith any subject concerning thermo-
fluid science, the study of the effects of a vibration mechanism on convective
motion has been motivated by practical considerations. It is a known fact
that, in the presence of gravitational field, the temperature and concentra-
tion gradients may produce natural flows. This, in turn, drastically affects
material processing; for example, the rate of crystal growth, etc. With the
progress of the space industry, there is an opportunity to grow perfect crys-
tals aboard a spacecraft where there exists a highly reduced gravitational
environment. Further, it was thought that the unfavorable effects of natural
convectionwouldbeeliminated. Therefore,manycrystal growthexperiments
were conducted aboard Skylab and theMir space station. However the results
were surprisingly much less interesting than expected [10]. It was confirmed
experimentally that the space station did not represent an acceleration-free
environment; there are transientdisturbancesdue to space stationmaneuvers,
impulsive crew movement, and operation of life supporting systems. These
residual accelerations are referred to as g-jitter, which can be modeled as
harmonic oscillations [11–14]. The theory of thermo-vibrational convection
in the fluid medium is summarized in the book written by Gershuni and
Lyubimov [15] which reports the Russian studies in this field.
In contrast to the thermo-vibrational problem in fluid media, work on the

vibrational problem in porous media is quite recent. We can classify these
studies according to geometry, direction of vibration, range of frequency, the
number of saturating fluids (mono-component or multi-component), type of
boundary conditions, and transport modeling.

8.1.2 Linear Stability Analysis

Most studies concerning thermo-vibrational convection in porous media are
theoretical and are focused on the linear stability analysis. The preferred
method is the time-averaged method [16]. For porous media saturated by
pure fluid, Zenkovskaya [17] studies the effect of vertical vibration (paral-
lel to the temperature gradient) on the thermal stability of the conductive
solution. The geometry considered is an infinite horizontal porous layer.
A momentum equation is used where the macroscopic nonlinear convect-
ive terms are included. The influence of various directions of vibration for
the same geometry is described in Zenkovskaya and Rogovenko [18]. The
results of their linear stability analysis show that only the vertical vibration
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always has a stabilizing effect. These authors find that, for other directions of
vibration, depending on the vibrational parameter and the angle of vibration,
stabilizing and destabilizing effects are possible.
The effect of low frequency vibration is analyzed by Malashetty and

Padmavathi [19]. They use the Brinkman–Forchheimer model in their
momentum equation. It has been found that the low frequency g-jitter has
a significant effect on the stability of the system and that the effect of gravity
modulation can be used to stabilize the conductive solution.
In a confinedporous cavity heated frombelow, Bardan andMojtabi [20] dis-

cuss the effect of vertical vibration. The vibration is in the limiting case of high
frequency and small amplitude, which justifies their use of the time-averaged
method. The transient Darcymodel is used in their momentum equation. It is
shown that vibration reduces the number of convective rolls, Figure 8.1. Their
results show that, in order to apply the time-averaged formulation effectively,
the transient Darcy model should be used. Further, they find that vibration
increases the stability threshold. They also perform a weakly nonlinear sta-
bility analysis which indicates that primary bifurcations are of a special type
of symmetry-breaking pitch-fork bifurcation.
The influence of vibration is extended to the thermohaline problem in por-

ous media by Jounet and Bardan [21]. They find that, based on the values of
ε∗Le (ε∗ is the normalized porosity and Le is the Lewis number) and the sign
ofN/ε∗ (N is the ratio of solutal to thermal forces), the solutionmay bifurcate
toward a stationary or Hopf bifurcation. The vibration delays the onset of
stationary convection (stabilizing effect) when N/ε∗ + 1 > 0. They perform
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FIGURE 8.1
Bifurcation diagram in theψ–Raplane for different values of vibrational Rayleigh number. (From
G. Bardan and A. Mojtabi. Phys. Fluids 12: 1–9, 2000. With permission.)
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a weakly nonlinear analysis which shows that the bifurcation is of pitch-fork
type, Figure 8.2. Sovran et al. [22] include the Soret effect in vibro-convective
problem in an enclosure saturated by a binary mixture. For negative separ-
ation factor they find Hopf bifurcation, Figure 8.3; the direction of vibration
is vertical. For various directions of vibration Maliwan et al. [23] study the
same problem and find that, generally, when direction of vibration is not par-
allel to the temperature gradient, vibration reduces the domain of stability.
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FIGURE 8.2
Map of the regions where the pitch-fork bifurcation is supercritical or subcritical for (ε= 1,
Le= 0.5, and N= 0.5). Spi and Sbi denote supercritical and subcritical branches respectively.
(FromA. Jounet and G. Bardan. Phys. Fluids 13: 1–3, 2001. With permission.)
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FIGURE 8.3
Onset of oscillatory convection for Le = 2, ε∗ = 0.5,ψ = −0.2, and Rv = 100. Horizontal
velocity component time evolution is plotted at one point. Inset represents Fourier transform.
(From O. Sovran, M.C. Charrier-Mojtabi, M. Azaiez, andA. Mojtabi. International Heat Transfer
Conference, IHTC12, Grenoble, 2002. With permission.)
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The problem of the onset of thermohaline convection in an infinite horizontal
layer under the action of vertical vibration is examined byMaliwan et al. [24].
They find analytical relationships for the onset of convection for both sta-
tionary and Hopf bifurcation. Charrier-Mojtabi et al. [25] consider the effect
of vibration on fluid flow structure under microgravity conditions. Interest-
ing structures typical of thermo-vibrational convection are found. Razi et al.
[26] and Charrier-Mojtabi et al. [27] discuss the validity of the time-averaged
formulation in the Horton–Rogers–Lapwood problem using two different
approaches; the time-averaged and the so-called direct method. They also
explain, fromaphysical point of view, thenecessaryassumptions forperform-
ing the time-averaged method. From the direct method the thermal stability
of the problem is sought by solving the Mathieu equation.

8.1.3 Other Geometries

Due to its numerous industrial applications, the differentially heated cavity
under constant gravitational acceleration has been studied extensively in the
literature; for example, see Nield and Bejan [28].
The thermo-convective motion in a differentially heated square cavity,

under the effect ofmechanical vibration, is investigated byKhallouf et al. [29].
The direction of vibration is perpendicular to the temperature gradient. The
formulation is based on the Darcy–Boussinesq model and the nondimen-
sional system of equations depends on thermal Rayleigh number, vibrational
Rayleigh number, and the frequency of vibration. The numerical method
used in this research is based on the spectral method. The study is limited to
relatively small valuesofRayleigh (RaT < 200)andvibrationalRayleighnum-
bers (Rv < 500). Two different physical cases have been considered, namely
convection under microgravity conditions (RaT = 0) and thermo-vibrational
convection in the presence of gravity. They find that, at low frequencies, the
diffusion mechanism dominates the heat transfer and a four-roll convective
structure characterizes the fluid flow, Figure 8.4 and Figure 8.5. For the case
of vibration in presence of gravity in which the two instability mechanisms
are involved, the results show that for R̃ > 2 (R̃ being acceleration ratio),
vibration has a strong effect on fluid flow.
The effect of g-jitter on the boundary layer problems has received par-

ticular attention in recent years. Rees and Pop [30] consider the boundary
layer induced flow around a vertical isothermal plate embedded in a por-
ous medium. They show that the variations in gravitational acceleration
modify the thermal characteristics of the problem. It should be noted that
these authors consider the case in which the amplitude of the modulation is
small compared with mean gravitational acceleration. An amplitude expan-
sion is used to determine the detailed effect of such g-jitter. The expansion is
carriedout to the fourthorder. Theyfindnonsimilar boundary layer equations
for heat and momentum transfer. It is shown that the effect of g-jitter is
confined to the leading edge of the plate and decays further down stream,
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(c) 100, and (d) 400. (FromH.Khallovy, G.Z. Gershuni, andA.Mojtabi.NumerHeat Transfer PartA
30: 605–618, 1996. With permission.)
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Periodic oscillation of (a)ψ in the center of cavity and (b)Nu at Rv = 200 and Ra = 0 for different
values of frequency. (From H. Khallovy, G.Z. Gershuni, and A. Mojtabi. Numer Heat Transfer
Part A 30: 605–618, 1996. With permission.)

Figure 8.6. Following the same procedure, Rees and Pop [31] study the effect
of g-jitter on free convection near a stagnation point of a uniformly heated
cylinder in a porous medium. They examine the response of the system for
different vibrational frequencies. The boundary layer system of equations
is obtained and numerically solved by the Keller–Box method. The numer-
ical results show that the flow is unaffected by the g-jitter and the averaged
heat transfer rate is reduced when the frequency is increased, Figure 8.7.
Finally Rees and Pop [32] study the effect of large amplitude g-jitter on a
uniformly heated vertical plate embedded in a porous medium. Their results
indicate that the effect of large amplitude g-jitter is confined mainly to the
region near the leading edge and decays further away from it, Figure 8.8. It
is suggested that the overall effect of g-jitter is to diminish the magnitude of
the mean flow rate of the heat transfer. It should be emphasized that, in these
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Local rate of heat transfer g′2(0) (solid line) and global rate of heat transfer, Q2 (dashed line), as
function of ξ(ξ = ωx). (FromD.A.S. Rees and I. Pop. Int. Commun Heat Mass Transfer 27: 415–424,
2000. With permission.)
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D.A.S. Rees and I. Pop. Int. J. Heat Mass Transfer 44: 877–883, 2001. With permission.)

three works, Rees and Pop [30–32] used the Darcy model in the momentum
equation.
Sovran et al. [33] provide a numerical study for the thermo-vibrational

problem in a double-diffusive convection. Darcy–Forchheimer–Brinkman
model has been used in themomentum equation. They investigate the square
cavity filled with a binary fluid, which is heated differentially. Under finite
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FIGURE 8.9
Amplitude of the Sherwood number (Sh) versus the vibration frequency for different values
of the Lewis number (Le). Set of parameters: Da = 10,RaT = 105,Pr = 0.71, and R̃ = 1/5.
(From O. Sovran, G. Bardan, M.C. Charrier-Mojtabi, and A. Mojtabi. Numer Heat Transfer Part A
37: 877–896, 2000. With permission.)

frequency of vibration, the case where the solutal and thermal buoyancy
forces reinforce each other is considered. The case of resonance is observed for
R̃ < 10, Figure 8.9. However, it is shown that the maximum amplitude
of Sherwood number at resonance smoothes in a highly diffusive porous
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medium, Figure 8.10. In the cases studied in this work, they showed that the
resonance frequency is independent of Le number. When R̃ > 1, significant
modifications of fluid flow structures can be observed at low frequencies,
Figure 8.11.
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FIGURE 8.10
Amplitude of Sherwood number (Sh), versus the frequency ( f ) for different Lewis (Le) numbers.
For Da = 10−4,Ra = 105,Pr = 0.71, and R̃ = 1

5 . (From O. Sovran, G. Bardan, M.C. Charrier-
Mojtabi, and A. Mojtabi. Numer Heat Transfer Part A 37: 877–896, 2000. With permission.)
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Mean streamlines and mean isotherms for different frequencies for RaT = 104, R̃= 100,
Da= 10−4,Pr= 0.71, and Le= 1. (From O. Sovran, G. Bardan, M.C. Charrier-Mojtabi, and
A. Mojtabi. Numer Heat Transfer Part A 37: 877–896, 2000. With permission.)
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8.2 Influence of Vibration on a Porous Layer Saturated
by a Pure Fluid

8.2.1 Infinite Porous Layer

8.2.1.1 Introduction

This section is devoted to the thermal stability of Horton–Rogers–Lapwood
problem under the effect of mechanical vibrations. The Horton–Rogers–
Lapwood problem is the equivalent of Rayleigh–Bénard problem in porous
media, for historical terminology [28]. The layer can be heated from below
or from above. Charrier-Mojtabi et al. [27] and Razi et al. [26] use both the
direct and the time-averaged methods. The case of vertical vibration is con-
sidered; the direction of vibration is parallel to the temperature gradient.
Zenkovskaya and Rogovenko [18] extend the same problem to arbitrary
direction of vibrations.

8.2.1.2 Governing equations

Two horizontal parallel plates with infinite extension characterize the
geometry of the problem. The plates are kept at two constant but differ-
ent temperatures T1 and T2. The porosity and permeability of the porous
material filling the layer are ε and K, respectively. The system is subjected
to a mechanical harmonic vibration. As the objective is to study the onset
of convection, the Darcy model can be used in the momentum equation. In
addition, the porous medium is considered homogenous and isotropic. The
fluid which saturates the porous media is assumed to be Newtonian and
to satisfy the Oberbeck–Boussinesq approximation. The thermophysical pro-
perties are considered constant except for the density of fluid in the buoyancy
term which depends linearly on the local temperature:

ρ(T) = ρ0 [1− βT(T − Tref)] (8.1)

where Tref represents the reference temperature; the coefficient of volumetric
expansion βT is assumed to be constant (βT > 0). In a reference frame linked
to the layer, the gravitational field is replaced by the sum of the gravitational
and vibrational accelerations g→−gk+bω2 sin(ωt) e. In this transformation
e is the unit vector along the axis of vibration, b is the displacement amplitude,
and ω is the angular frequency of vibration. After making standard assump-
tions (local thermal equilibrium, negligible viscous heating dissipations, . . . ),
the governing equations may be written as:

∇ ·V = 0

ρ0

ε

∂V
∂t
= −∇P + ρ0[βT(T − Tref)](−gk + bω2 sinωt e)− µf

K
V (8.2)

(ρc)∗
∂T
∂t
+ (ρc)fV ·∇T = λ∗∇2T
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The boundary conditions corresponding to this system are written as:

Vz(x, z = 0) = 0 T(x, z = 0) = T1
Vz(x, z = H) = 0 T(x, z = H) = T2

(8.3)

In (8.2), µf is the dynamic viscosity of fluid, (ρc)∗ represents the effective
volumic heat capacity, (ρc)f is the volumic heat capacity of fluid, and λ∗ is the
effective thermal conductivity of saturated porous media.

8.2.1.3 Time-averaged formulation

In order to study the mean behavior of the thermal system, Eqs. (8.2) and
(8.3), the time-averaged method is used. This method is adopted under the
condition of high frequency and small amplitude of vibration. Under these
conditions, it is shown that two different timescales exist, which make it
possible to subdivide the fields into two different parts. The first part varies
slowly with time (i.e., the characteristic time is large with respect to vibration
period) while the second part varies rapidly with time and is periodic with
period τ = 2π/ω. SimonenkoandZenkovskaya [16]used thisprocedure in the
fluid system under the action of vibration and the mathematical justification
for this method is given in Simonenko [34]. So we may write:

V(M, t) = V(M, t)+V′(M,ωt)

T(M, t) = T(M, t)+ T′(M,ωt)

P(M, t) = P(M, t)+ P′(M,ωt)

(8.4)

In the above transformations (V,T,P) represent the averaged fields
(for a given function f (M, t), the average is defined as f (M, t) =
(1/τ)

∫ t+τ/2
t−τ/2 f (M, s) ds).

On replacing (8.4) in system (8.2), we obtain two-coupled systems of
equations:
For the mean flow we obtain:

∇ ·V = 0

ρ0

ε

∂V
∂t
= −∇P + ρ0βT(T − Tref)g k + ρ0βTT′bω2 sinωt e− µf

K
V (8.5a)

(ρc)∗
∂T
∂t
+ (ρc)fV ·∇T + (ρc)fV′ ·∇T′ = λ∗∇2T
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and for the oscillatory flow:

∇ ·V′ = 0

ρ0

ε

∂V′

∂t
= −∇P′ + ρ0βT(T − Tref) bω2 sinωt e

+ ρ0βTT′ (gk + bω2 sinωte)− ρ0βTT′bω2 sinωt e− µf

K
V′

(ρc)∗
∂T′

∂t
+ (ρc)fV′ ·∇T + (ρc)fV′ ·∇T′ + (ρc)fV ·∇T′ − (ρc)fV′ ·∇T′

= λ∗∇2T′
(8.5b)

Our objective of applying the scale analysismethod is to establish connections
between these two-coupled systems of equations which enable us to obtain a
closed set of equations for time-averaged fields.

8.2.1.4 Scale analysis method

Letusfindhowwecan resolve the closureproblem, that is, how theoscillatory
fields can be expressed in terms of the averaged ones. To do this, we use the
scale analysis method. This method has been successfully used in predict-
ing the boundary layer approximations, obtaining optimal geometries and
predicting critical parameters [35,36]. It should be mentioned that Davis [1]
gives an interesting discussion on the importance of relevant scales in the
time-modulated problems. Razi et al. [26] and Charrier-Mojtabi et al. [27] use
the following scales in the oscillatory system of equations in the porous layer
of horizontal infinite extension:

O(T − Tref) ≈ T1 − T2 = �T O
(
∂( )

∂t

)
≈ ω( ) O

(
∂( )

∂z

)
≈ 1
H

(8.6)

Replacing these scales in the oscillating momentum equation (8.5b) and
assuming that T′ � �T allows them to neglect the buoyancy terms involving
T′ (the condition for this assumption is validated later). The order magnitude
of important terms are as follows:

Inertia: O
(
ρ0

ε

∂V′

∂t

)
≈ ρ0v′ω

ε

Buoyancy: O(ρ0βT(T − Tref)bω2 sinωt) ≈ ρ0βT�Tbω2

Friction: O
(µf
K

V′
)
≈ µf

K
v′
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In order to study the possibility of convective motion, the following case is
considered:

Buoyancy ≈ Inertia (8.7a)

Inertia Friction (8.7b)

Replacing the order magnitudes of corresponding terms in (8.7a) gives:

v′ ≈ εβT�Tbω (8.8)

Furthermore, from (8.7b) one obtains:

ενf

Kω
� 1 or τvib � τhyd (8.9)

In relation (8.9) τvib = 1/ω and τhyd = K/ενf represent vibrational and hydro-
dynamic timescales, respectively. Assumption (8.9) allows us to neglect the
viscous term in the oscillating momentum equation.
Following the same procedure in the oscillatory energy equation (8.5b), the

ordermagnitude of important termsmay be obtained. Due to the assumption
T′ � �T only the convective term involving �T is kept:

Transient: (ρc)∗
∂T′

∂t
≈ (ρc)∗T′ω

Convection: (ρc)fV′ ·∇T ≈ (ρc)fv′�TH
Diffusion: λ∗∇2T′ ≈ λ∗ T

′

H2

To study the possibility of oscillatory convective motion, the following case
is considered:

Convection ≈ Transient (8.10a)

Inertia Diffusion (8.10b)

Imposing the velocity scale (8.8) in (8.10a) and defining heat capacity ratio
σ(σ = (ρc)∗/(ρc)f) results in:

T′ ≈ ε

σ
βT�T2

b
H

or b� H
(ε/σ )βT�T

(8.11)

Inequality (8.11) gives the criteria for small-amplitude vibration. Also, from
(8.10b) we obtain:

a∗
σ H2ω

� 1 or τvib � τther

(
a∗ = λ∗

(ρc)f

)
(8.12)
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In relation (8.12) τther = σH2/a∗ represents the thermal timescale. Relation
(8.12) allows us to neglect the diffusive term in the energy equation.
The final step is to validate assumptions in the oscillatory momentum

equation; in other words we should show under which condition ρ0βT�Tbω2

is the dominant buoyancy force. Close examination of different buoyancy
forces in the scaled form reveals that under the following condition:

ω2  g
H
· εβT�T

σ
or τvib � τbuoy (8.13)

ρ0βT�Tbω2 is the dominant buoyancy force in the oscillatory momentum
equation. Inequality (8.13) determines another frequency range for achieving
high-frequency vibration (τbuoy = (σH/(εgβT�T))1/2).

8.2.1.5 Time-averaged system of equations

To obtain the exact oscillating velocity and temperature, assumptions (8.9),
and (8.11) to (8.13) may be applied to (8.5b). In addition, by using the
Helmholtz decomposition, defined as

(T − Tref)e =W +∇ϑ (8.14)

(W,∇ϑ are solenoidal and irrotational parts); the oscillatory pressure can be
eliminated which leads us to:

V′ = −(εβTbω cosωt)W (8.15)

T′ =
( ε
σ
βTb sinωt

)
W ·∇T (8.16)

By substituting (8.15) and (8.16) in (8.5a), we find the averaged system and,
by introducing the reference parameter, T1−T2 for temperature,H for height,
σH2/a∗ for time, (a∗ = λ∗/(ρc)f is the effective thermal diffusivity), a∗/H
for velocity, βT�T for W , and µfa∗/K for pressure, we obtain the resulting
averaged system in dimensionless form:

∇ ·V∗ = 0

B
∂V
∗

∂t
= −∇P∗ + RaTT∗k + Rav(W∗ ·∇)T∗e−V

∗

∂T
∗

∂t
+V

∗ ·∇T∗ = ∇2T∗ (8.17)

∇ ·W∗ = 0

∇ ×W∗ = ∇T∗ × e
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The corresponding boundary conditions for this system are:

∀x∗, for z∗ = 0 V
∗
z = 0 T

∗ = 1 W∗z = 0

∀x∗, for z∗ = 1 V
∗
z = 0 T

∗ = 0 W∗z = 0
(8.18)

where:

RaT = KgβT�TH
νfa∗

Rav = (δ∗FrFRaTω∗)2

2B(
δ∗ = b

H
FrF = a2∗

gH3σ 2
ω∗ = ωσH

2

a∗
B = a∗K

ενfσH2 =
τhyd

τther

)

In above relations RaT is the thermal Rayleigh number, Rav is the vibra-
tional Rayleigh number, ω∗ is the dimensionless pulsation, B is the transient
coefficient, FrF is the filtration Froude number, and δ∗ is the dimensionless
amplitude.

8.2.1.6 Stability analysis

8.2.1.6.1 Linear stability analysis of the time-averaged system of equations

In the presence of vertical vibration, mechanical equilibrium is possible. In
order to find the necessary condition for stability in our problem, we set
velocity equal to zero in Eqs. (8.17) and (8.18) and the steady-state distribution
of fields are sought.
The equilibrium state corresponds to:

T
∗
0 = 1− z∗ W∗0 = 0 (8.19)

For stability analysis, the fields are perturbed around the equilibrium state
(for simplicity bars are omitted):

V∗ = 0+ v′ T∗ = T∗0 + θ P∗ = P∗0 + p′ W∗ =W∗0 + w′

Replacing the above equations in system (8.17) and (8.18), and after lineariz-
ation we obtain:

∇ · v′ = 0

B
∂v′

∂t∗
= −∇p′ + RaTθk + Rav(w′ ·∇T∗0 +W∗0 ·∇θ)k − v′

∂θ

∂t∗
+ v′ ·∇T∗0 = ∇2θ (8.20)

∇ ·w′ = 0

∇ ×w′ = ∇θ × k
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with corresponding boundary conditions:

v′z(x∗, z∗ = 0) = 0 θ(x∗, z∗ = 0) = 0 w′z(x∗, z∗ = 0) = 0

v′z(x∗, z∗ = 1) = 0 θ(x∗, z∗ = 1) = 0 w′z(x∗, z∗ = 1) = 0
(8.21)

Introducing the stream functions φ,ϕT, one can write:

v′x =
∂φ

∂z∗
v′z = −

∂φ

∂x∗
w′x =

∂ϕT

∂z∗
w′z = −

∂ϕT

∂x∗
(8.22)

We consider the 2D disturbances which are developed in normal modes:

(φ, θ ,ϕT) = (φ(z∗), θ(z∗),ϕT(z∗)) exp(−λt∗ + ikx∗) (8.23)

where k is the wave number. Replacing (8.23) in (8.20) and (8.21), and
eliminating pressure leads one to:

(−λB+ 1)
(
d2φ(z∗)
dz∗2

− k2φ(z∗)
)
= −ikRaTθ(z∗)+ k2RavϕT(z∗)

−λθ(z∗)+ ikφ(z∗) = d2θ(z∗)
dz∗2

− k2θ(z∗)

−k2ϕT(z∗)+ d2ϕT(z∗)
dz∗2

= −ikθ(z∗)

(8.24a)

The boundary conditions are:

φ(z∗ = 0) = θ(z∗ = 0) = ϕT(z∗ = 0) = 0

φ(z∗ = 1) = θ(z∗ = 1) = ϕT(z∗ = 1) = 0
(8.24b)

System (8.24a) is a spectral amplitude problem where λ is the eigenvalue of
the system, which depends on:

λ = λ(RaT,Rav, k,B)

Generally, λ is a complex number (λ = λr + iλi).
The system (8.24), admits exact solutions of the form:

(φ(z∗), θ(z∗),ϕT(z∗)) =
N∑
n=1

(φn, θn,ϕTn) sin nπz∗ (8.25)
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Replacing the above equations in (8.24a), we obtain for marginal stability
(λ = 0):

RaT = (π2 + k2)2
k2

+ Rav k2

π2 + k2 (N = 1) (8.26)

One can understand from the above equation that, under micro gravity
(RaT = 0), the system is always stable.
Under the condition of vibration in presence of gravity, we can replace Rav

with (δ∗FrFω∗RaT)2/2B. From (8.26), we get:

RaT = B

δ∗2Fr2Fω∗2
k2

k2 + π2


1−

√
1− 2δ

∗2Fr2Fω∗2
B

(k2 + π2)

 (8.27)

Another interesting feature of this equation is that it gives additional
information:

ω∗max =
√
B/2

δ∗FrFπ
(kc → 0) (8.28)

Relation (8.28) gives the maximum frequency for achieving absolute stabil-
ization for high-frequency and small-amplitude vibration. For example, for
a porous medium of 1 cm in height consisting of glass spheres of 1 mm dia-
meter saturated by methanol, an external velocity of 1.78 m/sec may stop
convective motion (K = 3.1× 10−10, σ = 0.8, and ε = 0.3).

8.2.1.6.2 Weakly nonlinear stability analysis of the time-averaged
system of equations

In this subsection, the normal formof the amplitude equation canbe obtained,
which determines the characteristics of solutions near the bifurcation point.
Themethod is based on themultiscale approach. The nonlinear stability prob-
lem of the time-averaged formulation is expressed in terms of (φ, θ ,ϕT) as
follows:

∂

∂t∗



B∇2φ
θ

0


 =




−∇2 −RaT ∂

∂x∗
−Rav ∂2

∂x∗2

− ∂

∂x∗
∇2 0

0
∂

∂x∗
∇2




︸ ︷︷ ︸
L



φ

θ

ϕT


+



N1

N2

0


 (8.29)
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in which L represents a linear operator whereas N1 and N2 are nonlinear
operators:

N1 = −Rav
[
∂2θ

∂x∗2
∂ϕT

∂z∗
+ ∂θ

∂x∗
∂2ϕT

∂x∗∂z∗
− ∂2ϕT

∂x∗2
∂θ

∂z∗
− ∂ϕT

∂x∗
∂2θ

∂x∗∂z∗

]

N2 = ∂φ

∂x∗
∂θ

∂z∗
− ∂φ

∂z∗
∂θ

∂x∗

In order to study the onset of thermo-vibrational convection near the critical
thermal Rayleigh number, the linear operator and the solution are expanded
into power series of the positive small parameter η, defined by:

RaT = RaTc + ηRaT1 + η2 RaT2 + · · · (8.30)

Thus:

[φ, θ ,ϕT] = η[φ1, θ1,ϕT1] + η2[φ2, θ2,ϕT2] + · · ·
L = L0 + ηL1 + η2L2 + · · ·

(8.31)

(L0 is the operator which governs the linear stability.) It should be noted that,
in the operators, Rav is also expanded:

Rav = (δ∗FrFω∗)2

2B

[
Ra2Tc + 2ηRaT1RaTc + η2(2RaTcRaT2 + Ra2T1)+ · · ·

]
(8.32)

By replacing (8.30) to (8.32) in (8.29), and after introducing the classical time
transformation:

∂

∂t∗
= η ∂

∂t∗1
+ η2 ∂

∂t∗2
+ · · ·

on equating the same power of ηwe obtain a sequential system of equations.
At each order of η, a linear eigenvalue problem is found. At the first order

(η) the perturbation is written in the following form:



φ1

θ1

ϕT1


 = A (t∗1, t

∗
2, . . .)



(π2 + k2)/k2 sin πz∗ sin kx∗
−(π2 + k2)/k sin πz∗ cos kx∗

sin πz∗ sin kx∗




The amplitude A depends on slow time evolutions (t∗1, t
∗
2, . . .).

At the second order η2, the existence of a convective solution requires that
the solvability lemma be satisfied, in other words there must be a nonzero
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solution for the adjoint of L0 associated with identical boundary conditions.
From the adjoint operator, we obtain:

Ra∗Tc = RaTc

(Ra∗Tc is the critical Rayleigh number corresponding to adjoint system.) Also,
we find RaT1 = 0 and amplitude A does not depend on timescale t∗1.
At the third order η3 by invoking the solvability condition and the Fredholm

alternative we obtain the amplitude equation:

dA
dt∗2
= α(A− βA3) (8.33)

in which α and β are defined as:

α = k2

(k2 + π2)2
[
(k2 + π2)− (δ∗FrFω∗)2

B
k2RaTc

]
RaT2

β = (π2 + k2)2 [1− (k4(δ∗FrFω∗)2/B(π2 + k2)3)Ra2Tc]
8RaT2

[
(π2 + k2)− ((δ∗FrFω∗)2/B)k2RaTc

]

In α and β, RaT2 is defined as RaT2 = (RaT − RaTc)/η2 which is the control
parameter.
When there is no vibrational effect, the amplitude of thermo-convective

flow near the bifurcation point is proportional to:

A ≈ √RaT − RaTc
which is in agreement with Palm et al. [37].
Under the effect of vibration α and β are both positive, which results in a

supercritical pitch-fork bifurcation.

8.2.1.6.3 Linear stability analysis from direct formulation

The stability of the solution corresponding to the governing equations in the
original form is examined in this section. When the direction of vibration is
parallel to gravitational acceleration, mechanical stability is possible, which
is characterized by a linear temperature and parabolic pressure distribution.
In order to study linear stability, the field variables (velocity, pressure, and
temperature) are infinitesimallyperturbedaround themotionless equilibrium
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state. The perturbed system becomes:

∇ · ṽ = 0

ρ0

ε

∂ṽ
∂t
= −∇p̃+ ρ0βTθ̃ (g + bω2 sinωt)k − µf

K
ṽ (8.34)

σ
∂θ̃

∂t
+ ṽ ·∇T0 = a∗∇2θ̃

By eliminating the pressure in the momentum equation and introducing the
normal modes as:

ṽz = X(t) eik(x/H) sin z
H
π θ̃ = Y(t)eik(x/H) sin z

H
π (8.35)

and on replacing the above relations in system (8.34), we obtain:

ρ0

ε

dX(t)
dt
+ µf

K
X(t) = ρ0βT k2

k2 + π2 (g + bω
2 sinωt)Y(t)

X(t) = H
�T

[
σ
dY(t)
dt
+ a∗

[(
k
H

)2
+
( π
H

)2]
Y(t)

] (8.36)

Elimination of X(t) in system (8.36) gives:

d2Y
dt2
+
[ a∗
σH2 (k

2 + π2)+ ενf

K

] dY
dt

+
[
ενfa∗
KH2σ

(k2 + π2)− εβT�T
σH

k2

k2 + π2 (g + bω
2 sinωt)

]
Y = 0 (8.37)

The above equation is similar to a mechanical pendulum with an oscillating
support:

�̈+ 2ξωn�̇±
(
ω2n − ω2

δ

�
sinωt

)
� = 0 (8.38)

in which ωn represents the natural frequency, ξ damping ratio, ω vibrational
frequency, � pendulum length, and finally δ the amplitude of vibration. The
plus sign in (8.43) corresponds to a normal hanging pendulumwhile the neg-
ative sign corresponds to an inverted pendulum. Equalizing the vibrational
effect in the two systems gives:

�eff ≈ H
(ε/σ )βT�T

(8.39)
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which is the effective length of the equivalent system. In addition it is clear
that this effective length is quite long (βT�T � 1).
Equation (8.37) can be written in dimensionless form:

B
d2Y∗

dt∗2
+ [B(k2 + π2)+ 1]dY

∗

dt∗

+
[
(k2 + π2)− RaT k2

k2 + π2 (1+ R̃ sinω
∗t∗)

]
Y∗ = 0 (8.40)

where B, RaT, ω∗ are defined as in Section 8.2.1.6.2. Also we can define R̃ as
δ∗FrFω∗2. For the above equation two different cases are distinguished:

1. Bω∗ � 1. In this case, the governing equation is written as:

dY∗

dt∗
+
[
(π2 + k2)− RaT k2

k2 + π2 (1+ δ
∗FrFω∗2 sinω∗t∗)

]
Y∗ = 0 (8.41)

The solution of this first-order differential equation with periodic coeffi-
cient is:

Y∗ = Y∗0 exp−
[
(π2 + k2)− k2

k2 + π2RaT
]
t∗

× exp
(
2δ∗FrFω∗

k2

k2 + π2RaT sin
2 ω
∗t∗

2

)

Y∗(0) = Y∗0

(8.42)

When there is no vibration (δ∗FrFω∗ = 0), from (8.42) the classical result
of RaTc = 4π2 for marginal stability may be deduced. In the presence of
vibration, if the layer is heated from above (RaT < 0) the solution is always
stable. This is true because, in this situation, the arguments in exponential
functions (8.42) are always positive. When the layer is heated from below
(RaT > 0), the solution is composed of two parts, see (8.42) the second part of
which can be considered as a positive bounded periodic function. Therefore,
for marginal stability, the first part is important and gives RaTc = 4π2. In
other words, vibration has no effect on stability threshold. Physically from
the mechanical analogy, this case corresponds to a pendulum in which the
viscous damping is much larger than angular acceleration. Strong damping
is able to destroy the oscillatory movements.
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2. Bω∗  1. Using transformation h∗(t∗) = e−mt∗M(t∗), Eq. (8.42) is cast into
Mathieu’s equation m being (π2 + k2 + 1/B)/2:

d2M(τ )

dτ 2
+ (A− 2Q cos 2τ)M(τ ) = 0

(
ω∗t∗ = 2τ − π

2

)
(8.43)

in which A and Q are:

A = π2 + k2
B

−m2 − k2

B(π2 + k2)RaT Q = 2k2

B(π2 + k2)δ
∗FrFRaT (8.44)

Detailed analysis of the stable regions for this equation can be found else-
where (see [38–40]). Theydivide the domain into alternate stable andunstable
regions. In order to solve Eq. (8.43), the Floquet theory is used, which
considers the solution as:

M = R(τ )eµτ

in which R(τ ) is a periodic function having period π or 2π , the parameter µ
is the Floquet exponent, and the marginal stability condition is m = µω∗/2.
The details of this method can be found elsewhere (see [41]).
To obtain the critical thermal Rayleigh andwave numbers for marginal sta-

bility, working parameters (B,ω∗, δ∗,FrF) are fixed except RaT and k. Thenwe
search for the minimum RaT versus k. The results are shown in Figure 8.12
to Figure 8.14. From these figures it can be concluded that, for given dimen-
sionless amplitude δ∗ and dimensionless frequency of vibration ω∗, there are
two modes of convection onset, namely harmonic (with dimensionless fre-
quency ω∗) and subharmonic (with dimensionless frequency ω∗/2). In order
to interpret the results, two different thermal cases are considered: heating
from below (RaT > 0) and heating from above (RaT < 0).
For heating from below (which corresponds to RaT < 0), two different

behaviors for harmonic and subharmonic modes are distinguished: for har-
monicmodewith increasingω∗, thermalRayleighnumberRaTc increases. This
means that vibration has a stabilizing effect, which depends significantly on
the choice of dimensionless amplitude δ∗. Figure 8.12 shows that by decreas-
ing δ∗, the stable region with harmonic response widens. If the frequency
is increased, the critical wave number for this mode decreases, Figure 8.13.
For the subharmonic mode we have a different scenario, the vibration has a
destabilizing effect, in other words RaTc decreases and ultimately reaches a
limiting value. It should be emphasized that our reference here is “the inter-
section” of the two curves corresponding to harmonic and subharmonic. The
critical wave number in this mode increases with increasing dimensionless
frequency, Figure 8.14. It should be noted that the intersection of harmonic
and subharmonic modes corresponds to different values of wave number.
For heating from above, in both harmonic and subharmonic modes, the

onset of convection is possible. This is in contrast to the classical terrestrial
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FIGURE 8.12
The effect of vibrations on the critical Rayleigh number RaTc for the layer heated from below as a
function of the dimensionless ω∗ for B = 10−5 and different values of dimensionless amplitude
b/H for harmonic and subharmonic modes (direct method).
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FIGURE 8.13
The effect of vibration on the critical wave number (kc) as a function of dimensionless fre-
quency ω∗ for harmonic (synchronous) solutions for different dimensionless amplitudes with
direct formulation (the layer is heated from below).
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FIGURE 8.14
The effect of vibration on the critical wave number (kc) as a function of dimensionless fre-
quency ω∗ for the subharmonic solutions for different dimensionless amplitudes with direct
formulation (heated from above).

case where, on heating from above, the conducive solution is always stable.
In both of thesemodes, with increasing dimensionless frequency, the thermal
Rayleigh numbers begin at high values and then sharply reduce and finally
tend to asymptotic values. The critical wave number kc of harmonic mode for
this case increases rapidly and then tends to a limiting value. This is in severe
contrast to the behavior of the wave number for the harmonic mode heated
from below. The transition to subharmonic mode accompanies a drastic and
discontinuous drop in the critical wave number: after a sharp increase the
slope changes and increases slowly. Our results are in good qualitative agree-
ment with those found for a modulated fluid layer heated from below or
above (see [42]).

8.2.1.7 Comparison of the two methods

We compare the two approaches of stability analysis in the thermo-
vibrational problem, namely, the time-averaged and the direct methods.
The time-averagedmethodunderhigh-frequencyandsmall-amplitudevibra-
tion is considered in Section 8.2.1.6.3. This limiting case permits us to
subdivide the temperature, velocity, and pressure fields into two parts. The
question is under which condition we can find this characteristic of solution
(subdivision of fields) by adopting the direct method. Let us examine what
will happen if we apply the assumptions needed for finding the criteria of
high frequency and small amplitude to the coefficients ofMathieu’s equation.

© 2005 by Taylor & Francis Group, LLC



346 Yazdan Pedram Razi et al.

We write Mathieu’s equation and its coefficients A and Q as:

d2M(τ )

dτ 2
+ (A− 2Q cos 2τ)M(τ ) = 0

A =−
[ a∗
σH2ω

(k2 + π2)+ ενf

Kω

]2 + 4 ( ενf
Kω

) ( a∗
ωσH2

)
(k2 + π2)

− 4
(
εβT�Tg
σHω2

)
k2

k2 + π2
(8.45)

Q = 2
(
ε

σ
βT�T

b
H

)
k2

k2 + π2

Close examination of A and Q reveals the following facts:
The first and second terms in A involve the two assumptions on thermal

and hydrodynamic timescales with respect to frequency (8.9), (8.11), while
the third term involves the assumption on frequency (8.13).
Q involves the hypothesis of small amplitude (8.11). Based on our hypo-

thesis of high frequency and small amplitude all these terms are very small
so A andQ tend to zero. We use a regular perturbation method in which Q is
considered as a small parameter

M(τ ) =M0(τ )+QM1(τ )+Q2M2(τ )+ · · ·
A = A0 +QA1 +Q2A2 + · · ·

(8.46)

Replacing the above expansions inMathieu’s equation results in the following
systems:

Q0 :
d2M0

dτ 2
+ A0M0 = 0 (8.47a)

Q1 :
d2M1

dτ 2
+ A0M1 = −A1M0 + 2M0 cos 2τ (8.47b)

Q2 :
d2M0

dτ 2
+ A0M2 = −A2M0 + 2M1 cos 2τ − A1M1 (8.47c)

We search for a stable solution

A0 = 0⇒M0 = const.

A1 = 0⇒M1 = −a02 cos 2τ
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where a0 is an arbitrary constant. By substituting the above relation in (8.47c),
we get:

d2M2

dτ 2
= −a0

(
1
2
+ A2

)
− a0

2
cos 4τ (8.48)

The necessary condition for obtaining a stable solution in (8.47) is to
consider:

A2 = −12

On replacing A0, A1, A2 in (8.46) we obtain:

A = −Q
2

2
(8.49a)

M = a0 − a0
2
cos 2τ (8.49b)

On replacing A and Q in Eq. (8.49a) and using the fact that
µ = [a∗(k2 + π2)/σH2ω + (εν/Kω)] = 0, we find:

RaT = (π2 + k2)2
k2

+ Rav k2

k2 + π2
(
Rav = (δ∗FrFω∗RaT)2

2B

)

which means that imposing the assumptions needed for the averaging
method on Mathieu’s equation gives identical results to the time-averaged
formulation. The most interesting thing about this fact is that the time-
averaged method gives only harmonic (with dimensionless frequency ω∗)
mode and is not able to give subharmonic mode. As can be seen from the
results of the Direct method for subharmonic and harmonic cases, we find
some asymptotic values. This is not surprising because the special case of
µ = 0 results in a class of solutions called Mathieu functions (see [38]), for
each of which there exists a unique relation between A and Q. For example,
for the case of the subharmonic solution (with dimensionless frequencyω∗/2)
inwhich the layer is heated frombelowwefind thatA = 0 andQ→ 0.9which
gives the following asymptotic relation (for k2c/(k

2
c + π2)→ 1):

RaTc ≈ 0.445
B

δ∗FrF
(8.50)
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Relation (8.50) clearly shows that increasing the dimensionless amplitude
reduces the critical Rayleigh number. For other cases corresponding to har-
monic or subharmonic modes similar relations are found (k2c/(k

2
c + π2)→ 1):

RaTc ≈ −3.75 B
δ∗FrF

(harmonic response, the layer heated from above)

(8.51a)

RaTc ≈ −0.445 B
δ∗FrF

(subharmonic response, the layer heated from above)

(8.51b)

Also it should be emphasized that if we choose (B,ω∗,FrF, δ∗) properly we
are able to predict the possibility of convective motion for the layer heated
from above. However, the time-averaged method predicts that with heating
from above the layer is infinitely stable.

8.2.1.8 Effect of the direction of vibration

The effect of the direction of vibration on the onset of convection is described
by Zenkovskaya and Rogovenko [18]. They use the time-averaged formula-
tion and discuss several physical situations. When the direction of vibration
is not parallel to the temperature gradient, there is a quasi-equilibrium; that
is, the mean velocity is zero but the oscillating velocity is not zero (see [43]).
The equilibrium solution is characterized by:

V∗0 = 0, T∗0 = 1− z∗ and W∗0x =
(
1
2
− z∗

)
cosα (8.52)

The following cases are studied:

1. The onset of convection under microgravity (RaT = 0). One of the most
interesting results reported by Zenkovskaya and Rogovenko [18] is that, if
the direction of vibration is not parallel to the temperature gradient, there is
a possibility of convective motion under microgravity conditions. Table 8.1
shows the critical values of the vibrational Rayleigh number (Rav) and the
critical values ofwavenumber (kc) as a functionofα (thedirectionof vibration
with respect to the heated plate). It can be observed that, with increasing
direction of vibration α, the domain of stability increases. At the same time,
the wave number decreases with increasing direction of vibration. It should
be emphasized that for α = π/2, that is, the vertical vibration, the equilibrium
solution is infinitely linearly stable.
2. The onset of thermo-vibrational convection in the presence of gravity (RaT �=

0 and R �= 0). In this case, the two controlling mechanisms, namely, the
vibrational and gravitational, are present. Figure 8.15 shows that, based on
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TABLE 8.1

The Critical Vibrational Rayleigh Ravc and
Wave Numbers for Different Directions of
Vibration

α kc Ravc

0 2.87 140.56
π/16 2.75 156.22
π/8 2.40 217.8
3π/16 1.92 391.41
π/4 1.42 916.50
5π/16 0.98 2,905.53
3π/8 0.62 14,908.16
7π/16 0.3 24,1063.52
π/2 — ∞

R
a T

c

90°

70°

45°

60°

0°

40

4�2

80

0 0.2 0.4
R

FIGURE 8.15
CriticalRayleighnumberRaTc as a functionofR fordifferent valuesofα. (FromS.M.Zenkovskaya
and T.N. Ragovenko. J. Appl. Mech. Tech. Phys. 40: 379–385, 1999. With permission.)

the values ofR (vibrational parameterwhich does not depend on temperature
difference) and α, stabilizing or destabilizing effects may be found. For the
direction of vibrations 5π/16 < α < π/2, there are some values of R for
which maximum stability may be obtained. Another interesting feature of
the effect of direction of vibration is that for the layer heated from above,
we may obtain convective motions. This is in severe contrast to the classical
Horton–Rogers–Lapwood problem in which, for the case of the layer heated
from above, the layer is infinitely stable. The results for the layer heated from
above are illustrated in Figure 8.16 showing that for α �= π/2, on increasing
the vibrational parameter the stability domain decreases.
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FIGURE 8.16
Critical Rayleigh number, RaTc, as a function of R for different values of α. (From S.M.
Zenkovskaya and T.N. Ragovenko. J. Appl. Mech. Tech. Phys. 40: 379–385, 1999. With permission.)

8.2.2 Confined Cavity

8.2.2.1 Introduction

A numerical and an analytical study of convective motion in a rectangular
porous cavity saturated by a pure fluid and subjected to a high-frequency
and small-amplitude vibration is presented by Bardan and Mojtabi [20]. The
Darcy formulation is adopted in the momentum equation. As vibration has
high frequency and small amplitude, the relevant equations are solved by the
time-averaged method.

8.2.2.2 Stability analysis

1. Linear stability analysis. In (8.20), the attention is focused on the case of
vertical vibration, that is, α = π/2. It is shown that the problem admits an
equilibrium solution given by V∗0 = 0, T∗0 = 1− z∗, andW∗0 = 0, Figure 8.17.
The linear stability of this equilibrium solution is sought by means of the
Galerkin method using the following expansions:

φ =
P∑
n=1

Q∑
m=1

φnm sin(nπz∗) sin
(
mπx∗

AL

)
eλt
∗

θ =
P∑
n=1

Q∑
m=1

θnm sin(nπz∗) cos
(
mπx∗

AL

)
eλt
∗

ϕT =
P∑
n=1

Q∑
m=1

ϕTnm sin(nπz∗) cos
(
mπx∗

AL

)
eλt
∗

(8.53)
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FIGURE 8.17
Critical Rayleigh number RaTc of the first primary bifurcation point as a function of the aspect
ratio AL. (From G. Bardan and A. Mojtabi. Phys. Fluids 12: 1–9, 2000. With permission.)

The bifurcation points are obtained by solving the linear algebraic system
obtainedwhenwe substitute expression (8.53) into system (8.20). The thermal
Rayleigh number, which determines the limit of the even and odd solutions,
can be studied analytically:

RaT = π2(n2 +m2A2L)
3 + n4A2LRav

n2A2L(n
2 +m2A2L)

(8.54)

In (8.54) AL represents aspect ratio and Rav is vibrational Rayleigh num-
ber. Figure 8.17 shows the analytical prediction of the critical thermal
Rayleigh number for different values of Rav. As can be observed clearly
from the figure, vibration increases the domain of stability in the bifurcation
diagram.
2.Weakly nonlinear stability analysis. A weakly nonlinear analysis is carried

out to obtain the canonical form of the amplitude equation and to determine
the characteristics of solutions (stream function and temperature) near the
bifurcation point. The analysis is based on the multiscale approach. The pro-
cedure is the same as in Section 8.2 and will not be repeated. The amplitude
equation can be written as:

a
∂A
∂t
= bA(µ+ cA2) (8.55)
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and RaT2 = (RaT − RaTc)/η2 represents the bifurcation parameter. This
amplitude equation applies for AL(n−1) < AL < AL(n) and the coefficients
a, b, and c are evaluated analytically from the following relations (m = 1):

a = π4(n2 + A2L)3 + π2AL(n2 + A2L)2
4n2 A2L

b = n2 + A2L
4AL

c = π6 (n
2 + A2L)2
8A4L

Rav − π8 (n
2 + A2L)5
8A6Ln

4

(8.56)

The sign of these coefficients (a, b, and c) are functions of Rav and AL. We
distinguish two different cases:

c > 0 and −bµ/a < 0⇒ bifurcation is stable supercritical pitch-fork

c < 0 and −bµ/a > 0⇒ bifurcation is unstable subcritical pitch-fork

It is interesting to note that for AL = AL(n), a codimension two bifurcation
results from the interaction between the centro-symmetrical and symmetrical
modes.

8.2.2.3 Numerical results

Bardan and Mojtabi [20] study this problem from a numerical point of view.
The numerical method used in this work is based on a spectral method, the
details of which are described in Khallouf et al. [29]. The numerical study
is concentrated on AL = 1 and AL = 3 in order to investigate the cases in
which there are substantial effects of vibration. The computations are done
in the interval of 0 < RaT < 300 and 0 < Rav < 400. The results for AL= 1
are presented in Figure 8.18. In the case of static gravitational acceleration,
the pitch-fork bifurcation point occurs at RaT ≈ 4π2. The emerging branch is
supercritical and stable. Along this branch the solution is in the form of one-
cell flowstructure. By increasing thevibrationalRayleighnumber, the onset of
convection is delayed and the pitch-fork bifurcation remains supercritical up
toRav = 80. ForRav > 80, it is found that vibration destabilizes the pitch-fork
branch which becomes subcritical or unstable. The bifurcation diagram for
AL = 3 is presented in Figure 8.1. For the static case, the onset of convection
is centro-symmetric which is characterized by a three-cell flow structure. For
a fixed value of thermal Rayleigh number, by increasing vibrational Rayleigh
number up to Rav = 40 it is shown that the conductive solution remains
stable. The emerging branch is supercritical pitch-fork along which the solu-
tions have a three-cell structure that is S0 symmetric. For vibrational Rayleigh
number in the interval of 40 < Rav < 160, the emerging branch remains a
supercritical pitch-fork; however solutions have a two-cell structure. In the
interval of 160 < Rav < 350, the pitch-fork bifurcation becomes subcritical
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FIGURE 8.18
Bifurcationdiagram in theψ−Raplane fordifferent values ofRav whenAL = 1. The insets repres-
ents iso-streamlines and isotherms formean fields at (RaT = 165,Rav = 0) and (RaT = 165,Rav =
250). (From G. Bardan and A. Mojtabi. Phys. Fluids 12: 1–9, 2000. With permission.)

and the emerging branch is unstable. Along this stable branch, the solution
consists of two-cell flow structures. For Rav > 350, the first primary bifurc-
ation becomes supercritical along which the branch has a one-cell structure.
For Rav > 1250 the pitch-fork bifurcation becomes subcritical. In summary,
they conclude that it is possible to obtain a one-cell flow structure at the onset
of convection provided that the vibration intensity is properly chosen.

8.2.2.4 Conclusions

In this section, the stability analysis of a porous layer under the effect of
mechanical vibration is presented. The layer can be heated uniformly from
below or from above. As found earlier in problems concerning fluid systems,
vibration can also influence the onset of convective motion in porous media.
The change of threshold depends on direction, amplitude, and frequency
of vibration. For the case of mechanical vibration parallel to the temperat-
ure gradient (vertical vibration), mechanical equilibrium exists. For this case,
under different heating conditions (heating from above or below), there is
a possibility of convective motion that largely depends on the chosen val-
ues of amplitude and frequency of vibration. The response of the system
shows harmonic or subharmonic behavior. For heating from below, the har-
monic mode exhibits a stabilizing behavior whereas the subharmonic mode
exhibits a destabilizing one. When the frequency is increased, for heating
from above the response is predominantly subharmonic and there is a jump
in critical wave number for the intersection of harmonic and subharmonic
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modes, both of these modes show that vibration has a destabilizing
effect.
For heating from below the results indicate that, under the condition of

high frequency and small amplitude of vibration, the harmonic part shows
a strong stabilizing effect. Under this limiting situation, the time-averaged
formulation can be adopted. A weakly nonlinear stability analysis is per-
formed for this averaged system revealing that bifurcation is of supercritical
pitch-fork type. It is interesting to note that, near the transition, the Darcy
model leads us to the same physical results as obtained from Navier–Stokes
equations.
For the case of other directions of vibration (α �= π/2) under high fre-

quency and small amplitude, it is shown that, in the presence of gravitational
acceleration for the layer heated from below, vibration may produce sta-
bilizing or destabilizing effects. These depend largely on the choice of
vibrational parameter and the direction of vibration. For the layer heated
from above, decreasing the direction of vibration from α=π/2 to α= 0
reduces the stabilitydomain (RaTc decreases). For the case of convectionunder
microgravity conditions, it is shown that there is a possibility of thermo-
vibrational convection for all directions of vibration except vertical vibration
(α �= π/2).

8.3 Influence of Vibration on a Porous Layer
Saturated by a Binary Fluid

8.3.1 Infinite Horizontal Layer

8.3.1.1 Introduction

The onset of convection in binary fluids is of practical importance because it
may help us in producing materials of improved quality. It can be also used
as a method for measuring the transport coefficients. A configuration that
has received special attention is a horizontal layer filled with a binary mix-
ture. Typically this system can be heated from below or from above in the
terrestrial gravitational field. It is interesting to note that the stability beha-
vior of a binary mixture is quite different from that of a pure fluid. Soret or
Dufour effects can strongly modify the onset of convection and the result-
ing fluid flow structures [44]. Due to importance of material processing in
space conditions (weightlessness), Gershuni et al. [45,46] analyzed the sta-
bility of conductive solution of a thermosolutal problem with Soret effect in
a fluid system under mechanical vibration. They found that total equilib-
riumwas only possible under vertical vibration [46] while, for the horizontal
vibration, the state of quasi-equilibrium was possible [45]. They emphas-
ized that high-frequency and small-amplitude vibration could drastically
change the stability threshold of conductive solution in the stability diagram.

© 2005 by Taylor & Francis Group, LLC



Mechanical Vibrations on Buoyancy Induced Convection 355

These important and interesting results, which have direct applications in
solidification processes, and measurement of the Soret effect, motivated the
study of the analog problem in porous media [22].

8.3.1.2 Governing equations

The geometry consists of an infinite horizontal porous layer containing binary
mixtures. The boundaries of the layer are assumed rigid and impermeable,
and are kept at different but constant temperatures. Under the Soret effect,
the temperature gradient induces a concentration gradient. The geometry
undergoes a harmonic oscillation which is characterized by the amplitude b,
the dimensional frequency ω, and the direction of vibration α. The transient
Darcy model in the framework of the Boussinesq approximation is selected
and a linear dependence of density upon temperature and mass fraction is
considered:

ρ = ρ0(1− βT(T − Tref)− βc(C − Cref)) (8.57)

The reference frame is connected to the layer, which allows us to replace the
gravitational acceleration g by g − bω2 sin(ωt)e, where e is the direction of
vibration.
By introducing the reference scales: H for the length, H2/(λ∗/(ρc)∗) for the

time, a∗/H for the velocity (a∗ = λ∗/(ρc)f),�T = T1−T2 for the temperature
and �C = �TCi(1− Ci)DT/D∗ for the mass fraction, the dimensionless gov-
erning conservation equations for mass, momentum, energy, and chemical
species when the Soret effect is taken into account can be written as:

∇ ·V∗ = 0

B
∂V∗

∂t∗
= −∇P∗ + RaT(T∗ +�C∗)(k + R̃ sin(ω∗t∗) e)−V∗

∂T∗

∂t∗
+V∗ ·∇T∗ = ∇2T∗

ε∗ ∂C
∗

∂t∗
+V∗ ·∇T∗ = 1

Le
(∇2C∗ −∇2T∗)

(8.58)

where B = Da(ρc)f/((ρc)∗εPr∗), R̃ = bω2/g, and Da = K/H2 is the Darcy
number.
The dimensionless boundary conditions are:

T∗ = 1 for z∗ = 0; T∗ = 0 for z∗ = 1

∇C∗ · n = ∇T∗ · n for z∗ = 0, 1; V∗ · n = 0 ∀M ∈ ∂� (8.59)
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The problem depends on the following nondimensional parameters: the
thermal Rayleigh number RaT, the vibrational Rayleigh number Rv =
RaTR̃, the separation ratio � = −(βc/βT)(DT/D∗)Ci(1 − Ci), the Lewis
number Le = a/D∗, the dimensionless pulsation ω∗, the normalized porosity
ε∗ = ε(ρc)f/(ρc)∗, the factor B, and the angle of vibration α.
As was explained in Section 8.2, for the problems related to high frequency

vibrations, we should keep the term B ∂V/∂t.

8.3.1.3 The time-averaged formulation

In the limiting case of high-frequency and small-amplitude vibrations, the
method of time averaging is applied to study the phenomena of vibrational
convection [15]. The details of this method are explained in Section 8.2

V∗(M, t∗) = V
∗
(M, t∗)+V′(M,ω∗t∗) P∗(M, t∗) = P∗(M, t∗)+ P′(M,ω∗t∗)

T∗(M, t∗) = T∗(M, t∗)+ T′(M,ω∗t∗) C∗(M, t∗) = C∗(M, t∗)+ C′(M,ω∗t∗)
(8.60)

where V,P,T,C are the average fields (i.e., the mean value of the field
calculated over the period τ = 2π/ω) of the velocity, the pressure,
the temperature, and the mass fraction. Also, V′,P′,T′,C′ represent the
oscillating fields with zero average over the vibration period. By adopt-
ing the procedure explained in Section 8.2 and applying the following
hypotheses:

τvib � min

(
K
ενf

,
σH2

a∗
,
εH2

D∗

)
ω  g

H

( ε
σ
βT�T + βC�C

)

b� H
/( ε

σ
βT�T + βC�C

)

wemayobtain the linearized equations for theoscillatorymomentum, energy,
and concentration. This linearization of the momentum equation justifies the
use of Helmholtz decomposition to eliminate pressure:

T
∗
e =W∗T +∇ϑ∗T C

∗
e =W∗C +∇ϑ∗C

whereW∗T andW∗C are the solenoidal parts of the temperature and concentra-
tionmean fields. From the definition of solenoidal vectors∇ ·W∗T = ∇ ·W∗C =
0, closed form relations for oscillating fields are found. Replacing these
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oscillating fields in the averaged system of equations leads to the following
system:

∇ ·V∗ = 0

B
∂V
∗

∂t
= −∇P∗ + RaT(T∗ +�C∗)k + Rav(W∗T +�W∗C)

×∇
(
T
∗ + �

ε∗
C
∗
)
(cosαi+ sin αk)−V

∗

∂T
∗

∂t
+V

∗ ·∇T∗ = ∇2T∗ (8.61)

ε∗ ∂C
∗

∂t
+V

∗ ·∇C∗ = 1
Le
(∇2C∗ − ∇2T∗)

∇ ·W∗T = 0 ∇ ×W∗T = ∇T
∗ × (cosαi+ sin αk)

∇ ·W∗C = 0 ∇ ×W∗C = ∇C
∗ × (cosαi+ sin αk)

In addition to boundary conditions (8.59) applied to the mean fields, we
have: W∗T · n = W∗C · n = 0. The dimensionless number Rav = R2Ra2T =
(R̃2Ra2TB)/(2(B

2ω∗2 + 1)) characterizes the intensity of the vibrations. Unlike
the oscillating system, in the averaged system of Eqs. (8.61), we may neglect
the term B∂V∗/∂t.

8.3.1.4 Stability analysis

If the axis of vibration is not vertical, amechanical quasi-equilibrium solution
exists (the average velocity field is zero but the oscillating velocity field is not
zero). This solution is characterized by:

V
∗
0 = 0; T

∗
0 = 1− z∗; C

∗
0 = c1 − z∗

W∗T0x = c2 − z∗ cosα W∗T0z = 0 W∗C0x = c3 − z∗ cosα W∗C0z = 0
(8.62)

In the above equations c1, c2, and c3 are constants.
The solution is perturbed around the equilibrium state to analyze the sta-

bility of the quasi-equilibrium solution. We introduce the stream function
perturbation φ, the temperature perturbation θ , and the concentration per-
turbation c. The stream function perturbations associated with W∗T and W∗C
are ϕT and ϕC respectively. Two new functions η = c− θ and ϕη = ϕC−ϕT are
introduced to satisfy the zero flux at the boundaries. A Galerkin method is
used to solve the resulting linear stability analysis system. The perturbations
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are chosen as follows:

φ =
N∑
n=1

φn sin(nπz∗) exp(λt∗ + ikx∗) θ =
N∑
n=1

θn sin(nπz∗) exp(λt∗ + ikx∗)

η =
N∑
n=1

ηn sin(nπz∗) exp(λt∗ + ikx∗) ϕT =
N∑
n=1

ϕTn sin(nπz∗) exp(λt∗ + ikx∗)

ϕη =
N∑
n=1

ϕηn sin(nπz∗) exp(λt∗ + ikx∗)
(8.63)

where k is the wave number in the horizontal direction Ox and i2 = 1.

1. Stationary bifurcation. If we assume the principle of exchange of stability
to be valid (i.e., λ ∈ �), then the marginal stability can be obtained (λ= 0).
For different sets of parameters, R = 0.1, ε∗ = 0.3, Le = 100, and for different
directions of vibration (α = 0, π/4, π/2), the bifurcation diagrams are deter-
mined (Racs = f (ψ) and kcs = f (ψ), where Racs and kcs are the critical thermal
Rayleigh number and the critical wave number respectively).

(i) Effect of Lewis number: in all separation ratios, positive or negative,
increasing the Le number decreases the region of stability. For a given
Lewis number, the wave number has the interesting feature that, for
the layer heated from above, the mono-cellular regime is dominant
(kc tends to zero). But for the layer heated from below, in positive
separation ratios, the wave number decreases with increasing Lewis
(Le) number. For the negative separation ratios ψ < −1, the mono-
cellular regime is dominant (this is only a mathematical prediction,
in reality ψ < −1 is very hard to achieve.

(ii) Influence of the direction of vibration: generally, increasing the dir-
ection of vibration with respect to the heated layer has a stabilizing
effect. This is true for the situation in which the layer is heated from
below or above under all separation ratios, Figure 8.19. At the same
time, for the layer heated from below, decreasing the vibration angle
reduces the wave number. This effect is more noticeable for larger
Lewis numbers, Figure 8.20.

2. Oscillatory bifurcation. In this part, the existence of unsteady Hopf bifur-
cation is sought (i.e., λ = λr+ iλi); themarginal state corresponds to λr = 0. In
the classical case of thermo-solutal convection in the presence of Soret-effect
(Rav = 0), when the layer is heated from below for the negative separa-
tion ratio ψ ∈ (−1, 0), the first primary bifurcation is a Hopf one. In this
case the denser component migrates towards the lower hot plate, which pro-
duces an opposing stabilizing effect. More precisely, it is shown elsewhere
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The effect of direction of vibrational α on critical Rayleigh number for Le = 100, ε∗ = 0.3,R = 0.1.
(From K. Maliwan, Y.P. Razi, M.C. Charrier-Mojtabi, M. Azaiez, and A. Mojtabi. Proceeding
of 1st International Conference on Applications of Porous Media, Tunisia, 2002, pp. 489–497. With
permission.)

kc

0
0

0.02–0.02–0.04–0.06–0.08–0.1 0.04 0.06 0.08

5

4.5

4

3.5

2.5

2

1

1.5

0.5

3

0.1

kcs (� = 0)

kco (� = 0)

kcs (� = Pi/4) 

kco (� = Pi/4)

kcs (� = Pi/2)

kco (� = Pi/2)

�

FIGURE 8.20
The effect of vibrational direction α on wave number for Le = 100, ε∗ = 0.3,R = 0.1.
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(see [22]) that, if ψ is lower than a limiting value which is expressed as
ψ0 = ψ0(Le, ε∗), thefirstprimarybifurcation is alwaysaHopfone. In addition,
with increasing Le number or normalized porosity, this limiting separation
ratio tends tozero (ψ0→ 0−). The left sideofFigure8.19 illustrates theeffect of
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vibrational direction on theHopf bifurcations. It can be observed that increas-
ing vibration direction contributes to the stability which causes the critical
Rayleigh number (Raco) to increase. In this case, increasing the vibration
angle slightly reduces the wave number, Figure 8.20.

8.3.1.5 Limiting case of the long-wave mode

Thenumerical results of the last section show that the long-wavemode (k = 0)
is the preferred type of thermo-solutal flow under the influence of vibration.
For this reason the special case of long-wave mode (k = 0) is studied the-
oretically. In some research work (see [45–47]), it is shown that this analysis
leads to closed form relations for marginal stability. A regular perturbation
method, with the wave number considered as a small parameter, is used to
obtain such a relation:

φ=
N∑
n=0

knφn θ=
N∑
n=0

knθn η=
N∑
n=0

knηn

ϕT=
N∑
n=0

knϕTn ϕη=
N∑
n=0

knϕηn λ=
N∑
n=0

knλn

(8.64)

By replacing the above relations in the resulting linear stability system, we
find for the zeroth term:

φ0 = 0 θ0 = 0 η0 = const. ϕT0 = 0 ϕη0 = 0 λ0 = 0

For the first-order term:

φ1 = − iη02 �

[
RaT − Rav d

dy

(
W∗T0x +�W∗C0x

)
cosα

]
z∗(1− z∗)

θ1 = 0; η1 = const.; ϕT1 = 0; ϕη1 = 0; λ1 = 0

Finally, for the second-order term after integration:

λ2 = 1
ε∗

[
1
Le
− 1
12

(
RaT� + Rav(1+�)�

ε∗
cos2α

)]

We note that λ2 ∈ �, which means instability is of a stationary type. For the
marginal stability (λ2 = 0)we obtain:

RaT + 1+�
ε∗

Rav cos2α = 12
Le�

(Rav = R2Ra2T) (8.65)

© 2005 by Taylor & Francis Group, LLC



Mechanical Vibrations on Buoyancy Induced Convection 361

From this relation, we distinguish several physical cases:

1. Absence of vibration (Rav = 0): In this situation we find the result of
thermosolutal convection with Soret effect (Sovran et al. [48]).

2. Microgravity (RaT = 0): In this case, the vibrational Rayleigh number
is expressed as:

Rav = 12ε∗

�(1+�)Le cos2α (8.66)

The instability in this case is caused by the vibrational mechanism
only.
We see that, when α varies from zero to π/2, the stability region

increases. In the interval of ψ ∈ [−1, 0], it is impossible to have a
unicellular regime because, by definition, Rav is always positive. It is
clear that increasing the Le number has a destabilizing effect.

3. Vibration in presence of gravitational acceleration: At α = π/2, the
vibration has no effect on critical values. For α �= π/2 increasing the
angle of vibration generally increases the stable regions.

8.3.2 Confined Cavity

8.3.2.1 Introduction

The confined cavity saturated with two-component fluid is examined by
Jounet and Bardan [21]. In this study the concentration and the temperature
gradients are independent and parallel. Thermosolutal convection in porous
media in Rayleigh–Bénard configuration can give rise to different flow pat-
terns and phenomena, which are quite different from those found in porous
media saturated only by a pure fluid. The stability analysis of the conductive
solution under vertical vibration is performed and the effect of mechanical
vibration on the flow structure is studied. The presence of the additional driv-
ing mechanism; namely the solutal force, may dramatically alter the onset of
convection. Both stationary and Hopf bifurcations are analyzed. It is shown
that, when the solutal and thermal buoyancy forces are opposing, there is
a possibility of Hopf bifurcation. The weakly nonlinear analysis shows that
the stationary bifurcation is of the pitch-fork type. The selection of the vibra-
tional parameter to obtain subcritical or supercritical vibration is explained.
Their numerical simulations confirm the theoretical results obtained from the
stability analysis.

8.3.2.2 Governing equation

Under the same hypotheses and assumptions which were explained in
Section 8.2, the governing equations under high frequency and small
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amplitude are written as:

∇ ·V∗ = 0

B
∂V
∗

∂t
+V

∗ = −∇P∗ + RaT(T∗ −NC∗)k

+Rav(W∗T −NW∗C) ·∇
(
T
∗ − N

ε∗
C
∗
)

k

∂T
∗

∂t
+ (V∗ ·∇)T∗ = ∇2T∗

ε∗ ∂C
∗

∂t
+ (V∗ ·∇)C∗ = 1

Le
∇2C∗

∇ ·W∗T = 0 ∇ ×W∗T = ∇T
∗ × k

∇ ·W∗C = 0 ∇ ×W∗C = ∇C
∗ × k

(8.67)

The corresponding boundary conditions are:

V
∗ · n = 0

{
at z∗ = 0 ∀x∗ ⇒ T

∗ = 1 and C
∗ = 0

at z∗ = 1 ∀x∗ ⇒ T
∗ = 0 and C

∗ = 1

∂T
∗

∂x∗
= ∂C

∗

∂x∗
= 0 for x∗ = 0 and AL, ∀z∗ (8.68)

W∗T · n =W∗C · n = 0

8.3.2.3 Stability analysis

1. Linear stability analysis. The problem admits a conductive solution which is
characterized by:

T0 = 1− z∗, C0 = z∗, W∗T0 =W∗C0 = 0 (8.69)

In this case, there is a strict mechanical equilibrium, that is, the oscillatory
components of velocity vanish aswell. The stability equations are obtained by
adding small perturbations (v′, p′,T′, c′,w′T,w′C) to the equilibrium solution.
For facility, the stream functions are introduced as follows:

v′x = −∂φ/∂z∗ v′z = ∂φ/∂x∗
w′Tx = −∂ϕT/∂z∗ w′Tz = ∂ϕT/∂x∗
w′Cx = −∂ϕC/∂z∗ w′Cz = ∂ϕC/∂x∗
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The marginal stability of the resulting perturbation problem is studied
by means of a Galerkin method. Perturbations can be expanded as
follows:

φ(x∗, z∗) =
N∑
n=1

M∑
m=1

φnm sin(nπx∗/AL) sin(mπz∗)eiλit
∗

θ(x∗, z∗) =
N∑
n=1

M∑
m=1

θnm cos(nπx∗/AL) sin(mπz∗)eiλit
∗

c(x∗, z∗) =
N∑
n=1

M∑
m=1

cnm cos(nπx∗/AL) sin(mπz∗)eiλit
∗

ϕT(x∗, z∗) =
N∑
n=1

M∑
m=1

ϕTnm sin(nπx∗/AL) sin(mπz∗)eiλit
∗

ϕC(x∗, z∗) =
N∑
n=1

M∑
m=1

ϕCnm sin(nπx∗/AL) sin(mπz∗)eiλit
∗

where λi is a real number, i =
√−1 and (n,m) ∈ N2. For stationary and

oscillatory bifurcations, the following relations are found:

RaT = RaSnm =  2nm

δ2n(1+NLe)
+ (ε∗ +N) δ2n

ε∗ nm
Rav λi = 0

RaT = Ra0nm =  2nm(ε
∗Le + 1)

δ2n(ε
∗ +N)Le + (ε

∗ +N) δ2n
ε∗ nm

Rav

λ2i = λ2inm = − 2nm
1+ ε∗Le2N
ε∗Le2(ε∗ +N) > 0

 nm = (nπ/AL)2 + (mπ)2 δn = (nπ/AL)

(8.70)

For the classical case of thermo-solutal convection under static acceleration
(Rav = 0) their analytical results are the same as the classical results cited in
Nield and Bejan [28].
2. Weakly nonlinear stability analysis. To study the stability of different

branches of the solution near the stationary convective bifurcation point, a
weakly nonlinear stability analysis is performed. The procedure is similar
to what was explained in Section 8.2. The field perturbations, the Rayleigh
number, and the temporal derivatives are expanded in powers of a small

© 2005 by Taylor & Francis Group, LLC



364 Yazdan Pedram Razi et al.

parameter η:

φ = ηφ1 + η2φ2 + · · · ϕT = ηϕT1 + η2ϕT2 + · · ·
ϕC = ηϕC1 + η2ϕC2 + · · · θ = ηθ1 + η2θ2 + · · ·

∂

∂t
= η ∂

∂t(1)
+ η2 ∂

∂t(2)
+ · · · RaT = RaTc + ηRaT1 + η2RaT2 + · · ·

Replacing these developments in the governing system of equations and
using the solvability lemma, the following amplitude equation is found:

a
∂A
∂t(2)

= A(µ+ cA2) (8.71)

The coefficients a, µ, and c are defined as:

a= 8  3nmε∗(1+Nε∗Le2)/δ2n µ= 8Ra(2)T  2nmε
∗(1+NLe)2

c=αRav − β
(
α = δ4nm(1+NLe)2(ε∗ +NLe2), β = 3nmε∗(1+NLe3)

)
Under the action of vibration, their analysis shows that the type of bifurcation
can change depending on the sign of N/ε∗ and −1/Le2 and the intensity of
vibration.

8.3.2.4 Numerical results

System (8.67) and (8.68) is solved numerically using a spectral method. The
values of (ε∗,Le,N,AL,Rav) are so chosen to illustrate the variety of the
possible flows at the onset of convection. The simulation is restricted to
positive Rayleigh numbers (heating from below) for the stationary bifurca-
tions. The bifurcation diagrams are presented in the (Nu,RaT), where Nu is
defined as:

Nu = 1
AL

∫ AL

0

(
∂T
∗

∂z∗

)
z=0,1

dx∗

In Figure 8.21 the evolution of Nu versus RaT is presented for aspect ratio
AL = 3. The results show that in this region vibration has stabilizing effect
and reduces the heat transfer rate. The corresponding fluid flow structures
are illustrated in Figure 8.22. Generally, in this region the same results as
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FIGURE 8.21
Bifurcation diagrams in the Nu−RaT plane for ε∗ = 1,Le = 0.5,N = 0.5, and AL = 3. (From
A. Jounet and G. Bardan. Phys. Fluids 13: 1–13, 2001. With permission.)

(a)

(b)

(c)

(d)

FIGURE 8.22
Streamlines and isotherms corresponding to vibrational parameters of Figure 8.21; (a) Rav = 0,
(b) Rav = 50, (c) Rv = 120, (d) Rav = 200. (From A. Jounet and G. Bardan. Phys. Fluids 13: 1–13,
2001. With permission.)

for a porous medium filled with pure fluid are obtained. Increasing the
intensity of vibration, increases the domain of stability which is characterized
by reduction of Nu number and number of convective rolls.
For AL = 1, in the region with negative N, the numerical simulation is

done for ε∗ = 1, Le = 0.5, N = −1.5. It is interesting to note that for this case
vibration has a destabilizing effect.
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8.4 Conclusions and Outlook

The majority of the studies related to thermo-vibrational problem in porous
media are addressed in this chapter. We conclude that thermo-vibrational
problem in porous media offers many opportunities for research areas and
industrial application. Here we propose several research fields which are
essential for progress in thermo-vibrational problem:

1. Effect of boundary conditions. It is shown in this chapter that only the
isothermal boundary condition (Dirichlet type) has received special atten-
tion. From a physical point of view, it corresponds to cases in which the heat
conductivities of the boundaries are much higher than that of the fluid. How-
ever, when the conductivities of the fluid andboundaries have the same-order
magnitude, one should consider this effect. Also, wemay investigate the con-
stant heat fluxwhich provides us with another practical applications in space
industry.
2. Different types of transport modeling.We observe from the studies devoted

to thermo-vibrational problem that linear stability analysis has a special place.
Hence, the Darcy model or transient Darcy model are well fitted for these
studies. But, if our objective is to study the convective problems othermodels
inmomentum equation should be used, such as Forchheimer. In addition, we
should consider the Brinkman model when the porosity of the porous media
is relatively high (of the order 0.8). In this case, the viscous effect of friction
force on walls cannot be neglected.
3. Vibration modeling. Periodic accelerations are commonly used for the

problems involving thermo-vibration. However, the experimental measure-
ments inmicrogravity have shown that the behavior of residual accelerations
may be well characterized by stochastic nature. So, it is interesting to study
the effect of this kind of vibration for bridging the gap between theory and
reality.
4. Numerical simulation.Numerical methods described here dealt with two-

dimensional problems. Extension to three-dimensional problems is equally
important. This can motivate the development of robust algorithms for
solving the governing equations.
5. Geometric optimization. Another field that should be addressed in future

research in vibration-induced convection problem is geometric-optimization.
By proper selection of geometric parameters and appropriate use of the driv-
ing mechanism, we may increase the heat transfer rate. As vibrations are
characteristics of any space station, their utilization along with proper geo-
metries adapted for space station environment may result in construction
of energy-saving devices. Developing heat transfer correlations in this case
provides a challenge for researchers.
6. Experimental studies. A close look at the publications related to

thermo-vibrational problem in porous media reveals that, there is no
comprehensive experiment regarding the effect of vibration on convective
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motion in porous media. In order to justify the porous media modeling,
well-planned experiments are necessary.

Nomenclature

Roman Letters

a∗ effective thermal diffusivity, m2/sec
b vibration amplitude, m
B ratio of hydrodynamic timescale to thermal timescale
Ci initial mass fraction
C perturbation of concentration
D∗ mass diffusion coefficient
DT thermodiffusion coefficient
Da Darcy number (K/H2)

e direction of vibration
FrF filtration Froude number
g gravitational acceleration, m/sec2

H height, m
k unit vector in z direction
k wave number
K permeability, m2

Le Lewis number (a/D∗)
N buoyancy ratio (βc�C/βT�T)
P pressure, N/m2

Pr∗ Prandtl number (ν/a∗)
� real numbers
R̃ acceleration ratio (bω2/g)
R vibrational parameter independent of temperature

difference (Ra1/2v /RaT)
Rv vibrational parameter (RaTR̃)
RaT Rayleigh number
Rav vibrational Rayleigh number
Sh Sherwood number
T temperature
t time
V velocity, m/sec
W solenoidal vector

Greek Letters

α direction of vibration
βC coefficient of mass expansion
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βT coefficient of thermal expansion
δ∗ dimensionless amplitude (b/H)
�T temperature difference (T1 − T2)
ε porosity
ε∗ normalized porosity
θ perturbation of temperature
λ eigenvalue of the system
λ∗ effective thermal conductivity
µf dynamic viscosity of fluid, Pa sec
νf kinematic viscosity, m2/sec
ρ density, kg/m3

(ρc)∗ volumic heat capacity of medium
σ dimensionless volumic heat capacity ratio
τ vibration period
φ steam function perturbation
� separation ratio
ω vibrational frequency
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9.1 Introduction

The viscous dissipation effect, which is a local production of thermal energy
through the mechanism of viscous stresses, is a ubiquitous phenomenon and
it is encountered in both the viscous flow of clear fluids and the fluid flow
within porousmedia. When comparedwith other thermal influences on fluid
motion (i.e., by means of buoyancy forces induced by heated or cooled walls,
and by localized heat sources or sinks) the effect of the heat released by vis-
cous dissipation covers a wide range of magnitudes from being negligible to
being significant. Gebhart [1] discussed this range at length and stated that
“a significant viscous dissipation may occur in natural convection in vari-
ous devices which are subject to large decelerations or which operate at high
rotational speeds. In addition, important viscous dissipation effects may also
be present in stronger gravitational fields and in processes wherein the scale
of the process is very large, e.g., on larger planets, in large masses of gas
in space, and in geological processes in fluids internal to various bodies.”
In contrast to such situations, many free convection processes are not suffi-
ciently vigorous to result in a significant quantitative effect, although viscous
dissipation sometimes serves to alter the qualitative nature of the flow.
Although viscous dissipation is generally regarded as aweak effect, a prop-

erty it shares with relativistic and quantum mechanical effects in everyday
life, it too has played a seminal role in history of physics. It was precisely
this “weak” physical effect that allowed James Prescott Joule in 1843 to
determine the mechanical equivalent of heat using his celebrated paddle-
wheel experiments, and thereby to set in place one of the most important
milestones toward the formulation of the first principle of thermodynam-
ics. Curiously enough, the Royal Society declined to publish Joule’s work in
the famous Transactions (the Physical Review Letters of that time) and thus the
paper appeared only two years later in amore liberal journal, the Philosophical
Magazine. Today, papers on viscous dissipation frequently suffer a similar fate
as Joule’s first paper, and it is often neglected. One of the aims of the present
review is to assess the quantitative and qualitative changes brought about by
the presence of viscous dissipation.
From amathematical point of view the effect of viscous dissipation arises as

an additional term in the energy equation. It expresses the rate of volumetric
heat generation, q′′′, by internal friction in the presence of a fluid flow. For
a plane boundary-layer flow or a unidirectional flow, q′′′ takes the following
forms for clear fluids and for Darcy flow through a porous medium,

q′′′clear ≡ µ
(
∂u
∂y

)2
and q′′′Darcy ≡

µ

K
u2 (9.1a,b)

respectively, where µ is the dynamic viscosity and K is the permeability. It
would appear that the above expression for q′′′Darcy was deduced for the first
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time by Ene and Sanchez-Palencia [2] and Bejan [3] in independent works.
Other early applications of this “u2-model” for viscous dissipation in porous
media are those of Nakayama and Pop [4], which discusses the external free
convection from nonisothermal bodies, and of Ingham et al. [5], which deals
with the mixed convection problem between two vertical walls.
From a physical point of view, the difference between the two expressions

in Eqs. (9.1a) and (9.1b) originates from the fact that u denotes the actual
fluid velocity for a clear fluid flow, but denotes the fluid seepage velocity
(i.e., the bulk velocity divided by porosity) for a porous medium flow. At
microscopic levels within a porous medium, the fluid is “extruded” through
the pores of the solid matrix, and local flows are typically three dimensional
even though the overall macroscopic flow is uniform and unidirectional. This
microscopic process considerably enhances the rate of heat generation by
viscous dissipation. Thus, as can be seen immediately for uniform forced
convection flows in clear fluids (u = const. ≡ u∞), no heat is released by vis-
cous dissipation, at least by the agency of internal frictional forces. However,
in porous media the heat generation rate increases quadratically with u. In
the context of boundary-layer flows it has been shown recently [6] that this
fact has important consequences for far-field thermal boundary conditions
for both forced and mixed convection in extended porous media. For free
convection boundary-layer flows, expressions (9.1a) and (9.1b) are both com-
patible with the uniform asymptotic condition for the temperature, that is,
T(x, y→∞) = const. = T∞. This condition isusually imposedon the temper-
ature field since u→ 0 as y→∞. But in forced and mixed convection flows
in extended porous media, this asymptotic thermal condition contradicts
the corresponding energy equation because the term q′′′Darcy = (µ/K)u2∞ is
nonvanishingasy→∞.Accordingly, somerecent resultspertaining tomixed
convection flows in extended porous media [7,8] should be reconsidered (see
Magyari et al. [9] and responses by Tashtoush [10] and Nield [11]) by tak-
ing into account suitably modified boundary conditions on T in the far field
([6] and Sections 9.4 and 9.5).
Even if the quantitative effect of viscous dissipation is negligible in some

cases (see exceptions cited by Gebhart [1], Gebhart and Mollendorf [12], and
Nield [13], which include situations where high accelerations exist such as in
rapidly rotating systems) its qualitative effect may become significant. One
interesting effect of the presence of viscous dissipation, to be discussed in
more detail later, is the breaking of both the physical and mathematical equi-
valence that usually exists between a free convective boundary-layer flow
ascending from a hot plate (Tw > T∞) and its counterpart, descending from
a cold plate (Tw < T∞). For the latter case the resulting flow is strictly a
parallel boundary-layer flow of constant thickness, which has been named
the “asymptotic dissipation profile” orADP (seeMagyari and Keller [14] and
Section 9.3). A second qualitative difference arises when viscous dissipation
is included in a stability analysis of the Darcy–Benard problem — a porous
layer heated from below. For a Boussinesq fluid in a Darcian medium with
uniform steady temperatures on the boundaries, the basic no-flow state is
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first destabilized by two-dimensional roll patterns. The presence of viscous
dissipation causes a hexagonal pattern to appear at Rayleigh numbers close
to the critical value (see Rees et al. [15]).
This chapter begins with a presentation of the precise mathematical formu-

lae to be used formodeling viscous dissipation, with an emphasis on the very
recent debate on the correct form to use when the Brinkman terms are sig-
nificant in the momentum equations. This is followed by an overview of the
current state of the art in free, mixed, and forced convective boundary-layer
flows, and some first tentative steps toward the application of stability theory
to certain free convective flows.

9.2 Basic Thermal Energy Equations

The thermal energy equation for steady convection in a porous mediummay
be stated as:

ρcpv · ∇T = ∇ · (k∇T)+	 (9.2)

where ρ is the density of the saturating fluid, cp its specific heat, and k
the thermal conductivity of the saturated porous medium. In Eq. (9.2) it
is also assumed that the fluid and the porous material are in local thermal
equilibrium. The last term 	 in (9.2) is the viscous dissipation term, previ-
ously denoted by q′′′Darcy. The purpose of this section is to present the various
forms that this term may take when the momentum equations are modeled
in different ways.

9.2.1 Darcy Terms

When theflow in an isotropic porousmediumsatisfiesDarcy’s law, the appro-
priate heat-source term thatmodels viscous dissipation in the thermal energy
equation is given by (9.1), but only when the flow is undirectional, or when
it is predominantly in one direction, such as in a boundary-layer flow. More
generally, the full expression for 	 is

	 = µ

K
(u2 + v2 + w2) (9.3)

This form should be used for isotropic media and is independent of the ori-
entation of the coordinate axes. Nield [16] has stated that this form for 	 is
obtained by taking

	 = v · F (9.4)

© 2005 by Taylor & Francis Group, LLC



Effect of Viscous Dissipation 377

where F is the drag force on the porous medium. Thus, if Darcy’s law is valid
and the permeability is isotropic, then F = (µ/K)v. If the drag force argu-
ment is used in such circumstances where the porous medium is anisotropic
with permeability tensor, K , then (9.3) may be replaced by

	 = µv · K−1 · v (9.5)

9.2.2 Forchheimer Terms

When the microscopic Reynolds number is approximately greater than
unity, then the momentum equation is usually supplemented by a quadratic
nonlinear term corresponding to form dragwithin themedium, and the extra
term is known as the Forchheimer term. Initially it was thought that the pres-
ence of form drag does not affect viscous dissipation because the coefficient
of |v|v , which is cfpK−1/2, does not involve viscosity [17]. (Here, the value
cfp is a nondimensional parameter that is dependent on the geometry of the
porous medium.) Recently, Nield [16] used the drag force argument to state
that Eq. (9.3) should now read

	 = µ

K
v · v+ cfρ

K1/2 |v|v · v (9.6)

The apparent paradox that a term that is independent of the viscosity may
contribute to the viscous dissipationwas resolved in an earlier paper byNield
[13]. Under such conditions, the advective inertia terms in the Navier–Stokes
equations are not negligible and therefore wake formation and boundary-
layer separation takes place at pore/particle length-scales. This, in turn,
means that microscopic velocities are altered and thereby the heat generated
by viscous dissipation is increased.
Other versions of the momentum equation exist that have cubic terms; see,

for example, Mei and Auriault [18] and Lage et al. [19]. To date such terms
have not been included in the expression for 	 using (9.4).

9.2.3 Brinkman Terms

While the form for 	 that is given by (9.6) is widely accepted for
Darcy–Forchheimer flow, the same cannot be said for flows where bound-
ary effects, as modeled by the Brinkman terms, are significant. Nield’s [16]
drag force formula yields the form

	 = µ

K
v · v− µ̃v · ∇2v (9.7)
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where µ̃ is an effective viscosity, while Al-Hadhrami et al. [20] use an
argument based on the work done by frictional forces to obtain,

	 = µ

K
(u2 + v2 + w2)+ µ̃

[
2
(
∂u
∂x

)2
+ 2

(
∂v
∂y

)2
+ 2

(
∂w
∂z

)2

+
(
∂u
∂y
+ ∂v
∂x

)2
+
(
∂u
∂z
+ ∂w
∂x

)2
+
(
∂v
∂z
+ ∂w
∂y

)2]
(9.8)

Both formulae yield the correct form for 	 in the limit of small permeabil-
ity, but when the porosity increases toward unity then only the formula of
Al-Hadhrami et al. [20] matches that for a clear fluid. While Al-Hadhrami
et al. [20] argue further that Nield’s [13] formula can in some circumstances
yield negative values for 	, which is physically unacceptable, Nield [16] has
countered by questioning the use of the stress tensor in an identical manner
to the way it is used in clear fluids. Moreover, he also questions the often
indiscriminate use of the Brinkman term, even though it appears to give a
smooth transition between Darcy flow and the flow of a clear fluid. However,
both Al-Hadhrami et al. [20] and Nield [16] agree that further studies in this
area are essential to resolve the present conflict.

9.2.4 Order-of-Magnitude Estimates

Here, we repeat Nield’s [13] analysis of the situations in which one might
expect viscous dissipation to be significant. This is done by simply com-
paring the orders of magnitude of the dissipation terms with the thermal
diffusion terms in the thermal energy equation. We concentrate on the form
of 	 corresponding to Darcy’s law, as given in (9.3).
If the quantities, U,L, and 
T are used to denote representative values of

velocity, length, and temperature drop within a system, then the orders of
magnitude of the thermal diffusion and viscous dissipation terms in (9.3) are,
respectively,

k
T
L2

and
µU2

K
(9.9)

In mixed and forced convective flows there exists a given velocity scale, and
therefore viscous dissipation effects are negligible when

(
µU2

k
T

)
L2

K
= Br

Da
� 1 (9.10)
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Here Br and Da are the Brinkman and Darcy numbers where the Brinkman
number is the term in brackets in (9.10).
On the other hand, there is no natural length-scale in free convection, but

a simple scaling analysis (or even a full vertical thermal boundary-layer ana-
lysis along the lines of that undertaken by Cheng andMinkowycz [21]) yields
the velocity scale,

U ∝
(α
L

)
Ra1/2 (9.11)

where

Ra = ρgβKL
T
αµ

and α = k/ρcp (9.12)

are the Darcy–Rayleigh number and the thermal diffusivity of the medium,
respectively. Substitution of the above expression for U into (9.10) yields

Ge = gβL
cp
� 1 (9.13)

as the condition for viscous dissipation to be negligible. The quantity Ge is
the Gebhart number.
Given the forms of expressions (9.10) and (9.12) it is clear that viscous

dissipation is more likely to be significant when velocities are high and
length-scales are large. Thus vigorous flows or flows within geologically
sized regions are more likely to display significant viscous dissipative effects.
Nield [13] also quotes particle bed nuclear reactors as one other possible area
of application where viscous dissipation should not be neglected.

9.3 Free Convective Boundary Layers

9.3.1 Equations of Motion

In this subsection the basic equations (continuity, Darcy, and energy equation)
and boundary conditions are written down in the form they apply to the case
of free convection over a vertical semi-infinite plate of uniform temperature.
Later they are amended according to the physical requirements of forced and
mixed convection problems. On applying the boundary-layer approximation
(x � y) and the Boussinesq approximation, the basic equations are (e.g., see
Nield and Bejan [17]),

∂u
∂x
+ ∂v
∂y
= 0 (9.14)
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∂u
∂y
= −sg gβK

υ

∂T
∂y

(9.15)

u
∂T
∂x
+ v

∂T
∂y
= α ∂

2T
∂y2
+ υ

Kcp
u2 (9.16)

and the boundary conditions read

v = 0, T = const.=Tw on y = 0 (9.17a)

u→ 0, T → T∞ as y→∞ (9.17b)

Here x and y are the Cartesian coordinates along and normal to the heated
surface, respectively, while u and v are the respective velocity components.
T is the fluid temperature, K is the permeability of the porous medium, g
is the acceleration due to gravity, cp is the specific heat at constant pres-
sure, α, β, and υ = µ/ρ are the effective thermal diffusivity, thermal
expansion coefficient, and kinematic viscosity, respectively. The second
term on the right-hand side of Eq. (9.16) is proportional to the volumet-
ric heat generation rate 	 = µu2/K by viscous dissipation. The origin
of the coordinate system is placed on the definite edge of the plate and
the positive x-axis is directed along the plate toward its indefinite edge at
x = +∞.
For a vertical surface in the presence of viscous dissipation, four

physical situations must be distinguished, as depicted schematically in
Figure 9.1(a)–(d). The different situations correspond to surfaces that are
either upward or downward projecting and are either hot or cold. Mathemat-
ically these cases are specified by the signs sT and sgwhere sT = sgn(Tw−T∞)
and where sg denotes the projection on the positive x-axis of g/|g|. Thus
sg = +1 when the positive x-axis points in the direction of g (i.e., vertically
downwards) and sg = −1when itpoints in thedirectionopposite tog.Accord-
ing to the nomenclature introduced by Goldstein [22] only the “forward”
(i.e., the usual) boundary-layer flows will be considered here. These corres-
pond to the cases in which the definite edge of the plate, x = 0, represents its
leading edge. Their “backward” counterparts, where the definite edge of the
plate is a trailing edge, are not considered here. In the case of free convection
this means that the backward boundary-layer flows arising in the situations
shown in Figure 9.1(b) and (c) will not be discussed in this chapter. Likewise,
in the case of forced andmixed convection, itwill be assumed that theuniform
stream of velocity U∞ always comes from x = −∞. Thus, in the presence of
viscous dissipation, both “aiding” and “opposing” mixed flow regimes can
be distinguished. They correspond to Figure 9.1(a) and (d) and 9.1(b) and (c),
respectively.
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Tw> T∞
(Hot plate)

0 0

(a) (b)
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↓↓↓↓↓↓↓↓↓ U∞ ↓↓↓↓↓↓↓↓↓ U∞

Tw > T∞
(Hot plate)

sT = +1

Tw <T∞
(Cold plate)

sT = –1

Tw <T∞
(Cold plate)

FIGURE 9.1
Representations of the four different mixed convection situations involving either heated or
cooled surfaces, and either forward or backward boundary layers. In the absence of viscous
dissipation situations (a) and (d) are mathematically identical as are (b) and (c). In the presence
of viscous dissipation, the four situations (a), (b), (c), and (d) become physically distinct.

9.3.2 Breaking the Upflow/Downflow Equivalence

In the case of free convection, Eqs. (9.15) and (9.17b) yield

u = −sg gβK
υ
(T − T∞) (9.18)

After the substitution of,

T = T∞ + sT |Tw − T∞| · θ (9.19)

Equations (9.18), (9.16), and (9.17) become

u = −sgsT gβK|Tw − T∞|
υ

θ (9.20)

u
∂θ

∂x
+ v

∂θ

∂y
= α ∂

2θ

∂y2
+ sTυ

Kcp|Tw − T∞|u
2 (9.21)
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v = 0, θ = 1 on y = 0 (9.22a)

u→ 0, θ → 0 as y→∞ (9.22b)

As mentioned in Section 9.3.1, the forward (or usual) free convection
boundary-layer flows, which we are interested in, correspond to the situ-
ations shown in Figure 9.1(a) and (d). In both of these cases sgsT = −1, which,
according to Eq. (9.20), implies the same relationship between u and θ . The
boundary conditions (9.22), on the other hand, are independent of the signs
sg and sT . Now, if the viscous dissipation is neglected, Eq. (9.21) also becomes
independent of sT and thus we immediately recover the well-known text-
book result concerning the physical equivalence of the free convection flow
over an upward projecting hot plate (sT = +1, Figure 9.1[a]) and over its
downward projecting cold counterpart (sT = −1, Figure 9.1[d]). If, however,
in Eq. (9.21) the viscous dissipation is taken into account, then due to the
sign sT = ±1 in front of u2 this physical equivalence gets broken. This means
that the free convection flow over the upward projecting hot plate (“upflow,”
Figure 9.1[a]) and over its downward projecting cold counterpart (“down-
flow,” Figure 9.1[d]) become physically distinct. As reported recently [14, 23]
one of the dramatic consequences of this broken equivalence is the existence
of a strictly parallel free convection flow, the so called ADP, which can only
occur over the downward projecting cold plate of Figure 9.1(d) but not over
its upward projecting hot counterpart of Figure 9.1(a).

9.3.3 The Asymptotic Dissipation Profile

Introducing the stream function ψ by the usual definition u= ∂ψ/∂y,
v = −∂ψ/∂x and the dimensionless quantities ξ ,Y, and � according to the
definitions

x = Lξ , y = LR−1/2Y, ψ = αR+1/2� (9.23)

where the reference length L and theDarcy–Rayleigh numberR are defined as

L = cp
gβ

, R = gβK|Tw − T∞|L
υα

(9.24)

we obtain the quantities θ ,u, and v in terms of � as follows

θ = −sgsT ∂�
∂Y

, u = α

L
R
∂�

∂Y
, v = −α

L
R1/2 ∂�

∂ξ
(9.25)

Here, for the forward boundary-layer flows of Figure 9.1(a) and (d) sgsT = −1
holds. Thus, we are left with a single unknown function,�, which satisfies
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the energy equation

∂�

∂Y
∂2�

∂Y∂ξ
− ∂�
∂ξ

∂2�

∂Y2 =
∂3�

∂Y3 − sg

(
∂�

∂Y

)2
(9.26)

along with the boundary conditions

∂�

∂ξ
= 0 and

∂�

∂Y
= −sgsT = +1 on Y = 0 (9.27a)

∂�

∂Y
→ 0 as Y→∞ (9.27b)

In these dimensionless variables the “broken equivalence” described above
becomesmanifest again. Indeed, in both the situations shown in Figure 9.1(a)
and (d) the boundary conditions (9.27) are the same but due to the presence
of sg in the basic Eq. (9.26) the upward/downward equivalence gets broken.
Our interest in this subsection is in the existence of a strictly parallel-flow

solution to the boundary-value problem (9.26), (9.27), that is, on a solution�
that depends only on the normal coordinate Y, � = �(Y). Such a solution, if
any, satisfies the equation

d3�
dY3 − sg

(
d�
dY

)2
= 0 (9.28)

along with the boundary conditions (9.28). As shown by Magyari and
Keller [14] these requirements can only be satisfied for sg = +1 (downflow,
Figure 9.1[d]), the corresponding solution being the ADP:

� = − 6

Y +√6 , θ = 6(
Y +√6

)2 , u = α

L
Rθ , v = 0 (9.29)

Therefore, the ADP is an algebraically decaying parallel-flow solution of
the basic Eq. (9.14) to (9.16) of the free convection over a (cold, downward
projecting) vertical plate. Its (dimensionless) surface heat flux is given by

Q0 = − ∂θ
∂Y

∣∣∣∣
Y=0
= +

√
2
3

(9.30)

and its 1% thickness (i.e., the value Yδ of Y for which θ(Yδ) = 0.01) is
Yδ = 9

√
6.

The existence of the ADP is quite surprising, since in the absence of vis-
cous dissipation the boundary-value problem (9.14) to (9.17) does not admit
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solutions with vanishing transversal component v = 0; compared with the
parallel component u, the transversal velocity component v is small but
always nonvanishing (e.g., see the classical Cheng–Minkowycz solution [21]).
The existence of the ADP, however, shows that the (small) buoyancy forces
due to heat release by viscous dissipation are able to cancel the (small) trans-
versal component v of the free convection velocity field, thus giving rise to
a strictly parallel flow. Such “self-parallelization” of the velocity field in the
presence of viscous dissipation can only happen in a free convection flow that
descends over a cold plate (downflow), but never in its ascending counterpart
over a hot plate (upflow). The reason is that in the latter case, the buoyancy
forces due to heat release by viscous dissipation assist the “main” buoyancy
forces sustained by the wall temperature gradient, while in the former case
of the cold plate, they oppose them.

9.3.4 Flow Development Toward the ADP

The main concern of this section is to discuss the question of whether the
ADP solution (9.16) of the boundary-value problem (9.14) to (9.17) represents
a physically realizable state of the descending free convection flowor not. The
answer, which has been given recently byRees et al. [23], is that it is realizable.
The starting point of the proof given by Rees et al. [23] is the following simple
physical reasoning.
In the neighborhood of the leading edge, where the effect of viscous

dissipation is negligible, the steady flow has the character of the classical
Cheng–Minkowycz boundary-layer solution [21] whose thickness increases
with the wall coordinate as x1/2. Thus, if the viscous dissipation term in
the energy equation is neglected, the boundary-layer thickness grows indef-
initely according to the Cheng–Minkowycz similarity solution. This holds
both for an ascending free convection flow from a hot plate as well as one
descending from a cold plate. But the heat released by viscous dissipa-
tion warms up the moving fluid. This in turn accelerates the growth of
the ascending boundary layer but decelerates that of the descending one.
It is therefore expected that far enough from the leading edge, the thick-
ness of the cold boundary layer will be limited by the warming effect of
viscous dissipation to a constant asymptotic value. The limiting state of
this boundary-layer flow, which is approached at some distance x∗ from
the leading edge, should be precisely the ADP which is described by
Eq. (9.29).
The numerical experiment of Rees et al. [23] proceeded by first introdu-

cing theusualCheng–Minkowycz similarity variable for boundary-layer flow
from a uniform temperature surface in order to describe the beginning stages
of the evolution of the flow. Then Eq. (9.26), with sg = +1, were used further
downstream. Therefore, the following transformations

η = ξ−1/2Y, � = ξ+1/2f (η, ξ), θ = θ(η, ξ) (9.31)
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were substituted into Eq. (9.26) to obtain,

f ′′′ + 1
2
ff ′′ − ξ f ′2 = ξ

(
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ

)
, θ = f ′ (9.32)

where the primes denote differentiation with respect to η. In this form of the
basic equations it may be seen explicitly that the viscous dissipation term,
ξ f ′2, disappears at the origin, where ξ = 0.
In numerical simulation, Eq. (9.32) is solved in the range 0 ≤ ξ ≤ 1, and

Eq. (9.26) in the range ξ ≥ 1. This means that the developing boundary-layer
flow is well approximated near the leading edge, but that the approach to
the constant thickness ADP arises naturally within the context of Eq. (9.26).
When ξ ≤ 1, Eq. (9.32) is solved subject to the boundary conditions

η = 0: f = 0, f ′ = 1; η→∞: f ′ → 0 (9.33)

but when ξ > 1, Eq. (9.26) is solved subject to

Y = 0: � = 0,
∂�

∂Y
= 1; Y→∞:

∂�

∂Y
→ 0 (9.34)

The respective pairs of equations were solved by a straightforward applica-
tion of the well-known Keller box method. The solution at the leading edge
(ξ = 0) is readily seen to satisfy a pair of ordinary differential equations, and
the solutions there are the same as those presented by Cheng andMinkowycz
[21]. The leading edge profiles were then marched forward in ξ . The accur-
acy of our numerical scheme is such that the steady value of Q0 is 0.816454,
which has a relative error of 0.00005 on comparison with Eq. (9.30).
Figure 9.2 shows the surface rate of heat transfer in two forms as functions

of ξ . More specifically the figure depicts

Q1 = −ξ−1/2 ∂θ
∂η

∣∣∣∣
η=0

for ξ ≤ 1, Q1 = − ∂θ
∂Y

∣∣∣∣
Y=0

for ξ ≥ 1 (9.35)

and

Q2 = −∂θ
∂η

∣∣∣∣
η=0

for ξ ≤ 1, Q2 = −ξ+1/2 ∂θ
∂Y

∣∣∣∣
Y=0

for ξ ≥ 1 (9.36)

The value Q1 shows how the surface rate of heat transfer evolves compared
with that of the uniform thickness ADP to which the flow tends as ξ → ∞.
Near the leading edge the heat transfer is large simply because the boundary
layer is thin relative to theADP.On the other hand,Q2 represents a rate of heat
transfer that is scaled in the same way as for free convection in the absence of
viscous dissipation. In this context, the rate of heat transfer increases because
the boundary layer becomes relatively thin as ξ increases.
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FIGURE 9.2
Variation with ξ of the rate of the heat transfer as represented by Q1 and Q2, as defined
in Eqs. (9.35) and (9.36), respectively. The Cheng–Minkowycz value of Q2 is 0.44376 which
corresponds to ξ = 0. Also shown as a dashed line is the value (9.30) of Q0 corresponding to
the ADP.

From the data from which Figure 9.2 was generated, the curve Q1 is found
to be within 1% of theADP value ofQ0 = +√2/3 = 0.816496, when x = 1.79,
and therefore this value may be chosen as being the appropriate value for x∗.
In dimensional terms, this is equivalent to

x ≡ x∗ = 1.79L = 1.79
cp
gβ

(9.37)

which is the distance from the leading edge beyond which the uniform
thickness ADP solution applies. The dependence of this “self-parallelization
length” of the flow on the parameters β and cp corresponds to physical
expectation. Indeed, the stronger the buoyancy forces, which are proportional
to ρgβ
T, the stronger the self-parallelization effect and accordingly the
shorter must be the distance x∗. This explains why both β and g appear
in the denominator of Eq. (9.37). Furthermore, the smaller the heat capa-
city cp, the larger is the temperature increase due to the heat being released
by viscous dissipation, which again shortens the distance x∗ at which the
growth of the cold boundary-layer ends. This explains the place of cp in the
numerator of Eq. (9.37). It should be underlined here that in usual applic-
ations the order of magnitude of x∗ amounts to several kilometers so that
self-parallelization of free convection flows due to dissipative effects is likely
to occur only in geologically sized applications.

© 2005 by Taylor & Francis Group, LLC



Effect of Viscous Dissipation 387

9.3.5 Other Free Convective Flows

We now discuss briefly other works on free convection boundary-layer flows
where viscous dissipation has been included in the thermal energy equation.
A rather early paper by Nakayama and Pop [4] discusses free convection

induced by a heated surface of arbitrary shape, of which a flat plate and
a horizontal cylinder are but two special cases. Their analysis proceeds by
expanding the governing nonsimilar boundary-layer equations as a series
solution in εx, where ε is the Gebhart number, and solving the resulting
systems of ordinary differential equations using the Karman–Pohlhausen
integral technique. It was found that the presence of viscous dissipation
reduces the heat flux from the heated surface, in general. They also obtained
similarity solutions for certain special variations in the surface temperature
when the heated surface is vertical.
Murthy and Singh [24] and Murthy [25] also used a small-ε expansion in

their study of Darcy–Forchheimer convection from a vertical surface. In addi-
tion these authors used a velocity-dependent thermal diffusivity. Once more
it was found that the surface rate of heat transfer decreases as the Gebhart
number increases from zero.
The vertical plate was also considered by Takhar et al. [26] using the

Darcy–Brinkmanmodel for themomentum equations. However, the formula
for viscous dissipation which was used by those authors corresponds to that
for a clear fluid, rather than one of the forms given byEqs. (9.7) or (9.8). Unfor-
tunately, a similar use of the clear fluid model may be found in the papers by
Kumari and Nath [27], Yih [28], El-Amin [29], and Israel-Cookey et al. [30],
who study boundary-layer flows in the presence of a magnetic field, and in
the mixed convection paper by Kumari et al. [31].
Sections 9.3.3 and 9.3.4 reported the situation for Darcy flow over a down-

ward projecting cold plate. When the plate is upward and hot (i.e., it
corresponds to Figure 9.1[a]), then the flow may be computed by solving
Eq. (9.32) but with the viscous dissipation term having the opposite sign.
Preliminary studies by the authors show that the boundary layer becomes
exponentially thin as ξ increases, and the temperature becomes exponentially
large due to the positive feedback between buoyancy and viscous dissipation;
this will be reported in due course.

9.4 Forced Convection with Examples

9.4.1 Boundary-Layer Analysis

In this section, we consider a uniform forced convection flow of an incom-
pressible fluid with imposed velocity v = (u, 0, 0), where u = const. ≡ U∞
within a porous medium extending to x ≥ 0, y ≥ 0, as shown in Figure 9.1(a).
Thus fluid enters the porous domain at x = 0. The only governing
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equation is the energy equation (9.16) which in this case reduces to

U∞
∂T
∂x
= α ∂

2T
∂y2
+ υ

Kcp
U2∞ (9.38)

where it has been assumed that streamwise diffusion is negligible (i.e., that
the boundary-layer approximation applies). The temperature of the porous
boundaryatx = 0 (termed theentranceboundary) coincideswith the constant
temperature T∞ of the entering fluid,

T(0, y ≥ 0) = T∞ (9.39)

and the temperature of the impermeable plane surface y = 0 adjacent to the
porous medium (termed the adjacent surface) is now a given function of the
coordinate x,

T(x ≤ 0, 0) = T∞, T(x > 0, 0) = Tw(x) (9.40)

The general physical requirement that no heat “disappears” at infinity reads:

∂T
∂y
(x ≥ 0,∞) = 0 (9.41)

Now, it is immediately seen that in such a forced convection problem the
“usual” far-field condition, namely, T(x > 0,∞) = const. = T∞ is inconsis-
tent with the energy equation (9.38); since it implies that U∞ = 0, which is
contrary to the assumption. Instead, Eqs. (9.38) and (9.41) imply in this case

∂T
∂x
(x ≥ 0,∞) = υU∞

Kcp
(9.42)

which further yields

T(x ≥ 0,∞) = T∞ + υU∞Kcp
x (9.43)

Hence the only far-field condition which is consistent with the energy
equation is given by Eq. (9.43). It specifies an asymptotic temperature that
is not a constant, but a linear function of the wall coordinate x. This condition
applies both for the forced and the mixed convection problems in extended
porous media when the effect of viscous dissipation is taken into account [6].
We may conclude, then, that it is not possible to set a far-field temperat-

ure profile when considering mixed or forced convection in the presence of
viscous dissipation. This result is in full agreement with physical expecta-
tion. Indeed, in contrast to free convection where the flow velocity goes to
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zero as y → ∞, in the forced and mixed convection boundary-layer flows
where U∞ = const. �= 0, the mechanical power needed to extrude the fluid
through the pores continues to generate frictional heat in the asymptotic
region y → ∞. Practically, the correct numerical solutions may be obtained
by applying either Eq. (9.41) or Eq. (9.43) as y→∞. It may also be seen that
Eq. (9.38) is mathematically equivalent to Fourier’s equation for heat con-
duction in a semi-infinite homogeneous solid with uniform volumetric heat
generation (where x is regarded as the time variable). Thus, after an infinitely
long time (i.e., as x → ∞), the whole solid must become infinitely hot in
accordance with Eq. (9.43).
For more transparency, it is convenient to introduce a reference length L,

a reference temperature Tref > T∞, and define the Eckert, Prandtl, Darcy, and
Péclet numbers in terms of these quantities as follows:

Ec = U2∞
cp(Tref − T∞)

, Pr = µ

ρα
, Da = K

L2
, Pe = U∞L

α
(9.44)

Thus, the asymptotic condition (9.43) becomes

T(x ≥ 0,∞) = T∞ + (Tref − T∞)Ẽc
x
L

(9.45)

where Ẽc is a “modified Eckert number” defined as

Ẽc = Ec · Pr
Da · Pe =

µU∞L
Kρcp(Tref − T∞)

(9.46)

Alternatively, it is convenient to use the “local” counterparts of these quant-
ities, which can be obtained by substituting L inDa and Pe simply by x. Thus
the “local modified Eckert number” Ẽcx, the counterpart of Ẽc, is

Ẽcx = Ec · Pr
Dax · Pex = Ẽc

x
L

(9.47)

Now, the analytical solution of Eq. (9.38) for some realistic temperature
distributions Tw = Tw(x) of the adjacent surface y = 0 will be given. To this
end, we first make the change of variables

T(x, y) = T∞ + (Tref − T∞)
U∞ · Ẽc

L
τ + θ(τ , y), τ = x

U∞
(9.48)

and Eq. (9.38) becomes:

∂θ

∂τ
= α ∂

2θ

∂y2
(9.49)
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on taking into account that

T(x, y) = T∞ + (Tref − T∞)Ẽc
x
L

(9.50)

represents the exact solution of Eq. (9.38) corresponding to α = 0. Equation
(9.48) implies that the quantity θ

(
τ , y

)
describes precisely the contribution of

heat diffusion in the y-direction to the temperature field T(x, y) in addition to
the effect of viscous dissipation and convection. Accordingly, Eq. (9.49) coin-
cides formally with Fourier’s equation of heat conduction in a homogeneous
solid of thermal diffusivity α, where the role of time variable is played by
τ = x/U∞ andwhere now the above-mentioned uniform heat generation has
been removed by transformation (9.48). In this way, our forced convection
heat transfer problem reduces to one of a transient heat conduction problem
in a semi-infinite solid occupying the region y > 0 and subject to the initial
condition,

θ(0, y ≥ 0) = 0 (9.51)

As a consequence of Eqs. (9.48) and (9.40) the temperature at the boundary at
y = 0 is given by

θ(τ > 0, 0) = Tw(x)− T∞ − (Tref − T∞)
U∞ · Ẽc

L
τ ≡ θw(τ ) (9.52)

The solution of the heat conduction problem (9.49), (9.51), (9.52) is well
known (e.g., see Carslaw and Jaeger [32], section 9.2.5) and reads:

θ(τ , y) = 2√
π

∫ ∞
η

θw

(
τ − y2

4αξ2

)
e−ξ2dξ (9.53)

where

η = √Pe y

2
√
Lx
=
√
Pex

y
2x

(9.54)

In this way, the temperature profiles θ = θ(τ , y) of the solid at different
“instants” τ = x/U∞ determine the temperature profiles of the uniformly
moving fluid in our porous body at different distances x from the entrance
boundary x= 0. This analogy allows us to transcribe easily the exact solu-
tion of several well-known heat conduction problems listed, for example, in
Carslaw and Jaeger [32] for the case of the present forced convection problem.
A part of the integrations in (9.53) with θw(τ ) given by Eq. (9.52) can be

performed without the need to specify the surface temperature distribution
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Tw(x) explicitly. Thus we obtain the following general expression for the
temperature field:

T(x, y)− Tref
Tref − T∞

= Ẽcx(1− 4i2erfc η)− erf η

− 1
Tref − T∞

(
Treferfc η − 2√

π

∫ ∞
η

Tw

(
x − xη2

ξ2

)
e−ξ2dξ

)
(9.55)

Here, erf η and erfc η= 1 − erf η denote the error and complementary error
functions respectively, where inerfc η stands for the nth repeated integrals of
the error function (see Carslaw and Jaeger [32], appendix II).
The remainder of this section is devoted to two explicit examples. The

quantities of physical interest will be the temperature field T(x, y) and the
wall heat flux

qw(x) = −k ∂T
∂y
(x, 0) = −k ∂θ

∂y
(τ , 0) (9.56)

corresponding to a prescribed temperature distribution Tw(x) of the adjacent
plane surface y = 0. The local Nusselt number related to (9.33) will be defined
in this chapter as follows

Nux = qw(x) · x
k(Tref − T∞)

(9.57)

Note that in the denominator the same temperature difference has been
included as in the definition (9.44) of the Eckert number.

Example 1. The most simple mathematical example is obtained for θw(τ ) ≡ 0
when the integral (9.53) is vanishing and thus θ(τ , y) ≡ 0. According to
Eq. (9.52), this case corresponds to the temperature distribution

Tw(x) = T∞ + (Tref − T∞)Ẽcx (9.58)

of the adjacent surface, which as θ(τ , y) ≡ 0, becomes identical with the solu-
tion (9.48) for the problem, Tw(x) = T(x, y). This coincides further with the
temperature field (9.50) found in the purely convective case (α = 0). Accord-
ingly, the linear heating law (9.58) of the adjacent surface has the consequence
that (a) thewall heat flow is identically vanishing, qw(x) ≡ 0, and (b) nowhere
in the bulk of the fluid does heat diffusion occur.

Example 2. As a second simple example, we consider the case θw(x) =
const. ≡ Tref−T∞ ≡ T0−T∞ > 0, which corresponds to thewall temperature
distribution

Tw(x) = T0 + (T0 − T∞)Ẽcx (9.59)

© 2005 by Taylor & Francis Group, LLC



392 E. Magyari et al.

In this case, the integral (9.53) yields θ(τ , y) = (T0 − T∞)erfc η and the
solution (9.48) becomes

T(x, y) = T0 + (T0 − T∞)(Ẽcx − erf η) (9.60)

When y → ∞, we easily recover the far-field relationship (9.45). For µ = 0,
that is, in the absence of viscous dissipation, Eq. (9.59) reduces to Tw(x) = T0
and in Eq. (9.60) we immediately recover Bejan’s classical result [3,17]:

T(x, y) = T0 − (T0 − T∞)erf η (9.61)

The wall heat flux and the local Nusselt number corresponding to the
temperature field (9.60) are given by

qw(x) = k(T0 − T∞)
x

√
Pex
π

(9.62)

Nux =
√
Pex
π

(9.63)

Note that Bejan’s solution (9.61) for the forced convection flow over the adja-
cent plane surface of constant temperatureT0 without viscousdissipation also
leads to the same expressions (9.62) and (9.63) that have been obtained from
the present result (9.60). In the present case, however the surface temperature
is not a constant but a linear function of x, being given by Eq. (9.59). Hence,
compared to the constant surface temperature without viscous dissipation,
the linear increase of Tw(x) according to Eq. (9.59) represents the surface tem-
perature distribution that exactly removes the effect of the viscous dissipation
on the surface heat flow.
Finally, it is worth underlining again that for a consistent description of

the forced and mixed convection problems in fluid saturated porous media
in the presence of viscous dissipation the usual far-field condition must be
substituted by

T(x ≥ 0,∞) = T∞ + (Tref − T∞)Ẽc
x
L
= T∞ + (Tref − T∞)Ẽcx (9.64)

As a consequence, several recent publications concerning the mixed convec-
tion problems in the presence of viscous dissipationmust basically be revised
(for more details see the next section).

9.4.2 Channel Flows

At present only two papers exist that deal with forced convective flows in
channels in the presence of viscous dissipation. The papers byNield et al. [33]
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and Kuznetsov et al. [34] are two in a series of papers by the same authors
that consider porousmedium versions of the classical Graetz problem. In this
problem fully developed flow exists in a uniform channel that points in the
x-direction where the boundary temperature is set at T0 when x < 0, and
where the temperature of one or both surfaces (or the surface in the case
of a circular pipe) is raised to T1 when x > 0. The strength of the flow is
measured in terms of the Péclet number, Pe, and the classical Graetz problem
analyses the thin thermal boundary layer that exists downstream of x = 0
when the Péclet number is large. The strength of the viscous dissipation effect
is measured by the size of the Brinkman number, Br.
In the above-quoted papers these authors study cases where Pe is not large

using a series expansion method. Nield et al. [33] consider a plane channel
while Kuznetsov et al. [34] apply the same methodology to a circular pipe
flow. In both cases, the authors found that variations in the value of Br affect
the surface rates of heat transfer very considerably. The authors also invest-
igated the differences in the results obtained by each of the three models of
viscous dissipation given by Eqs. (9.3), (9.7), and (9.8). It was found that the
corresponding far downstream values of the Nusselt number differ appre-
ciably only when the Darcy number is of magnitude unity or higher, that is,
in cases where the porous medium is very highly porous.

9.5 Mixed Convection

9.5.1 The Darcy–Forchheimer Flow

In this section and in Sections 9.5.2 and 9.5.3, we consider the mixed con-
vection case of a Darcy–Forchheimer steady-boundary-layer flow over an
isothermal vertical flat plate in the physical situations depicted in Figure
9.1(a)–(d). Following Murthy [8] and the notation used in Eqs. (9.1) to (9.3),
wewrite themass, momentum, and energy balance equations (subject to both
the boundary layer and Boussinesq approximations) in the form

∂u
∂x
+ ∂v
∂y
= 0 (9.65)

∂

∂y

(
u+ C

√
K

υ
u2
)
= −sg Kgβ

υ

∂

∂y
(T − T∞) (9.66)

u
∂T
∂x
+ v

∂T
∂y
= α ∂

2T
∂y2
+ υ

Kcp
u ·
(
u+ C

√
K

υ
u2
)

(9.67)

and the corresponding boundary conditions in the form [8]

y = 0: v = 0, T = const. ≡ Tw (9.68a,b)
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y→∞: u→ U∞, T → T∞ (9.69a,b)

where C denotes the Forchheimer form drag coefficient.
Now, it is immediately seen that the thermal far-field condition (9.69b)

is not suitable since, as discussed in Section 9.4, it is inconsistent with the
energy equation. Indeed, having in mind Eq. (9.41), the energy equation
(9.67) requires

lim
y→∞

∂T
∂x
= υU∞

Kcp
(1+ Re) (9.70)

where

Re = CU∞
√
K

υ
(9.71)

denotes themodified Reynolds number. Thus, integrating Eq. (9.70) once and
taking into account condition (9.39) at the entrance boundary we obtain

T(x,∞) = T∞ + υU∞Kcp
(1+ Re)x (9.72)

Therefore, a consistent description of the present mixed convection prob-
lem requires us to replace the (unsuitable) boundary condition (9.69b) by the
condition (9.72), that is

y→∞: u→ U∞,T → T∞ + υU∞Kcp
(1+ Re)x (9.73a,b)

With the aid of the pseudo-similarity transformation [8]

η = y
x

√
Pex

ψ = α
√
Pex · f (x, η)

T = T∞ + sT · |Tw − T∞|θ(x, η), sT = sgn(Tw − T∞)

(9.74)

and the usual definition of the stream function, u = ∂ψ/∂y and v = −∂ψ/∂x,
we transform Eqs. (9.66) and (9.67) in

f ′′ + 2Re · f ′ · f ′′ = −sgsT Rx
Pex

θ ′ (9.75)

θ ′′ + 1
2
fθ ′ + sT

Pex
Rx
εf ′2(1+ Re · f ′) = ε

(
f ′ ∂θ
∂ε
− θ ′ ∂f

∂ε

)
(9.76)
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and the boundary conditions (9.68) and (9.73) in

η = 0: f (x, 0)+ 2x
∂f
∂x
(x, 0) = 0, θ(x, 0) = 1 (9.77a,b)

η→∞: f ′(x,∞) = 1, θ(x,∞) = sT
Pex
Rx
(1+ Re)ε (9.78a,b)

where the prime denotes derivatives with respect to the similarity variable
η. The local Darcy–Rayleigh number Rx that occurs in the above equations
is obtained by substituting in Eq. (9.24) the reference length L by the wall
coordinate x while ε stands for the local Gebhart number

Gex = βgx
cp
≡ ε (9.79)

Thus, the ratio Pex/Rx is in fact independent of x. Now, integrating Eq. (9.75)
once and determining the (ε-dependent) integration constant by taking into
account the boundary condition (9.78) we obtain

f ′ · (1+ Re · f ′) = (1+ Re)(1+ sgε)− sgsT
Rx
Pex

θ (9.80)

which when substituted in Eq. (9.76) results in

θ ′′ + 1
2
fθ ′ − εf ′

[
sgθ − sT

Pex
Rx
(1+ Re)(1+ sgε)

]
= ε

(
f ′ ∂θ
∂ε
− θ ′ ∂f

∂ε

)
(9.81)

We note that the boundary condition (9.77a) can be reduced to f (x, 0) = 0 by
assuming that f (0, 0) = 0. Indeed, a formal integration of Eq. (9.77a) yields
f (x, 0) = const. · x−1/2, which results precisely in f (x, 0) = 0 if one assumes
f (0, 0) = 0. Hence, for a consistent solution of the present mixed convection
problem we must consider Eq. (9.81) and Eq. (9.75), or the first integral of
Eq. (9.75) given by Eq. (9.80), along with the boundary conditions

η = 0: f (x, 0) = 0, θ(x, 0) = 1 (9.82a,b)

η→∞: f ′(x,∞) = 1, θ(x,∞) = sT
Pex
Rx
(1+ Re)ε (9.83a,b)

In this way, the main difference compared with the work of earlier
authors are (a) of the boundary condition (9.83b), instead of θ(x,∞)= 0
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and (b) of the second term occurring in the square bracket of
Eq. (9.81).

9.5.2 Perturbation Approach for Small Gebhart Number

For small valuesof the localGebhartnumber ε = gβx/cp, theaboveboundary-
value problem can be solved by a perturbation approach based on the series
expansions [8].

f (x, η) =
∞∑
m=0

(−1)mεmfm(η)

θ(x, η) =
∞∑
m=0

(−1)mεmtm(η)
(9.84)

with which we proceed here up to order ε2, that is,

f (x, η) = f0(η)− εf1(η)+ ε2f2(η)
θ(x, η) = t0(η)− εt1(η)+ ε2t2(η)

(9.85)

Thus, after some algebra we obtain, to orders 0, 1, and 2 in ε, the following
systems of ordinary differential equations and boundary conditions.

To order ε0:

f ′0 + Re f ′20 + sgsT
Rx
Pex

t0 = 1+ Re

t′′0 +
1
2
f0t′0 = 0

f0(0) = 0, f ′0(∞) = 1, t0(0) = 1, t0(∞) = 0

(9.86)

To order ε1:

f ′1 + 2Re f ′0f
′
1 + sgsT

Rx
Pex

t1 = −sg(1+ Re)

t′′1 +
1
2
( f0t′1 + t′0f1)+ sgf ′0t0 + f1t′0 − f ′0t1 = sT

Pex
Rx
(1+ Re)f ′0

f1(0) = 0, f ′1(∞) = 0, t1(0) = 0, t1(∞) = −sT PexRx
(1+ Re)

(9.87)
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To order ε2:

f ′2 + Re
(
2f ′0f
′
2 + f ′21

)
+ sgsT

Rx
Pex

t2 = 0

t′′2 +
1
2

(
f0t′2 + f1t′1 + t′0f2

)+ sg
(
f ′0t1 + f ′1t0

)+ f1t′1 − f ′1t1 + 2
(
t′0f2 − f ′0t2

)
= sT

Pex
Rx
(1+ Re)

(
f ′1 − sgf ′0

)
f2(0) = 0, f ′2(∞) = 0, t2(0) = 0, t2(∞) = 0

(9.88)

On comparing these system of equations with the corresponding equations
of earlier authors, one sees that the essential difference between the present
analysis and others comes from the nonvanishing right-hand sides of the
equations for t in (9.87) and (9.88) and in the asymptotic condition in (9.87)
for t1(∞).

9.5.3 The Aiding Up- and Downflows

In order to be more specific we restrict the discussion to the Darcy mixed
convection flows (Re= 0) for the two “aiding” cases corresponding to the
physical situations shown in Figure 9.1(a) (upward projecting hot plate in
assisting stream) and 9.1(d) (downward projecting cold plate in assisting
stream), respectively. In both of these cases we have sT · sg = −1. In addition,
we chose Rx/Pex = 1.
For these parameter values the following simple relationships hold:

f ′(x, η) = 1+ sgε + θ(x, η), f ′(x, 0) = 2+ sgε (9.89a)

f ′0(η) = 1+ t0(η), f ′0(0) = 2 (9.89b)

f ′1(η) = −sg + t1(η), f ′1(0) = −sg (9.89c)

f ′2(η) = t2(η), f ′2(0) = 0 (9.89d)

f ′′(x, η) = θ ′(x, η) (9.90)

Equation (9.89a) represents a modified form of the Reynolds analogy known
from the viscous flow of clear fluids.
We first solved the boundary-value problems (9.86) to (9.88) corresponding

to the case of the hot plate (Figure 9.1[a], sT = +1, sg = −1) with the aid of
the familiar shooting method, obtaining for the missing “initial values” the
numerical results,

t′0(0) = −0.7205853
t′1(0) = −2.41893785
t′2(0) = −0.794596877

(hot plate, sT = +1, sg = −1) (9.91)
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It is worth mentioning that the numerical calculations becomes more and
more sensitive with increasing order of the approximation.
Owing to some simple symmetry considerations, the case of the cold plate

(Figure 9.1[d], sT = −1, sg = +1) does not require new numerical effort.
Indeed, all our basic equations and boundary conditions (9.80) to (9.83) are
invariant under the sign-change transformation (sT , sg, ε) → (−sT ,−sg,−ε).
As a consequence, all the perturbation equations and boundary condi-
tions (9.86) to (9.88) are invariant under the transformation

(sT , sg, f1, t1)→ (−sT ,−sg,−f1,−t1) (9.92)

This means that in the case of the cold plate (Figure 9.1[d], sT = −1, sg = +1)
themissing “initial values” can be obtained fromEqs. (9.91) by only changing
the sign of t′1(0):

t′0(0) = −0.7205853
t′1(0) = +2.41893785
t′2(0) = −0.794596877

(cold plate, sT = −1, sg = +1) (9.93)

The local Nusselt number, defined according to Eq. (9.57) with Tref ≡ Tw, can
thus be calculated to order ε2 as

Nux√
Pex
= −θ ′(x, 0) = sT ·

[
−t′0(0)+ εt′1(0)− ε2t′2(0)

]
(9.94)

In Figure 9.3, Nux/
√
Pex is plotted for the two mixed convection flows as

a function Gebhart number ε. The difference 
 of the absolute values of
the amount of heat transferred in these two cases as given by


 =
∣∣∣∣ Nux√

Pex

∣∣∣∣ (cold plate)−
∣∣∣∣ Nux√

Pex

∣∣∣∣ (hot plate) (9.95)

is also shown in Figure 9.3.
As expected, in the case of the cold plate the heat transfer coefficient is

negative, that is, heat is always transferred from the fluid to the wall. This
amount of heat increases with increasing value of the local Gebhart number
ε (from 0.72058 if the viscous dissipation is neglected, ε = 0, to 2.128703 for
ε = 0.5). In the case of thehot plate, the heat transfer coefficient is positive (i.e.,
heat is transferred from the wall to the fluid) as long as the effect of viscous
dissipation is weak enough which means ε < 0.3346898. When ε exceeds this
critical value εc = 0.3346898 the heat released by viscous dissipation over-
comes the effect of the hot wall and the wall heat flux becomes reversed. For
ε = εc the wall becomes adiabatic. As the thin curve of Figure 9.3 shows, for
the same value of ε, the amount of heat transferred to the cold plate always
exceeds the amount of heat transferred from, as well as, to the hot plate.
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FIGURE 9.3
Heat-transfer coefficients (9.94) for two types of aided mixed convection flows along an upward
projecting hot plate (Figure 9.1[a]) and a downward projecting cold plate (Figure 9.1[d]). The thin
curve represents the difference
 between the absolute values of the amount of heat transferred
in these two cases, as given by Eq. (9.95).
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FIGURE 9.4
Dimensionless temperature profiles sT · θhot = +θhot and sT · θcold = −θcold corresponding to
the two cases of aided Darcy mixed convection flow (Figures 9.1[a] and [d], respectively). The
critical value εc = 0.3346898 corresponds to the adiabatic case of the hot plate.

In Figure 9.4 the dimensionless temperature profiles sT · θ = (T − T∞)/
|Tw − T∞| are shown for sT = +1 and −1 and a couple of values of ε. The
change fromthedirect to reversedwall heatfluxat the criticalGebhartnumber
εc = 0.3346898 in the case of the hot plate is immediately seen in this figure.
It is also clearly seen that, according to the boundary condition (9.83b), both
the dimensionless temperature profiles sT ·θhot = +θhot and sT ·θcold = −θcold
approach the same asymptotic value sT · θ(x,∞) = ε as η → ∞. This is in
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FIGURE 9.5
Dimensionless downstream velocity profiles corresponding to two cases of aided Darcy
mixed convection flow (Figures 9.1[a] and [d], respectively).

whole agreement with the special case {Re = 0,Rx/Pex = 1} of the boundary
condition (9.73b).
Finally in Figure 9.5 the dimensionless downstream velocity profiles f ′(x, η)

are shown for ε = 0.5. Figure 9.4 and Figure 9.5 are related to each other by
Eq. (9.89a), which may be checked easily.

9.5.4 Channel Flows

Inghamet al. [5] andAl-Hadhrami et al. [35] have both consideredmixed con-
vection in a vertical porous channel in the presence of viscous dissipation. In
both cases the bounding surfaces have a temperature that is a linear decreas-
ing function of height, that is, the channel is unstably stratified, and there is
a fixed local temperature difference across the channel. Ingham et al. [5] used
the Darcy flowmodel and determined the basic flow and temperature fields.
In the absence of viscous dissipation the governing equations yield singular
solutions when the Rayleigh number, Ra, is such that Ra1/2 is an oddmultiple
of π . When viscous dissipation is included, then the singularity disappears,
and is replaced by a pair of solutions, one of which corresponds to the limit as
Ra tends upward toward a critical value, and the other asRa tends downward
toward the same value. Al-Hadhrami et al. [35] extended the analysis to cases
where the Darcy–Brinkmanmodel apply. The same qualitative results appear
here too, but they also show that multiple solutions arise in general.

9.6 Stability Considerations

The study of viscous dissipation in porous media cannot yet be considered
to be a mature realm of science for a variety of reasons, not the least of which
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is the uncertainty as to how it should be modeled when the Brinkman terms
are significant in the momentum equations. It might therefore seem a little
premature to considerwhether or not theflowsdiscussedherein are realizable
inpractice, should they suffer small perturbations. Given that there appears to
be general agreement in thepublished literature over the form that the viscous
dissipation terms take when the flow obeys Darcy’s law, it is important that
some studies are undertaken to assess the stability characteristics of some
flows. At present only two such studies have been undertaken. Rees et al.
[35] analyzed the linear stability of the ADP from an inclined surface, while
Rees et al. [15] reworked the standardweaklynonlinear analysis for the case of
Darcy–Benard convection given in Rees [36]. This section briefly summarizes
the chief features of these analyses because the details are beyond the space
available.
When a cold downward-projected surface is rotated so that it is inclined

away from the vertical, and in such a way that the normal vector to the cold
surface has a downward component, then theADP analysis described earlier
still applies but the parallel-flow boundary layer is thicker because buoyancy
is less effective. The expression for θ is given by Eq. (9.29), butwithY replaced
by Y cosα, where α is the inclination of the surface from the vertical. In such
situations it is possible to introduce disturbances of the form of streamwise
vortices. A straightforward linearized stability theory yields a curve relating
the Rayleigh number to the wavelength of the disturbance, and this has the
same shape as theDarcy–Benardproblem, namely that it has onewell-defined
minimum and that Ra tends to infinity as the wavelength of the vortex tends
either to zero or to infinity; for details see Rees et al. [37]. The critical Rayleigh
number and wavenumber are given by

Ra1/2 tan α = 16.8469 kc = 0.5166 (9.96)

From this we see that the critical Rayleigh number becomes infinite as the
surface approaches the vertical, and therefore we conclude that theADP con-
ditions described in Section 9.3 are also realizable in practice from the point
of view of stability. Some fully nonlinear computations are also presented in
Rees et al. [37].
A very detailed analysis of the weakly nonlinear convection in a

Darcy–Benard problem is given in Rees et al. [15]. When viscous dissipation
is absent then convection arises when the Darcy–Rayleigh number exceeds
4π2. Initially, convection sets in as a set of parallel rolls when the layer is of
infinite horizontal extent. When viscous dissipation is present the temper-
ature profile within the layer loses its up/down symmetry when convection
occurs, and this causes hexagonal cells to arise. This is because the lackof sym-
metry allows two rolls, whose axes are at 60◦ to one another, to interact and
reinforce a roll at 60◦ to each of them, thus providing the hexagonal pattern.
Hexagonal convection is subcritical and appears at Rayleigh numbers below
4π2. However, when Ra is sufficiently above 4π2, the rolls are re-established
as the preferred pattern of convection.When Forchheimer terms are included,
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then the range of Rayleigh numbers over which hexagons exist and are stable
decreases, and they are eventually extinguished. A similar qualitative result
has been shown when the layer is tilted at increasing angles from the hori-
zontal, although there are two main orientations of hexagonal solutions in
this case. The rolls that formwhen hexagons are destabilized are longitudinal
rolls and may be regarded as streamwise vortices like those considered in
Rees et al. [37].

9.7 Research Opportunities

We close this chapter with some proposals for research opportunities.

• While the form of the viscous dissipation term for Darcy and
Darcy–Forchheimer flows are well established, there remain some
differences over the correct form when boundary effects are signifi-
cant. At present there exists no REV model of viscous dissipation,
nor are there any detailed computations in periodically structured
porous media at small length-scales.

• As far as we are aware, free, forced, and mixed convective backward
boundary-layer flows, where the edge (x = 0) of the semi-infinite
vertical plate is (not a leading edge but) a trailing edge, has not yet
been investigated in the literature.

• Numerical (perturbation) solutions to themixed convection problem
for small values of the Gebhart number have only been discussed
here for the two “aiding” cases of Darcy flow. The discussion of
the Darcy–Forchheimer case is still open. In addition, the investig-
ation of the two “opposing cases,” and for both the Darcy and the
Darcy–Forchheimer cases, is also an open problem.

• Currently no published studies on strongly nonlinear free convection
in cavities and in the presence of viscous dissipation exist. Given
our observations, here, regarding the manner in which up/down
symmetry is broken, it is very likely thatnovel qualitativephenomena
arise in cavities with heating from below or from sidewall.

Nomenclature

ADP asymptotic dissipation profile
Br Brinkman number
cfp coefficient of Forchheimer term
C Forchheimer coefficient
cp specific heat
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Da Darcy number
Ec Eckert number
f reduced streamfunction
F drag force
g gravity
Ge Gebhart number
k thermal conductivity of the porous medium
K permeability
L representative length
Nu Nusselt number
K permeability tensor
Pe Péclet number
Pr Prandtl number
q′′′ volumetric rate of heat production
Q dimensionless heat flux
Ra, R Darcy–Rayleigh number
Re Reynolds number
REV representative elementary volume
sg projection of g/|g| on the x-axis
sT sgn(Tw − T∞)
T temperature
u, v,w velocities in the x-, y-, and z-directions, respectively
U representative velocity
x, y, z Cartesian coordinates
Y dimensionless y-coordinate

Greek letters

α thermal diffusivity/inclination angle
β thermal expansion coefficient

T representative temperature difference
ε local Gebhart number
η similarity variable
θ scaled temperature
µ dynamic viscosity
µ̃ effective viscosity
ν kinematic viscosity
ξ dimensionless x-coordinate
ρ fluid density
τ scaled x-coordinate
	 heat source term
ψ streamfunction

Subscripts

clear clear fluid
Darcy porous medium
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ref reference conditions
w wall or surface condition
x local quantity
∞ ambient conditions
δ boundary-layer thickness
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Summary

Engineering equipment design and environmental impact analyses can bene-
fit fromappropriatemodelingof turbulentflowinporousmedia.Accordingly,
a number of natural and engineering systems can be characterized by some
sort of porous structure through which a working fluid permeates. Turbu-
lence models proposed for such flows depend on the order of application
of time and volume-average operators. Two developed methodologies, fol-
lowing the two orders of integration, lead to different governing equations
for the statistical quantities. This chapter reviews recently published meth-
odologies to mathematically characterize turbulent transport in porous
media.
For hybridmedia, involving both aporous structure and a clear flow region,

difficulties arise due to the proper mathematical treatment given at the inter-
face. This chapter also presents and discusses numerical solutions for such
hybrid media, here considering a channel partially filled with a wavy porous
layer throughwhich fluid flows in turbulent regime. In addition, macroscopic
forms of buoyancy terms are also considered in both the mean and the tur-
bulent fields. Cases reviewed include heat transfer in cavities partially filled
with porous material.
In summary, within this chapter local instantaneous governing equations

are reviewed for clear flow before volume and time-average operators are
applied to them. The double-decomposition concept is presented and thor-
oughly discussed prior to the derivation ofmacroscopic governing equations.
Equations for turbulent momentum transport in porous media follow show-
ing detailed derivation for the mean and turbulent field quantities. The
statistical k–emodel for clear domains, used tomodelmacroscopic turbulence
effects, also serves as the basis for turbulent heat transport modeling.
Turbulentmass transport in porousmatrices is further reviewed in the light of
the double-decomposition concept.Asection on applications in hybridmedia
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covers flow over porous layers in channels and in cavities partially filledwith
porous material.

10.1 Introduction

Customarily, modeling of macroscopic transport for incompressible flows in
porousmediahasbeenbasedon thevolume-averagemethodology (Whitaker,
1999; Vafai and Tien, 1981) for either heat (Hsu and Cheng, 1990), or mass
transfer (Whitaker, 1966, 1967; Bear and Bachmat, 1967; Bear, 1972). If time
fluctuations of the flow properties are also considered, in addition to spa-
tial deviations, there are two possible methodologies to follow in order to
obtain macroscopic equations: (a) application of time-average operator fol-
lowed by volume-averaging (Kuwahara et al., 1966; Masuoka and Takatsu,
1996; Kuwahara and Nakayama, 1998; Nakayama and Kuwahara, 1999), or
(b) use of volume-averaging before time-averaging is applied (Lee and How-
ell, 1987; Wang and Takle, 1995; Antohe and Lage, 1997; Getachewa et al.,
2000). In fact, these two sets of macroscopic transport equations are equi-
valent when examined under the recently established double-decomposition
concept (Pedras and de Lemos, 1999a, 2000a, 2001a, 2001b, 2001c, 2003). This
methodology, initially developed for the flow variables, has been extended to
nonbuoyant heat transfer in porous media where both time fluctuations and
spatial deviations were considered for velocity and temperature (Rocamora
and de Lemos, 2000a; de Lemos and Rocamora, 2002). Recently, studies on
natural convection (de Lemos and Braga, 2003; Braga and de Lemos, 2004),
flowover aporous layer (deLemosandSilva, 2003; Silva anddeLemos, 2003a,
2003b), double-diffusive convection (de Lemos and Tofaneli, 2004) and a gen-
eral classification of all proposed models for turbulent flow and heat transfer
in porous media have been published (de Lemos and Pedras, 2001). Here,
new developments in applying the double-decomposition theory to buoy-
ant flows (de Lemos and Braga, 2003) and to mass transfer (de Lemos and
Mesquita, 2003) are reviewed. Some numerical results are also included.

10.2 Local Instantaneous Governing Equations

The steady-state local or microscopic instantaneous transport equations for
an incompressible fluid with constant properties are given by:

∇ · u = 0 (10.1)

ρ∇ · (uu) = −∇p+ µ∇2u+ ρg (10.2)

(ρcp)∇ · (uT) = ∇ · (λ∇T) (10.3)
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where u is the velocity vector, ρ is the density, p is the pressure, µ is the fluid
viscosity, g is the gravity acceleration vector, cp is the specific heat, T is the
temperature, and λ is the fluid thermal conductivity.
In addition, the mass fraction distribution for the chemical species � is

governed by the following transport equation,

∇ · (ρum� + J�) = ρR� (10.4)

wherem� is themass fraction of component �, u is themass-averaged velocity
of the mixture, u = ∑

�m�u�, and u� is the velocity of species �. Further, the
mass diffusion flux J� in Eq. (10.4) is due to the velocity slip of species � and
is given by,

J� = ρ�(u� − u) = −ρD�∇m� (10.5)

where D� is the diffusion coefficient of species � into the mixture. The second
equality inEq. (10.5) isknownasFick’s law. Thegeneration rateof species �per
unit of mixture mass is given in Eq. (10.4) by R�. It is interesting to point out
that Eqs. (10.1) to (10.4) are written for steady-state problems to be consistent
with this section’s purpose. Transient formulations will be presented later
when turbulence is considered.
If one considers that the density in the last term of (10.2) varies with tem-

perature, for natural convection flow, the Boussinesq hypothesis reads, after
renaming this density ρT,

ρT ∼= ρ[1− β(T − Tref)] (10.6)

where the subscript ref indicates a reference value and β is the thermal
expansion coefficient defined by,

β = − 1
ρ

∂ρ

∂T

∣∣∣∣
p

(10.7)

Equation (10.6) is an approximation of (10.7) and shows how density varies
with temperature in the body force term of the momentum equation.
Further, substituting (10.6) into (10.2), one has,

ρ∇ · (uu) = −(∇p)∗ + µ∇2u− ρgβ(T − Tref) (10.8)

where (∇p)∗ = ∇p− ρg is a modified pressure gradient.
When (10.3) is written for the fluid and solid phases with heat sources it

becomes,

– Fluid

(ρcp)f∇ · (uTf) = ∇ · (λf∇Tf)+ Sf (10.9)
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– Solid (Porous Matrix)

0 = ∇ · (λs∇Ts)+ Ss (10.10)

where the subscripts f and s refer to each phase, respectively. If there is no
heat generation either in the solid or in the fluid phase, one has further,

Sf = Ss = 0 (10.11)

As mentioned, there are, in principle, two ways that one can follow in
order to treat turbulent flow in porous media. The first method applies a
time-average operator to the governing equations set (10.1) to (10.4) before
the volume-average procedure is applied. In the second approach, the order
of application of the two average operators is reversed. Both techniques aim
at derivation of suitable macroscopic transport equations.
Volume-averaging in a porous medium, described in detail in Slattery

(1967), Whitaker (1969, 1999), and Gray and Lee (1977) makes use of the
concept of a representative elementary volume (REV) over which local
equations are integrated. In a similar fashion, statistical analysis of turbu-
lent flow leads to time mean properties. Transport equations for statistical
values are considered in lieu of instantaneous information on the flow.
For the sake of clarity, before undertaking the task of developing macro-

scopic equations, it is convenient to recall the definitions of time and volume
average and review the proposal of double decomposing the dependent
variables.

10.3 Volume and Time Average Operators

The volume average of a general property ϕ taken over a REV, in a porous
medium can be written (see Slattery, 1967; Whitaker, 1969, 1999; Gray and
Lee, 1977)

〈ϕ〉v = 1
�V

∫
�V

ϕ dV (10.12)

The value 〈ϕ〉v is defined for any point x surrounded by a REV of size
�V. This average is related to the intrinsic average for the fluid phase as
follows:

〈ϕf〉v = φ〈ϕf〉i (10.13)
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where φ = �Vf/�V is the local medium porosity and �Vf is the volume
occupied by the fluid in a REV. Furthermore, one can write,

ϕ = 〈ϕ〉i + iϕ (10.14)

with 〈iϕ〉i = 0. In Eq. (10.14), iϕ is the spatial deviation of ϕ with respect to
the intrinsic average 〈ϕ〉i.
For deriving the flow governing equations, it is necessary to know the rela-

tionship between the volumetric average of derivatives and the derivatives
of the volumetric average. These relationships are presented in a number of
works, namely Slattery (1967),Whitaker (1969, 1999), andGray andLee (1977)
and others, being known as the Theorem of local volumetric average. They
are written as:

〈∇ϕ〉v = ∇(φ〈ϕ〉i)+ 1
�V

∫
Ai

nϕ dS (10.15)

〈∇ · ϕ〉v = ∇ · (φ〈ϕ〉i)+ 1
�V

∫
Ai

n · ϕ dS (10.16)

and

〈
∂ϕ

∂t

〉v
= ∂

∂t
(φ〈ϕ〉i)− 1

�V

∫
Ai

n · (uiϕ)dS (10.17)

where Ai, ui and n are the interfacial area, the interfacial velocity of phase f
and the unity vector normal to Ai, respectively.
The area Ai should not be confused with the surface area surrounding

volume �V. For single-phase flow, phase f is the fluid itself and ui = 0 if
the porous substrate is assumed to be fixed. In developing Eqs. (10.15) to
(10.17) the only restriction applied is the independence of �V in relation to
time and space. If the medium is further assumed to be rigid and heterogen-
eous, then �Vf is dependent on space and is not time-dependent (Gray and
Lee, 1977).
Further, the time average of a general quantity ϕ is defined as follows,

ϕ = 1
�t

∫ t+�t

t
ϕ dt (10.18)

where the time interval �t is small compared to the fluctuations of the
average value, ϕ, but large enough to capture turbulent fluctuations of ϕ.
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Time decomposition can then be written as follows,

ϕ = ϕ + ϕ′ (10.19)

with ϕ′ = 0, where ϕ′ is the time fluctuation of ϕ around its average value ϕ.

10.4 Time-Averaged Transport Equations

In order to apply the time-average operator to Eqs. (10.1), (10.2), and (10.8),
one considers:

u = u+ u′ T = T + T′ p = p+ p′ (10.20)

Substituting (10.20) into (10.1), (10.2), and (10.8), respectively, one has after
considering constant property flow,

∇ · u = 0 (10.21)

ρ∇ · (uu) = −(∇p)∗ + µ∇2u+ ∇ · (−ρu′u′)− ρgβ(T − Tref) (10.22)

(ρcp)∇ · (uT) = ∇ · (k∇T)+ ∇ · (−ρcpu′T′) (10.23)

For clear fluid, the use of the eddy-diffusivity concept for expressing the
stress–rate of strain relationship for the Reynolds stress appearing in (10.22)
gives,

−ρu′u′ = µt2D− 2
3ρk I (10.24)

where D = [∇u + (∇u)T]/2 is the mean deformation tensor, k = u′ · u′/2 is
the turbulent kinetic energy per unit mass, µt is the turbulent viscosity, and
I is the unity tensor. Similarly, for the turbulent heat flux on the right-hand
side of (10.23) the eddy-diffusivity concept reads,

−ρcpu′T′ = cp
µt

σT
∇T (10.25)

where σT is known as the turbulent Prandtl number.
The transport equation for the turbulent kinetic energy is obtained by first

multiplying the difference between the instantaneous and the time-averaged
momentumequationsbyu′. Thus, further applying the time-averageoperator
to the resulting product, one has,

ρ∇ · (uk) = −ρ∇ ·
[
u′
(

p′
ρ
+ q

)]
+ µ∇2k + Pk + Gk − ρε (10.26)
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where Pk = −ρu′u′ :∇u is the generation rate of k due to gradients of the
mean velocity and

Gk = −ρβg · u′T′ (10.27)

is the buoyancy generation rate of k. Also, q = (u′ · u′)/2.

10.5 The Double-Decomposition Concept

The double-decomposition idea, herein used for obtaining macroscopic
equations, has been detailed in Pedras and de Lemos (1999a, 2001a, 2001b,
2001c, 2003), so that only a brief overview is presented here. Further, the res-
ulting equations using this concept for the flow (Pedras and de Lemos, 2001a)
and nonbuoyant thermal fields (Rocamora and de Lemos, 2000a; de Lemos
and Rocamora, 2002) are already available in the literature and for this reason
they are not repeatedhere. Extensions of thedouble-decompositionmethodo-
logy to buoyant flows (de Lemos and Braga, 2003; Braga and de Lemos, 2004)
to mass transport (de Lemos and Mesquita, 2003) and to double-diffusive
convection (de Lemos and Tofaneli, 2004) have also been presented in the
literature.
Basically, for porous media analysis, a macroscopic form of the governing

equations is obtained by taking the volumetric average of the entire equation
set. In that development, the porous medium is considered to be rigid and
saturated by an incompressible fluid.

10.5.1 Basic Relationships

From the work in Pedras and de Lemos (2000a) and Rocamora and de Lemos
(2000a), one can write for any flow property ϕ combining decompositions
(10.14) and (10.19),

〈ϕ〉i = 〈ϕ〉i + 〈ϕ′〉i (10.28)

ϕ = 〈ϕ〉i +i ϕ (10.29)
iϕ = iϕ + iϕ′ (10.30)

ϕ′ = 〈ϕ′〉i + iϕ′ (10.31)

or further

ϕ′ = 〈ϕ〉i′ + iϕ′ = 〈ϕ′〉i + iϕ′ (10.32)
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where iϕ′ can be understood as either the time fluctuation of the spatial deviation
or the spatial deviation of the time fluctuation. After somemanipulation, one can
prove that (Pedras and de Lemos, 2001a)

〈ϕ〉v = 〈ϕ〉v or 〈ϕ〉i = 〈ϕ〉i

〈ϕ〉i = 〈ϕ〉i
(10.33)

that is, the time and volume averages commute. Also,

iϕ = iϕ

〈ϕ′〉i = 〈ϕ〉i′
(10.34)

or say,

〈ϕ〉i= 1
�Vf

∫
�Vf

ϕ dV = 1
�Vf

∫
�Vf

(ϕ + ϕ′)dV = 〈ϕ〉i + 〈ϕ′〉i (10.35)

iϕ= iϕ + iϕ′ = iϕ + iϕ′ (10.36)

so that,

ϕ′ = 〈ϕ′〉i + iϕ′
iϕ = iϕ+ iϕ′

}
where iϕ′ = ϕ′ − 〈ϕ′〉i = iϕ − iϕ (10.37)

Finally, one can have a full variable decomposition as:

ϕ = 〈ϕ〉i + 〈ϕ′〉i + iϕ + iϕ′

= 〈ϕ〉i + 〈ϕ〉i′ + iϕ+ iϕ′
(10.38)

or further,

ϕ = 〈ϕ〉i + 〈ϕ′〉i︸ ︷︷ ︸
〈ϕ〉i

+

iϕ︷ ︸︸ ︷
i
ϕ + i

ϕ′ = 〈ϕ〉i + iϕ︸ ︷︷ ︸
ϕ

+
ϕ′︷ ︸︸ ︷

〈ϕ〉i′ + iϕ
′

(10.39)

Equation (10.38) comprises the double decomposition concept. A significance
of the four terms in (10.39) can be reviewed as: (a) 〈ϕ〉i, is the intrinsic aver-
age of the time mean value of ϕ. Or say, we compute first the time-averaged
values of all points composing the REV, and then we find their volumetric
mean to get 〈ϕ〉i. Instead, we could also consider a certain point x surroun-
ded by the REV and take the volumetric average, at different time steps.
Thus, we calculate the average over such different values in time. We get
〈ϕ〉i and, according to (10.33), 〈ϕ〉i = 〈ϕ〉i, or say, volumetric and time
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average commute. (b) If we now take the volume average of all fluctuating
components of ϕ, which compose the REV, we end up with 〈ϕ′〉i. Instead,
with the volumetric average around point x taken at different time steps we
can determine the difference between the instantaneous and a time-averaged
value. This will be 〈ϕ〉i′ that, according to (10.34), equals 〈ϕ′〉i. Further, per-
forming first a time-averaging operation over all points that contribute with
their local values to the REV, we get a distribution of ϕ within this volume. If
now we calculate the intrinsic average of this distribution of ϕ, we get 〈ϕ〉i.
The difference or deviation between these two values is iϕ. Now, using the
same space decomposition approach we can find for any instant of time t the
deviation iϕ. This value also fluctuates with time, and as such a time mean
can be calculated as iϕ. Again the use of (10.34) gives iϕ = iϕ. Finally, it is
interesting to note themeaning of the last termon each side of (10.39). Thefirst
term, i(ϕ′), is the time fluctuation of the spatial component whereas (iϕ)′ means
the spatial component of the time varying term. If, however, one makes use of
relationships (10.33) and (10.34) to simplify (10.39), one finally concludes,

i
ϕ′ = iϕ

′
(10.40)

and, for simplicity of notation, one can write both superscripts at the same
level in the format: iϕ′. Also, 〈iϕ′〉i = iϕ′ = 0.
With the help of Figure 10.1 taken fromRocamora anddeLemos (2000a), the

concept of double-decomposition can be better understood. The figure shows
a three-dimensional diagram for a general vector variable ϕ. For a scalar, all
the quantities shown would be drawn on a single line.
The basic advantage of the double-decomposition concept is to serve as

a mathematical framework for analysis of flows where within the fluid
phase there is enough room for turbulence to be established. As such, the
double-decomposition methodology would be useful in situations where a
solid phase is existent in the domain under analysis so that a macroscopic

i�
i�

i�

〈�〉i

〈�′〉i

〈�〉i = 〈�〉i

�

�

〈�〉i′

i�'

�′

A

B

C

D

E

F

FIGURE 10.1
General three-dimensional vector diagram for a quantity ϕ. (Taken from Rocamora Jr., F.D. and
de Lemos, M.J.S., Int. Commun. Heat Transfer, 27(6), 825–834. With permission.)
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view is appropriate. At the same time, properties in the fluid phase are
subjected to the turbulent regime, and a statistical approach becomes
convenient. Examples of possible applications of such methodology can be
found in engineering systems such as heat exchangers, porous combustors,
nuclear reactor cores, etc. Natural systems include atmospheric boundary
layer over forests and crops.

10.6 Turbulent Momentum Transport in Porous Media

10.6.1 Mean Flow Equations

The development to follow assumes single-phase flow in a saturated, rigid
porous medium (�Vf independent of time) for which, in accordance with
(10.33), time-average operation on variable ϕ commutes with space average.
Application of the double-decomposition idea in Eq. (10.39) to the inertia term
in the momentum equation leads to four different terms. Not all these terms
are considered in the same analysis in the literature.

10.6.1.1 Continuity

The microscopic continuity equation for an incompressible fluid flowing in a
clean (nonporous) domain was given by (10.1). Expanding u in (10.1) using
the double-decomposition idea of (10.39) gives,

∇ · u = ∇ · (〈u〉i + 〈u′〉i + iu+ iu′) = 0 (10.41)

Applying both volume and time-average to (10.41) gives,

∇ · (ϕ〈u〉i) = 0 (10.42)

For the continuity equation, the averaging order is immaterial with regard to
the final result.

10.6.1.2 Momentum — one average operator

The transient form of the microscopic momentum equation (10.2) for a fluid
with constant properties is given by the Navier–Stokes equation as

ρ

[
∂u
∂t
+ ∇ · (uu)

]
= −∇p+ µ∇2u+ ρg (10.43)

Its time average using u = u+ u′ gives

ρ

[
∂u
∂t
+ ∇ · (uu)

]
= −∇p+ µ∇2u+ ∇ · (−ρu′u′)+ ρg (10.44)

© 2005 by Taylor & Francis Group, LLC



420 Marcelo J.S. de Lemos

where the stresses, −ρu′u′, are the well-known Reynolds stresses. On the
other hand, the volumetric average of (10.43) using the Theorem of local
volumetric average (Eqs. [10.15] to [10.17]), results in

ρ

[
∂

∂t
(φ〈u〉i)+ ∇ · [φ〈uu〉i]

]
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)+ φρg+ R (10.45)

where

R = µ

�V

∫
Ai

n · (∇u)dS− 1
�V

∫
Ai

npdS (10.46)

represents the total drag force per unit volume due to the presence of the
porous matrix, being composed of both viscous drag and form (pressure)
drag. Further, using spatial decomposition towrite u = 〈u〉i+ iu in the inertia
term,

ρ

[
∂

∂t
(φ〈u〉i)+ ∇ · [φ〈u〉i〈u〉i]

]
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)− ∇ · [φ〈iuiu〉i] + φρg+ R (10.47)

Hsu and Cheng (1990) point out that the third term on the right of (10.47),
∇ · (φ〈iuiu〉i), represents the hydrodynamic dispersion due to spatial devi-
ations. Note that Eq. (10.47) models typical porous media flow for Rep <

150–200. When extending the analysis to turbulent flow, time varying
quantities have to be considered.

10.6.1.3 Momentum equation — two average operators

The set of Eqs. (10.44) and (10.47) are used when treating turbulent flow in
clear fluid or low Rep porous media flow, respectively. In each one of those
equations only one averaging operator was applied, either time or volume,
respectively. In thiswork, an investigation on the use of both operators in now
conducted with the objective of modeling turbulent flow in porous media.
The volume average of (10.44) for the time mean flow in a porous medium,

becomes:

ρ

[
∂

∂t
(φ〈u〉i)+ ∇ · (φ〈uu〉i)

]
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)+ ∇ · (−ρφ〈u′u′〉i)+ φρg+ R (10.48)

where

R = µ

�V

∫
Ai

n · (∇u)dS− 1
�V

∫
Ai

npdS (10.49)
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is the time-averaged total drag force per unit volume (“body force”), due to
solid particles, composed of both viscous and form (pressure) drags.
Likewise, we now apply the time-average operation to (10.45), to get:

ρ

[
∂

∂t
(φ〈u+ u′〉i)+ ∇ · (φ〈(u+ u′)(u+ u′)〉i)

]
= −∇(φ〈p+ p′〉i)+ µ∇2(φ〈u+ u′〉i)+ φρg+ R (10.50)

Dropping terms containing only one fluctuating quantity results in,

ρ

[
∂

∂t
(φ〈u〉i)+ ∇ · (φ〈uu〉i)

]
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)+ ∇ · (−ρφ〈u′u′〉i)+ φρg+ R (10.51)

where

R = µ

�V

∫
Ai

n · [∇(u+ u′)]dS− 1
�V

∫
Ai

n(p+ p′)dS

= µ

�V

∫
Ai

n · (∇u)dS− 1
�V

∫
Ai

npdS (10.52)

Comparing (10.48) and (10.51) one can see that for the momentum equation
also the order of the application of both averaging operators is immaterial.
It is interesting to emphasize that both views in the literature use the

same final form for the momentum equation. The term R is modeled by
the Darcy–Forcheimer (Dupuit) expression after either order of application
of the average operators. Since both orders of integration lead to the same
equation, namely, expression (10.49) or (10.52), there would be no reason to
model them in a different form. Had the outcome of both integration pro-
cesses been distinct, the use of a different model for each case would have
been consistent. In fact, it has been pointed out by Pedras and de Lemos
(2000), that the major difference between those two paths lies in the defini-
tion of a suitable turbulent kinetic energy for the flow.Accordingly, the source
of controversies comes from the inertia term, as seen below.

10.6.1.4 Inertia term — space and time (double) decomposition

Applying thedouble-decomposition idea seenbefore for velocity (Eq. [10.39]),
to the inertia termof (10.43)will lead todifferent sets of terms. In the literature,
not all of them are used in the same analysis.
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Starting with time decomposition and applying both average operators
(see Eq. [10.48]) gives,

∇ · (φ〈uu〉i) = ∇ · (φ〈(u+ u′)(u+ u′)〉i)
= ∇ · [φ(〈uu〉i + 〈u′u′〉i)] (10.53)

Using spatial decomposition to write u = 〈u〉i + iu and plugging it into
(10.53) gives,

∇ · [φ(〈uu〉i + 〈u′u′〉i)] = ∇ ·
{
φ[〈(〈u〉i+ iu)(〈u〉i +iu)〉i + 〈u′u′〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈iu iu〉i + 〈u′u′〉i]

}
(10.54)

Now, applying Eq. (10.32) to write u′ = 〈u′〉i + iu′ and substituting it into
(10.54) gives,

∇ ·
{
φ[〈u〉i〈u〉i + 〈iu iu〉i + 〈u′u′〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈iuiu〉i + 〈(〈u′〉i + iu′)(〈u′〉i + iu′)〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈iu iu〉i + 〈(〈u′〉i〈u′〉i + 〈u′〉i iu′ + iu′〈u′〉i + iu′ iu′)〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈iu iu〉i+〈u′〉i〈u′〉i+〈〈u′〉i iu′〉i+〈iu′〈u′〉i〉i+〈iu′ iu′〉i]

}
(10.55)

The fourth and fifth terms on the right of (10.55) contain only one space
varying quantity andwill vanish under the application of volume integration.
Equation (10.55) will then be reduced to,

∇ · (φ〈uu〉i) = ∇ ·
{
φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈iuiu〉i + 〈iu′iu′〉i]

}
(10.56)

Using the equivalence (10.33) to (10.35), Eq. (10.56) can be further rewritten as,

∇ · (φ〈uu〉i) = ∇ ·
{
φ[〈u〉i 〈u〉i + 〈u〉i′〈u〉i′ + 〈iu iu〉i + 〈iu′ iu′〉i]

}
(10.57)

with an interpretation of the terms in (10.56) given later.
Another route to follow to reach the same results is to start out with the

application of the space decomposition in the inertia term, as usually done in
classicalmathematical treatment of porousmedia flowanalysis. Then one has

∇ · (φ〈uu〉i) = ∇ · (φ〈(〈u〉i + iu)(〈u〉i + iu)〉i) = ∇ · [φ(〈u〉i〈u〉i + 〈iu iu〉i)]
(10.58)
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The time average of the right-hand side of (10.58), using Eq. (10.35) to express
〈u〉i = 〈u〉i + 〈u′〉i, becomes,

∇ · [φ(〈u〉i〈u〉i + 〈iu iu〉i)] = ∇ ·
{
φ[(〈u〉i + 〈u′〉i)(〈u〉i + 〈u′〉i)+ 〈iu iu〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈iu iu〉i]

}
(10.59)

With the help of Eq. (10.36) one can write iu= iu+ iu′ which, inserted into
(10.59), gives,

∇ ·
{
φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈iu iu〉i]

}
= ∇ ·

{
φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈(iu+ iu′)(iu+ iu′)〉i]

}

= ∇ ·
{
φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈iu iu+ iu iu′ + iu′ iu+ iu′ iu′〉i]

} (10.60)

Application of the time-average operator to the fourth and fifth terms on the
right of (10.60), containing only one fluctuating component, vanishes it. In
addition, recalling that with (10.34) there is the equivalence 〈u′〉i = 〈u〉i′, with
(10.33) one can write 〈u〉i = 〈u〉i and using (10.34) one has iu = iu, then
Eq. (10.60) becomes,

∇ · [φ(〈u〉i〈u〉i + 〈iu iu〉i)] = ∇ ·

φ[〈u〉i〈u〉i︸ ︷︷ ︸

I

+〈u′〉i〈u′〉i︸ ︷︷ ︸
II

+〈iu iu〉i︸ ︷︷ ︸
III

+〈iu′ iu′〉i︸ ︷︷ ︸
IV

]



(10.61)

which is the same as (10.56).
A physical significance of all four terms on the right of (10.61) can be

discussed as follows: I — convective term of macroscopic mean velocity,
II — turbulent (Reynolds) stresses divided by density ρ due to the fluctu-
ating component of the macroscopic velocity, III — dispersion associated with
spatial fluctuations of microscopic time mean velocity. Note that this term
is also present in laminar flow, or say, when Rep < 150, and IV — turbulent
dispersion in a porousmedium due to both time and spatial fluctuations of the
microscopic velocity.
Further, themacroscopic Reynolds stress tensor (MRST) is given in Pedras and

de Lemos (2001a) based on Eq. (10.24) as,

−ρφ〈u′u′〉i = µtφ2〈D〉v − 2
3φρ〈k〉iI (10.62)
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where

〈D〉v = 1
2 {∇(φ〈u〉i)+ [∇(φ〈u〉i)]T} (10.63)

is the macroscopic deformation tensor, 〈k〉i is the intrinsic average for k and
µtφ is the macroscopic turbulent viscosity assumed to be (Fox andMcDonald
[1998])

µtφ = ρcµ
〈k〉i2
〈ε〉i (10.64)

10.6.2 Equations for Fluctuating Velocity

The starting point of an equation for flow turbulent kinetic energy is the
microscopic velocity fluctuation u′. Such a relationship can be written after
subtracting the equation for the mean velocity u from the instantaneous
momentum equation, resulting in (Hinze, 1959; Warsi, 1998):

ρ

{
∂u′

∂t
+ ∇ · [uu′ + u′u+ u′u′ − u′u′]

}
= −∇p′ + µ∇2u′ (10.65)

Now, the volumetric average of (10.65) using the Theorem of local volumetric
average will give,

ρ
∂

∂t
(φ〈u′〉i)+ ρ∇ ·

{
φ[〈uu′〉i + 〈u′u〉i + 〈u′u′〉i − 〈u′u′〉i]

}
= −∇(φ〈p′〉i)+ µ∇2(φ〈u′〉i)+ R′ (10.66)

where,

R′ = µ

�V

∫
Ai

n · (∇u′)dS− 1
�V

∫
Ai

np′ dS (10.67)

is the fluctuating part of the total drag due to the porous structure.
Further expanding the divergent operators in Eq. (10.66) by means of

Eqs. (10.29) and (10.31), one ends up with an equation for 〈u′〉i as,

ρ
∂

∂t
(φ〈u′〉i)+ ρ∇ ·

{
φ[〈u〉i〈u′〉i + 〈u′〉i〈u〉i + 〈u′〉i〈u′〉i

+ 〈iu iu′〉i + 〈iu′ iu〉i + 〈iu′ iu′〉i − 〈u′〉 i〈u′〉i − 〈iu′ iu′〉i]
}

= −∇(φ〈p′〉i)+ µ∇2(φ〈u′〉i)+ R′ (10.68)
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Another route to follow in order to obtain the same Eq. (10.68) is to
start out with the macroscopic instantaneous momentum equation for an
incompressible fluid given by Hsu and Cheng (1990), as

ρ

[
∂

∂t
(φ〈u〉i)+ ∇ · (φ〈uu〉i)

]
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)+ φρg+ R (10.69)

or

ρ

{
∂

∂t
(φ〈u〉i + ∇ · (φ〈u〉i〈u〉i)

}
= −∇[φ(〈p〉i)] + µ∇2(φ〈u〉i)+ φρg− ∇ · (φ〈iu iu〉i)+ R (10.70)

where again R is given by (10.46) and the term 〈iu iu〉i is known as dispersion.
The fluctuating component of (10.46) was given earlier by Eq. (10.67). The
mathematical meaning of dispersion can be seen as a correlation between
spatial deviations of velocity components.
Making use of the double-decomposition concept given by Eq. (10.38),

expression (10.70) can be expanded as,

ρ

{
∂

∂t
[φ(〈u〉i+〈u′〉i)]+∇·

[
φ
〈
[〈u〉i+〈u′〉i +iu+iu′][〈u〉i+〈u′〉i +iu+iu′]

〉i]}
= −∇[φ(〈p〉i + 〈p′〉i)] + µ∇2[φ(〈u〉i + 〈u′〉i)] + φρg+ R (10.71)

which results after some manipulation in,

ρ

{
∂

∂t
[φ(〈u〉i + 〈u′〉i)] + ∇ · [φ[〈u〉i〈u〉i + 〈u〉i〈u′〉i + 〈u′〉i〈u〉i + 〈u′〉i〈u′〉i

+ 〈iu iu〉i + 〈iu iu′〉i + 〈iu′ iu〉i + 〈iu′ iu′〉i]]}
= −∇[φ(〈p〉i + 〈p′〉i)] + µ∇2[φ(〈u〉i + 〈u′〉i)] + φρg+ R (10.72)

Taking the time average of (10.72) results in

ρ

{
∂

∂t
(φ〈u〉i)+ ∇ · {φ[〈u〉i〈u〉i + 〈u′〉i〈u′〉i + 〈iu iu〉i + 〈iu′ iu′〉i]}

}
= −∇(φ〈p〉i)+ µ∇2(φ〈u〉i)+ φρg+ R (10.73)
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where

R = µ

�V

∫
Ai

n · (∇u)dS− 1
�V

∫
Ai

npdS (10.74)

represents the time-averaged value of the instantaneous total drag given
by (10.46).
An equation for the fluctuating macroscopic velocity is then obtained by

subtracting Eq. (10.73) from (10.72) resulting in,

ρ
∂

∂t
(φ〈u′〉i)+ ρ∇ ·

{
φ[〈u〉i〈u′〉i + 〈u′〉i〈u〉i + 〈u′〉i〈u′〉i

+ 〈iu iu′〉i + 〈iu′ iu〉i + 〈iu′ iu′〉i − 〈u′〉i〈u′〉i − 〈iu′iu′〉i]
}

= −∇(φ〈p′〉i)+ µ∇2(φ〈u′〉i)+ R′ (10.75)

HereR′ is also given by (10.67) such that Eq. (10.75) is the same as Eq. (10.68).

10.6.3 Turbulent Kinetic Energy

As mentioned, the determination of the flow macroscopic turbulent kinetic
energy follows two different paths in the literature. In the models of Lee
and Howell (1987), Wang and Takle (1995), Antohe and Lage (1997), and
Getachewa et al. (2000), their turbulence kinetic energy was based on km =
〈u′〉i · 〈u′〉i/2. They started with a simplified form of Eq. (10.68) neglecting the
5th, 6th, 7th, and 9th terms (dispersions). Then they took the scalar product
of it by 〈u′〉i and applied the time-average operator. On the other hand, if
one starts out with Eq. (10.65) and proceeds with time-averaging first, one
ends up, after volume-averaging, with 〈k〉i = 〈u′ · u′〉i/2. This was the path
followed by Masuoka and Takatsu (1996), Kuwahara et al. (1998), Kuwahara
and Nakayama (1998), Takatsu and Masuoka (1998), and Nakayama and
Kuwahara (1999).
The objective of this section is to derive both transport equations for km and
〈k〉i in order to compare similar terms.
The equation for km = 〈u′〉i · 〈u′〉i/2. From the instantaneous microscopic

continuity equation for a constant property fluid one has,

∇ · (φ〈u〉i) = 0 ⇒ ∇ · [φ(〈u〉i + 〈u′〉i)] = 0 (10.76)

with time average,

∇ · (φ〈u〉i) = 0 (10.77)
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From (10.76) and (10.77) one verifies that,

∇ · (φ〈u′〉i) = 0 (10.78)

Taking the scalar product of (10.66) by 〈u′〉i, making use of Eqs. (10.76)
to (10.78) and time-averaging it, an equation for km will have for each of
its terms (note that φ is here considered as independent of time):

ρ〈u′〉i · ∂
∂t
(φ〈u′〉i) = ρ ∂(φkm)

∂t
(10.79)

ρ〈u′〉i · {∇ · (φ〈uu′〉i)} = ρ〈u′〉i · {∇ · [φ〈u〉i〈u′〉i + φ〈iu iu′〉i]}
= ρ∇ · [φ〈u〉ikm] + ρ〈u′〉i · {∇ · [φ〈iu iu′〉i]} (10.80)

ρ〈u′〉i · {∇ · (φ〈u′u〉i)} = ρ〈u′〉i · {∇ · [φ〈u′〉i〈u〉i + φ〈iu′ iu〉i]}
= ρφ〈u′〉i〈u′〉i : ∇〈u〉i + ρ〈u′〉i · {∇ · [φ〈iu′ iu 〉i]}

(10.81)

ρ〈u′〉i · {∇ · (φ〈u′u′〉i)} = ρ〈u′〉i · {∇ · [φ〈u′〉i〈u′〉i + φ〈iu′ iu′〉i]}

= ρ∇ ·
[
φ〈u′〉i 〈u

′〉i · 〈u′〉i
2

]
+ ρ〈u′〉i · {∇ · [φ〈iu′ iu′〉i]}

(10.82)

ρ〈u′〉i · {∇ · (−φ〈u′u′〉i)} = 0 (10.83)

−〈u′〉i · ∇(φ〈p′〉i) = −∇ · [φ〈u′〉i〈p′〉i] (10.84)

µ〈u′〉i · ∇2(φ〈u′〉i) = µ∇2(φkm)− ρφεm (10.85)

〈u′〉i · R′ ≡ 0 (10.86)

where εm = ν∇〈u′〉i : (∇〈u′〉i)T. Inhandling (10.84) theporosityφwasassumed
to be constant only for simplifying the manipulation to be shown next. This
procedure, however, doesnot represent a limitation inderivingageneral form
of transport equation for km since term (10.84) will require further modeling.
Another important point is the treatment given to the scalar product shown

in (10.86). Here, a different view from the work in Lee and Howell (1987),
Wang and Takle (1995), Antohe and Lage (1997), and Getachewa et al. (2000),
is considered. The fluctuating drag formR′ acts through the solid–fluid inter-
facial area and, as such, on fluid particles at rest. The fluctuating mechanical
energy represented by the operation in Eq. (10.86) is not associated with any
fluid particlemovement and, as a result, is here considered to be of null value.
This point shall be further discussed later in this chapter.
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Afinal equation for km gives,

ρ
∂(φ km)

∂t
+ ρ∇ · [φ〈u〉ikm] = − ρ∇ ·

{
φ〈u′〉i

[ 〈p′〉i
ρ
+ 〈u

′〉 i · 〈u′〉i
2

]}

+ µ∇2(φkm)− ρφ〈u′〉i〈u′〉i : ∇〈u〉i − ρφεm −Dm
(10.87)

where

Dm = ρ〈u′〉i ·
{∇ · [φ(〈iu iu′〉i + 〈iu′ iu〉i + 〈iu′ iu′〉i)]} (10.88)

represents the dispersion of km given by the last terms on the right of
Eqs. (10.80), (10.81), and (10.82), respectively. It is interesting to point out
that this term can be both negative and positive.
The first term on the right of (10.87) represents the turbulent diffusion of

km and is normally modeled via a diffusion-like expression resulting for the
transport equation for km (Antohe and Lage, 1997; Getachewa et al., 2000),

ρ
∂(φkm)

∂t
+ ρ∇ · [φ〈u〉ikm] = ∇ ·

[
µ+ µtm

σkm

∇(φkm)

]
+ Pm − ρφεm −Dm

(10.89)

where

Pm = −ρφ〈u′〉i〈u′〉i : ∇〈u〉i (10.90)

is the production rate of km due to the gradients of themacroscopic time-mean
velocity 〈u〉i.
Lee andHowell (1987),Wang andTakle (1995),Antohe andLage (1997), and

Getachewa et al. (2000), made use of the above equation for km considering
forR′ (10.67) theDarcy–Forchheimer extendedmodelwithmacroscopic time-
fluctuation velocities 〈u′〉i. They have also neglected all dispersion terms that
were here grouped into Dm (10.88). Note also that the order of application of
both volume- and time-average operators in this case cannot be changed. The
quantity km is defined by applying first the volume operator to the fluctuating
velocity field.

10.6.3.1 Equation for 〈k 〉i = 〈u′ · u′〉i/2
The other procedure for composing the flow turbulent kinetic energy is to
take the scalar product of (10.65) by the microscopic fluctuating velocity u′.
Then apply both time and volume operators for obtaining an equation for
〈k〉i = 〈u′ · u′〉i/2. It is worth noting that in this case the order of application
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of both operations is immaterial since no additional mathematical operation
(the scalar product) is conducted in between the averaging processes. There-
fore, this is the same as applying the volume operator to an equation for the
microscopic k.
The volumetric average of a transport equation for k has been carried out

in detail by de Lemos and Pedras (2000a), and Pedras and de Lemos (2001a),
and for that only the final resulting equation is presented here. It reads,

ρ

[
∂

∂t
(φ〈k〉i)+ ∇ · (uD〈k〉i)

]
= ∇ ·

[(
µ+ µtφ

σk

)
∇(φ〈k〉i)

]
+ Pi + Gi − ρφ〈ε〉i

(10.91)

where

Pi = −ρ〈u′u′〉i : ∇uD (10.92)

Gi = ckρφ
〈k〉i|uD|√

K
(10.93)

are the production rate of 〈k〉i due to mean gradients of the seepage velocity
and the generation rate of intrinsic k due the presence of the porousmatrix.As
mentioned, Eq. (10.91) has been proposed by Pedras and de Lemos (2001a),
where more details on its derivation can be found. Nevertheless, for the
sake of completeness, a few steps of such derivation are reproduced here.
Application of the volume-average theorem to the transport equation for the
turbulence kinetic energy k gives:

ρ

[
∂

∂t
(φ〈k〉i)+ ∇ · (φ〈uk〉i)

]
= −ρ∇ ·


φ

〈
u′
(

p′
ρ
+ k

)〉i
+ µ∇2(φ〈k〉i)

− ρφ〈u′u′ : ∇u〉i − ρφ〈ε〉i (10.94)

where the divergent on the right of (10.94) can be expanded as,

∇ · (φ〈uk〉i) = ∇ · [φ(〈u〉i〈k〉i + 〈iuik〉i)] (10.95)

The first term on the right of (10.95) is the convection of 〈k〉i due to the mac-
roscopic velocity whereas the second one is the convective transport due to
spatial deviations of both k and u. Likewise, the production term on the right
of (10.94) can be expanded as,

−ρφ〈u′u′ :∇u〉i = −ρφ[〈u′u′〉i : 〈∇u〉i + 〈i(u′u′) : i(∇u)〉i] (10.96)
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Similarly, thefirst termon the right of (10.96) is theproductionof 〈k〉i due to the
mean macroscopic flow and the second one is the 〈k〉i production associated
with spatial deviations of flow quantities k and u.
The extra terms appearing inEqs. (10.95) and (10.96), respectively, represent

extra transport/production of 〈k〉i due to the presence of solidmaterial inside
the integration volume. They should be null for the limiting case of clear fluid
flow, or say, when φ → 1 ⇒ K → ∞. Also, they should be proportional to
the macroscopic velocity and to 〈k〉i itself.
In Pedras and de Lemos (2001a), a proposal for those two extra

transport/production rates of 〈k〉i was made as:

∇ · (φ〈iuik〉i)− ρφ〈i(u′u′) : i(∇u)〉i = Gk = ckρφ
〈k〉i|uD|√

K
(10.97)

where ck is a constant, which was numerically determined by fine flow com-
putations considering the medium to be formed by circular rods (Pedras and
de Lemos, 2001b), as well as longitudinal (Pedras and de Lemos, 2001c) and
transversal rods (Pedras and de Lemos, 2003). In spite of the variation in the
mediummorphologyand theuseof awide rangeofporosity and theReynolds
number, a value of 0.28 was found to be suitable for most calculations.

10.6.3.2 Comparison of macroscopic transport equations

A comparison between terms in the transport equation for km and 〈k〉i can
now be conducted. Pedras and de Lemos (2000), have already showed the
connection between these two quantities as being,

〈k〉i = 〈u
′ · u′〉i
2

= 〈u
′〉i · 〈u′〉i
2

+ 〈
iu′ · iu′〉i

2
= km + 〈

iu′ · iu′〉i
2

(10.98)

Expanding the correlation forming the production term Pi by means of
Eq. (10.14), a connection between the two generation rates can also be
written as,

Pi = −ρ〈u′u′〉i : ∇uD = −ρ
(
〈u′〉i〈u′〉i : ∇uD + 〈iu′ iu′〉i : ∇uD

)
= Pm − ρ〈iu′ iu′〉i : ∇uD (10.99)

One can note that all production rate of km due to the mean flow consti-
tutes only part of the general production rate responsible for maintaining the
overall level of 〈k〉i.
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The dissipation rates also carry a correspondence if one expands

〈ε〉i = ν〈∇u′ : (∇u′)T〉i

= ν〈∇u′〉i : [〈∇u′〉i]T + ν〈i(∇u′) : i(∇u′)T〉i

= ν

φ2
∇(φ〈u′〉i) : [∇(φ〈u′〉i)]T + ν〈i(∇u′) : i(∇u′)T〉i (10.100)

Considering further constant porosity,

〈ε〉i = εm + ν〈i(∇u′) : i(∇u′)T〉i (10.101)

Equation (10.101) indicates that an additional dissipation rate is necessary to
fully account for the energy decay process inside the REV.

10.7 Turbulent Heat Transport

10.7.1 Governing Equations

10.7.1.1 Time average followed by volume average

In order to apply the time-average operator to Eqs. (10.9) and (10.10), one
considers,

T = T + T′ (10.102)

u = u+ u′ (10.103)

Substituting (10.102) and (10.103) into (10.9) and (10.10), respectively, one has:

(ρ cp)f∇ · (uTf + uT′f + u′Tf + u′T′f) = ∇ · (kf∇(Tf + T′f)) (10.104)

0 = ∇ · (ks∇(Ts + T′s)) (10.105)

Applying time average to (10.104) and (10.105), one obtains:

(ρ cp)f∇ · (uTf + u′T′f) = ∇ · (kf∇Tf) (10.106)

0 = ∇ · (ks∇Ts) (10.107)

The second term on the left of (10.106) is known as turbulent heat flux. It
requires a model for closure of the mathematical problem. Also, in order to
apply the volume average to (10.106) and (10.107), one must first define the
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spatial deviations with respect to the time averages, given by:

T = 〈T〉i+ iT (10.108)

u = 〈u〉i+ iu (10.109)

Now substituting (10.108) and (10.109) into (10.104) and (10.105), respectively,
and performing the volume-average operation, one has:

(ρ cp)f∇ · {φ(〈u〉i 〈Tf〉i + 〈iu i
Tf〉i + 〈u′T′f〉i)}

= ∇ · [kf∇(φ〈Tf〉i)]+ ∇ · [ 1
�V

∫
Ai

nkfTf dS
]
+ 1
�V

∫
Ai

n · kf∇Tf dS

(10.110)

∇ ·
{
ks∇[(1− φ)〈Ts〉i]

}
− ∇ ·

[
1
�V

∫
Ai

nksTs dS
]
− 1
�V

∫
Ai

n · ks∇Ts dS = 0

(10.111)

Equations (10.110) and (10.111) are the macroscopic energy equations for
the fluid and the porous matrix (solid) taking first the time average followed
by the volume average operator.

10.7.1.2 Volume average followed by time average

To apply the volume average to (10.9) and (10.10) one has:

T = 〈T〉i+ iT (10.112)

u = 〈u〉i+ iu (10.113)

in addition,

〈T〉v = γ 〈T〉i
〈u〉v = γ 〈u〉i

}
where γ =

{
φ for the fluid
(1− φ) for the solid

(10.114)

Substituting (10.112) and (10.113) into (10.9) and (10.10), one obtains:

(ρ cp)f∇ · (〈u〉i〈Tf〉i + 〈u〉i iTf + iu〈Tf〉i+ iu iTf) = ∇ · [kf∇(〈Tf〉i+ iTf)]
(10.115)

0 = ∇ · [ks∇(〈Ts〉i+ iTs)] (10.116)
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Taking the volume average of (10.115) and (10.116), one has:

(ρ cp)f∇ ·
[
φ(〈u〉i〈Tf〉i + 〈iu iTf〉i)

]
= ∇ ·

[
kf∇(φ〈Tf〉i)

]
+ ∇ ·

[
1
�V

∫
Ai

nkfTf dS
]
+ 1
�V

∫
Ai

n · kf∇Tf dS

(10.117)

∇ ·
{
ks∇[(1− φ)〈Ts〉i]

}
− ∇ ·

[
1
�V

∫
Ai

nksTs dS
]
− 1
�V

∫
Ai

n · ks∇Ts dS = 0

(10.118)

The second term on the left of Eq. (10.117) appears in classical analysis of
convection in porous media (e.g., Hsu and Cheng, 1990) and is known as
thermal dispersion. In order to apply the time average to (10.117) and (10.118),
one defines the intrinsic volume average as:

〈T〉i = 〈T〉i + 〈T〉i′ (10.119)

〈u〉i = 〈u〉i + 〈u〉i′ (10.120)

Substituting (10.119) and (10.120) in (10.117) and (10.118) and taking the time
average, we obtain:

(ρcp)f∇ ·
[
φ
(
〈u〉i 〈Tf〉i + 〈u〉i′〈Tf〉i′ + 〈iuiTf〉i

)]
= ∇ ·

[
kf∇(φ〈Tf〉i)

]
+ ∇ ·

[
1
�V

∫
Ai

nkfTf dS
]
+ 1
�V

∫
Ai

n · kf∇Tf dS

(10.121)

∇ ·
{
ks∇[(1− φ)〈Ts〉i]

}
− ∇ ·

[
1
�V

∫
Ai

nksTs dS
]
− 1
�V

∫
Ai

n · ks∇Ts dS = 0

(10.122)

Equations (10.121) and (10.122) are the macroscopic energy equations for the
fluid and the porous matrix (solid) taking first the volume average followed
by the time average.
It is interesting to observe that (10.110) and (10.111), obtained through the

first procedure (time–volume average) are similar to (10.121) and (10.122),
respectively, obtained through the second method (volume–time average).
To show their equivalence is the purpose of next section.
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10.7.2 Turbulent Thermal Dispersion

Now using (10.34) to (10.37), the third terms on the left-hand side of (10.110)
and (10.121) can be expanded as:

〈u′T′f〉i = 〈(〈u′〉i + iu′)(〈Ti
f〉i + iT′)〉i = 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i (10.123)

〈iuiTf〉i = 〈(iu+ iu′)(iTf + iT′)〉i = 〈iuiTf〉i + 〈iu′iT′f〉i (10.124)

Substituting (10.123) into (10.110), the convection term will read,

(ρcp)f∇ · (φ〈uT〉i) = (ρcp)f∇ ·
{
φ(〈u〉i〈Tf〉i + 〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i)

}
(10.125)

Also, plugging (10.124) into (10.121) will give for the same convection term,

(ρcp)f∇ · (φ〈uT〉i)= (ρcp)f∇ ·
{
φ(〈u〉i 〈Tf〉i+〈u〉i′〈Tf〉i′ + 〈iuiTf〉i+〈iu′iT′f〉i)

}
↑ ↑ ↑ ↑
I II III IV

(10.126)

Comparing (10.125) with (10.126), in light of (10.33) and (10.34), one can con-
clude that (10.110) and (10.111) are, in fact, equal to (10.121) and (10.122),
respectively. This demonstrates that the final expanded form of the macro-
scopic energy equation for a rigid, homogeneous porous medium saturated
with an incompressible fluid, does not depend on the averaging order, that
is, both procedures lead to the same results.
Further, the four terms on the right of (10.126) could be given the following

physical significance:

I. Convective heat flux based on macroscopic time mean velocity and
temperature.

II. Turbulent heat flux due to the fluctuating components of macroscopic
velocity and temperature.

III. Thermal dispersion associated with deviations of microscopic time
mean velocity and temperature. Note that this term is also present
when analyzing laminar convective heat transfer in porous media.

IV. Turbulent thermal dispersion in a porous medium due to both time
fluctuations and spatial deviations of both microscopic velocity and
temperature.

Thus, the macroscopic energy equations for an incompressible flow
in a rigid, homogeneous and saturated porous medium can be
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written as:

– Fluid

(ρcp)f∇ ·
[
φ(〈u〉i〈Tf〉i + 〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i)

]
= ∇ ·

[
kf∇(φ〈Tf〉i)

]
+ ∇ ·

[
1
�V

∫
Ai

nkfTf dS
]
+ 1
�V

∫
Ai

n · kf∇Tf dS

(10.127)

– Solid (Porous Matrix)

∇ ·
{
ks∇[(1− φ)〈Ts〉i]

}
− ∇ ·

[
1
�V

∫
Ai

nksTs dS
]
− 1
�V

∫
Ai

n · ks∇Ts dS = 0

(10.128)

Further, adding Eqs. (10.127) and (10.128), a global macroscopic energy
equation can be obtained:

(ρcp)f∇ ·
[
φ(〈u〉i〈Tf〉i + 〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i)

]
= ∇ ·

{
kf∇(φ〈Tf〉i)+ ks∇[(1− φ)〈Ts〉i]

}
+ ∇ ·

[
1
�V

∫
Ai

n(kfTf − ksTs)dS
]

+ 1
�V

∫
Ai

n · (kf∇Tf − ks∇Ts)dS (10.129)

where the applicable boundary conditions on the surface Ai are given by:

Tf = Ts
n · (kf∇Tf) = n · (ks∇Ts)

}
in Ai (10.130)

In view of the boundary conditions expressed by (10.130), one verifies that
the last term on the right-hand side of (10.129) vanishes (due to the heat flux
continuity at the fluid–solid interface). Thus, one can write:

(ρcp)f∇ ·
[
φ(〈u〉i〈Tf〉i + 〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i)

]
= ∇ · {kf∇[φ〈Tf〉i] + ks∇[(1− φ)〈Ts〉i]} + ∇ ·

[
1
�V

∫
Ai

n(kfTf − ksTs)dS
]

(10.131)

The model proposed by de Lemos and Rocamora (2002) for the macroscopic
turbulent heat flux follows the eddy-diffusivity concept embodied in (10.25)
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and reads,

−(ρcp)f〈u′T′f〉i = cpf
µtφ

σTφ
∇〈Tf〉i (10.132)

where µtφ is given by (10.64), σTφ is a constant, and the subscript f, as before,
identifies fluid phase properties. According to Eq. (10.132), the macroscopic
turbulent heat flux is taken as the sum of the turbulent heat flux and the tur-
bulent thermal dispersion, as proposed by Rocamora and de Lemos (2000a).
These two terms were related there to the components of the conductivity
tensor, Kt and Kdisp,t, respectively, by the expression,

Kt +Kdisp,t = φ cpf
µtφ

σTφ
I (10.133)

10.7.3 Local Thermal Equilibrium Hypothesis

The local thermal equilibrium hypothesis assumes that the intrinsic aver-
age of the time–mean temperature for fluid and solid phases are equal,
or say,

〈Tf〉i = 〈Ts〉i = 〈T〉i (10.134)

Thus, applying (10.134) in (10.131) one gets,

(ρcp)f∇ · (φ〈u〉i〈T〉i) = ∇ ·
{
[kfφ + ks(1− φ)]∇〈T〉i

}
+ ∇ ·

[
1
�V

∫
Ai

n(kfTf − ksTs)dS
]

− (ρcp)f∇ ·
{
φ(〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i)

}
(10.135)

Using further the Dupuit–Forchheimer relationship uD = 〈u〉v = φ〈u〉i, one
can rewrite (10.135) as:

(ρcp)f∇ · (uD〈T〉i) = ∇ ·
{
[kfφ + ks(1− φ)]∇〈T〉i

}
+ ∇ ·

[
1
�V

∫
Ai

n(kfTf − ksTs)dS
]

− (ρcp)f∇ ·
[
φ
(
〈iuiTf〉i + 〈u′〉i〈T′f〉i + 〈iu′iT′f〉i

)]
(10.136)
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The last three terms in (10.136) are additional unknowns coming from
application of both processes of averaging, namely, time and volume aver-
aging. As mentioned above, they represent dispersion due to the spatial
deviations, turbulent heat flux due to time fluctuations and turbulent dispersion
due to both time fluctuations and spatial deviations. Models for thermal disper-
sion and for turbulent heat flux have been applied on separate flows through
clear and porous domains, respectively. To the best of the author’s know-
ledge, no work in the literature has proposed a general model encompassing
all terms in (10.136).

10.7.4 Macroscopic Buoyancy Effects

10.7.4.1 Mean flow

Now focusing attention to buoyancy effects only, application of the volume-
average procedure to the last term of (10.22) leads to,

〈ρgβ(T − Tref)〉v = �Vf

�V
1
�Vf

∫
�Vf

ρgβ(T − Tref)dV (10.137)

Expanding the left-hand side of (10.137) in light of (10.14), the buoyancy term
becomes,

〈ρgβ(T − Tref)〉v = ρβφgφ(〈T〉i − Tref)+ ρgβφ〈iT〉i︸ ︷︷ ︸
=0

(10.138)

where the second term on the right-hand side is null since 〈iϕ〉i = 0. Here,
the coefficient βφ is themacroscopic thermal expansion coefficient. Assuming
that gravity is constant over the REV, an expression for it based on (10.138) is
given as,

βφ = 〈ρ β(T − Tref)〉v
ρ φ(〈T〉i − Tref)

(10.139)

Including (10.138) into the formulation of Pedras and de Lemos (2001a), the
macroscopic time–mean Navier–Stokes (NS) equation for an incompressible
fluid with constant properties is given as,

ρ∇ ·
(
uDuD
φ

)
= −∇(φ〈p〉i)+ µ∇2uD + ∇ · (−ρφ〈u′u′〉i)

− ρ βφgφ (〈T〉i − Tref)−
[
µφ

K
uD + cFφρ|uD|uD√

K

]
(10.140)
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10.7.4.2 Turbulent field

As mentioned, this work extends the development in Pedras and de Lemos’
(2001a) work to include the buoyancy production rate term in the turbulence
model equations. For clear flows, the buoyancy contribution to the k equation
is given in Eq. (10.27). Applying the volume-average operator to that term,
one has,

〈Gk〉v = Gi
β = 〈−ρ β g · u′T′f〉v = −ρ βk

φφ g · 〈u′T′f〉i (10.141)

where the coefficient βk
φ , for a constant value of g within the REV, is given

by βk
φ = 〈βu′T′f〉v/φ〈u′T′f〉i, which, in turn, is not necessarily equal to βφ

given by (10.139). However, for the sake of simplicity and in the absence of
better information, one canmake use of the assumption βk

φ = βφ = β. Further,
expanding the right-handsideof (10.141) in light of (10.14) and (10.34), onehas

−ρβk
φφg · 〈u′T′f〉i = −ρβk

φφg · 〈(〈u′〉i + iu′)(〈T′f〉i + iT′f)〉i

= −ρβk
φφg ·

(
〈〈u′〉i〈T′f〉i〉i + 〈iu′ iT′f〉i

+〈〈u′〉i iT′f〉i + 〈iu′〈T′f〉i〉i
)

= −ρβk
φφg ·


〈u〉i′〈Tf〉i′︸ ︷︷ ︸

I

+〈iu′iT′f〉i︸ ︷︷ ︸
II

+〈u′〉i〈iT′f〉i︸ ︷︷ ︸
=0

+〈iu′〉〈T′f〉i︸ ︷︷ ︸
=0




(10.142)

The last two terms on the right of (10.142) are null since 〈iT′f〉i = 0 and
〈iu′〉i = 0. In addition, the following physical significance can be inferred to
the two remaining terms on the right-hand side of (10.142):

I. Generation/destruction rate due tomacroscopic timefluctuations. Buoyancy
generation/destructions rate of 〈k〉 due to time fluctuations of macro-
scopic velocity and temperature. This term is also present in turbulent
flow in clear (nonobstructed) domains and represents an exchange
between the energy associatedwith themacroscopic turbulentmotion
and potential energy. In stable stratification, this term damps turbu-
lence by being of negative value whereas the potential energy of the
system is increased. On the other hand, in unstable stratification, it
enhances 〈k〉i at the expense of potential energy.

II. Generation/destruction rate due to turbulent buoyant dispersion. Buoyancy
generation/destruction rate of 〈k〉i in a porous medium due to
time fluctuations and spatial deviations of both microscopic velo-
city and temperature. This termmight be interpreted as an additional
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source/sink of turbulent kinetic energydue to the fact that timefluctu-
ations of local velocities and temperatures present a spatial deviation
in relation to their macroscopic value. Then, additional exchange
between turbulent kinetic energy andpotential energy in systemsmay
occur due to the presence of a porous matrix.

Amodel for (10.142) is still necessary in order to solve an equation for 〈k〉i,
which information is necessary when computing µtφ using (10.64). As such,
terms I and II above have to bemodeled as a function of average temperature,
〈T〉i. To accomplish this, a gradient typediffusionmodel is used, in the form,

• Buoyancy generation of 〈k〉i due to turbulent fluctuations:

−ρβk
φφg · 〈u〉i′ 〈Tf〉i′ = ρBt · ∇〈T〉i (10.143)

• Buoyancy generation of 〈k〉i due to turbulent buoyant dispersion:

−ρβk
φφg · 〈iu′ iT′f〉i = ρBdisp,t · ∇〈T〉i (10.144)

The buoyancy coefficients shown above, namelyBt andBdisp,t, aremodeled
here through the eddy-diffusivity concept, similar to the work of Nakayama
and Kuwahara (1999). It should be noticed that these terms arise only if the
flow is turbulent and if buoyancy is of importance.
Using an expression similar to (10.132), the macroscopic buoyancy genera-

tion of k can then be modeled as,

Gi
β = −ρβk

φφg · 〈u′T′f〉i = βk
φφ
µtφ

σTφ
g · ∇〈T〉i = Beff · ∇〈T〉i (10.145)

where µtφ and σTφ have been defined before and the two coefficients Bt and
Bdisp,t are expressed as,

Bt + Bdisp,t = Beff = βk
φφ
µtφ

σTφ
g (10.146)

Final transport equations for 〈k〉i = 〈u′ · u′〉i/2 and 〈ε〉i =
µ〈∇u′ : (∇u′)T〉i/ρ, in their so-called High Reynolds number form, as
proposed in Pedras and de Lemos (2001a), can now include the buoyancy
generation terms seen above, in the form,

ρ∇ · (uD〈k〉i) = ∇ ·
[(
µ+ µtφ

σk

)
∇(φ〈k〉i)

]
+ Pi + Gi + Gi

β − ρφ〈ε〉i

(10.147)
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ρ∇ · (uD〈ε〉i) = ∇ ·
[(
µ+ µtφ

σε

)
∇(φ〈ε〉i)

]

+ 〈ε〉
i

〈k〉i [c1P
i+ c2Gi+ c1c3Gi

β − c2ρφ〈ε〉i] (10.148)

where c1, c2, c3, and ck are constants, Pi = −ρ〈u′u′〉i :∇uD is the production
rate of 〈k〉i due to gradients of uD,Gi = ckρ(φ〈k〉i|uD|/

√
K is the generation

rate of the intrinsic average of 〈k〉i due to the action of the porous matrix and
Gi
β = Beff · ∇〈T〉i is the generation of 〈k〉i due to buoyancy.

10.8 Turbulent Mass Transport

10.8.1 Mean and Turbulent Fields

Mass transport analysis follows similar steps taken in Section 10.7 for heat
transfer. First, to apply the volume average to (10.4), one has:

m� = 〈m�〉i + im� (10.150)

u = 〈u〉i + iu (10.151)

Substituting (10.150) and (10.151) into (10.4), one obtains:

∂(〈m�〉i + im�)

∂t
+ ∇ · [(〈u〉i + iu)(〈m�〉i + im�)] = 〈R�〉i + iR� +D�∇2(〈m�〉i + im�)

(10.152)

where themixturedensityρ and the coefficientD� in (10.5) havebeenassumed
to be constant. Expanding the convection termand taking the volume average
of (10.152) with the help of (10.15) to (10.17), one has:

∂φ〈〈m�〉i + im�〉i
∂t

+ ∇ · [φ〈(〈u〉i〈m�〉i + iu〈m�〉i + 〈u〉i im� + iuim�)〉i]
= φ〈〈R�〉i + iR�〉i +D�〈∇2φ(〈m�〉i + im�)〉i (10.153)

or

∂φ〈m�〉i
∂t

+ ∇ · [φ(〈u〉i〈m�〉i + 〈iuim�〉i)] = φ〈R�〉i +D�∇2(φ〈m�〉i) (10.154)

The third term on the left of (10.154) appears in classical analysis of mass
transport in porous media (e.g. Hsu and Cheng, 1990; Whitaker, 1967) and is
known as mass dispersion.
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In order to apply the time average to (10.154), one defines the intrinsic
volume average as:

〈m�〉i = 〈m�〉i + 〈m�〉i′ (10.155)

〈u〉i = 〈u〉i + 〈u〉i′ (10.156)

Substituting Eqs. (10.151) and (10.156) in (10.154) and taking the time average,
we obtain:

∂φ〈m�〉i
∂t

+ ∇ · φ(〈u〉i 〈m�〉i + 〈u〉i′ 〈m�〉i′ + 〈iuim�〉i) = φ〈R�〉i +D�∇2(φ〈m�〉i)
(10.157)

Equation (10.157) is the macroscopic mass transfer equation for the species
� in the porous matrix taking first the volume average followed by the time
average.
Another route to reach amacroscopic transport equation for turbulent flow,

is to invert the order of application of the same average operators applied
to Eq. (10.4). Therefore, starting now with the time average, one needs to
consider the time decompositions,

m� = m� +m′� (10.158)

u = u+ u′ (10.159)

Substituting Eqs. (10.158) and (10.159) into (10.4) one has:

∂(m� +m′�)
∂t

+ ∇ · [(u+ u′)(m� +m′�)] = R� + R′� +D�∇2(m� +m′�)
(10.160)

where again the mixture density ρ and the diffusion coefficient D� were kept
constants. Applying time average to (10.160) one obtains,

∂(m� +m′�)
∂t

+ ∇ · (um� + um′� + u′m� + u′m′�) = R� + R′� +D�∇2(m� +m′�)
(10.161)

or

∂m�

∂t
+ ∇ · (um� + u′m′�) = R� +D�∇2m� (10.162)

The second term on the left of Eq. (10.162) is known as turbulent mass flux
(divided by ρ). It requires a model for closure of the mathematical problem.
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Further, in order to apply the volume average to Eq. (10.162), onemust first
define the spatial deviations with respect to the volume averages, given by:

m� = 〈m�〉i + im� (10.163)

u = 〈u〉i + iu (10.164)

Now substituting Eqs. (10.163) and (10.164) into (10.162) and performing the
volume-average operation, one has:

∂φ〈m�〉i
∂t

+ ∇ · φ(〈u〉i〈m�〉i + 〈iuim�〉i + 〈u′m′�〉i) = φ〈R�〉i +D�∇2φ〈m�〉i
(10.165)

Equation (10.165) is themacroscopicmass diffusion equation for taking first
the time average followed by the volume-average operator.
It is interesting to observe that Eq. (10.157), obtained through the first

procedure (volume-time average), is equivalent to Eq. (10.165) as will be
shown in the next section.

10.8.2 Turbulent Mass Dispersion

Now using Eqs. (10.34) to (10.38), the fourth term on the left-hand side of
(10.157) can be expanded as:

〈iuim�〉i = 〈(iu+ iu′)(im� + im′�)〉i = 〈iuim�〉i + 〈iu′ im′�〉i (10.166)

Substituting Eq. (10.166) into Eq. (10.157), the convection term will read,

∇ · (φ〈um�〉i)=∇ ·
{
φ(〈u〉i 〈m�〉i+〈iuim�〉i+〈u〉i′〈m�〉i′ + 〈iu′im′�〉i)

}
↑ ↑ ↑ ↑
I II III IV

(10.167)

Likewise, applying again Eq. (10.34) to (10.38) to the fourth term on the left-
hand side of (10.165), one gets,

〈u′m′�〉i = 〈(〈u′〉i + iu′)(〈m′�〉i + im′�)〉i = 〈u′〉i〈m′�〉i + 〈iu′im′�〉i (10.168)
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Also, plugging Eq. (10.168) into (10.165) will give for the same convection
term,

∇ · (φ〈um�〉i)=∇ ·
{
φ(〈u〉i〈m�〉i+〈iuim�〉i+〈u′〉i〈m′�〉i+〈iu′im′�〉i)

}
↑ ↑ ↑ ↑
I II III IV

(10.169)

Comparing Eq. (10.169) with (10.167), in light of Eq. (10.34), one can conclude
that Eq. (10.165) is, in fact, equal to Eq. (10.157). This demonstrates that the
final expanded form of the macroscopic mass transfer equation for a rigid,
homogeneous porous medium saturated with an incompressible fluid does
not depend on the averaging order and both procedures lead to equivalent
results.
Further, the four terms on the right of either Eq. (10.167) or (10.169) could

be given the following physical significance (multiplied by ρ):

I. Convective Mass Flux based on macroscopic time–mean velocity and
mass fraction.

II. Mass Dispersion associatedwith deviations ofmicroscopic time–mean
velocity and mass fraction. Note that this term is also present when
analyzing laminarmass transfer in porousmedia, but it does not exist
if a volume average is not performed.

III. Turbulent Mass Flux due to the fluctuating components of both mac-
roscopic velocity and mass fraction. This term is also present in
turbulent flow in clear (nonporous) domains. It is not defined for
laminar flow in porous media where time fluctuations do not exist.

IV. Turbulent Mass Dispersion in a porous medium due to both time fluc-
tuations and spatial deviations of both microscopic velocity and mass
fraction.

Thus, the macroscopic mass transport equation for an incompressible flow
in a rigid, homogeneous and saturated porous medium can be written as:

∂φ〈m�〉i
∂t

+ ∇ · φ(〈u〉i〈m�〉i + 〈iuim�〉i + 〈u′〉i〈m′�〉 + 〈iu′im′�〉i)
= φ〈R�〉i +D�∇2(φ〈m�〉i) (10.170)

or in its equivalent form (see de Lemos and Mesquita, 2003),

∂φ〈m�〉i
∂t

+ ∇ · φ(〈u〉i 〈m�〉i + 〈iuim�〉i + 〈u〉i′〈m�〉i′ + 〈iu′im′�〉i)

= φ〈R�〉i +D�∇2(φ〈m�〉i) (10.171)
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10.9 Applications in Hybrid Media

Detailed information on the numerical treatment used in the examples below
is found in Pedras and de Lemos (2001a, 2001b, 2001c, 2003). For this reason,
they are not repeated here. Also, in the numerical results to follow, standard
wall functions have been employed to calculate the flow in the proximity
of channel walls. Justification for using such simple treatment is twofold:
(a) final velocity values close to the interface will be a function not only of
the inertia and viscous effects in the full Navier–Stokes equation, but also
due to the Darcy–Forchheimer resistance terms. Therefore, eventual errors
occurring from inaccurate use of amore appropriate boundary conditionwill
have little influence on the final value for the velocity close to the wall since
drag forces, caused by the porous structure, will also play an important role in
determining the final value for the wall velocity; (b) logarithm wall laws are
simple and can be incorporatedwhen simulating flowover rigid surfaces and
for that they have beenmodified to include surface roughness and to simulate
flows over irregular surfaces at the bottom of rivers (Lane and Hardy, 2002).
In addition, it is interesting to emphasize that the class of flows under con-

sideration is akin to having a sequence of closely spaced grids in a flow with
a flat macroscopic Darcy velocity profile. Mechanical energy is transformed
into turbulent kinetic energy as the flow crosses and is perturbed by the por-
ous matrix. This interpretation of the model used here has been detailed in
de Lemos and Pedras (2001a).

10.9.1 The Stress Jump Conditions at Interface

The equation proposed in Ochoa-Tapia and Whitaker (1995a, 1995b) for
describing the stress jump at the interface between the clear flow region and
the porous structure is given by,

µeff
∂uDp

∂η

∣∣∣∣
Porous Medium

− µ ∂uDp

∂η

∣∣∣∣
Clear Fluid

= β µ√
K

uDp

∣∣∣
Interface

(10.172)

where uDp is the Darcy velocity component parallel to the interface, µeff is
the effective viscosity for the porous region, and β an adjustable coefficient
that accounts for the stress jump at the interface (do not confuse with the
thermal expansion coefficient β defined in equation 10.7). A justification for
using (10.172) lies in the fact that simpler analyses of flow around interfaces
consider the permeability of the porous medium to be constant, even within
the interface region. This assumption, however, does not correspond to reality
since the closer the interface the more permeable the medium becomes.
It is important to emphasize that the macroscopic model for the inter-

face employed here makes no assumption about the topology of the surface,
nor is this interface the one existing in transpired solid walls. Although the
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microscopic interfacial area surrounding the irregular geometry of solid
particles facing the clear medium may be characterized by statistical values,
such as an average thickness or roughness, in the present macroscopic view
no such thickness or roughness is associated with the interface. In fact, in
Kaviany (1995, p. 71), the order of magnitude of the roughness of the inter-
face is of order of d (pore/particle diameter), which is much higher than

√
K,

another length associated with permeable media. Had the interface rough-
ness been considered, it would be of the order of d, the mean particle/pore
diameter. Here, irregular or rough boundaries between the porous medium
and the clear fluid are treated under the macroscopic view and, as such,
no statistical value of interface thickness is attributed to the modeled sur-
face separating the two media. Likewise, transpired walls made of a porous
substrate with extremely small porous sizes are not treated here. Also, the
macroscopic velocity at the interface and on its surroundings is assumed to
be of sufficient value such that a viscous sublayer similar to the one existing
over impermeable surfaces is not present in the context herein.
In addition to Eq. (10.172), continuity of velocity, pressure, statistical

variables, and their fluxes across the interface is given by,

uD|0<φ<1 = uD|φ=1 (10.173)

〈p〉i
∣∣∣
0<φ<1

= 〈p〉i
∣∣∣
φ=1 (10.174)

〈k〉v∣∣0<φ<1 = 〈k〉v∣∣φ=1 (10.175)(
µ+ µtφ

σk

)
∂〈k〉v
∂y

∣∣∣∣
0<φ<1

=
(
µ+ µt

σk

)
∂〈k〉v
∂y

∣∣∣∣
φ=1

(10.176)

〈ε〉v∣∣0<φ<1 = 〈ε〉v∣∣φ=1 (10.177)(
µ+ µtφ

σε

)
∂〈ε〉v
∂y

∣∣∣∣
0<φ<1

=
(
µ+ µt

σε

)
∂〈ε〉v
∂y

∣∣∣∣
φ=1

(10.178)

Further, the extension of Eq. (10.172) to the case of turbulent flow can be
given as,

(µeff + µtφ )
∂uDp

∂y

∣∣∣∣
0<φ<1

− (µ+ µt)
∂uDp

∂y

∣∣∣∣
φ=1
= (µ+ µt)

β√
K

uDi

∣∣
Interface

(10.179)

Equations (10.173) and (10.174) were also proposed by Ochoa-Tapia and
Whitaker (1995a, 1995b) whereas relationships (10.175) through (10.179) were
used by Lee andHowell (1987). Laminar (Silva and de Lemos, 2003a) and tur-
bulent (Silva and de Lemos, 2003b) flow solutions using the above interface
conditions applied to channel flows have been presented. Further, one should
point out that condition (10.179) is valid along the macroscopic surface area
dividing the clear and the porous regions. Application of the volume-average
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operators to a representative elementary volume (Whitaker, 1969; Gray and
Lee, 1977) gives rise to terms such as the Darcy and Forchheimer flow res-
istances (Kuznetsov, 1996, 1999; Ochoa-Tapia and Whitaker, 1995a, 1995b),
which are not presented here when analyzing macroscopic interfacial areas.

10.9.2 Buoyant Flows in Cavities Partially Filled with Porous Inserts

The problem considered is a horizontal two-dimensional square cavitywith a
porous plate positioned at the cavity at mid height. The cavity is isothermally
heated from the bottom and cooled on the top surface. The sidewalls are kept
insulated. For laminar flow the no-slip condition is applied to the velocity
field at the walls. For the turbulent regime, the wall function approach is
used. The Rayleigh number is calculated as in the case of a clear cavity.
Calculations for turbulent flowwere performed for all cases using a 50×50

regular grid. From left to right Figure 10.2 shows the isotherms, streamlines,
and isolines of turbulent kinetic energy, respectively, for Ra ranging from
4 × 104 to 107. For Ra = 102 (results not shown here), the isotherms are
stratified and the main mechanism of heat transfer is conduction. For Ra =
4 × 104, Figure 10.2 (top), a plume rises from the bottom of the heated wall
impinging onto the porous plate. The flow is divided into four vortices, two
on each side of the porous obstruction and the generation rates of turbulent
kinetic energy remain small, expect close to the walls. Increasing Ra to 106,
Figure 10.2 (middle), the plume becomes stronger, impinging through the

FIGURE 10.2
Turbulent isotherms, streamlines, and isolines of k for a square cavity with a porous
obstruction, Rayleigh number Ra = 4 × 104 (top), 106 (middle), and 107 (bottom); φ = 0.95
and K = 0.2382 × 10−5 m2. (Compiled from Braga, E. J. and de Lemos, M. J.S., 2003, Turbulent
Heat Transfer in a Horizontal Enclosure with a thin Porous Obstruction in the Middle, Paper
IMECE2003–41463, Proc. of IMECE’03–2003 ASME International Mechanical Engineering Congress.
With permission.)
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FIGURE 10.3
Turbulent kinetic energy around awavy interface: (a) a = 1/3,n = 1, (b) a = 2/3,n = 2, where a is
the amplitude and n the wave number. (Taken from de Lemos and Silva, 2003, Turbulent Flow
Around a Wavy Interface Between a Porous Medium and a Clear Domain, Paper FEDSM2003–
45457, Proc. of ASME–FEDSM 2003 4th ASME/JSME Joint Fluids Engineering Conference. With
Permission.)

porous obstruction more intensively. The vortices turn a little faster than
before (not seen in the figure) and high generation rates of turbulent kinetic
energy are clearly detected, mainly inside and in the vicinity of the porous
obstruction. The porousmatrix contributes to the overall levels of 〈k〉i through
the two terms added to Eq. (10.147), namely Gi and Gi

β , proposed in Pedras
and de Lemos (2001a) and de Lemos and Braga (2003), respectively. For Ra =
107, Figure 10.2 (bottom), computations show that two plumes arise from the
porous obstruction, andmove in opposite directions toward the heatedwalls.
Further investigation is necessary to determinewhether the observed pattern
is due to the physics of the problem, or else is the sole outcome of numerical
sensitivity to the computational parameters used.

10.9.3 Flow Around a Sinusoidal Interface in a Channel

Finally, Figure 10.3 presents numerical solutions for the turbulent kinetic
energy of the flow around a wavy interface in a channel. We can see that at
positions corresponding to peaks of the interface, the values of k are higher. In
these positions, the velocity at the clear region is accelerated further increas-
ing velocity gradientswithin the clear passage. This, in turn, promotes higher
k generation rates through the Pi term in Eq. (10.147). On the other hand,
within the porous matrix, and around the same peaks, higher velocities pro-
mote additional generation rates for k, here considered via the Gi term in
Eq. (10.147). Thus, either by gradients of the mean velocity in the clear fluid
or by higher mass fluxes in the porous layer, a greater portion of the available
mechanical energy around the peaks is converted into turbulence. These res-
ultsmightbenefit studiesofflowaround irregular interfacesbetweenaporous
matrix and a clear fluid region.

10.10 Concluding Remarks

This chapter described a new methodology for analysis of turbulent flow in
permeable media. A novel concept called the double-decomposition idea was
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detailed showing howavariable can be decomposed in both time andvolume
inorder to simultaneously account forfluctuations (in time) anddeviations (in
space) aroundmean values. Transport equations for themean and turbulence
flowwere presented, including consideration of heat transfer with buoyancy
and mass transport.
The usefulness of this research might be better appreciated when study-

ing transport over highly permeable media where the turbulence flow
regime occurs in the fluid phase. Analyses of important environmental and
engineering flows can benefit from the derivations herein and, ultimately, it
is expected that additional research on this new subject will be stimulated by
the work presented here.
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Nomenclature

Ai interfacial area
ck constant in the extra production term for k-equation
D rod diameter
H height of periodic cell
k turbulence kinetic energy (TKE), k = u′ · u′/2
〈k〉i intrinsic (fluid) average for k, 〈k〉i = 〈u′ · u′〉i/2
km TKE based on the fluctuation of 〈u〉i, km = 〈u′〉i · 〈u′〉i/2
kφ fully developed value of 〈k〉i
K medium permeability
p pressure
Rep pore Reynolds number
ReH Reynolds number based on H
S length of periodic cell, S = 2H
T temperature
u microscopic velocity vector
uD Darcy velocity vector
〈u〉i intrinsic velocity vector
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uDn , uDp components of Darcy velocity at interface along η (normal) and
ξ (parallel) directions, respectively

uDi , vDi components of Darcy velocity at interface along x and y,
respectively

Greek Letters

β interface stress jump coefficient
ε dissipation rate of k, ε = µ∇u′ : (∇u′)T/ρ
〈ε〉i intrinsic (fluid) average for ε
εφ fully developed value of 〈ε〉i
λ thermal conductivity
�V representative elementary volume
�Vf volume of fluid inside �V
ϕ general variable
φ porosity
〈ϕ〉i intrinsic (fluid) average of ϕ
iϕ spatial deviation from intrinsic average of ϕ
µtφ macroscopic coefficient of exchange for porous media
µ fluid viscosity
µeff effective viscosity for a porous medium
σk turbulent Prandtl number for 〈k〉i
σε turbulent Prandtl number for 〈ε〉i
ρ fluid density
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Summary

An improved microscopic phenomenological model and its numerical
solution, and experimental validation for fine particle migration and
deposition in porous media are presented. The mathematical model of
Gruesbeck and Collins (“Entrainment and Deposition of Fine Particles in
Porous Media,” SPEJ, 22(6), 847–856, 1982) with the modifications and
improvements made here and proposed by Civan (Reservoir Formation Dam-
age — Fundamentals, Modeling, Assessment, and Mitigation, Gulf Pub. Co.,
Houston, TX, and Butterworth-Heinemann, Woburn, MA, 742 pp. 2000) is
facilitated and applied.

A bundle of plugging and nonplugging parallel capillary pathways with
exchange model of porous media is developed in order to represent the
particle andfluid transferprocesses associatedwith theflowofaparticle–fluid
suspension throughporousmedia. Relatively smootherflowpathshaving lar-
ger cross-sectional areas are classified as the nonplugging pathways, which
primarily undergo surface deposition and sweeping processes. Highly tor-
tuous flow paths having significantly varying cross-sectional areas are called
the plugging pathways, along which the particle bridges formed across the
pore throats may interrupt the particle migration and limit the flow of the
carrier fluid. Simultaneously, particle transfer between the plugging and
nonplugging pathways is allowed bymeans of cross-flow. Thismodel is used
to simulate the porosity and permeability reduction, and the evolution of the
plugging and nonplugging pathways by particle deposition in porousmedia.

The model is solved numerically by means of the method of lines approach
and the results are shown to compare favorably with experimental data
involving typical laboratory core tests undergoing suspension injection.
The values of the various phenomenological parameters are determined by
matching the simulation results to the measured data. The improved model
provides an accurate representation of the phenomena resulting from the fine
particle deposition and provides valuable insights into the consequences of
fine particle migration through the plugging and nonplugging pathways in
porous media.

11.1 Introduction

Impairment of porous media due to migration and deposition of particles
has long been known to have a profound effect on the performance of the
production and injection wells. Particle migration and deposition are the
primary culprits for porous formation damage measured as permeability
reduction during petroleum reservoir exploitation [1]. Formation damage
may occur as a result of various types of particulate processes involving
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drilling mud invasion, oil and gas production from petroleum reservoirs,
injection of particle containing fluids into porous media, hydraulic fractur-
ing of wells completed into subsurface reservoirs, and work-over operations
applied to wells [1]. Therefore, appropriate considerations should be given to
the modeling of the effects of the various particulate phenomena in the pre-
diction of the porous media impairment and reduction of well performance.

There are various mechanisms causing permeability impairment and
formation damage processes involving the flow of particulate suspension
through porous media, such as surface deposition and sweeping, pore-throat
plugging, and internal pore-filling. Previous studies have shown that form-
ation damage can be a result of one of these mechanisms or a combination
of them. Gruesbeck and Collins [2] developed a partial differential equation
type model based on the concept of parallel flow of suspension of particles
through the plugging andnonplugging pathways as illustrated in Figure 11.1.
The porous media depicted in Figure 11.1 has a bimodal pore structure incor-
porating the attributes of the plugging and nonplugging pathways. A typical
measured data of the pore and pore-throat size distributions of geological
porous formations indicate bimodal distributions including a coarse grains
region containing thenonpluggingpathways andafinegrains region contain-
ing the plugging pathways [1]. However, Gruesbeck and Collins [2] provide
only an incomplete set of input data as to the actual values of the various
parameters used in their simulation studies. Thus, it is impossible to verify
the validity of their model and reproduce their simulation results.

The parallel pathways model originally presented by Gruesbeck and
Collins [2] has several shortcomings. They assumed that the plugging
and nonplugging pathways are interconnected and therefore hydraulically

Interconnectivity Plugging paths with
bottlenecked pore throats

Plugging paths with
tortuous pathways

q

�in �out

Nonplugging paths with
tube like pathways

FIGURE 11.1
Realization of plugging andnonpluggingparallel pathwayswith exchange for particlemigration
and deposition in porous media.
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communicating. However, they did not allow for particle exchange between
these pathways. The most limiting assumption is the consideration of the
same particle concentrations in both the plugging and nonplugging path-
ways. They also assumed the fractions of the plugging and nonplugging
pathways to remain constant, which is not a true representation of the por-
ous media undergoing an alteration. As demonstrated here, the bulk volume
fractions of the porous medium containing such pathways generally vary as
the simultaneous entrainment and deposition of particles progress. Further,
some of their formulations required corrections as pointed out by Civan [1,3]
and here. Civan [3] made some improvements and generalizations to the
model but he did not provide any numerical results for this modified model
and a verification of it with experimental data.

Here, we develop a numerical solution scheme for the improved
plugging–nonplugging parallel pathways model of Civan [1,3] after further
minor improvements made here, and validate it against the experimental
data ofGruesbeck andCollins [2]. First, the formulation for thephenomenolo-
gical model and the methodology for determination of the model parameters
are presented. Then a method of lines numerical scheme implementing the
finite difference formulae for algebraic approximations of the spatial deriv-
atives is developed to solve the problem. The applications of the model and
the parameter estimation method are demonstrated using several examples.
Finally, the testing and validation of the improved model with experimental
data for impairment of porous media by particle migration and depos-
ition is presented. The values of the various phenomenological parameters
and comparison of the simulation results with experimental data are also
provided.

11.2 Improved Plugging–Nonplugging Parallel Pathways
Model

The porous medium is assumed incompressible, homogenous, and isotropic.
The fluid is considered incompressible and Newtonian. The flow is single-
phase, one-dimensional rectilinear, horizontal, and Darcian. The overall
system is isothermal. The fine particles involving the various particulate pro-
cesses are relatively smaller than the pore size, incompressible, and rigid. The
physical properties of the particles and the carrier fluid are constant.

11.2.1 Plugging and Nonplugging Pathways with Exchange Model of
Porous Media

The central andunique concept of the presentmodel is the visualization of the
flow paths in the form of a bundle of capillary parallel pathways interacting
with each other through cross-flow as depicted in Figure 11.1.
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Two different types of pathways are distinguished in porous media
depending on the involved mechanisms of fines retention. Smoother flow
paths having larger cross-sectional areas can undergo surface deposition
and sweeping processes. Surface deposition narrows the flow tubes without
obstructing the fluid flow. These paths are called nonplugging. The nonplug-
ging pathways cannot be completely clogged with particles because as the
pore diameter is reduced by surface deposition, the interstitial fluid velo-
city increases to attain the critical particle mobilization condition necessary
for sweeping of the pore surface deposits. On the other hand, the highly
tortuous flow paths having significantly varying cross-sectional areas are
called the plugging pathways. The particles approaching the constrictions,
called the pore throats, may interrupt the flow along such paths by forming
particle bridges across the pore throats. Then, the fluid is diverted to other
flowpaths. The particle concentrations of the fluids flowing through the plug-
ging and nonplugging pathways are different because of the different particle
depositionmechanisms involved along such paths and the cross-flowparticle
transfer occurring across these paths [1,3].

11.2.2 Porosity

Following Civan [1,3], φpo and φnpo indicate the initial pore volume fractions
of the plugging and nonplugging pathways in porous media. The symbols
εp and εnp denote the bulk volume fractions occupied by the particle deposits
in the respective flowpaths. The instantaneous porosities in the plugging and
nonplugging flow pathways and the total porosity of the porous medium are
given, respectively, by:

φp = φpo − εp (11.1)

φnp = φnpo − εnp (11.2)

φ = φp + φnp (11.3)

Hence, the overall porosity decreases as the porosity of the plugging and
nonplugging pathways decrease by particle deposition.

11.2.3 Fractions of Porous Media Containing the Plugging and
Nonplugging Pathways

The bulk volume fractions fp and fnp of porousmedia containing the plugging
and nonplugging pathways, respectively, vary due to the net deposition of
particles. The plugging and nonplugging pathways volume fractions of the
porous medium are approximated, respectively, as [3]:

fp ∼= φp

φ
(11.4)
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fnp ∼= φnp

φ
(11.5)

Equations (11.3) to (11.5) yield:

fp + fnp = 1 (11.6)

11.2.4 Permeability

The permeability of the plugging and nonplugging pathways is given,
respectively, by [4–7]:

Kp = Kpo exp
[
−αεn1p

]
(11.7)

Knp = Knpo

[
1− εnp

φnpo

]n2
(11.8)

where n1 and n2 are empirical parameters. Equation (11.7) expresses the rapid
permeability reduction by particle accumulation behind the obstructed pore
throats. Equation (11.8) expresses the gradual permeability reduction by pore
narrowingdue toparticledepositionover thepore surface. Then the fractional
plugging and nonplugging pathways’ weighted average permeability of the
porous medium is given by [4,8]:

K = fpKp + fnpKnp (11.9)

The arithmetic weighted average as described here is appropriate in the
present case dealing with a cross-sectional area of a bulk porous medium
which is normal to the flow associated with the plugging and nonplugging
typepathways, throughwhich theflowsareparallel to eachother. Thevalidity
of this approachhasbeenproven independentlybyCivan [4] andSchechter [8]
by applying Darcy’s law for parallel flow. Had different property of porous
media in series been considered in the flow direction, a harmonic average
permeability would have to be resorted.

Combining Eqs. (11.7) to (11.9) yields [4–7]:

K = fpKpo exp
[
−αεn1p

]
+ fnpKnpo

[
1− εnp

φnpo

]n2
(11.10)

11.2.5 Volumetric Flux of the Particle-Carrier Fluid Suspension

Assuming that the plugging and nonplugging pathways may interact with
each other, the fluid fluxes through these pathways are expressed over the
bulk cross-sectional area of porous media, respectively, by the following
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expressions modified after Gruesbeck and Collins [2]:

up = fpKp

K
u (11.11)

unp = fnpKnp

K
u (11.12)

Applying Eqs. (11.6), (11.9), (11.11), and (11.12), it can be shown that the total
volumetric flux through porous media is given by:

u = up + unp (11.13)

Note that Gruesbeck and Collins [2] expressed the fluid fluxes through the
individual cross-sectional areas of the plugging and nonplugging regions of
the porous media instead of expressing them over the total cross-sectional
area of the bulk porous media. Therefore, Eqs. (11.11) through (11.13) are
different than those presented by Gruesbeck and Collins [2]. The present
approach provides an expression for the total volume flux consistent with the
usual convention for porous media flow formulation based on the total bulk
porous cross-sectional area normal to the flow.

11.2.6 Particle Deposition Kinetics

Different kinetic laws govern the rate of fine particle deposition in different
pathways. The rate of particle deposition in the plugging pathways is given
by, considering that the pores will be filled following the particle bridging of
the pore throats:

∂εp

∂t
= (δ + kpφp)upσp (11.14)

εp = εpo at t = 0 (11.15)

where σp is the volume fraction of particles in the fluid flowing through
the plugging pathways, δ the pore-throat plugging constant, and kp the
pore-filling rate constant given by:

kp �= 0, for t > tcr when β < βcr,

kp = 0, otherwise
(11.16)

where tcr is a critical time, representing the instant that the pore throats are
first obstructed by particles. The parameter β = Dpt/Dp denoting the ratio of
the pore-throat diameter Dpt to particle diameter Dp is given by [9]:

1
β
∼= Dp(µm)

30.0
√
K(Darcy)

(11.17)
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The critical value βcr of β required for obstruction of the pore throats is
determined by the following dimensionless correlation [1]:

βcr = A(Rep)B + C (11.18)

where A, B, C are some empirical constants and Rep is the particle Reynolds
number given as:

Rep = ρpσpDpτup/(µφp) (11.19)

where ρp is the particle density, µ is the particle-carrier fluid suspension
viscosity,Dp is the mean particle diameter, and τ denotes the tortuosity of the
flow path defined as the ratio of the hydraulic flow tube length to the porous
media length. Thus, pore-throat obstruction does not occur when the value
of β is greater than its critical value βcr determined by Eq. (11.18).

Note that Eq. (11.14) is slightly different than the original equation of Civan
[1] in that it introduces a pore-throat plugging constant δ. This constant
accounts for the gradual particle buildup at the pore throat in a manner to
reduce its diameter gradually until the initiation of the pore-throat obstruc-
tion by particle bridging. This process continues as long as β is less than βcr.
Thereafter, the pore throat is completely obstructed by particles. Then, the
particles pile up in the pore space behind the clogged pore throats in the
plugging pathways as long as the carrier fluid can filter through the space in
between the deposited particles.

The rate of deposition in the nonplugging pathways is expressed by
[1,3,5–7]:

∂εnp

∂t
= kdunpσnpφ2/3

np − keεnpφ2/3
np ηe(τnp − τcr) (11.20)

εnp = εnpo at t = 0 (11.21)

The first term on the right side of Eq. (11.20) accounts for the surface depos-
ition and the second term accounts for the mobilization and sweeping of
particles attached to the surface. Here, kd and ke denote the surface deposition
and mobilization rate constants, respectively. The mobilization rate constant
is assigned the values of

ke �= 0 for τnp ≥ τcr
ke = 0 for τnp < τcr

(11.22)

where τnp is the wall shear stress and τcr is the critical shear stress required
for sweeping of particles from the surface deposits.

© 2005 by Taylor & Francis Group, LLC



Particle Migration and Deposition in Porous Media 465

Assuming a Newtonian fluid behavior, the parameter τnp is the wall shear
stress estimated according to the equation, given by:

τnp = 8µvnp/Dnp (11.23)

where µ is the suspension viscosity. vnp is the interstitial velocity, expressed
by the Dupuit relationship as:

vnp = τunp/φnp (11.24)

where τ denotes the tortuosity of the flow path defined as the ratio of the
hydraulic flow tube length to the porous media length. Dnp is the mean pore
diameter in the nonplugging pathways given by [9]:

Dnp ∼= C14
√

2τ

√
Knp

φnp
(11.25)

where C1 is an empirical shape factor. Equation (11.23) can only provide a
macroscopic average value of the shear stress over the representative volume
element of porous media, in which the shear stress vary by position due to
the local differences in the pore space attributes and interstitial fluid velocity.

The critical shear stress τcr is a characteristic value essentially depending
on the interaction forces between the particles and the pore surface. It can be
predicted theoretically using the following expression [10]:

τcr = H/(24Dpl2) (11.26)

whereDp is the average particle diameter, l is the separation distance between
the particles present at the pore surface, and H = 3.0 × 10−13 erg is the
Hamaker coefficient. However, this equation may only provide a first-order
accurate estimate value because the ideal theory omits the effect of sur-
face roughness and particle stickiness on the critical shear stress required
for particle sweeping from the pore surface [11,12]. The critical shear stress
or critical interstitial fluid velocity can be determined more accurately by
experimental methods as demonstrated by Gruesbeck and Collins [2].

A fraction of the particles attached to the pore surface may have been
covered by a multilayer particle deposition and therefore prevented from
entrainment by the flowing suspension. The fraction ηe of the uncovered
deposits available for sweeping from the pore surface is estimated by [13]:

ηe ∼= exp(−kεnp) (11.27)

where k denotes an empirical factor.
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11.2.7 Particle Transport

Considering different particle concentrations in the plugging and
nonplugging pathways, and neglecting the particle transport by dispersion,
the one-dimensional total volumetric balances of the particles are expressed
separately in the plugging and nonplugging paths [1,3]. The volumetric
balance equations for the water (flowing carrier fluid) and fine particles
(migrating plus deposited particles) in the plugging pathways are given,
respectively, by [1]:

∂

∂t
(φpσwp)+ ∂

∂x
(upσwp) = q̇wp (11.28)

∂

∂t
(φpσp + εp)+ ∂

∂x
(upσp) = q̇p (11.29)

The water and particle fractions in the flowing fluid add up to one:

σwp + σp = 1 (11.30)

Combining Eqs. (11.28) to (11.30) yields the volumetric balance equation for
the particles in the suspension flowing through the plugging pathways, as:

φp
∂σp

∂t
+ up ∂σp

∂x
+ (1− σp)∂εp

∂t
= (1− σp)q̇p − σpq̇wp ≡ q̇ep (11.31)

where q̇ep represents the rate of the effective particle transfer from the plug-
ging to nonplugging pathways. Similarly, the volumetric balance equation
for the particles in the fluid flowing through the nonplugging pathways can
be expressed by:

φnp
∂σnp

∂t
+ unp ∂σnp

∂x
+ (1− σnp)∂εnp

∂t
= (1− σnp)q̇np − σnpq̇wnp ≡ q̇enp

(11.32)

where q̇enp represents the rate of the effective particle transfer from the
nonplugging to plugging pathways. The rate of particle exchange between
the plugging and nonplugging pathways is expressed by:

q̇ep = −q̇enp = κ(σp − σnp) (11.33)

where κ is the effective particle transfer coefficient. Combining Eqs. (11.31)
to (11.33) yields the following expressions for particle transport in different
pathways:

φp
∂σp

∂t
+ up ∂σp

∂x
+ (1− σp)∂εp

∂t
= κ(σp − σnp) (11.34)
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φnp
∂σnp

∂t
+ unp ∂σnp

∂x
+ (1− σnp)∂εnp

∂t
= −κ(σp − σnp) (11.35)

The initial and boundary conditions are given by:

σp = σnp = 0, 0 ≤ x ≤ L, t = 0 (11.36)

σp = σnp = σin, x = 0, t > 0 (11.37)

where σin denotes the particle volume concentration in the injection
fluid.

11.2.8 Average Particle Deposition and Overall Pressure Difference
in a Core Plug

In experimental studies using core plugs, usually the net amount of particle
deposition is determined by the difference in particle concentrations between
the injected and the effluent solutions. However, the overall pressure drop
across the core plug is directly measured. For validation of the model,
it is necessary to compare the model predictions with the experimental
measurements on the same basis.

The core-length average cumulative volume of particles deposited per unit
volume of porous media is given by:

ε(t) = εp(t)+ εnp(t) ≡ 1
L

∫ L

0

[
εp(t)+ εnp(t)

]
dx (11.38)

Gruesbeck andCollins [2] report their particle deposition data in core plugs
based on the initial pore volume (ε/φo), whereas the above formulation
considers particle deposition per unit bulk volume basis (ε). Therefore, the
difference between them is a factor of the initial porosity φo.

The pressure drop across a core plug can be calculated readily usingDarcy’s
law given as:

u = q
A
= −K(x, t)

µ

∂P(x, t)
∂x

(11.39)

Therefore, integrating Eq. (11.39) over the core length for constant rate flow
yields [14]:

�P(t) = Pout − Pin =
∫ Pout

Pin

∂P(x, t) = −µ u
∫ L

0

dx
K(x, t)

(11.40)
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The initial pressure drop for homogeneous porous media with constant
permeability Ko is given by:

�Po = �P(0) = −µ u LKo
(11.41)

Hence, using Eqs. (11.40) and (11.41), the overall pressure drop ratio over the
core length is expressed by:

�P(t)
�Po

= Ko

L

∫ L

0

dx
K(x, t)

(11.42)

11.3 Numerical Solution

For a prescribed set of values of the various phenomenological parameters
Eqs. (11.14), (11.15), (11.20), (11.21), (11.34), and (11.37) can be solved sim-
ultaneously to obtain the quantities εp, εnp, σp, and σnp as a function of
time (or in number of pore volumes) and distance along the core length.
Other useful quantities such as the cumulative particle deposition over the
core length (ε̄) and the overall pressure drop across the core (�P) can be
deduced by appropriate integration according to Eqs. (11.38) and (11.42).
Solutions to these equations yield the net amount of particle deposition in
different pathways of the formation and reveal various other information
including the instantaneous fractions of the plugging and nonplugging path-
ways, hydraulic resistance buildup, porosity reduction, and permeability
impairment.

The numerical simulation of the particle migration and deposition in
porous media using the present mathematical model was carried out over
a uniform linear grid system, depicted in Figure 11.2, by implementing

q, �in �out

Inlet Outlet

i = 0 i – 1 N – 1 Ni + 1 N + 1i1 2 · · · · · ·

x

A, �0, �0

L

FIGURE 11.2
Spatial discretization of core plug or sand pack for numerical solution.
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the discretized set of algebraic equations presented in the appendix. The
governing equations are nonlinear, coupled, and first-order type partial
differential equations (PDEs). For convenient numerical solution, themethod
of lines is applied here. Thismethod reduces the nonlinear PDEs to a conveni-
ent set of first-order ordinary differential equations (ODEs). For this purpose,
the central-finite difference formulae are substituted for algebraic represent-
ation of the spatial derivatives. The resulting system of first-order ODEs
can then be solved readily by an appropriate numerical method, such as
the Runge–Kutta method. As a computational tool, the “ND Solve” built-in
function of Mathematica 4.2® [15] version 4.2.1.0 is used to solve the result-
ing system of ODEs. NDSolve provides a numerical solution to the ODEs,
conveniently, through the application of various numerical schemes. In the
simulation, theNDSolve is forced touse theRunge-Kuttamethodas anoption
to solve the system of ODEs. The integral terms appearing in Eqs. (11.38) and
(11.42) are evaluated using the Gaussian quadrature rule.

11.4 Experimental Validation

Toverify the validity of themodel, the governing equations are solvednumer-
ically by assuming trial values for the various phenomenological parameters
until amatch isobtained to theexperimentaldataofGruesbeckandCollins [2].
In their experimental studies, they injected suspensions of glass beads and
water into the columns of sand packs. The effluent glass beads concentration
and cumulative glass beads deposited in the sand pack were measured as a
function of the number of pore volumes of suspension of glass beads (in the
unit of initial pore volume) injected at a constant rate. Table 11.1 provides the
experimental data on the preparation of the sand pack and the suspensions
of glass beads.

The tortuosity of cubic packing of equal-sized spheres is estimated as
τ = √2according toCarman [16]. Theviscosityof thehardsphereparticle sus-
pension is predicted by the Brinkman’s [17] extension of Einstein’s equation
given as follows:

µ = µo/(1− σ)2.5 (11.43)

where µo denotes the carrier liquid viscosity and σ is the volume concen-
tration or fraction of suspended particles. Gruesbeck and Collins [2] do not
provide any information about the temperature and the carrier fluid used for
the suspension of spherical glass particles. We considered water at 20◦C as
the carrier fluid.

The number of grid blockswas chosen to be 20 for simulation purposes con-
sidering that the grid size is sufficiently small (0.762 cm).Mathematica 4.2® [15]
automatically determines and uses an optimum time step size. The relative
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TABLE 11.1

Experimental Input Data

Quantities Values Units

L 15.3a cm
d 3.81a cm
φ 0.30a Fraction
PVo = ALφo 52.1 cm3

τ
√

2b cm/cm
εp,i 0.0 Fraction
εnp,i 0.0 Fraction
Dp 7.5a µm
Dg 274.0a µm
Dps 42.0a µm
ρp 2.85 g/cm3

q 1.7a and 5.1a cm3/sec
σin 9.5× 10−4a cm3/cm3

K 1.0a Darcy
µ 1.0c cP

a Modified from Gruesbeck, C. and Collins, R.E.,
SPEJ, 22(6): 847–856, 1982.

b Provided by Carman, P.C., Trans. Inst. Chem.
Eng. (London), 15: 150–167, 1937.

c Calculated by the Brinkman’s [17] extension
of Einstein’s equation considering water as the
carrier fluid at 20◦C.

deviation between the numerical solutions at consecutive iteration steps,
denoted by the superscripts of s and (s+ 1), is defined as:

E(s+1)
r = F

(s+1) − F(s)
F(s+1) (11.44)

where F ∈ (εp, εnp, σp, σnp) represents the solution array. The solution of
the nonlinear system of ODEs is carried out iteratively until the solution
satisfactorily converges to a relative error of 1.0× 10−6 or less.

Thevalues of thevariousphenomenological parameters havebeenadjusted
in order to match the measured data. In view of the initial porosity and flow
rate, a set ofparameters is guessed to startwith. Themost sensitiveparameters
are the deposition and entrainment (mobilization or sweeping) rate constants,
such as δ, kp, kd, and ke. All of these parameters are flow rate dependent [1].
For higher flow rates, we expect a lower deposition rate constant and higher
entrainment rate constant, and vice versa. The trial process is carried out
mostly by adjusting these four rate constants.

Table 11.2 shows the values of the parameters yielding a successful match
to the experimental data of Gruesbeck and Collins [2]. Because the model
is nonlinear, there is no guarantee about the uniqueness of the parameter
values yielding matches to the experimental data. Gruesbeck and Collins [2]
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TABLE 11.2

Adjustable Parameter Values

Parameters Valuesa Units

u/φo = 0.5 u/φo = 1.5 cm/sec

Kp,i 1.0 1.0 Darcy
Knp,i 25.0 25.0 Darcy
α 10.0 10.0 Dimensionless
n1 0.55 0.25 Dimensionless
n2 4.0 6.0 Dimensionless
fpo 0.34 0.34 Fraction
δ 0.1 0.1 per cm
kp 1.0 10.0 per cm
kd 1.28 0.58 per cm
ke 0.001 0.002 per Pa
τcr 20.0 20.0 Pa
κ 0.0001 0.0001 per sec
k 13.0 1.0 Dimensionless
C1 0.083 0.083 Fraction
Ab 4.5 4.5 Dimensionless
Bb 0.05 0.05 Dimensionless
Cb 1.62 1.62 Dimensionless

a All data were obtained by history matching unless otherwise
noted.

b Adapted from the correlation of Civan, F., Reservoir Formation
Damage—Fundamentals, Modeling, Assessment, andMitigation, Gulf
Publ. Co., Houston, TX, and Butterworth-Heinemann, Woburn,
MA, p. 742, 2000.

demonstrated that some of these parameters could be determined directly
by conducting experiments under properly designed special conditions.
However, they only provide an incomplete set of data for the actual values of
the various parameters. Nevertheless, the probability of unique determina-
tion of the parameter values improves when the model response is matched
simultaneously to different types of measurementsmade during a prescribed
core plug testing. Here, the measurements of the effluent particle concen-
tration, the volume of particles deposited per unit pore volume, and the
overall pressure difference across the core plug versus the number of injected
pore volume were matched simultaneously. Consequently, the attainability
of uniqueness in the estimated parameter values is favorably better in the
present exercise.

The simulation results are shown in Figures 11.3, 11.4, and 11.5. The satis-
factory prediction of the experimental observations indicates that the model
based on the plugging and nonplugging pathways concept is valid for this
experimental system. The results of Figure 11.3 and Figure 11.4 indicate that
equilibrium is reached after a certain time. This can be explained from the
deposition rate laws. When the plugging pathways are eliminated by pore-
throat plugging, the flow will be diverted to the nonplugging pathways.
Particle detainment can still happen in the plugging pathways but with
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FIGURE 11.3
Suspension of particle concentration in the effluent versus injected pore volume of suspension
during deposition and entrainment of 5–10µm diameter (7.5µm average) glass beads in a sand
pack of 250–297µm diameter (274µm average) grains using a 9.5 × 10−4 injection suspension
volume fraction and interstitial velocity of 0.5 and 1.5 cm/sec.
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FIGURE 11.4
Volume fraction of fine particles retained versus injected pore volume of suspension during
deposition and entrainment of 5–10µm diameter (7.5µm average) glass beads in a sand pack of
250–297µm diameter (274µm average) grains using a 9.5 × 10−4 injection suspension volume
and interstitial velocity of 0.5 and 1.5 cm/sec.
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FIGURE 11.5
Pressure drop across the sand pack versus injected pore volume of suspension during deposition
and entrainment of 5–10µmdiameter (7.5µmaverage) glass beads in a sand pack of 250–297µm
diameter (274µm average) grains using a 9.5 × 10−4 injection suspension volume fraction and
interstitial velocity of 0.5 and 1.5 cm/sec.

reduced magnitude because the flow rate through the plugging pathways
is much lowered. Then all the flow is diverted into the nonplugging path-
ways. The plateaus depicted in Figures 11.3, 11.4, and 11.5 are attained when
a dynamic equilibrium is established between the surface deposition and
entrainmentprocesses. This reveals that thenonpluggingpathwayswill never
be clogged by surface deposition of the very small particles considered in
the present case compared to the mean-hydraulic diameter, even though
the mean-hydraulic diameter decreased to below the initial tube diameter.
However, for suspensions with large-diameter particles, the nonplugging
pathways could eventually transform into the types of the plugging path-
ways, which could be clogged by large particles under favorable conditions.
Using the above formulation and Eq. (11.18), it is possible to calculate the
pore-throat to particle diameter ratio required in order for such transforma-
tion to take place. Figure 11.6 and Figure 11.7 show the variation of the bulk
volume fraction of the plugging pathways along the core length at various
times. It is observed that the volume fraction of the plugging pathways is
actually increasing. This is because the decrease rate of the total pore volume
is greater than the decrease rate of the plugging pathways volume fraction.

Next, we turn our attention to the permeability impairment in the sand
pack due to the deposition and entrainment processes. Figure 11.8 shows
the permeability reduction with respect to the pore volume of suspension
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FIGURE 11.6
Volume fractionofpluggingpathways along the sandpackversusdistance from the injectionport
for various pore volume of suspension injected during deposition and entrainment of 5–10µm
diameter (7.5µm average) glass beads in a sand pack of 250–297µm diameter (274µm
average) grains using a 9.5× 10−4 injection suspension volume fraction and interstitial velocity
of 0.5 cm/sec.
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FIGURE 11.7
Volume fractionofpluggingpathways along the sandpackversusdistance from the injectionport
for various pore volume of suspension injected during deposition and entrainment of 5–10µm
diameter (7.5µm average) glass beads in a sand pack of 250–297µm diameter (274µm
average) grains using a 9.5× 10−4 injection suspension volume fraction and interstitial velocity
of 1.5 cm/sec.
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FIGURE 11.8
Permeability reduction versus injected pore volume of suspension during deposition and
entrainment of 5–10µm diameter (7.5µm average) glass beads in a sand pack of 250–297µm
diameter (274µm average) grains using a 9.5 × 10−4 injection suspension volume fraction and
interstitial velocity of 0.5 and 1.5 cm/sec.

injected. The lower injection velocity of u/φo = 0.5 cm/sec creates more
damage to the pack than the higher velocity. This makes sense because the
lower the flow rate, the longer the retention time of the particle inside the
sand pack. Thus, at low flow rates, the particles are less mobile and tend to
attach to the pore surface readily. Also, a low flow rate may not create suffi-
cient shear stress to mobilize the uncovered surface deposits. Figure 11.9 and
Figure 11.10 show the amount of particle deposition along the pack length
with respect to time. It is obvious that the low flow rate is associated with
more particle deposition than the high flow rate.

To better illustrate the capability of the present microscopic phenomen-
ological model, we examine the behavior of particles in each flow path.
Figure 11.11 shows the changes in suspension volume concentration along
the sand pack in the plugging and nonplugging pathways at 50 pore volumes
injection for injection fluid velocities of 0.5 and 1.5 cm/sec. First, as sug-
gested by Civan [1,3], the plot shows that the particle concentrations of the
flowing suspension in both pathways would not be equal to each other. In
contrast, Gruesbeck and Collins [2] make the assumption of equal particle
concentrations for both the plugging and nonplugging pathways. At the
0.5 cm/sec injection velocity, the suspension concentration in the plugging
pathways is higher than in the nonplugging pathways. This implies that
more deposition occurs in the nonplugging pathway than in the plugging
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FIGURE 11.9
Volume fraction of fine particles retained along the sand pack versus distance from the injection
port for various pore volumes of suspension injected during deposition and entrainment of
5–10µm diameter (7.5µm average) glass beads in a sand pack of 250–297µm diameter (274µm
average) grains using a 9.5× 10−4 injection suspension volume fraction and interstitial velocity
of 0.5 cm/sec.
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FIGURE 11.10
Volume fraction of fine particles retained along the sand pack versus distance from the injection
port for various pore volumes of suspension injected during deposition and entrainment of
5–10µm diameter (7.5µm average) glass beads in a sand pack of 250–297µm diameter (274µm
average) grains using a 9.5× 10−4 injection suspension volume fraction and interstitial velocity
of 1.5 cm/sec.
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FIGURE 11.11
Suspension particle concentrations in plugging and nonplugging pathways along the sand pack
versus distance from the injection port for 50 pore volume of suspension injected during deposi-
tion and entrainment of 5–10µm diameter (7.5µm average) glass beads in a sand pack of
250–297µm diameter (274µm average) grains using a 9.5 × 10−4 injection suspension volume
fraction and interstitial velocity of 0.5 and 1.5 cm/sec.

pathway. Thus, at low flow rates, the deposition may be more significant in
the nonplugging pathways than in the plugging pathways. At the 1.5 cm/sec
injection velocity, the difference between the concentrations in the two
pathways is much more pronounced. The suspension concentration in the
plugging pathways now is much lower than in the nonplugging pathways.
One possible explanation is that, at high flow rates, the plugging path-
ways are clogged much rapidly and more particles fill up the pores behind
the obstructed pore throats, which allows the carrier fluid flow but pre-
vents particle migration. In the nonplugging pathways, the high flow rate
induces more mobilization of the uncovered particles present at the sur-
face. Therefore, the decrease in suspension concentration is not as much
pronounced.

11.5 Discussion

The plugging–nonplugging parallel pathways with exchange model presen-
ted here with modifications after Gruesbeck and Collins [2] distinguishes
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between the bundles of capillary flow paths with regard to the mechanism
of particle deposition and the evolution of the bundle of capillary flow paths
as a result of particle deposition. This description provides valuable informa-
tion about the internal detail concerning the particle deposition phenomena
which could not be obtained from a macroscopic model in a convenient man-
ner. However, the model involves a set of 17 parameters, which have been
determined by adjusting their values to match the numerical solution of the
model to experimental data. Because the model is a consistent representation
of the governingmechanisms, it is possible to fit any set of experimental data.
This course had to be taken here because of the lack of sufficient experimental
data on the parameter values from Gruesbeck and Collins [2]. In fact, to the
best of the authors’ knowledge, there is no one complete set of measured
data available till date in the literature which can be used with the present
model.

In order for the model to be predictive, experiments should be carefully
designed and conducted for a priori determination of the model parameters.
For example, Gruesbeck and Collins [2] determined the critical shear stress
or critical interstitial fluid velocity accurately by conducting experimental
studies under sufficiently rapid flow conditions which would allow only
particle sweeping and not any particle deposition for all practical purposes.
By measuring the amount of particles entering and leaving a core sample at
various times, Čerňanský and Široký [18] were able to determine the empir-
ical relationships for permeability impairment by particle deposition and the
values of the particle deposition and sweeping rate constants. It was also
possible to determine the ratio of these rate constants by means of the meas-
urements at the equilibrium condition when the rate of deposition equalized
to the rate of sweeping. Further, Civan [1] pointed out that Čerňanský and
Široký [18] permeability–porosity data actually showed two distinct regions
which could be attributed to the plugging and nonplugging pathways, and
the weighting coefficient appearing in their empirical correlation of the per-
meability versus porosity could be interpreted as the fraction of the plugging
pathways. Wojtanowicz et al. [19] derived special algebraic relationships for
the variousparticle depositionmechanisms allowing thedirect determination
of the values of the model parameters under certain prevailing conditions.
The applicationof their equations, however, required the conductionof exper-
iments at conditions underwhich the individual expressionswere applicable.
Other data, such as the initial fraction of the plugging and nonplugging path-
ways, and theporosityof theporousmedia regions containing thesepathways
can be readily measured by means of petrographical analysis of thin porous
media sections.

Themajority of the particles present in natural sandstone formations are the
clays of various types. The mechanism of retention of the submicrometer clay
particles involves transport by Brownian diffusion toward the pore surface.
Whereas, the fine particles used in the particulate suspension by Gruesbeck
andCollins [2] involving the experimental data used here are the glass, which
behaves differently than the clay minerals. The retention mechanism of the
relatively largeglassparticles involves interceptionandsettling.However, the
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present model can adequately represent the overall surface and pore-throat
particulate deposition phenomena at the macroscopic scale in terms of the
particle deposition and mobilization rate constants determined as average
values defined over the representative volume element of porous media.
A comprehensive review and discussion of the relevant interaction forces
between particles and pore surface, and the potential mechanisms of forma-
tion damage resulting from particulate processes are provided elsewhere by
Khilar and Fogler [20].

By the evidence provided here, it is possible to carry out specially designed
experiments in order to measure the values of the various model parameters
instead of determining their values by matching the model to core flow data.
However, the aforementioned techniques offered in the literature are usually
tedious and time consuming. Nevertheless, the advantage of determining the
values of the model parameters a priori in this way is that the model can then
be used as a predictive tool.

11.6 Conclusions

Themathematicalmodel of Gruesbeck andCollins [2], with themodifications
and improvements proposed by Civan [1,3] and here, was shown to simulate
the consequences of the particulate processes in porous media successfully.
The numerical scheme developed for the improved model yielded stable and
practical numerical solutions and the results compared favorably with the
experimental data. It has been demonstrated that the improved model yields
an accurate representation of the phenomena resulting from particle deposi-
tion in porous media and provides valuable insights into the mechanism of
partitioningof theparticles between thepluggingandnonpluggingpathways
in porous media.
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Nomenclature

A area, cm2

d core diameter, cm

© 2005 by Taylor & Francis Group, LLC



480 Faruk Civan and Vinh Nguyen

Dg average porous media grain diameter, µm
Dp average suspended particle diameter, µm
Dps average pore size diameter, µm
Dpt average pore-throat diameter, µm
f fraction of porous media containing the corresponding pathways
H the Hamaker coefficient, H = 3.0× 10−13 erg
k dimensionless constant
kd deposition rate constant, per cm
ke entrainment rate constant, per Pa
kp surface deposition rate constant, per cm
K permeability, Darcy
l separation distance between particles, cm
L sand pack length, cm
n1 dimensionless constant
n2 dimensionless constant
PV initial pore volume (LAφo), cm3

q injection rate, cm3/sec
t time, sec
u superficial velocity, cm/sec
v interstitial velocity, cm/sec
x distance along the pack, cm

Greek letters

α dimensionless constant
β pore throat to particle diameter ratio, dimensionless
δ deposition rate constant for plugging pathways, per cm
ε bulk volume fraction of solid deposits, fraction
φ porosity, fraction
κ coefficient for particle transfer between the plugging and

nonplugging pathways, per sec
σ suspension particle volume fraction, cm3/cm3

τ tortuosity, dimensionless
τnp nonplugging pathways wall shear stress, Pa
ρ particle density, kg/m3

µ suspension viscosity, cP
µo carrier liquid viscosity, cP

Subscripts

cr critical
i finite difference grid point
in inlet condition
np nonplugging
o initial condition
p plugging
w water
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Appendix — Evaluation of Spatial Derivatives and Integrals

Thegrid systemdepicted inFigure11.2 is implementedhere for formulationof
a numerical solution scheme. The spatial grid points are located in the center
of each block and denoted by the subscript indices i = 0, 1, 2, . . . ,N,N + 1.
The points i = 0 and i = N + 1 are the fictitious points located beyond
the inlet and outlet ends of a core plug. Applying the quadrature central-
finite difference scheme to the governing equations yields the following set
of ordinary differential equations:

dεp,i

dt
= (δ + kp,iφp,i)up,iσp,i (11.A1)

dεnp,i

dt
= kdunp,iσnp,iφ

2/3
np,i − ke,iεnp,iφ

2/3
np,iηe,i(τnp,i − τcr) (11.A2)

φp,i
dσp,i

dt
+ (1− σp,i)

dεp,i

dt
= −up,i

(σp,i+1 − σp,i−1)

2�x
+ κ(σp,i − σnp,i) (11.A3)

φnp,i
dσnp,i

dt
+ (1− σnp,i)

dεnp,i

dt
= −unp,i

(σnp,i+1 − σnp,i−1)

2�x
− κ(σp,i − σnp,i)

(11.A4)

These equations are valid for the interior points i = 1, 2, 3, . . . ,N with the
initial conditions given, respectively, as:

εp,i = εpo, t = 0 (11.A5)

εnp,i = εnpo, t = 0 (11.A6)

σp,i = σpo, t = 0 (11.A7)

σnp,i = σnpo, t = 0 (11.A8)

The initial values defined by Eqs. (11.A5) to (11.A8) are usually taken as zero.
For convenience, Eqs. (11.A1) to (11.A4) can be rewritten in compact forms,

respectively, as:

dεp,i

dt
= Ap,i (11.A9)

dεnp,i

dt
= Anp,i (11.A10)

Bp,i
dσp,i

dt
+ Cp,i

dεp,i

dt
= Dp,i (11.A11)

Bnp,i
dσnp,i

dt
+ Cnp,i

dεnp,i

dt
= Dnp,i (11.A12)
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where Ap,i, Anp,i, Bp,i, Bnp,i, Cp,i,Cnp,i, Dp,i, and Dnp,i are the coefficients
defined, respectively, as:

Ap,i = (δ + kp,iφp,i)up,iσp,i

Anp,i = kdunp,iσnp,iφ
2/3
np,i − ke,iεnp,iφ

2/3
np,iηe,i(τnp,i − τcr) (11.A13)

Bp,i = φp,i (11.A14)

Bnp,i = φnp,i (11.A15)

Cp,i = (1− σp,i) (11.A16)

Cnp,i = (1− σnp,i) (11.A17)

Dp,i = −up,i
(σp,i+1 − σp,i−1)

2�x
+ κ(σp,i − σnp,i) (11.A18)

Dnp,i = −unp,i
(σnp,i+1 − σnp,i−1)

2�x
− κ(σp,i − σnp,i) (11.A19)

The solution of Eqs. (11.A5) to (11.A12) requires the incorporation of the
boundary conditions at the inlet and outlet ends of the core plug in order to
circumvent the fictitious point values. For this purpose, the fictitious point
particle concentrations near the inlet boundary are estimated by the following
arithmetic averages:

σp,1−1/2 = σin =
σp,0 + σp,1

2
(11.A20)

σnp,1−1/2 = σin =
σnp,0 + σnp,1

2
(11.A21)

Thus, substitutingEqs. (11.A20) and (11.A21) intoEqs. (11.A18) and (11.A19)
at the core inlet point i = 1 yields:

Dp,1 = −up,1
(σp,2 − 2σin + σp,1)

2�x
+ κ(σp,1 − σnp,1) (11.A22)

Dnp,1 = −unp,1
(σnp,2 − 2σin + σnp,1)

2�x
− κ(σp,1 − σnp,1) (11.A23)

Hence, at the grid point of i = 1, Eqs. (11.A9) to (11.A12) become:

dεp,1

dt
= Ap,1 (11.A24)

dεnp,1

dt
= Anp,1 (11.A25)

Bp,1
dσp,1

dt
+ Cp,1

dεp,1

dt
= Dp,1 (11.A26)
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Bnp,1
dσnp,1

dt
+ Cnp,1

dεnp,1

dt
= Dnp,1 (11.A27)

The concentration at the fictitious point near the outlet boundary (N + 1) is
estimated by:

σp,N+1 = σp,N (11.A28)

σnp,N+1 = σnp,N (11.A29)

Thus, substitutingEqs. (11.A28) and (11.A29) intoEqs. (11.A18) and (11.A19)
at the core outlet point i = N yields:

Dp,N = −up,N
(σp,N − σp,N−1)

2�x
+ κ(σp,N − σnp,N) (11.A30)

Dnp,N = −unp,N
(σnp,N − σnp,N−1)

2�x
− κ(σp,N − σnp,N) (11.A31)

Hence, at the grid point of i = N, Eqs. (11.A9) to (11.A12) become:

dεp,N

dt
= Ap,N (11.A32)

dεnp,N

dt
= Anp,N (11.A33)

Bp,N
dσp,N

dt
+ Cp,N

dεp,N

dt
= Dp,N (11.A34)

Bnp,N
dσnp,N

dt
+ Cnp,N

dεnp,N

dt
= Dnp,N (11.A35)

Equations (11.A24) to (11.A27) for i = 1, Eqs. (11.A5) to (11.A12) for i= 2, 3,
4, . . . ,N − 1, and Eqs. (11.A32) to (11.A35) for i = N together with the ini-
tial conditions given by Eqs. (11.A5) to (11.A8) form a complete set of ODEs
equations with prescribed conditions of solutions that can be readily solved
numerically using the Runge–Kutta fourth-order algorithm. The quantities
εp, εnp, σp, and σnp are calculated at every grid point as a function of time.
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Summary

One-dimensional rectilinear and radial macroscopic phenomenological
models along with analytical solutions and applications for impairment of
porousmedia bymigration and deposition of fine particles, and effects on the
injectivity decline during flow of particle–fluid suspensions, are presented in
this chapter. The mechanism and kinetics of the fine particle deposition in
porous medium for two different models are described and compared. The
present approach considers the rate of deposition at a given location to be
proportional to the particle flux, with the proportionality factor being a func-
tion of the cumulative particles passing by the location per unit volume. The
popular model by Herzig et al. [Herzig, J.P., Leclerc, D.M., and Le Goff, P.,
Flow of suspensions through porous media — application to deep filtration,
Industrial Eng. Chem., 62(5), 8–35, 1970.] stems from the assumption that the
proportionality factor, called the filtration coefficient, is a variable depending
on the deposition function itself. The present new system of equations has
a similar appearance to that developed by Herzig et al., but the equivalent
constitutive relations are subtly different.
The formulation and analytic solution for the constant and time-dependent

injection-rate cases are carried out. A methodology for determination of the
parameters of the deep-bed filtration process is provided. Typical scenarios
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are simulated, illustrating the parametric sensitivity and application of the
present analytical solutions.

12.1 Introduction

Frequently, thewaterproduced fromoil-field reservoirs and the seawater con-
tain various particulate matters, such as sand, clay, and bacteria. When these
waters are used for flooding the petroleum reservoirs in order to achieve
a secondary recovery, the fine particles migrating in sufficient concentra-
tions through porous reservoir rock may clog the pore throats and reduce the
permeability near the well-bore petroleum-bearing porous rock formations.
Consequently, the water injection performance of the wells, expressed by
the injectivity or impedance indices, declines due to the increase of the
hydraulic resistance of the rock to fluid flow. This adverse phenomenon is
a well-known deep-bed filtration problem that causes formation damage [1]
in petroleum reservoirs. Its mitigation can be accomplished more effectively,
based on the predictability of the permeability impairment near the well-
bore by using appropriate phenomenological models. Such models are of
significant importance in developing optimal strategies to avoid or delay
formation damage and to estimate the time required for formation damage
remediation.
Comprehensive reviews of the efforts formodeling deep-bed filtration phe-

nomenon for this purpose have been presented in the literature, including
those by Civan [1], Wennberg [2], and Bedrikovetsky et al. [3], and therefore,
are not repeatedhere. However, it is sufficient todrawattention to the fact that
themajority of the previousmodeling efforts were focused on rectilinear one-
dimensional filtration problems assuming a constant particle deposition rate
coefficient, whereas the flow around the well-bores is predominantly radial
(cylindrically symmetric) and the particle deposition rate coefficient has been
proven as being dependent on the impairment of porous rock by particle
deposition. In addition, the previous modeling efforts generally assumed a
constant injection rate. In reality, the injection rate declines naturally as the
permeability of the porous media is impaired by particle deposition. There-
fore, the analytical solutions implementing time-dependent injection rates are
of significant practical importance.
In this chapter, one-dimensional rectilinear and radial macroscopic

phenomenological deep-bed filtrationmodels alongwith analytical solutions
and applications for impairment of porous media by migration and depos-
ition of fine particles, and effects on the injectivity decline during the flow
of particle–fluid suspensions, are presented. The mechanism and kinetics
of the fine particle deposition in porous media for two different models,
namely the present model and the popular model by Herzig et al. [4], are
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described and compared. A phenomenological approach is taken to repres-
ent the depositional source/sink term and provide constitutive relations. The
present system of equations has a similar appearance to that developed by
Herzig et al. [4], but the equivalent constitutive relations are subtly different.
In the present approach, the rate of deposition function is taken as a field
function and expressed in terms of plausible flow variables, leading to sets of
constitutive relations corresponding to the particular assumptions made. For
the present model, the rate of deposition at a given location is proportional
to the particle mass or number flux, with the proportionality factor being a
function of the cumulative mass or number of particles passing through the
location, per unit volume. On the other hand, themodel byHerzig et al. stems
from the assumption that the proportionality factor, often referred to as the
filtration coefficient, is a variable depending on the deposition function itself.
The twomodels are thus a contrast between the explicit constitutive relations
of the present model versus the implicit constitutive relations of the model
by Herzig et al. The analysis herein compares the solutions and the results of
the two models with an eye toward the interpretation and representation of
experimental data.
For eachmodel, the coupled set of nonlinear equations is expressed in terms

of normalized variables and solved analytically by the method of character-
istics, or by the use of characteristic coordinates, for both rectilinear and radial
flows in porousmedia. Analytical solutions are provided for both the cases of
constant and variable deposition rate coefficients, but only the present model
yields an exact analytic solution for the variable-coefficient radial-flow case.
The results are then used to generate a number of new useful formulas of
practical importance, including the variation of the injectivity ratio, imped-
ance index, porosity, and permeability; and fine particle concentration in the
suspension and porous media by fine particle retention. The solutions for the
rectilinear flow case are applied for the core tests and the radial flow case for
the well impairment.
The analytical solutions are provided for both the constant and variable

deposition rate coefficients. The profiles are illustrated for the particle concen-
tration in the particle–fluid suspension and the amount of particles deposited
in porous media as a function of the dimensionless time. Scenarios are sim-
ulated in order to demonstrate the parametric sensitivity of the evolution of
the outgoing wave front and disturbances generated by the wave front. A
methodology for determination of the parameters of the deep-bed filtration
process, by fitting the large time portion of the experimental data, is proposed
andvalidated.Applicationsare illustrated for interpretationandevaluationof
the various laboratory tests involving the injection of particle–fluid suspen-
sions into core plugs and field observations concerning deep-bed filtration
near the well-bore formation resulting from the injection of a fluid contain-
ing fine particles into completed wells in petroleum reservoirs. This chapter
provides the analytical solutions to this problem for one-dimensional rectilin-
ear and radial geometry involving the cases of constant and time-dependent
injection rates.
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12.2 Formulation

The equations governing the migration and deposition of particles in por-
ous media, and the porous-media impairment at isothermal conditions are
derived in this section. One-dimensional rectilinear and radial flows through
a horizontal porous medium are considered. The properties of the porous
medium, particles, and carrier fluid are assumed constant and therefore, they
are incompressible. Thus, the material density of the particles, ρ∗p, and carrier
fluid, ρ∗f , are assumed constant. The gravity effect is neglected. The particles
are considered sufficiently small compared to the pore size so that an external
filter cake would not form until the porous medium is fully saturated with
the particles.

12.2.1 Basic Transport Equation

Particle transport through porousmedia is described here. Let ρp be themass
concentration of the particulate matter and up the volumetric flux (Darcy
velocity) of the particles. Then the macroscopic equation of change for the
particulate mass in a representative volume element of a porous medium [5]
is given by:

∂(φρp)

∂t
+ ∇ · (upρp) = −µ̇s (12.1)

where µ̇s is a particle mass per unit bulk volume of porous media per unit
time-sink term that represents thewithdrawal of particulates from the stream-
ing flow which causes the clogging of the pores. Further, we introduce the
particulate number density np such that ρp = npmp, where mp is the average
mass per particle. We also introduce the material density ρ∗p = mp/V∗p of an
average particle, where V∗p is the volume of an average particle. The particle
volume concentration can now be defined such that

cp ≡ ρp

ρ∗p
= npV∗p (12.2)

Thus, cp is also a volume fraction, that is, the fraction of volume occupied
by the particles in a unit volume of the particle–fluid suspension. It is also a
measure of the number of particles contained within that fraction of volume.
As such, cp is typically measured in parts per million (ppm) bulk volume of
porous medium. Consequently, we have ρp = cpρ∗p, and Eq. (12.1) can be
written as:

∂(φcp)
∂t
+ ∇ · (upcp) = −σ̇s (12.3)
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where

σ̇s ≡ µ̇s

ρ∗p
(12.4)

is called the volumetric rate of deposition function and has the units of ppm per
unit time. Similarly, the equation of change for the carrier fluid (water phase)
in porous media is given by:

∂(φcf)
∂t
+ ∇ · (ufcf) = −σ̇f = 0 (12.5)

inwhich uf is the volumetric flux (Darcy velocity) of the carrier fluid, taken as
thewater here. Note that we assume that the porousmediumdoes not absorb
any water; that is, σ̇f = 0. In addition, the volume fractions of the particles
and the water phase add up to one in the particulate suspension; that is,

cp + cf = 1 (12.6)

Therefore, combining Eqs. (12.3) and (12.5) in view of Eq. (12.6) yields the
volumetric equation of change for the particulate suspension as:

∂φ

∂t
+ ∇ · u = −σ̇s (12.7)

in which u denotes the volumetric-weighted average flux of the suspension,
given by:

u = upcp + ufcf (12.8)

Note that the volumetric fluxes of the particles and the carrier fluid (water)
can be expressed, respectively, as:

upcp = ucp + jp (12.9)

ufcf = ucf + jf (12.10)

inwhich thevolumetric diffusionfluxvectors of theparticles jp and the carrier
fluid (water) jf can be expressed, respectively, as:

jp ≡ (up − u)cp (12.11)

jf ≡ (uf − u)cf (12.12)
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Hence, substituting Eq. (12.9) into Eq. (12.3) yields:

∂(φcp)
∂t
+ ∇ · (ucp) = −σ̇s − ∇ · jp (12.13)

Similarly, substituting Eq. (12.10) into Eq. (12.5) yields:

∂(φcf)
∂t
+ ∇ · (ucf) = −∇ · jf (12.14)

When the left-hand side of Eqs. (12.13) and (12.14) are expanded and sim-
plified by means of the volume–mean balance equation given by Eq. (12.7),
we get

φ
∂cp
∂t
+ u · ∇cp = −cfσ̇s − ∇ · jp (12.15)

φ
∂cf
∂t
+ u · ∇cf = cfσ̇s − ∇ · jf (12.16)

The sum of these two equations vanishes identically. Note that the porosity
φ appears outside the time derivative even though no restriction has been
made regarding its variation with time.
At this point, we introduce several simplifying assumptions for conveni-

ence in the following derivation. For the applications considered in this
chapter, the volumetric concentration of the particles in the dilute particle
suspensions is very small and in the order of ppm; that is, cp 	 1 and there-
fore cf ∼= 1. We neglect the transport of particles by diffusion and, therefore,
consider that

u ∼= up ∼= uf (12.17)

The implication of this consideration is that the smooth variation of particle
concentration in the progressing front is replaced by a sharp discontinuity
front. This changes the diffusion equation to a wave equation.
We assume the porosity to remain approximately constant for all practical

purposes, because the quantity of particles deposited from such dilute solu-
tions occupies a negligible space in the pores. However, a small amount of
deposition may be sufficient to clog the relatively narrow pore throats and
cause significant permeability impairment.
Based on the above-described assumptions, the volumetric equation of

change for the particulate suspension, Eq. (12.7), simplifies as:

∇ · u ∼= 0 (12.18)
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Consequently, when we suppress the subscript p denoting the particles, then
Eq. (12.3) can be simplified as:

φ
∂c
∂t
+ u · ∇c ∼= −σ̇s (12.19)

Equation (12.19) is a fundamental expression used by Herzig et al. [4] and
many others for the description of the volumetric balance of particulate
matter in suspensions flowing through porous media.
The interstitial or actual pore fluid velocity v can be estimated by the

Dupuit [6] relationship, given by:

v = τau/φ (12.20)

in which the macroscopic average tortuosity τa of the flow paths in porous
media is defined as the ratio of the length of the flow paths to the length of
porous media.

12.2.2 Modeling for Rate of Deposition Function

The mechanism and kinetics of fine particle deposition in porous media are
described here. Consider the schematic of fine particle migration and depos-
ition in a typical pore volume in porous media as depicted in Figure 12.1.
The particles approaching the pore throat can form a bridge across it, which
allows the carrier fluid flow through it but limits the particle migration.
Consequently, the particles accumulate behind the bridge and increase the
resistance of porous media to fluid flow. Here, we take the phenomenolo-
gical approach that σ̇s is a source term (or sink term, actually) and provide
constitutive relations. Our system of equations has a similar appearance to
that developed by Herzig et al. [4], but the equivalent constitutive relations
are subtly different as described in the following section.

12.2.2.1 Present model

The rate of deposition function is, basically, a field function σ̇s(x, t), but we
wish to express it on physical grounds in terms of plausible well-defined
functions by what amounts to constitutive relations. Different approaches
and assumptions lead to different formulas. Ultimately, the final merit of a
given model depends on how well its results agree with experiment.
The rate of deposition at a given location should depend on the mass flux,

or equivalently the number flux, that is, the particle-number migration rate
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FIGURE 12.1
Fine particle migration and deposition in a typical pore volume.

per unit area, given by:

∂N
∂t
≡ unp = uc

V∗p
(12.21)

where u ≡ |u|. Equation (12.21) can be used to define the function N as the
total number of particles that cross a unit area at a given location in the time
t, that is,

N(x, t) =
∫ t

0

uc(x, t̃)
V∗p

dt̃ (12.22)

We suppose that in general the rate of deposition σ̇s is a function of at least N
and ∂N/∂t, that is,

σ̇s = fn
(

N,
∂N
∂t

)
(12.23)

Now, suppose that the particle suspension is sufficiently dilute so that the
number N is considerably small so as to be inconsequential. Then it is plaus-
ible to assume that the rate atwhichparticles arewithdrawn froma location in
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the flowand then deposited is proportional to the number of particles flowing
through unit area per unit time, that is, in consideration of Eq. (12.22),

σ̇s = koV∗p
∂N
∂t
= kouc (12.24)

where ko is an empirical constant, called the filtration coefficient that must be
determined from experiment. Now define a new variable σ in consideration
of Eq. (12.22) as:

σ ≡ koV∗pN =
∫ t

0
kouc(x, t̃)dt̃ (12.25)

and therefore

∂σ

∂t
≡ kouc (12.26)

Comparing Eqs. (12.24) and (12.25), the rate of deposition then becomes:

σ̇s = ∂σ

∂t
≡ kouc (12.27)

When expression (12.27) is substituted back into Eq. (12.3), a single first-
order linear partial differential equation for c results. The solution for c allows
for σ being determined, which in this case is also equal to σs, as inferred
by Eq. (12.27). This basic, but primative, formulation and solution for c are
predicated on the rate term ∂σ/∂t, which is proportional to the number-flux
term ∂N/∂t. The term ∂σ/∂t can be interpreted as a measure of the number of
particles per unit time that are filtered out of the main flow and are available
for deposition in the matrix of the porous medium. It is thus referred to as
the basic filtration rate. Correspondingly, the term σ can be interpreted as the
measure of the number of particles filtered out in the time t, and referred
to as the basic filtration number. When the formulation is done in terms of σ
instead of N, the factor V∗p drops out. The variable σ is dimensionless, but
is typically measured in ppm by volume, as is the variable c. The empirical
filtration coefficient ko has the units of per unit length.
Consider now a generalization of Eq. (12.27) to allow for large values of σ .

In viewof Eq. (12.25), the general functional equation (12.23) can be expressed
alternatively as:

σ̇s = fn
(
σ ,
∂σ

∂t

)
(12.28)
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Now, instead of assuming, when σ is small, that σ̇s is effectively equal to ∂σ/∂t
as defined by Eq. (12.26), we assume more generally that it is proportional to
∂σ/∂t with the proportionality factor being a function of σ , that is,

σ̇s = F(σ )
∂σ

∂t
= F(σ )kouc (12.29)

In particular, we will be interested in the case when

F(σ ) = 1+ bσ (12.30)

where b is an empirical constant that must be determined by experiment.
For this case, the constitutive relations become

σ̇s = (1+ bσ)
∂σ

∂t
= (1+ bσ)kouc (12.31)

∂σ

∂t
= kouc (12.32)

When expression (12.31) is used to eliminate σ̇s in Eq. (12.3), then the resulting
equation together with Eq. (12.32) constitute a pair of coupled nonlinear first-
order partial differential equations for c and σ . Observe that Eq. (12.31) could
have been obtained directly from Eq. (12.27) by replacing the constant filtra-
tion coefficient with a variable coefficient, that is, by letting ko→ (1+ bσ)ko,
while at the same time keeping ko a constant in the basic definition for ∂σ/∂t
given by Eq. (12.26). In this sense, the Eqs. (12.31) and (12.32) can be classified
as a variable-rate-coefficient model.

12.2.2.2 The Model by Herzig et al.

The analysis of Herzig et al. [4] starts with Eqs. (12.27) and (12.26) in the
constant filtration coefficient analysis, but allows for the filtration coefficient
to be a variable, ko→ k, in both equations:

σ̇s = ∂σ1

∂t
(12.33)

∂σ1

∂t
= kuc (12.34)

It is now further assumed that

k = koF(σ1) (12.35)
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where σ1 ≡ σs is equal to the deposition function itself. Let us adopt the
symbol σ1 to represent the basic filtration rate defined by Eq. (12.29). Then
we have

σ̇s ≡ ∂σ1

∂t
= F(σ1)

∂σ

∂t
= F(σ1)kouc (12.36)

For F(σ1) specified analogous to the previous case, we have

F(σ1) = 1+ b1σ1 (12.37)

where b1 is an empirical constant, and the constitutive equations for the rate
of deposition become:

σ̇s = ∂σ1

∂t
(12.38)

∂σ1

∂t
= (1+ b1σ1)

∂σ

∂t
= (1+ b1σ1)kouc (12.39)

In the present notation, these are the equations for the model of Herzig
et al. [4], and are the counterparts to Eqs. (12.31) and (12.32) for the present
model. They lead to a pair of coupled nonlinear first-order partial differential
equations for c and σ1 when considered with Eq. (12.3).

12.2.2.3 Discussion of the models

Superficially, the constitutive equations for the present model and for the
model by Herzig et al. [4] are very similar. The difference stems from the way
the functions σ and σ1 are defined. Essentially, the present model represents
σ̇s as an explicit function of σ according to Eq. (12.28), whereas the model by
Herzig et al. [4] amounts to an implicit representation in terms of the variable
σ1 ≡ σs via a functional relation of the form

σ̇s = fn
(
σs,

∂σ

∂t

)
(12.40)

The merit of each model depends on how well it represents experimental
data. In the following analysis, the results stemming from each model will be
compared with each other with an eye toward the analysis of experimental
data when it is available.
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12.2.3 Permeability Impairment, Injectivity Ratio,
and Impedance Index

The reduction of local permeability by particle deposition in porous media is
given by the following semi-empirical equation [7]:

K
Ko
= 1

1+ βσs (12.41)

where β is a damage factor. Equation (12.41) can be used to derive the formu-
lae for calculation of the permeability impairment, and the injectivity and
impedance indices for one-dimensional rectilinear- and radial-flow cases,
respectivelyFigure12.2 andFigure12.3, asdescribed in the followingsections.

Impairment zone  No-impairment zone

u udxf /dt

0 xw xf x xe

L L

FIGURE 12.2
Impairment and no-impairment zones formed during one-dimensional flow of a suspension of
fine particles in a core plug.

Impairment zone No-impairment zoneq

u

rw rf r re

drf /dt

FIGURE 12.3
Impairment and no-impairment zones formedduring radial flowof a suspension of fine particles
in a near well-bore region in a reservoir.
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12.2.3.1 One-dimensional rectilinear case

Consider Figure 12.2 describing the impairment and no-impairment zones
distinguishedduringone-dimensional flowof a suspensionof fineparticles in
a core plug. The harmonic average permeability of the deposit or impairment
region is given by:

K(t) = xf(t)− xw∫ xf(t)
xw

dx/K(x, t)
(12.42)

where xf(t) denotes the location of the front position ahead of which there is
no deposition.
The impedance index J is given by the reciprocal of the injectivity ratio α as:

J(t) ≡ 1
α(t)
= (xf(t)− xw)/K(t)+ (xe − xf(t))/Ko

(xe − xw)/Ko

= 1+ xf(t)− xw
xe − xw

(
Ko

K(t)
− 1

)
(12.43)

in which xe − xw ≡ L denotes the distance of influence from the face of the
injection location, or the length of core plug. The location of the injection port
is denoted by xw.

12.2.3.2 Radial case

Consider Figure 12.3 describing the impairment and no-impairment zones
identified during radial flow of a suspension of fine particles near a well-bore
region in a reservoir. The harmonic average permeability of the deposit or
impairment region is given by:

K(t) = ln(rf(t)/rw)∫ rf(t)
rw

dr/rK(r, t)
(12.44)

where rf(t) denotes the radius of the front position ahead of which there is no
deposition.
The impedance index J is given by the reciprocal of the injectivity ratio α as:

J(t) ≡ 1
α(t)
= (1/K(t)) ln(rf(t)/rw)+ (1/Ko) ln(re/rf(t))

(1/Ko) ln(re/rw)

= 1+ ln(rf(t)/rw)
ln(re/rw)

(
Ko

K(t)
− 1

)
(12.45)

in which re denotes the radius of influence of the injection well.
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12.3 One-Dimensional Rectilinear Problem with Constant
Injection Rate

The above-presented equations are solved analytically for constant-
and variable-rate coefficients in the one-dimensional rectilinear-flow case
described in Figure 12.2.

12.3.1 Transport Equation

The formulation considers a constant volumetric injection rate qo. For one-
dimensional flows, the volumetric flux of the flowing suspension is given by:

u = qo
Ao
= uo = const. (12.46)

whereAo denotes the constant cross-sectional area of the porous formation or
a core plug.We therefore have for themass-average velocity of the particulate
suspension:

u = uoex (12.47)

where ex is the unit vector in the rectilinear-flow direction, and u satisfies
the incompressibility condition (12.18). Consequently, substituting Eq. (12.46)
into Eq. (12.3) gives the volumetric balance of suspended particles in a near
injection location of a porous medium in the Cartesian form [4]:

φ
∂c
∂t
+ uo

∂c
∂x
= −σ̇s, x > xw, t > 0 (12.48)

Note that xw is the location of the injection port.
The initial and boundary conditions are given, respectively, by:

c = 0, σs = 0, x > xw, t = 0 (12.49)

c = cw, x = xw, t > 0 (12.50)

12.3.2 Constant-Rate Coefficient

The sink term, expressing the loss of particles from the flowing suspension by
deposition of particles at a rate proportional to the suspended particle flux,
is given by Eq. (12.27):

σ̇s = kouoc (12.51)
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where ko is a constant filtration coefficient. Thus, substituting Eq. (12.51) into
Eq. (12.48) yields:

φ
∂c
∂t
+ uo

∂c
∂x
= −kouoc, x > xw, t > 0 (12.52)

12.3.2.1 Nondimensional variables

Introduce the following nondimensional variables for the flowing suspension
particle concentration, distance, and time:

C ≡ c
cw

, X ≡ x
xw

, τ ≡ uo
φxw

t (12.53)

where xw = L. For the semiinfinite one-dimensional problem, the refer-
ence length L is arbitrary. Here, it is taken equal to the core length, which
implies xe = 2L. Its utility, as a characteristic length, will be realized when
comparisons are made with the cylindrical problem.
Equation (12.52) can thus be written in the nondimensional variables as:

∂C
∂τ
+ ∂C
∂X
+ λC = 0 (12.54)

where λ ≡ koxw. The initial and boundary conditions become

C(X > 1, 0+) = 0

C(X = 1, τ > 0) = 1
(12.55)

The nondimensional time can be considered as the ratio

τ = t/tc (12.56)

where

tc ≡ Lφ/uo (12.57)

is a pertinent characteristic time for a given problem, determined by some
characteristic length L, the porosity φ, and the injection velocity uo. As an
example representing typical laboratory tests shown in Table 12.1, we can
take in round numbers L = 0.1 m, φ = 0.25, and uo = 0.0025 m/sec, which
yield the characteristic time to be tc = 10 sec = 0.167 min = 0.00278 h =
0.000116 days. For this example, a nondimensional time of τ = 10,000 would
represent about 1.16days. If the characteristic velocity is one-tenthasbig (with
L and φ the same) as it is approximately for the situations shown in Table 12.2,
then the characteristic time is ten times as big, and a nondimensional time
of τ = 1,000 represents about 1.16 days. Also the nondimensional time τ is
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TABLE 12.1

Parameter Values for Rectilinear Case

Parameters Case 1: van den Broek et al. [10] Case 2: Al-Abduwani et al. [11] Case 3: Bedrikovetsky et al. [3]

Rock type Bentheimer sandstone Bentheimer sandstone Bentheimer sandstone Offshore reservoir core
Particles Grounded rock Grounded rock Hematite Unspecified
Carrier fluid Water Water Water Sea water
cinj = cw,
ppm by volume

24.0 60.0 3.8 (20 ppm by weight) 0.85

Ko, m2 1.04× 10−12 (1055 mD) 1.56× 10−12 (1582 mD) 1.38× 10−12 (1.4 D) 0.153× 10−12
φ, volume fraction 0.225 0.225 0.22 0.24
L, m 0.075 0.075 0.127 0.1
qinj = qw, m3/sec 1.11× 10−6 (4.0 l/h) 1.11× 10−6 (4.0 l/h) 1.5× 10−6 (5.4 l/h) —
uinj = uw = qinj/πD2/4, m/sec 2.3× 10−3 (2.3 mm/sec) 2.3× 10−3 (2.3 mm/sec) 2.9× 10−3 —
tc = Lφ/uinj, sec 7.34 7.34 9.64 —
D, core plug diameter, m 0.025 0.025 0.02566 —
bo, present, dimensionless — — — 1.75
b1o, Herzig et al. dimensionless 1.0 1.0 1.0 1.0

B, dimensionless
Herzig et al. 2.4× 105 15.2 397.0 0.015
Present — — — 0.015

λ, dimensionless
Herzig et al. 1.0× 10−8 1.0× 10−3 1.0× 10−5 0.011
Present — — — 0.008

β = B/(φcw), 1/ppm
Herzig et al. 4.44× 1010 2.82× 106 4.75× 108 7.35× 104

Present — — — 7.35× 104

ko = λ/L, 1/m
Herzig et al. 1.33× 10−7 1.33× 10−2 1.05× 10−3 0.11
Present — — — 0.08

b = bo/(φcw), present,
dimensionless

— — — 8.58× 106

b1 = b1o/(φcw), Herzig et al.,
dimensionless

1.85× 105 7.41× 104 1.20× 106 4.90× 106
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TABLE 12.2

Parameter Values for Radial Case

Parameters Wennberg [2]

Rock type Well A42
Particles Bacteria and microorganisms
Carrier fluid Sea water
cinj = cw, ppm by volume 1.0 vol/vol (should be ppm)
Ko, m2 1.02× 10−12 (1035 mD)
φ, volume fraction 0.33
qinj = qw, m3/sec qw(t) = q∞ + (qo − q∞)e−δt

δ = 2.22× 10−7 per sec (0.0192 per day),
qo = 6.44× 10−3 (3500 bbl/d), and
q∞ = 9.75× 10−4 (530 bbl/d)

uo = uwo = qo/(2πrwh), m/sec 2.36× 10−4
tc = rwφ/uinj, sec 197.0
h, m 30.8 (101 ft)
rw, m 0.141 (5.54 in.)
re, m 536.0 (1760 ft)
λ 70.0
B 1.32× 10−3
β = B/(φcw), dimensionless 4.0× 103

ko = λ/rw, 1/m 490

equal to the number of pore volumes injected in the time t, usually measured
in terms of the initial pore volume, and is given by:

τ = Q
PVo
= qwt

ALφo
= uwAt

ALφo
= uwt

Lφo
(12.58)

whereQdenotes the cumulative volumeof suspension injected,A is the cross-
sectional area of core, L is the core length, PVo is the initial pore volume, φo
is the initial porosity, qw and uw denote the suspension injection volumetric
flow rate and flux at the injection port of the porous medium, and t is time.

12.3.2.2 Characteristic equations

According to the theory of characteristics [8], a quasi-linear first-order
partial differential equation can be expressed as a total (or ordinary) differen-
tial equation written along certain curves in space called characteristic curves
or base characteristics. The characteristic equations for Eq. (12.54) are

dC
dX
= −λC on

dτ
dX
= 1 (12.59)

The second of Eqs. (12.59) describes the base characteristics. They are a family
of parallel straight lines all having the same slope on a τ versus X diagram.
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FIGURE 12.4
τ–X diagram for rectilinear problem.

The integrated form is

τ − X + 1 ≡ � = const. (12.60)

The constant of integration is denoted by �, and each member of the family
of parallel straight lines is designated by its value of � (see Figure 12.4). The
constant of integration has been selected arbitrarily so that � = 0 represents
the curve that passes through thepoint of initial disturbance, τ = 0 andX = 1.
Integration of the first of Eqs. (12.59) gives:

C(X, τ) = A(�)e−λX on � ≡ τ − X + 1 = const. (12.61)

where A(�) is a function of integration that is a constant along a prescribed
base characteristic, but possibly a different constant along a different charac-
teristic. Enforcing the initial andboundary conditions described byEq. (12.61)
gives:

A(τ ) = eλ, τ > 0

A(−X + 1) = 0, X > 1
(12.62)
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In terms of the unit Heaviside step function H(u), defined as

H(u) =
{
0, u < 0
1, u > 0

(12.63)

the function of integration becomes

A(�) = H(�)eλ (12.64)

and the solution (12.61) becomes:

C(X, τ) = e−λ(X−1)H(�), where � ≡ τ − X + 1 (12.65)

These results show that a wave front travels along the base characteristic
� = 0. The function C is discontinuous across the wave front, being zero
ahead of it, � < 0, and nonzero positive behind it, � > 0. Along the dis-
continuity wave, � = 0+ or τ = (X − 1)+, the volume fraction of particles
decreases exponentially,

C = exp[−λ(X − 1)] (12.66)

A plot of C versus X for various times τ is shown in Figure 12.5. For a fixed
location X, as shown in Figure 12.6 there is no variation in C with time except
for the jump across the discontinuitywave frontwhen it passes by. The region

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

X

C

� = 1
� = 2
� = 3

FIGURE 12.5
Particle volumetric fraction C versus X for τ = 1, 2, and 3, and constant-rate coefficient for λ = 1.
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FIGURE 12.6
Particle volumetric fraction C versus τ for X = 2, 3, 4, and constant-rate coefficient for λ = 1.

ahead of the discontinuitywave front is called the no-impairment zone, and the
region behind thewave front is called the impairment zone (see Figure 12.2 and
Figure 12.4).
Consider the total deposition at a given position x as a function of time t

according to Eq. (12.27):

σs =
∫ t

0
σ̇s dt = φxw

uo

∫ τ

0
σ̇s dτ

= 0 for τ < X − 1, or � < 0

= φxw
uo

∫ τ

X−1
σ̇s dτ for τ ≥ X − 1, or � ≥ 0

(12.67)

We then calculate

σs(X, τ) = σ(X, τ) = λφcw�e−λ(X−1)H(�) (12.68)

The deposition function σs, as well as the function σ , is continuous at the
wave front and equal to zero there. The X-derivative is also continuous and
equal to zero, ∂σ/∂X = 0, along the wave front, but the τ -derivative is dis-
continuous at any given location. A plot of σ versus X for various values of
τ is shown in Figure 12.7. After the wave front passes a given location X, the
deposition functiongrows linearlywith time, as is indicated inFigure 12.8 and
Figure 12.9 in comparison with variable-rate results. The latter are described
in a subsequent section.

© 2005 by Taylor & Francis Group, LLC



506 Faruk Civan and Maurice L. Rasmussen

0

1

2

3

4

5

1 2 43 5 6

X

� = 1
� = 3
� = 5

� s
/(�

�
c w

)

FIGURE 12.7
Normalized particle deposition σs/(λφcw) versus X for τ = 1, 3, 5, and constant-rate coefficient
for λ = 1.
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FIGURE 12.8
Normalized particle deposition σs/(λφcw) versus τ for X = 2, 3, 4, and variable-rate coefficient
(present model) and constant-rate coefficient for λ = 1.
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FIGURE 12.9
Normalized particle deposition σs/(λφcw) versus τ for X = 2, 3, 4, and variable-rate coefficient
(model by Herzig et al.) and constant-rate coefficient for λ = 1.

The average permeability, according to Eq. (12.42), is expressed as:

K(τ )
Ko
= 1

1+ βφcw[1− (1/(λτ))(1− e−λτ )]
∼ 1− Bλ

2
τ +O(τ 2), τ → 0

∼ 1
1+ B

+O
(
1
τ

)
, τ →∞ (12.69)

where B ≡ βφcw. The average permeability is plotted as a function of the
combination λτ in Figure 12.10 for B = 1, 2, and 4. The curves are asymptotic
to 1/(1 + B) when λτ becomes very large. Figure 12.11 shows the average
permeability as a function of B = 1 and 2 and for λ = 1 and 2.
The corresponding impedance index J, according to Eq. (12.43), is given for

the case of injection occurring at X = 1 by:

J(t) ≡ 1
α(t)
= 1+ B

τ

L/xw

[
1− 1

λτ
(1− e−λτ )

]

∼ 1+ Bλ
L/xw

τ 2

2
+O(τ 3), τ → 0

∼
{
1− B

L/xw

(
1
λ

)}
+ B

L/xw
τ +O

(
1
τ

)
, τ →∞ (12.70)
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FIGURE 12.10
Normalized harmonic average permeability K(τ )/Ko versus λτ for B = βφcw = 1, 2, 4, and
constant-rate coefficient.
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FIGURE 12.11
Normalized harmonic average permeability K(τ )/Ko versus τ for (B, λ) = (1, 1), (1, 2), (2, 1), and
(2, 2), and constant-rate coefficient where B ≡ βφcw.

Figure 12.12 and Figure 12.13 show examples for the impedance index J
versus τ , for B and λ of order unity and for smaller values, together with the
small- and large-time asymptotic curves. These representations are relevant
to the interpretation of experimental data and the extraction of the empirical
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FIGURE 12.12
Example of impedance index J versus τ , for L/xw = 1 and B = λ = 1, showing asymptotic
behavior.
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FIGURE 12.13
Example of impedance index J versus τ , for L/xw = 1 and B = λ = 0.01, showing asymptotic
behavior.

constants λ and B there from by fitting the theoretical curves to the data. This
will be discussed further in a later section.

12.3.3 Variable-Rate Coefficient

In this section, solutions for the present model and for the model by Herzig
et al. [4] are obtained, and the results are compared.
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12.3.3.1 Present model

The constitutive equations (12.31) and (12.32) together with the equation of
change (12.3) combine to give the following coupled equations for c and σ :

φ
∂c
∂t
+ uo

∂c
∂x
= −(1+ bσ)

∂σ

∂t
(12.71)

∂σ

∂t
= kouoc (12.72)

After these have been solved, the deposition function σ̇s can be obtained from
Eq. (12.31) using

σ̇s ≡ (1+ bσ)
∂σ

∂t
(12.73)

When rewritten in terms of the nondimensional variables defined by
Eqs. (12.53), Eqs. (12.71) and (12.72) become:

∂C
∂τ
+ ∂C
∂X
= − 1

φcw
(1+ bσ)

∂σ

∂τ
(12.74)

∂σ

∂τ
= λφcwC (12.75)

where λ ≡ koxw as before. Equations (12.74) and (12.75) are controlled by the
same base characteristic equation (12.60) that controls Eq. (12.54). However,
for the present problem, it is more convenient to take a different approach
and change to a characteristic-based set of independent coordinates, X and
θ , based on the following transformation:

F(X, τ) = F(X, θ)

X = X and θ = τ − (X − 1)

∂F
∂X
= ∂F

∂X

∂X
∂X
+ ∂F
∂θ

∂θ

∂X
= ∂F

∂X
− ∂F
∂θ

∂F
∂τ
= ∂F

∂X

∂X
∂τ
+ ∂F
∂θ

∂θ

∂τ
= ∂F
∂θ

(12.76)

In terms of the over-bar variables, Eqs. (12.74) and (12.75) become:

∂C

∂X
= − 1

φcw
(1+ bσ)

∂σ

∂θ
(12.77)

∂σ

∂θ
= λφcwC (12.78)
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The coordinate θ is sometimes called the delay time. It is the time
measured from zero after the initial discontinuity wave front passes a given
location X. Equations (12.77) and (12.78) are equivalent to the characteristics
equations (12.59) and (12.60) for the constant-rate-coefficient case, that is, for
b = 0. For the rest of this analysis, we will suppress the over bar notation and
take X and θ as the independent variables.
The boundary condition is that C = 1 for X = 1 (or for X = 0, say, by a

simple shift along theX-axis) by Eq. (12.55). ThusC (1, θ) = 1.Also, originally
and before the disturbance wave arrives, we have C = 0 and σ = 0. Because
the location of the initial disturbance wave that starts at X = 1 is denoted by
θ = 0, we have C (X, θ < 0) = 0 and σ(X, θ ≤ 0) = 0.
Eliminate C from Eq. (12.77) by means of Eq. (12.78) and obtain a single

second-order equation for σ as:

∂2σ

∂X∂θ
= −λ(1+ bσ)

∂σ

∂θ

= −λ ∂
∂θ

(
σ + b

2
σ 2
) (12.79)

Interchange the order of derivatives on the left-hand side and then integrate
with respect to θ :

∂σ

∂X
= −λσ

(
1+ b

2
σ

)
+ f (X) (12.80)

Here, f (X) is an arbitrary function of integration. Because σ = 0 on θ = 0
for all X, then it follows that ∂σ/∂X = 0 on θ = 0, and thus that f (X) = 0.
Consequently, Eq. (12.80) reduces to

∂σ

∂X
= −λσ

(
1+ b

2
σ

)
(12.81)

In this equation, the variable θ does not appear explicitly, and thus it can
be treated as an ordinary differential equation. The variables can now be
separated as:

λdX = − dσ
σ(1+ (b/2)σ ) (12.82)

After this equation has been integrated, σ can be solved for explicitly and
the result written as:

σ(X, θ) = g(θ)e−λ(X−1)

1− (b/2)g(θ)e−λ(X−1) (12.83)

where g(θ) is arbitrary constant (or function) of integration.
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The function C(X, θ) is now determined by means of Eq. (12.78):

C(X, θ) = 1
λφcw

(dg/dθ)e−λ(X−1)

[1− (b/2)g(θ)e−λ(X−1)]2 (12.84)

The initial and boundary conditions are satisfied when g(0) = 0 and when

λφcw = dg/dθ
[1− (b/2)g(θ)]2 (12.85)

This is a differential equation for g(θ)which, when solved, gives the result of

g(θ) = λφcwθ
1+ (b/2)λφcwθ

(12.86)

The derivative is

dg
dθ
= λφcw
[1+ (b/2)λφcwθ ]2 (12.87)

The above results hold when θ ≥ 0. When θ < 0, both σ and C vanish.
For the deposition function, integration of Eq. (12.73) leads to the result

σs = σ
(
1+ b

2
σ

)
H(θ) = g(θ)e−λ(X−1)

[1− (b/2)g(θ)e−λ(X−1)]2 H(θ) (12.88)

12.3.3.2 Solution for the model by Herzig et al.

When the constitutive equations (12.38) and (12.39) are combined with the
equation of change (12.3), then the two coupled equations for c and σ1 are:

φ
∂c
∂t
+ uo

∂c
∂x
= −∂σ1

∂t
(12.89)

∂σ1

∂t
= (1+ b1σ1)kouoc (12.90)

where the subscript 1 delineates those variables associated with the formu-
lation of Herzig et al. [4]. After these have been solved, then the deposition
function σ̇s can be obtained from

σ̇s ≡ ∂σ1

∂t
(12.91)

When the nondimensional variables (12.53) are introduced together with
the transformation (12.76) to the characteristic coordinates, then Eqs. (12.89)
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and (12.90) can be rewritten as:

∂C
∂X
= − 1

φcw

∂σ1

∂θ
(12.92)

∂σ1

∂θ
= λφcw(1+ b1σ1)C (12.93)

These are the counterparts to Eqs. (12.77) and (12.78) for the present analysis
model. The apparent difference is that the factor (1+bσ)→ (1+b1σ1)has been
shifted from one equation to the other. The initial and boundary conditions
are the same as for the previous problem, with only σ replaced by σ1.
We now proceed to finding a single equation for σ1. First, solve for C from

Eq. (12.93):

C = 1
λφcwb1

∂

∂θ
ln(1+ b1σ1) (12.94)

Substitute this into the left-hand side of Eq. (12.92) and obtain the following
second-order equation for σ1:

1
b1

∂2 ln(1+ b1σ1)
∂X∂θ

= −λ∂σ1
∂θ

(12.95)

Interchange the order of integration on the left-hand side and then integrate
with respect to θ . Set the function of integration equal to zero by virtue of the
conditions σ1 = 0 and ∂σ1/∂X = 0 on θ = 0, and finally obtain

∂σ1

∂X
= −λσ1(1+ b1σ1) (12.96)

Herzig et al. [4] obtained this equation by a different approach.
Equation (12.96) is the same as our counterpart Eq. (12.81) except that the

factor b1 appears in place of b/2. The solution is therefore

σ1(X, θ) = g1(θ)e−λ(X−1)

1− b1g1(θ)e−λ(X−1)
(12.97)

where g1(θ) is an arbitrary function of integration. The function C(X, θ) is
determined from Eq. (12.94):

C(X, θ) = 1
λφcw

(dg1/dθ)e−λ(X−1)

1− b1g1(θ)e−λ(X−1)
(12.98)
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Satisfying the boundary condition C(1, θ) = 1 gives

λφcw = dg1/dθ
1− b1g1(θ)

(12.99)

The solution to this differential equation subject to the initial condition
g1(0) = 0 is:

g1(θ) = 1
b1
[1− exp(−b1λφcwθ)] (12.100)

The above results hold when θ ≥ 0. When θ < 0, then both σ1 and C vanish.
For the deposition function, integration of Eq. (12.91) yields the result

σs(X, θ) = σ1(X, θ)H(θ) = g1(θ)e−λ(X−1)

1− b1g1(θ)e−λ(X−1)
H(θ) (12.101)

These results are the same as obtained by Herzig et al. [4], only expressed in
our current notation.

12.3.3.3 Comparison and discussion

The function g(θ) for the present model, given by Eq. (12.86), is algebraic in
character, whereas the function g1(θ) for the model by Herzig et al., given by
Eq. (12.100), is exponential in character.As θ →∞, g(θ)approaches its asymp-
tote 2/b, and g1(θ) approaches its asymptote 1/b1. The variations (b/2)g(θ)
versus θ∗ and b1g1(θ) versus θ∗1 , where θ

∗ ≡ (b/2)λφcwθ and θ∗1 ≡ b1λφcwθ ,
are compared in Figure 12.14. As θ increases, the function g1(θ) approaches
its asymptote much more rapidly than the function g(θ).
Along the discontinuity wave, θ = 0+ or τ = (X− 1)+, the volume fraction

of particles C decreases exponentially, the same as that for the present model,
the model by Herzig et al. [4], and the constant-rate-coefficient model, that
is, C = exp(−λ(X − 1)), given by Eq. (12.66). On the other hand, unlike the
constant-rate-coefficient model, the two variable-rate-coefficient models for
C do vary with τ in the impairment zone for fixed locations of X.
The variations of C with X for the fixed time periods of τ = 1, 2, and 3

are shown in Figure 12.15 and Figure 12.16 for the present model and for the
model by Herzig et al. The calculations are for λ = 1, b∗ ≡ bλφcw = 1, and
b∗1≡ b1λφcw= 1, which correspond to b = b1 for comparison purposes of the
two models. For both models for a given τ , the curves start at the same value
C = 1 at X = 1 and end with the same value at the discontinuity wave front
X = τ + 1. The curves for the model by Herzig et al., however, drop off much
more rapidly than those for the present model, in a manner consistent with
the variations shown in Figure 12.14.
The corresponding variations of C with τ for the fixed locations X =

2, 3, and 4 are shown in Figure 12.17 and Figure 12.18. At a given location
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FIGURE 12.14
Comparison of the functions g(θ) and g1(θ).
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FIGURE 12.15
Particle volumetric fraction C versus X for τ = 1, 2, 3 and λ = 1, b∗ = bλφcw = 1, and variable-
rate coefficient (present model).

X, after the jump across the discontinuity wave front at time τ = X − 1, the
curves for both themodels start at the same value of C and then subsequently
decrease with time. The model by Herzig et al. shows a stronger decrease
with time, again consistent with the variations shown in Figure 12.14.
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FIGURE 12.16
Particle volumetric fraction C versus X for τ = 1, 2, 3 and λ = 1, b∗1 = b1λφcw = 1, and variable-
rate coefficient (model by Herzig et al.).
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FIGURE 12.17
Particle volumetric fraction C versus τ for X = 2, 3, 4, λ = 1, b∗ = 1, and variable-rate coefficient
(present model).

Figure 12.19 and Figure 12.20 show the variations of the normalized particle
deposition function σs/λφcw with position X at time periods, τ = 1, 2, and 4
for the two models. At the injection interface X = 1, the particle deposition
function σs is greater for themodel byHerzig et al. than for the presentmodel,
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FIGURE 12.18
Particle volumetric fraction C versus τ for X = 2, 3, 4, λ = 1, b∗1 = 1, and variable-rate coefficient
(model by Herzig et al.).
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FIGURE 12.19
Normalizedparticledepositionσs/(λφcw)versusX for τ = 1, 2, 4, λ = 1, b∗ = 1, andvariable-rate
coefficient (present model).

which in turn is greater than the basicmodel of a constant-rate coefficient (see
Figure 12.7) for which b = b1 = 0. All the curves decrease to zero at the wave-
front location X = τ + 1, where the slope also vanishes ∂σs/∂X = 0. The
model by Herzig et al. shows the steepest decrease.
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FIGURE 12.20
Normalizedparticledepositionσs/(λφcw)versusX for τ = 1, 2, 4, λ = 1, b∗1 = 1, andvariable-rate
coefficient (model by Herzig et al.).

The variations of the deposition function with the time τ are shown in
Figure 12.8 and Figure 12.9 at the locationsX = 2, 3, and 4 for the twomodels.
The curves for the basic constant-rate-coefficient model (b = b1 = 0) are also
shown. At a given position X, all the curves start at the value zero when
the wave front passes at the time τ = X − 1, and then increase as the time
increases subsequently. The curves for the constant-rate coefficient increase
linearly and become unbounded, whereas the curves for the two models
of variable-rate coefficients are bounded and approach asymptotes. For the
present model, shown in Figure 12.8, the asymptotes are approached slowly
and are σs/λφcw = 1.833, 0.361, and 0.110 for the locations designated byX =
2, 3, and4. For themodelbyHerziget al., shown inFigure12.9, theasymptotes
are approachedmuchmore rapidly and are σs/λφcw = 0.582, 0.157, and 0.052
for the same locations.

12.3.3.4 Average permeability and impedance index

For the present model, the average permeability as defined by Eq. (12.42) can
be expressed as:

K(τ )
Ko
= 1

1+ BI(λτ , bo)
(12.102)
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FIGURE 12.21
Normalized harmonic average permeability K(τ )/Ko versus λτ for B ≡ βφcw = 1 and bo = 1
(present model) and bo = 0 (constant-rate coefficient).

whereB ≡ βφcw, bo ≡ bφcw, and I(T, b) is thequadrature functiondefinedby:

I(T, b) ≡ 1
T

∫ T

0

2(T − u){2+ b(T − u)}e−u

[2+ b(T − u)(1− e−u)]2 du (12.103)

These reduce to the constant-rate results when bo = 0. A plot of the average
permeability versus T ≡ λτ is shown in Figure 12.21 for B = 1 and for bo = 1
and 0. The curve for the variable-rate approaches the same asymptote but at a
faster rate. The impedance index as determined by Eq. (12.43) with L/xw = 1
is given by:

J(τ ) = 1+ Bτ I(λτ , bo) (12.104)

An example of J versus τ for the present model is shown in Figure 12.22 for
B = 0.01, λ = 0.01, and bo = 1, and compared with the constant-rate model
bo = 0. For small time periods, the two curves share the same asymptote,
which is indicated inFigure 12.13. For large timeperiods, thepresent variable-
rate curve departs from the constant-rate curve and swerves upward, slowly
approaching its own straight-line asymptote. These curves are reminiscent of
a set of data that will be analyzed in a later section.
For the model by Herzig et al., the formulas (12.102) and (12.104) still

hold but with the quadrature I(λτ , bo) is replaced by I1(λτ , b1o), where
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FIGURE 12.22
Example of impedance index J versus τ , for L/xw = 1 and B = λ = 0.01, comparing variable-rate
results (present model) with constant-rate results.

b1o ≡ b1φcw and

I1(T, b) = 1
bT

∫ T

0

(1− e−b(T−u))e−u

1− (1− e−b(T−u))e−u
du (12.105)

These reduce to the constant-rate results when b1o = 0. When b1o = 1, this
quadrature can be evaluated explicitly:

I1(T, b = 1) = 1− e−T

1+ e−T (12.106)

This special case is suggestive of the overall exponential behavior of the
quadrature. A plot of the average permeability versus T ≡ λτ is shown in
Figure 12.23 for B = 1 and for b1o = 1 and 0. The curve for the variable-
rate case, owing to its strong exponential behavior, decreases much more
rapidly toward the common asymptote shared by the constant-rate case. It
also decreases more rapidly than the curve for the present model shown
in Figure 12.21. An example of J versus τ for the model of Herzig et al.
is shown in Figure 12.24 for B = 0.01, λ = 0.01, and b1o = 1, and com-
pared with the constant-rate model b1o = 0. For small time periods, all the
curves share the same asymptote. For large time periods, the Herzig et al.
variable-rate curvedeparts fromthe constant-rate curveandswervesupward,
rapidly approaching its own straight-line asymptote, which is parallel to the
large-time asymptote for the constant-rate curve.
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FIGURE 12.23
Normalized harmonic average permeability K(τ )/Ko versus λτ for B ≡ βφcw = 1 and b1o = 1
(model by Herzig et al.) and b1o = 0 (constant-rate coefficient).
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FIGURE 12.24
Example of impedance index J versus τ , for L/xw = 1 and B = λ = 0.01, comparing variable-rate
results (model by Herzig et al.) with constant-rate results.
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12.4 One-Dimensional Rectilinear Problem with
Time-Dependent Injection Rate

Suppose that the injectionflowrate is timedependent according to the relation

q(t) = qoW(t) (12.107)

Then the injection velocity is given by

u(t) = uoW(t) (12.108)

Now consider the transport Eq. (12.52), for example. Because the velocity
appears in the x-derivative term and the deposition term only, we can divide
by the factor W(t) and write the transport equation as:

φ

W(t)
∂c
∂t
+ uo

∂c
∂x
= −kouoc (12.109)

In all the cases treated so far in this analysis, the factor will appear in front of
the time derivative as it does in Eq. (12.109). This suggests that we introduce
the following time transformation:

t∗(t) =
∫ t

0
W(t̃)dt̃ or τ ∗(τ ) =

∫ τ

0
W(tcτ̃ )dτ̃ (12.110)

Now Eq. (12.109) can be written as:

φ
∂c
∂τ ∗
+ uo

∂c
∂x
= −kouoc (12.111)

This equation has the same form as for the steady injection-rate problem. The
initial andboundary conditions are also invariant. Consequently, any solution
that is known for the steady-injection problem can be readily converted to a
solution for the time-dependent injection problem, specified by Eq. (12.107),
by letting τ → τ ∗(τ ).
For example, consider the following exponential decline function for the

injection flow rate given by Donaldson and Chernoglazov [9], but modified
as following in order to account for the limiting flow rate q∞:

q(t) = q∞ + (qo − q∞) e−δt (12.112)

where δ is the reciprocal characteristic time. The validity of Eq. (12.112)
is demonstrated later by correlating typical experimental data. Applying
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Eq. (12.112), Eq. (12.107) can be written as:

W(τ ) = q∞
qo
+
(
1− q∞

qo

)
e−δ∗τ (12.113)

where δ∗ ≡ δtc. Upon integration, we get

τ ∗(τ ) = q∞
qo
τ +

(
1− q∞

qo

)
1− e−δ∗τ

δ∗

∼ q∞
qo
τ + 1

δ∗

(
1− q∞

qo

)
, τ →∞ (12.114)

If a large-time straight-line asymptote in the steady-injection case is denoted
by b+mτ ∗, then in the time-dependent injection case it becomes:

b+mτ ∗ =
{

b+ m
δ∗

(
1− q∞

qo

)}
+
(

m
q∞
qo

)
τ , τ →∞ (12.115)

Because q∞/qo is less than unity for a decreasing rate of injection, the
slope of the straight-line asymptote is less and the y-axis intercept is greater
for the time-dependent injection case. An example is discussed in a later
section.

12.5 Radial Problem with Constant Injection Rate

A corresponding analysis is carried out for constant- and variable-rate coef-
ficients in the radial-flow case described in Figure 12.3. It is reasonable to
consider a cylindrical radial flow around the wells completed into petroleum
reservoirs because the thickness of typical petroleum reservoirs is signifi-
cantly smaller compared to the lateral extent. Hence, the flow geometry is
commonly assumed to be radially symmetrical in cylindrical coordinates and
not in spherical coordinates in isotropic porous media.

12.5.1 Transport Equation

For radial flows, thevolumetric flux for theparticles in theflowing suspension
is given by:

u = qo
2πrh

(12.116)
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where the parameters qo and hdenote the constant injection rate and reservoir
formation thickness. We thus have

u(r) = uw
rw
r
= const.

r
(12.117)

where uw = qo/2πrwh is the injection velocity at thewell-bore. Thus, in radial
cylindrical coordinates we have

u = u(r)er (12.118)

where er is the unit basis vector in the flow direction, and u satisfies the
incompressibility condition (12.18). Therefore, substituting Eq. (12.118) into
Eq. (12.3) yields the volumetric balance of suspended particles in terms of
radial cylindrical coordinates:

φ
∂c
∂t
+ u(r)

∂c
∂r
= −σ̇s, r > rw, t > 0 (12.119)

The initial and boundary conditions are

c = 0, σs = 0, r > rw, t = 0 (12.120)

c = cw, r = rw, t > 0 (12.121)

12.5.2 Constant-Rate Coefficient

The sink term, expressing the loss of particles from the flowing suspension by
deposition of particles at a rate proportional to the suspended-particle flux, is

σ̇s = kou(r)c (12.122)

where ko is the constant filtration coefficient. Use of Eqs. (12.117) and (12.122)
now leads to the following first-order linear partial differential equation, with
variable coefficients:

φ
∂c
∂t
+ uwrw

r
∂c
∂r
= −kouwrw

r
c, r > rw, t > 0 (12.123)

This is the counterpart to Eq. (12.52) for the rectilinear-flow problem.

12.5.2.1 Nondimensional variables

Now change variables such that

C ≡ c
cw

, Z ≡
(

r
rw

)2
, τ ≡ uw

φrw
t (12.124)
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Then we have

∂C
∂τ
+ 2

∂C
∂Z
= −λ C√

Z
, Z > 1, τ > 0 (12.125)

whereλ ≡ korw. This is the counterpart toEq. (12.54). The initial andboundary
conditions become

C(Z > 1, 0+) = 0 (12.126)

C(1, τ > 0) = 1 (12.127)

12.5.2.2 Characteristic equations

Akin to the analysis leading to the characteristic equations (12.59) for the
rectilinear-flow problem, the characteristic equations for Eq. (12.125) are
found to be

dC
dZ
= −λ

2
C√
Z

on
dτ
dZ
= 1

2
(12.128)

The integrated form of the base characteristic can be expressed as:

τ − Z− 1
2
≡ � = const. or τ − R2 − 1

2
≡ � = const. (12.129)

where Z = R2 and R ≡ r/rw. The constant of integration is denoted by �. In
the τ−R diagram shown in Figure 12.25, the base characteristics constitute a
family of parabolas, eachmember ofwhich is designatedby its value of�. The
constant of integration has been selected arbitrarily so that � = 0 represents
the curve that passes through the point of initial disturbance, τ = 0 andR = 1.
Integration of the first of Eqs. (12.128) gives:

C(Z, τ) = A(�)e−λ
√

Z on � ≡ τ − Z− 1
2
= const. (12.130)

where A(�) is a function of integration that is a constant along a given
base characteristic. When the initial and boundary conditions are enforced,
the function of integration is found to be the same as Eq. (12.64) for the
rectilinear-flow case, and the solution for the radial-flow case becomes

C(Z, τ) = e−λ(
√

Z−1)H(�) (12.131)

where H(�) is the unit Heaviside step function.
These results show that a wave front travels along the base characteristic

� = 0. The function C is discontinuous across the wave front, being zero
ahead of it, � < 0, and nonzero positive behind it, � > 0. The trajectory of
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FIGURE 12.25
τ−R diagram for radial problem.

the discontinuity wave is a parabola, described by � = 0, or τ = (R2 − 1)/2,
or R = √1+ 2τ . Immediately downstream of the wave front, the volume
fraction of particles decreases exponentially with distance,

C = exp[−λ(R− 1)] (12.132)

which is the same as for the rectilinear flow, Eq. (12.66). The variation with
time, however, is different. For a fixed location R, there is no variation in C
with time except for the jump across the discontinuity wave front when it
passes by.
The deposition function can be determined by means of Eqs. (12.27)

and (12.67). We find that

σs(Z, τ) = σ(Z, τ) = λφcw�
e−λ(

√
Z−1)
√

Z
H(�) (12.133)

The deposition function decreases faster with distance than for the
rectilinear-flow case, Eq. (12.68). It is zero along the wave front and con-
tinuous across it. The Z-derivative is zero and continuous along the wave
front, but the time derivative at a given position is discontinuous. As for the
rectilinear-flow case, the deposition function is zero at a given location until
the wave front passes, and then it grows linearly with time.
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The average permeability, according to Eq. (12.44), is

K(τ )
Ko
= ln(

√
1+ 2τ)

ln(
√
1+ 2τ)+ BIr(λ, τ)

(12.134)

where B ≡ βφcw and

Ir(λ, τ) ≡ λeλ

2

∫ √1+2τ
1

e−λu
(
1+ 2τ

u2
− 1

)
du

= λeλ

2
(1+ 2τ)

[
E2(λ)− E2(λ

√
1+ 2τ)√

1+ 2τ

]
− 1− e−λ(

√
1+2τ−1)

2
(12.135)

and where

E2(x) ≡
∫ ∞
1

e−xu

u2
du (12.136)

is the exponential integral of order 2. The average permeability is plotted in
Figure 12.26 for B = 1 and 2, and λ = 1. The average permeability does not
tend to a finite limiting value as for the rectilinear case, but slowly vanishes
as τ →∞.
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FIGURE 12.26
Example of normalized harmonic average permeability K(τ )/Ko versus τ for radial flow, λ = 1,
and constant-rate coefficient.
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FIGURE 12.27
Example of impedance index J versus τ , for Re = e1 = 2.7 . . . and B = λ = 0.01, for radial flow
and constant-rate coefficient, showing asymptotic behavior.

The impedance index J, according to Eq. (12.45), is

J(τ ) = 1+ B
ln(Re)

Ir(λ, τ)

∼
{
1− B

2 ln(Re)
(1−�(λ))

}
+ B�(λ)

ln(Re)
τ , τ →∞ (12.137)

where �(λ) ≡ λeλE2(λ) and Re ≡ re/rw. Figure 12.27 shows J versus τ for
B = 1 and λ = 1.

12.5.3 Variable-Rate Coefficient

For the presentmodel, the solution for a variable-rate coefficient is derived for
radial flow. No analytical solution has been found previously for the case of a
variable-rate coefficient.AlthoughWennberg [2]mentions having a simulator
developed for this case, no details as to the nature of the numerical solution
method is provided.

12.5.3.1 Solution for present model

In terms of the nondimensional variables specified by Eqs. (12.124), the
transport equation and constitutive relations for the radial-flow problem
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become:

∂C
∂τ
+ 2

∂C
∂Z
= − rw

uwcw
σ̇s (12.138)

σ̇s = uw
φrw

(1+ bσ)
∂σ

∂τ
(12.139)

∂σ

∂τ
≡ λφcw√

Z
C (12.140)

Eliminate σ̇s between Eqs. (12.138) and (12.139), and obtain

∂C
∂τ
+ 2

∂C
∂Z
= − 1

φcw
(1+ bσ)

∂σ

∂τ
(12.141)

Equations (12.140) and (12.141) constitute two coupled equations for
C and σ .
Now transform to characteristic coordinates, Z and �, in a fashion similar

to Eqs. (12.76):

F(Z, τ) = F(Z,�)

Z = Z and � = τ − Z− 1
2

∂F
∂Z
= ∂F

∂Z
− 1

2
∂F
∂�

∂F
∂τ
= ∂F
∂�

(12.142)

The discontinuity wave front is defined by � = 0, the impairment zone by
� > 0, and the no-impairment zone by � < 0.
Suppress the over-bar notation and obtain the counterparts to Eqs. (12.77)

and (12.78):

2
∂C
∂Z
= − 1

φcw
(1+ bσ)

∂σ

∂�
(12.143)

∂σ

∂�
= λφcw√

Z
C (12.144)

Substitute for C into Eq. (12.143):

2
∂

∂Z
∂

∂�

(√
Zσ
) = −λ(1+ bσ)

∂σ

∂�
(12.145)
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Integrate with respect to � and obtain

2
∂

∂Z
(
√

Zσ) = −λ
(
1+ b

2
σ

)
σ + F(Z) (12.146)

or

2
√

Z
∂σ

∂Z
= −λ

(
1+ b

2
σ

)
σ − σ√

Z
+ F(Z) (12.147)

where F(Z) is an arbitrary function of integration. The initial and boundary
conditions are

σ(Z,� = 0) = 0 and C(Z = 1,�) = 1 (12.148)

It can now be established that ∂σ/∂Z = 0 on � = 0 and σ = 0, and thus
that we must have F(Z) = 0, which was found to be true for the previous
problems also. Consequently, Eq. (12.147) becomes

2
√

Z
∂σ

∂Z
= −λ

(
1+ b

2
σ

)
σ − σ√

Z
(12.149)

Based on the form of solution (12.83) for the rectilinear problem, we assume
that the solution for σ in this case has the form

σ = wo

1− (b/2)w1
(12.150)

where wo and w1 are functions to be determined. Because we have assumed
two unknown functions to describe one, we have an arbitrary condition at
our disposal. Substituting Eq. (12.150) into (12.149) yields:

[2(wo
√

Z)′ + λwo] + b
2
[−2(wo

√
Z)′w1 + 2(wo

√
Z)w′1 + λwo[(wo − w1)]] = 0

(12.151)

Because the parameter b is arbitrary, set the collected terms inside the brackets
separately equal to zero. This implies that the functionswo andw1, aside from
the functions of integration do not depend explicitly on the parameter b:

2(wo
√

Z)′ + λwo = 0 (12.152)

−{2(wo
√

Z)′ + λwo}w1 + 2(wo
√

Z)w′1 = −λw2
o (12.153)

or

2(wo
√

Z)w′1 = −λw2
o (12.154)
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The solution to (12.152) is given by:

wo = g(�)
e−λ(

√
Z−1)
√

Z
(12.155)

where g(�) is an arbitrary function of integration. Equation (12.155) is the
counterpart of Eq. (12.133) for the constant-rate case. We can now treat
Eq. (12.154):

w′1 = −
λwo

2
√

Z
= (wo

√
Z)′√

Z
= w′o +

wo

2Z
(12.156)

Integration of Eq. (12.156) gives:

w1 = wo +
∫ Z

1

wo

2Z
dZ (12.157)

Explicitly, we have

w1 = g(�)

{
e−λ(

√
Z−1)
√

Z
+
∫ Z

1

e−λ(
√

Z−1)

2Z3/2 dZ

}
(12.158)

or, after integrating by parts,

w1 = g(�)

[
1− λ

∫ Z

1

e−λ(
√

Z−1)

2Z
dZ

]
(12.159)

In Eq. (12.157) an arbitrary function of integration was set to zero order to
accomplish the resultw1(1,�) = wo(1,�) and thus to have only one arbitrary
function to deal with.
The function C is determined by means of Eq. (12.144), that is,

C(Z,�) =
√

Z
λφcw

∂σ

∂�
= 1
λφcw

{dg/d�}e−λ(
√

Z−1)

[1− (b/2)w1]2 (12.160)

When the initial and boundary conditions (12.148) are enforced, it is found
that the function g(�) is the same as Eq. (12.86) for the rectilinear-flow case,
that is,

g(�) = λφcw�
1+ (b/2)λφcw�

(12.161)

The above results are exact. They hold when� ≥ 0. When� < 0, then both
σ and C vanish.
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The deposition function is found to be

σs = σ
(
1+ b

2
σ

)
(12.162)

σs = wo[1+ (b/2)(wo − w1)]
(1− (b/2)w1)2

H(�) (12.163)

12.5.3.2 Partial solution for model by Herzig et al.

For the Herzig et al. [4] problem in the nondimensional coordinates,
the transport equation (12.138) remains the same, but the constitutive
equations are:

σ̇s = uw
φrw

∂σ1

∂τ
(12.164)

∂σ1

∂τ
= (1+ b1σ1)

∂σ

∂τ

= λφcw(1+ b1σ1)
C√
Z

(12.165)

Note that Eq. (12.140) still holds, but becomes inconsequential after it is used
to get the second of Eqs. (12.165). Now after Eq. (12.164) is used to eliminate
σ̇s from the transport equation (12.138) the problem reduces to the following
two coupled equations for C and σ1:

∂C
∂τ
+ 2

∂C
∂Z
= − 1

φcw

∂σ1

∂τ
(12.166)

∂σ1

∂τ
= λφcw(1+ b1σ1)

C√
Z

(12.167)

When these are written in terms of the characteristic coordinates, we have

2
∂C
∂Z
= − 1

φcw

∂σ1

∂�
(12.168)

∂σ1

∂�
= λφcw√

Z
(1+ b1σ1)C (12.169)

Solve for C from Eq. (12.169) and substitute into Eq. (12.168):

2
∂

∂Z
∂

∂�

(√
Z ln(1+ b1σ1)

) = −λb1
∂σ1

∂�
(12.170)

Integrate with respect to � and obtain

2
∂

∂Z

(√
Z ln(1+ b1σ1)

) = −λb1σ1 (12.171)
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where the function of integration was set equal to zero. Equation (12.171) can
be written alternatively as:

2
√

Z
∂σ1

∂Z
= −λσ1(1+ b1σ1)− (1+ b1σ1) ln(1+ b1σ1)

b1
√

Z
(12.172)

Compare this equation with Eq. (12.149) for the present model.
Equation (12.172) does not lend itself to an exact solution. On the other

hand, a perturbation analysis is possible. Factor out the linear term from the
second term on the right-hand side of Eq. (12.172) and rewrite the equation
as follows:

2
√

Zσ ′1 = −korwσ1(1+ b1σ1)− σ1√
Z
− P(b1σ1)

b1
√

Z
(12.173)

where

P(b1σ1) ≡ (1+ b1σ1) ln(1+ b1σ1)− b1σ1 (12.174)

Except for the factor that contains P(b1σ1), Eq. (12.173) has the same form as
Eq. (12.149). Thus when P(b1σ1) is sufficiently small, the solution for σ1 is
nearly the same as for σ with b→ 2b1. Thus, a perturbation or a successive-
approximation scheme appears feasible. Such a course of action will not be
pursued further here.

12.6 Radial Problem with Time-Dependent Injection Rate

The procedure described in Section 12.4 for the one-dimensional rectilinear-
flow case also holds for the radial-flow case. Therefore, it is not repeated here,
but applied in the next section.

12.7 Applications and Validation of Analytic Solutions

The analytical solutions of the one-dimensional rectilinear and radial macro-
scopic phenomenological models are applied for analysis of the impairment
of porous media by migration and deposition of fine particles and its effect
on the injectivity decline during flow of particle–fluid suspensions.

12.7.1 One-Dimensional Rectilinear Case

The one-dimensional rectilinear-flow experiments were carried out by inject-
ing particle–water suspensions into core plugs at constant rates (Figure 12.2).
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Here, we analyze the experimental data of van den Broek et al. [10],
Bedrikovetsky et al. [3], andAl-Abduwani et al. [11]. These studies report the
data of the overall permeability reduction or the impedance index variation
as a function of the number of pore volumes of fluid injected into laboratory
core plugs, measured in terms of the initial pore volume, given by Eq. (12.58).
The relationship given by Eq. (12.58) also expresses the dimensionless time
used in the present formulation.

12.7.1.1 Case 1

van den Broek et al. [10] injected a suspension of grounded Bentheimer sand-
stone particles andwater into the Bentheimer sandstone cores. The conditions
of their two separate experiments carried out using the 24- and 60-ppm con-
centration suspensions are described by the second and third columns in
Table 12.1. Both the present model and the model by Herzig et al. [4] yield
about the same quality representation of the experimental data. Therefore,
only the results obtained with the model by Herzig et al. [4] are compared
with experimental data in Figure 12.28. The model represents both injection
tests satisfactorily during the early period. However, the measured permeab-
ility decline during the late period is more pronounced than the simulated
results, probably because of the explanations offered in Section 12.8. The
columns two and three of Table 12.1 also present the best-estimate parameter
values obtained by least-squares regression and the values of the permeab-
ility impairment parameter, the filtration rate coefficient, and the deposition
coefficient calculated there from.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 400 800 1200

�, Number of pore volumes injected

K
/K

o,
 N

or
m

al
iz

ed
 p

er
m

ea
bi

lit
y,

 f
ra

ct
io

n

Al-Abduwani et al.
van den Broek et al.: 24 ppm
van den Broek et al.: 60 ppm
Herzig et al. for b1

* = 1

FIGURE 12.28
Normalized harmonic average permeability versus number of pore volume injected: comparison
of the analytic solution of Herzig et al. for b∗1 = 1 with experimental data for rectilinear case.
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12.7.1.2 Case 2

Al-Abduwani et al. [11] injected a suspension of groundedHematite particles
andwater into a Bentheim sandstone core. The conditions of their experiment
are described by the fourth column in Table 12.1. Both the present model and
the model by Herzig et al. [4] yield about the same quality representation
of their experimental data. Therefore, only the results with the model by
Herzig et al. [4] are comparedwith the experimental data in Figure 12.28. It is
observed that the model generally represents the experimental data satisfact-
orily over the full test period. However, the measured permeability decline
during the late period is slightly faster than the simulated results probably
because of the explanations offered in Section 12.8, but not as fast as the
decline observed in Case 1. Column four of Table 12.1 presents the best-
estimateparametervaluesobtainedby least-squares regressionand thevalues
of the permeability impairment parameter, the filtration rate coefficient, and
the deposition coefficient calculated there from.

12.7.1.3 Case 3

Bedrikovetsky et al. [3] injected seawater into a core taken from a Brazilian
deep-water offshore reservoir formation. The conditions of their experiments
are described in column five of Table 12.1. Their experimental data are com-
pared with the fitted curves according to the model by Herzig et al. and the
present model in Figure 12.29 and Figure 12.30. Both the present model and
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Bedrikovetsky et al.

FIGURE 12.29
Correlation of data with theory: impedance index J versus τ , variable-coefficient (model by
Herzig et al.) versus constant-coefficient model for L/xw = 1.
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FIGURE 12.30
Correlation of data with theory: impedance index J versus τ , present model for variable-
coefficient versus constant-coefficient model for L/xw = 1.

the model by Herzig et al. [4] accurately represent their experimental data,
similar to Cases 1 and 2. Column five of Table 12.1 presents the best-estimate
parameter values obtained by least-squares regression and the values of the
permeability impairment parameter, the filtration rate coefficient, and the
deposition coefficient calculated there from.

12.7.2 Radial Case

The one-dimensional radial-flow field experiment was carried out by the
injection of a particle–water suspension into a reservoir as described in
Figure 12.3. Here, we analyze the experimental data of Wennberg [2], who
conducted a test at a variable injection rate. The data were reported as a
function of the actual time instead of the number of pore volumes of fluid
injected.
Wennberg [2] injected seawater into Well A42 at a variable rate. The type

of the rock formation was not described. The conditions of this experiment
are described in Table 12.2. The validity of Eq. (12.112) is demonstrated
by Figure 12.31 showing a successful least-squares linear regression of this
equation to typical decline rate data of Wennberg [2] with a coefficient of
regression R2 = 0.99, very close to 1.0. Table 12.2 also presents the best-
estimate parameter values (q∞, λ) obtained by least-squares linear regression
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FIGURE 12.31
Correlation of the experimental time-dependent injection rate data of Wennberg for radial case
for Well A42 after filter change.
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FIGURE 12.32
Correlation of data of Wennberg for Well A42 after filter change with theory: impedance index J
versus time t, radial flow with time-dependent injection and constant-rate coefficient for λ = 70
and B/ln(Re) = 0.00021.
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on a semi-logarithmic scale. The experimental measurements of Wennberg
[2] on the impairment of the porous medium are compared with the fitted
curves according to the present time-dependent injection rate model using a
constant-rate coefficient in Figure 12.32. Column two in Table 12.2 presents
the best-estimate parameter values obtained by least-squares regression and
the values of the permeability impairment parameter, the filtration rate coeffi-
cient, and the deposition coefficient calculated there from. The present model
represents the experimental data with reasonable accuracy.

12.8 Concluding Remarks

Themechanism and kinetics of fine particle deposition in porous media were
described by two different approaches and compared. A new phenomeno-
logical approach was taken here in order to represent the source/sink term
with constitutive relations. Thepresent approach expressed the rate ofdeposi-
tion function as a function of the particle mass or number flux, with the
proportionality factor being a function of the mass or number of particles per
unit volume, whereasHerzig et al. [4] simply allow the filtration coefficient to
be a variable with the deposition function itself. Although the present system
of equations has a similar appearance to that developed by Herzig et al. [4],
the equivalent constitutive relations are subtly different and more rigorous.
The resulting equationswere expressed in normalized variables and solved

analytically for rectilinear and radial flows in porous media. The analytical
solutions were provided for both the constant and variable deposition rate
coefficients. The results were used to generate a number of new useful for-
mula of practical importance, including the variation of the injectivity ratio,
impedance index, porosity, and permeability, and fine particle concentration
in the suspension and porous media by fine particle retention. Besides the
variable-rate coefficient, we have also dealt with the formulation and ana-
lytic solution for the time-dependent injection rate case. Further, the profiles
were illustrated for the particle concentration in the particle–fluid suspension
and the cumulative particle deposition in porous media as a function of the
dimensionless time. Typical scenarios simulated demonstrated the paramet-
ric sensitivity of the evolution of the outgoing wave front and disturbances
generated by the wave front. A methodology for determination of the para-
meters of the deep-bed filtration process by fitting the large-time portion of
the experimental data was proposed and shown to be valid. Applications
were illustrated for interpretation and evaluation of the various laboratory
tests involving the injection of particle–fluid suspensions into core plugs and
the field observations concerning the deep-bed filtration near the well-bore
formation resulting from the injection of a fluid containing fine particles into
completed wells in petroleum reservoirs.
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The analytical solution of the deep-bed filtration model can only repre-
sent the experimental data until the initiation of a possible external filter
cake buildup over the injection face of the porous medium. As stated at
the beginning of the model formulation, here the particles are considered
sufficiently small compared to the pore size so that an external filter cake
would not form until the porousmedium is fully saturatedwith the particles.
Nevertheless, the effect of the external filter cake can be taken into account
by using a suitable external cake buildup model as described by Civan [1].
However, this is beyond the focus of the present chapter. It is also possible
that the filtration coefficient significantly varies when the pore-volume con-
ditions approach the maximum particle-packing limit of porous medium as
the pore volume is saturated by the deposited particles. The charge effects
(zeta-potential) and rapid change of the fluid velocity (convective accelera-
tion/deceleration) inversely with radial distance also play an important role.
These effects should be taken into account when analyzing the late-time data.
Applicationof complicated correlations suchasgivenbyTien [12]may require
a numerical solution. This suggests that further theory and experiments are
necessary in order to investigate and understand the underlying phenomena.

Nomenclature

Ao constant cross-sectional surface area of the porous formation or a core
plug, m2

A cross-sectional surface area, m2

c, cp particle volume concentration or volume fraction occupied by the
particles in a particle–fluid suspension, ppm

cf carrier fluid volume concentration or volume fraction occupied by the
carrier fluid in a particle–fluid suspension, ppm

cw value of c at the injection port, ppm
ex unit vector in the rectilinear-flow direction
er unit vector in the radial-flow direction
f (X) an arbitrary function of integration
g1(θ) an arbitrary function of integration
h reservoir formation thickness, m
H(u) the unit Heaviside step function
J impedance index, dimensionless
jw volumetric diffusion flux vector of the carrier fluid (water), m3/m2/sec
jp volumetric diffusion flux vector of the particles, m3/m2/sec
ko filtration coefficient, per sec
K permeability, m2

K harmonic-average permeability, m2

L core length, m
mp average mass per particle, kg/number
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N total number of particles that cross a unit area at a given location in
the time t, number/m2/sec

p pressure, Pa
PVo initial pore volume, m3

qo constant or initial volumetric injection rate, m3/sec
q volumetric rate of flow, m3/sec
qw volumetric injection rate, m3/sec
q∞ limiting injection rate, m3/sec
Q cumulative volume of suspension injected, m3

r distance in the radial coordinate direction, m
re radius of influence of the injection well, m
rf radius of the front position ahead of which there is no deposition, m
rw radius of the injection well-bore, m
u, u volumetric flux, superficial velocity, or Darcy velocity of the particu-

late suspension, m3/m2/sec
v interstitial or actual pore space velocity of the particulate suspension,

m/sec
V∗p volume of an average particle, m3

x distance in the Cartesian coordinate direction, m
xe distance of influence of the injection well, m
xf location of the front position ahead of which there is no deposition, m
xw location of the injection well-bore, m
X dimensionless distance in the Cartesian coordinate direction,

dimensionless
Z square of dimensionless distance in the radial coordinate direction,

dimensionless
α injectivity ratio, dimensionless
φ porosity, fraction
λ koL or korw, dimensionless
ρ density, kg/m3

ρp mass density of the particulate matter, kg/m3

ρ∗p material density of an average particle, kg/m3

ρf mass density of the carrier fluid phase, kg/m3

ρ∗f material density of the carrier fluid phase, kg/m3

δ reciprocal characteristic time, per sec
τ dimensionless time or number of injected pore volumes, dimen-

sionless
τa macroscopic average tortuosity of the flow paths in porous media,

dimensionless
µ̇s a particle mass per unit bulk volume of porous media per unit time

sink term, kg/m3/sec
σ number of particles filtered out in the time t, and referred to as the

basic filtration number, ppm
σ1 basic filtration rate defined by Eq. (12.29), ppm per unit time
σ̇s volumetric rate of deposition function, ppm per unit time
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Subscripts

e external or effluent-end boundary
f front position
o initial state
w well-bore
∞ long-time condition

Conversion Factors

1 in. = 0.0254 m
1 ft = 0.3048 m
1 d = 86,400 sec
1 ml = 10−6 m3

1 D = 0.9869233× 10−12 m2

1 bbl/d = 1.84× 10−6 m3/sec
1 l/h = 2.778× 10−7 m3/sec
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Modeling Heat and Mass Transport Processes
in Geothermal Systems
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13.1 Introduction

Historically, geothermal systems have been an important energy source in
those countries lucky enough to have them. Hot groundwater has been used
for many centuries for cooking, bathing, therapeutic, heating, and chemical
processes. Modern industrial developments have expanded these uses to
extensive space-heating for buildings and to the usage of higher enthalpy
fluids for electricity generation; see, for example, Lund and Freeston [1] and
Huttrer [2]. While the former uses involved tapping the surface outflows in
the form of hot springs and fumaroles, the usage of the latter had to wait for
the suitable drilling, piping, machinery, and materials technology of the last
century.

Themathematicalmodelingofheat andmassflowshas introducedapower-
ful tool to aid virtual exploitation of underground geothermal systems. The
relatively high cost of drillingwells into geothermal aquifers, especially those
that are either overpressured with respect to hydrostatic gradients or those
that are boiling, has made the use of modeling and computational simulation
attractive. Computing the effects of exploitation of such resources on a large
scale and predicting how systems would react locally to proposed usage are
donewithout large-scale engineering resources. The predictive capabilities of
quantitativemodels led to their being used in the engineering design process;
they also play an essential role in planning new energy developments and in
improving current ones.

Several decades of experience and testing of the models and computations
mean that the relatively near-surface regions are nowbetter understood.Most
of the geothermal systems that are being exploited now have well-developed
numerical models, which are continually updated and adjusted as more data
becomes available. Current attention is being focused on the deeper zones
that underlie geothermal reservoirs, and that provide a link between their
bases and the magmatic heat sources further below. The dialogue between
volcanologists and geothermal scientists and engineers is being strengthened
by the interaction of the geological, geophysical, and geochemical groups
with reservoir engineers and modelers.

This chapter describes the mathematical modeling processes that are
applied to physical systems, where fluids move within heated porous under-
ground structures, and the differential equations that describe the mass
and energy transport processes. The various parameters that are needed to
describe the thermodynamic properties of the fluid and solid phases are lis-
ted and explained. Some of the techniques for solving the nonlinear systems
of differential equations that result from the formal modeling process are
described, and some recent developments and foci of research attention are
mentioned. There is, naturally, a generic overlap with quantitative descrip-
tions of other such phenomena; it is the medium-scale estimates of structural
and fluid properties that are important in geothermal modeling, and it is
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precisely these estimates that are difficult tomake because of the “invisibility”
of most of the systems that are being simulated.

Many of the finer details of laboratory-scale porous media investigations
are not important in geothermal system modeling. As noted above, the mat-
rix structures of the underground systems are unable to be described exactly
because of their inaccessibility. Hot water can pervade geological matrices of
different types, including sediments (some of which may be partly cemen-
ted by chemical deposits), rock fractures formed through cooling of volcanic
magma flows, double-porosity structures where fractures link permeable
blocks, and combinations of these. Many, if not most, geothermal systems are
composed of layers of different rock materials laid down through a succes-
sion of geological events over thousands of years. Clearly defined boundaries
cannot be placed exactly, other than at a few points where they are inter-
cepted by boreholes. So the effort in geothermal modeling is on broad-scale
approaches, and the current thinking on useful models is the focus of this
chapter.

Other chapters in this Handbook of Porous Media cover some related
aspects. The derivation of the fundamental conservation equations is dis-
cussed in Chapter 1, the porosity structure in fractured porous media is
characterized in Chapter 3, while mechanical dispersion models are evalu-
ated in Chapter 5. The effects on the fluid density of temperature and salinity
are discussed in Chapter 8 on double-diffusive convection. Some of these
areas of investigation are directly relevant to geothermal systems, while oth-
ers apply to phenomena that are overwhelmed by the length scales and/or
the heat and mass fluxes of the geophysical situation.

13.2 Physical Processes

Models of flow processes in geothermal systems have to take into account
the strong coupling between heat and mass transport. The usual concep-
tual models on which such quantitative mathematical models are based
involve motion of a single-phase fluid (liquid or gas) or a flow of two
fluid phases that are in thermodynamic equilibrium, within a stationary
porous rock matrix. The dominant fluid component is water, with solutes
and gases in relatively small concentrations. Because geothermal systems
evolve slowly over long periods of time, the assumption that rock and fluid
have the same temperature in an undisturbed system is a good one. Even
when exploitation or fluid injection takes place, the time constant for tem-
perature equilibration over pore sizes is usually much shorter than over
the intermediate scale used for averages, and local thermal equilibrium is
assumed.

The fluid-filled rock structure is thermally conductive and serves to trans-
port heat from high-temperature regions near the base of the Earth’s crust to
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the surface. However, it is the internal energy that is containedwithin the rock
matrix that contributes most significantly to the energy reserve. For typical
geothermal system porosities of less than 5%, more than 90% of the internal
energy is contained in the rock matrix. In contrast to the flow of hydrocar-
bons within an oil reservoir that is tapped through wells, the flowing fluid in
a geothermal structure serves mainly as a medium to transport the thermal
energy contained within the rock matrix, rather than as the main container
of energy in the system. It is this feature of geothermal systems that must be
reflected correctly in good physical models.

The earliest models of geothermal systems were based on pure water as the
saturating fluid and the focus was on the thermodynamics of pure water sub-
stance. The determination of suitable correlations for its properties, in forms
easily converted for use in computer subroutines, was essential to the quan-
tification of mass and heat flows by numerical simulation. Early computer
subroutines used interpolations within lookup tables of thermodynamic
properties; the design of those computational subroutines reflected differ-
ences of opinion as towhichwere themost favorable primary thermodynamic
state parameters to use.

Development of further sophistication through consideration of chemicals
dissolved in the liquid phase, and of various gas components contributing
to the total gas pressure, has recently led to more complicated formulations,
and also to interest in modeling the transport of minerals and the leaching
and/or deposition within the rock matrix of the solid phases of solutes. Some
of these aspects are mentioned below.

Theporousmatrixhas receivedattention, too, withmoredetail beingplaced
on the fractured nature of geothermal rocks, in contrast to the early models,
which were based on typical groundwater aquifers, and which were con-
sidered to be homogeneous, but not necessarily isotropic, sedimentary
structures. Chapter 3 of this handbook discusses fractured media in some
detail. On the length scales of geothermal systems, the porosity and per-
meability are usually considered as smoothly varying spatially in regions
between discontinuities such as faults or strata interfaces, whatever the pore
structure. However, bedding induces anisotropy in the permeability and
this is reflected in the structure of the permeability tensor (see below and,
e.g., Bear [3], Bear and Bachmat [4], and Nield and Bejan [5]).

13.3 Conservation Equations

The description of a geothermal system is largely based on the continuum
hypothesis, using a representative elementary volume (REV) formulation. It
is assumed that the scale of description is large enough for volume-averaged
quantities to be statistically valid, while being small compared with the mac-
roscopic dimensions of the large geophysical structure (e.g., see Refs. [3–5]).
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System descriptions are based on locally averaged quantities that may vary
spatially and temporally.

The distribution of phases is calculated using volume fractions, while the
phase properties are based on mass units. The volume fraction of the system
thatmaybe occupied bygeothermal fluid is called the effective porosityφ; it is
a local measure of the interconnected pore space available to the geothermal
fluid and may vary according to rock type and position (as well as time,
if deposition and/or dissolution are taking place). The remaining volume
fraction, 1 − φ, is occupied by the rock matrix and possibly some, usually
small, unconnected pores. These latter pores contribute to the total poros-
ity, the space not occupied by solid rock. The distinction between the values
of the total and effective porosities is usually neglected in geothermal mod-
eling. The volume fractions of the interconnected pore space occupied by the
liquid and gas phases are denoted S� and Sg respectively (called the liquid
and gas saturations) with S� + Sg = 1.

13.3.1 Conservation of Mass

Equations derived from the principle of mass conservation for each of the
systemfluid components i (i =water, solute, noncondensible gas, etc.), which
may be distributed within both liquid and gas phases, are usually written in
the following form, see, for example, Ref. [4]:

∂A(i)m
∂t
+∇ ·Q(i)

m = q(i)m (13.1)

Here the mass per unit formation volume for component i is given by

A(i)m = φ
[
X(i)� S�ρ� + X(i)g Sgρg

]
(13.2)

where ρ� and ρg are the densities of the liquid and gas phases respectively,
while X(i)� and X(i)g are the mass fractions of component i present in each of
the separate fluid phases. The specific mass flux, or mass flux of component i
per unit cross-sectional area of the formation, is Q(i)

m , defined in Eqs. (13.6),
(13.7) below, while q(i)m is a source term for component i in units of mass
per unit time and per unit formation volume. This last term can be used to
model extractionor injectionof fluidvia boreholes, and tomodel precipitation
and/or dissolution of chemicals contained in the fluid onto/from the pore
surfaces of the rock matrix.

Summation of the mass conservation equations (13.1), (13.2) over all fluid
components gives:

∂Am

∂t
+∇ ·Qm = qm (13.3)
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where the total fluid mass per unit formation volume is given by

Am = φ
[
S�ρ� + Sgρg

]
(13.4)

whileQm is the total specific mass flux and qm is the total mass source term.

13.3.2 Conservation of Linear Momentum (Darcy’s Law)

Known as Darcy’s law, the simplest model for fluid flow in a porous medium
is derivedby considering, because fluid velocities are small, that terms repres-
enting inertial forces in the momentum conservation equation are negligible
compared with those for pressure, body and viscous forces (i.e., Re � 1);
see Ref. [5]. This approximation is reasonable for geothermal flows, except
perhaps near boreholes; the latter, while important as point sinks or sources
in simulations, form only very small regions of the total formation volumes
considered. The question of whether Darcy’s law is appropriate or should be
extended with other nonlinear terms is debated in Ref. [5].

When only one fluid phase is present in the pores, onemomentum equation
is used, but for a general two-phase formulation, separate equations are
required for the liquid and gas phase mass fluxes per unit cross-sectional
formation area,Qm� andQmg, given respectively by:

Qm� = ρ�v� = ρ�
kr�
µ�

k ⊗ [−∇p� + ρ�g] (13.5a)

Qmg = ρgvg = ρg
krg
µg

k ⊗ [−∇pg + ρgg] (13.5b)

where⊗ is the tensor product operator, and v� and vg are the specific volume
fluxes (volume flux per unit cross-sectional formation area) for the liquid and
gas phases, respectively. These are also known as the Darcy velocities of the
separate phases. Themass fluxes for component i in the liquid and gas phases
are given by

Q
(i)
m� = X(i)� Qm� (13.6a)

Q(i)
mg = X(i)g Qmg +D(i)w ρg[−∇X(i)g ] (13.6b)

The total mass flux for component i (as used in Eq. [13.1]) is then given by:

Q(i)
m = Q(i)

m� +Q(i)
mg (13.7)

The last term in Eq. (13.6b) represents the transport of mass in the gas phase
by diffusion aswell as advection. Diffusive fluxes of components in the liquid
phase are regarded as very small compared with their advected mass fluxes,
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and are usually neglected in geothermal simulations. Further comment is
made in the section on distribution laws.

Other parameters not already defined include the following: k is the form-
ation intrinsic permeability tensor; kr� and krg are permeability reduction
factors (or relative permeabilities) that depend on the liquid saturation S�; µ�
and µg are the dynamic viscosity of each phase; p� and pg are the liquid and
gas phase pressures; D(i)w is the mass diffusion coefficient for component i in
water vapor in the gas phase. Further definitions and comments about these
parameters will be given below.

When only one fluid phase is present, a single equation can be retrieved by
setting to zero either all the X(i)� (for gas phase only) or all the X(i)g (for liquid
phase only).

13.3.3 Conservation of Energy

As already mentioned, geothermal fluid flow speeds are small. It is then
usual to assume that all components and phases are in local thermodynamic
equilibrium, and in particular are at the same temperature. The equation that
reflects conservation of energy may be written as follows, see, for example,
Ref. [4]:

∂Ae

∂t
+∇ ·Qe = qe (13.8)

where the energy per unit formation volume is

Ae = (1− φ)ρrur + φ[S�ρ�u� + Sgρgug] (13.9)

and the specific energy flux (flux per unit cross-sectional formation area) is

Qe =
∑
i

[
h(i)� Q

(i)
m� + h(i)g Q

(i)
mg

]
+ K ⊗ (−∇T) (13.10)

Equation (13.10) reflects the transport of heat by both advection and thermal
conduction. Cross-diffusion (Soret and Dufour) effects are neglected since
they are unable to be measured in situ and are also unlikely to be significant
because density gradients in natural geothermal systems are small, having
evolved over millennia, and temperature gradients produce gravitational
buoyancy forces, the effect of which will dominate in advection.

In these equations, qe is a source term inunits of energyperunit timeandper
unit formation volume, while ρr and ur are the density and specific internal
energy of the rock particles; u� and ug are the specific internal energies and
h(i)� and h(i)g are the component specific enthalpies of the liquid and gas fluid
phases respectively. The local temperature of all components and phases is T,
while K is the effective thermal conductivity tensor of the rock–fluid mixture.
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Because the porosity in geothermal systems is small (typically less than
5%), the rock matrix contains the majority of the internal energy; also, the
thermodynamic properties of the matrix dominate rock–fluid mixture values
of the thermal conductivity (see Section 13.3.4 for further discussion).

13.3.4 Formation Parameters

As mentioned above, early models of geothermal reservoirs regarded the
formations as essentially consisting of (maybe several) isotropic sedimentary-
type layers, with anisotropy arising from the layering itself. More recent
modeling recognizes that thermal fracturing of the volcanic rocks that form
most of such reservoirs have an inherent anisotropy. The rock material
between the fractures may also have a secondary permeability, with flow
into and out of the surrounding fractures.

The parameters used in the conservation equations above are discussed in
more detail here. The discussion relates only to the application of the more
general theory of flow in porous media to geothermal modeling, and repres-
ents approximations that are necessarily made to model large-scale systems
about which very little detailed data is available.

Effective porosity φ. This is the local fraction of the formation, which consists of
connected pore space that is available to fluid. Isolated pore space, assumed
relatively small, is not taken into account. While the pointwise porosity may
vary from zero in a rock particle to 100% in a pore, φ is the spatially aver-
aged value over a REV; it may vary with position in a reservoir, but is more
commonly assumed to be of uniform valuewithin specified subregions of the
formation being considered. The quantity φ is dimensionless.
Effective thermal conductivity tensor K . The effective or overall thermal con-

ductivity of the rock–fluid mixture is a combination of the rock and fluid
values, and also depends in a complicated way on the geometry of the matrix
structure. If conduction in the rock and fluid phases occurs in parallel, then
the averaged thermal conductivity is the weighted arithmetic mean of the
rock and fluid values, given by K = (1− φ)Kr+φKf . If heat conduction takes
place in series, the averaged value is the porosity-weighted harmonic mean.
Aweighted geometric mean has also been proposed [5]. In all cases, since the
porosity φ is usually small, the rock value dominates.

A commonly used approximation for the thermal conductivity in geo-
thermal systems that takes some account of the presence of solid and fluid
phases, is given by the isotropic tensor K with K ii = K (i = 1, 2, 3), where

K = (1− φ)Kr + φKf (13.11)

with the rock value Kr typically in the range 2.0 to 2.5 W/m/K for solid
rock material, while the fluid thermal conductivity, which varies with the
fluid phase composition in the pores, is taken to be the volume-weighted
average of the liquid and gas values, given by Kf = S�K� + SgKg. If
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any gas phase (which has low density and low thermal conductivity) is
present, Kf is about an order of magnitude less than Kr, so, in most cases,
K = Kr is a close approximation. A more detailed discussion is given in
Ref. [5].
Rock density ρr and specific internal energy ur. The density of the solid rock

particles is usually taken to lie in the range 2000 to 3000 kg/m3, depending
on the rock type. Appropriate data is readily available in the geological liter-
ature, or see Ref. [6]. A variety of values used in simulations may be seen in
Refs. [7–16]. The specific heat cr of rock varies very little with either temper-
ature or pressure, so the specific internal energy of the rock particles may be
written:

ur = crT (13.12)

where cr has a constant value of around 1000 kJ/kg/K and T is measured
in ◦C. (Note that the zero datum for energy values in geothermal systems is
usually taken to be 0◦C.)
Intrinsic permeability tensor k . The permeability is a measure of how eas-

ily a single phase fluid moves in a porous medium under the influence of a
dynamic pressure gradient (absolute pressure gradient adjusted for gravita-
tional effects). It is a property of the porous matrix only; fluid property effects
are incorporated in Darcy’s law through the fluid density and dynamic vis-
cosity (see Eqs. [13.5a,b]). The principal axes of k are influenced mostly by
the bedding or fracturing of the porous matrix. For a system with a hori-
zontal bedding structure, there is little variation in the horizontal plane, and
in most cases a significantly smaller value of permeability in the vertical dir-
ection. With respect to a Cartesian coordinate system with position vector
components (x, y, z) where the gravitational acceleration vector is represen-
ted by g = (0, 0,−g), the principal components of k can be written (kh, kh, kv),
where the vertical permeability kv is smaller, by up to an order of magnitude,
than the horizontal value kh. Typical values of the components of k for frac-
tured geothermal systems lie in the range 10−15 to 10−12 m2 (i.e., 1 millidarcy
to 1 darcy, where 1 darcy ≈ 1.0 × 10−12 m2) with values up to two orders of
magnitude larger for sedimentary (low-temperature) systems. The horizontal
permeability of geothermal systems is usually estimated from well-testing
procedures as for petroleum reservoirs, but with more difficulty, because of
the high compressibility of boiling mixtures. Avariety of case studies are dis-
cussed in Refs. [7–16]. Discussions about the relationship between porosity
and permeability may be found in, for example, Refs. [5] and [17]; however,
the detailed correlations for granular-type matrix structures is largely not
useful for fractured rocks.
Relative permeabilities kr�, krg. Also known as permeability reduction factors,

these parameters allow for modeling the way that one fluid phase interferes
with the motion of the other when two phases are present in the pores. Each
reduction factor is a function of the liquid saturation S�. Most models reflect
various experimental evidence that, if one of the phases is present in only
relatively small amounts (S� < S�r orSg < Sgr, whereS�r andSgr are called the
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residual liquid and gas saturations, respectively), movement of that phase is
almost completely inhibited by the other and the corresponding permeability
reduction factor is effectively zero.

While there are a number of specific formulations of the relationship
between the relative permeabilities and liquid or gas saturation, most fol-
low a common structure. Typically, the functions are of the form kr�(S�) and
krg(S�), where both are continuous and monotonic, with,

for S� ≤ S�r, kr� = 0, krg = 1 (13.13a)

for S�r < S� < 1− Sgr, kr� = f (S�), krg = g(S�) (13.13b)

for S� ≥ 1− Sgr (or Sg ≤ Sgr), kr� = 1, krg = 0 (13.13c)

where f and g are monotonic functions of S�. The simplest formulation uses
straight line functions:

f (S�) = S∗� =
S� − S�r

1− Sgr − S�r g(S�) = 1− S∗� (13.14a)

while another commonly used set of formulae is that first derived by
Corey [18]:

f (S�) =
(
S∗�
)4 g(S�) =

(
1− S∗�

)2 [1− (S∗�)2 ] (13.14b)

where S∗� is defined in Eq. (13.14a). Typical values of S�r and Sgr lie in the
ranges 0–0.4 and 0–0.1, respectively. The two sets of relative permeability
curves defined above are illustrated in Figure 13.1 for the case S�r = 0.2,
Sgr = 0.1.

1
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0.4

krg

S

kr
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0
0 0.2 0.4 0.6 0.8 1

FIGURE 13.1
Relative permeability functions kr�(S�) and krg(S�) for S�r = 0.2, Sgr = 0.1: ———- straight line
functions (Eq. [13.14a]), - - - - Corey curves (Eq. [13.14b]).
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Voidage ε. Depositionof solidprecipitates from thefluidonto thewalls of the
rock pore spaces decreases the pore volume available for the fluid. This may
be measured by the voidage ε, the volume fraction of the rock pore space
available for fluid. Equations (13.1) to (13.4), (13.8), and (13.9) above take
ε = 1, but any consideration of the solid precipitate’s contribution to mass
and energy balances would need another parameter such as ε to account
for it, while specific properties for the solid precipitate phase would also be
required.

Large amounts of such deposition would inevitably alter the permea-
bility by sealing pore connections, perhaps completely. For small amounts
of deposition, the effect on permeability is usually neglected. As will be
described below, recent developments in modeling deep high-pressure high-
temperature brines, where solid salt precipitate may exist in equilibrium
with solute-saturated fluids, explicitly include the solid precipitate fraction in
mass and energy balances, see McKibbin and McNabb [19,20]. Quartz depos-
ition and dissolution in a geothermal system owing to field development is
discussed in Ref. [21].

The timescale for deposition depends on the geochemical processes
at work. Reinjection of geothermal waste liquid from power generation
plants is becoming common; if the fluid is cooled and becomes sat-
urated with respect to one or more of the solutes, rapid sealing may
occur. For naturally developed systems, the process is slower, and self-
adjustment of the formation by refracturing may take place; see comments in
Ref. [20].

13.3.5 Fluid Parameters

Because water is the predominant fluid component in geothermal systems,
accurate modeling of its thermodynamic properties is essential. Tables of the
thermodynamic properties of water substance are readily available, usually
given in terms of the independent state variable pair (p,T), with pressure p
in bars absolute (1 bar = 105 Pa) and temperature T in ◦C (0◦C = 273.15 K);
for an example of such tables, see Ref. [22].

For any given reservoir temperature T < 374.15◦C (the so-called critical
temperature), a boiling or saturation pressure exists, denoted by p = psat(T),
at which, under ideal conditions, both the liquid and gas (steam, or water
vapor) phases of water can coexist; conditions are then said to be saturated.
At the critical temperature, pcrit = psat (374.15◦C) = 221.2 bars absolute.
The inverse function, which gives the saturation temperature in terms of
pressure, is written T = Tsat(p). For T > 374.15◦C, or p > 221.2 bars absolute,
the conditions are said to be supercritical, and there is no pressure at which
the two phases become distinguishable.

For a fluid that is composed mainly of water, but with some disassociated
salts and noncondensible gases dissolved in it, the boiling or saturation rela-
tionship will be slightly different from that for pure water. In general, the
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boiling pressure will be given by p = psat(T,X(1)� ,X(2)� , . . . ,X(N)� ), where N is
the total number of components, and i = 1 corresponds to water.

Generally, two thermodynamic variables determine the state of a system
for a pure substance; at saturated conditions, the pressure p and temperat-
ure T are functionally related and so are no longer independent. The liquid
saturation S� may be used as a replacement for either T or p; then either (p,S�)
or (T,S�) is used as an independent state variable pair (together with concen-
trations of other components, if present in large enough mass fractionsX(i)� to
cause significant effects). For p < psat(T,X

(i)
� ) [or T > Tsat(p,X

(i)
� )], super-

heated vapor forms the only phase (gas), while single-phase compressed
liquid conditions prevail for p > psat(T,X

(i)
� ) [or T < Tsat(p,X

(i)
� )]. Gener-

ally, the presence of dissolved salts increases the boiling temperature, while
noncondensible gases cause boiling-temperature depression; see O’Sullivan
et al. [23].

The thermodynamic properties of a brine that has a significant content of
NaCl (commonsalt)were investigatedbyPalliser andMcKibbin [24–26]while
the presence of (noncondensible) CO2 gas was considered in Refs. [20,27].
Insofar as these (NaCl, CO2) components are representative of solutes and
noncondensible gases in general, the properties of a geothermal fluid that
contains total equivalents of salt or gases can be approximated by the correl-
ations set out in those works. The difficulties of accurately estimating all the
cross-correlations for diffusion, etc., in multicomponent mixtures makes this
equivalent-type model attractive for many systems where NaCl and CO2 are
the main solute and noncondensible gas components.

Surface tension and adsorption effects may balance a small difference in
liquid and gas phase pressures, p� and pg in two-phase fluids in porous sys-
tems; this is called vapor pressure lowering, and is discussed further below.
Such effects are usually small under natural geothermal two-phase condi-
tions, and the assumption that the pressures in the liquid and gas phases are
the same produces little error. However, injection of colder water into a two-
phase vapor-dominated system may produce significant effects, as shown
through numerical simulation by Pruess [28].

Liquid saturation S�. For conditions corresponding to single-phase (com-
pressed) liquid, where p > psat(T), the liquid saturation S� = 1, while the
gas saturation Sg = 0. Similarly, for T > Tsat(p), S� = 0 while Sg = 1. Note
that these are volume fractions, unlike the quantity known as the quality
or dryness used in thermomechanical process calculations; that parameter,
commonly denoted by X, is the mass fraction of steam (water vapor) in a
two-phase mixture. Problems associated with determining suitable values
of the saturations when conditions are supercritical have been addressed by
Kissling [29].
Fluid phase pressures p�, pg. The phenomenon of vapor pressure lowering

occurs when surface tension effects at the fluid phase interfaces balance a
difference in the separate phase pressures. The thermodynamic properties of
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the fluid phases are then altered inside the porousmediumby capillary forces
and by adsorption of liquid on mineral phases. For pure water, the pressure
difference may be expressed by

p� − pg = psuc(S�) (13.15)

where psuc, a function of the liquid saturation S�, is termed the suction (or
capillary) pressure; see Ref. [28]. Vapor pressure above a liquid phase held by
capillaryor adsorptive forces is reduced in comparison to the saturationvapor
pressure above the flat surface of a bulk liquid. The reduction is expressed in
terms of a vapor pressure lowering factor, f = pg/psat(T), given by Kelvin’s
equation:

f = exp
[

Mwpsuc

ρ�R(T + 273.15)

]
(13.16)

whereMw is the molecular weight of water, R is the universal gas constant;
and all the other parameters have previously been defined.
Fluid phase densities ρ�, ρg. For pure water, these properties are well known

and are tabulated over a wide range of pressures and temperatures [22]. Reli-
able correlation formulae are also available; computer calculations are faster
using such correlations rather than table lookups and interpolation.

When other components are present in the fluid, the pure water densities
must be modified. Components other than water may be divided into two
groups: chemical solutes andnoncondensible gases. The former residemainly
in the liquid phase, while noncondensible gases have the greatest effect in the
gas phase. Over the normal range of conditions prevailing in a geothermal
system, it is usual to assume that the liquid density is unaltered by the pres-
ence of noncondensible gases, but ρ� must be modified to take account of any
solutes present. For NaCl solutions, see Ref. [25].

In the gas phase, modifications are made for the noncondensible gas com-
ponents, density ρ(i)g , which also each contribute a partial pressure p(i)g to the
total gas pressure pg. The total gas phase density is expressed in terms of the
component densities by Dalton’s law. The mass fraction of each dissolved
noncondensible gas component in the liquid phase may be related to an equi-
valent gas partial pressure through Henry’s law. Both distribution laws are
discussed further below. Density units are kg/m3.
Fluid phase specific enthalpies h�, hg. As for densities, the specific enthalpies

for pure water may be calculated from correlation formulae, or from tables,
for example, Ref. [22]. In a two-phase fluid mixture, the difference between
the gas and liquid values is called the latent heat of vaporization h�g, given by

h�g = hg − h� (13.17)

This is the amount of heat that is required to boil a unitmass of liquid to gas at
a given pressure (or temperature, since conditions are saturated, see above);
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because of the change in specific volume, work is required as well as internal
energy, and both are included in the enthalpy. Again, the specific enthalpy
values for water are altered by the presence of other components. The overall
gas specific enthalpy is calculated as a linear combination of the separate gas
component values, weighted by their mass fractions:

hg =
∑
j

X(j)g h
(j)
g (13.18)

The specific enthalpy of each of the dissolved noncondensible gases in the
liquid phase is expressed in terms of its gas value plus its heat of solution (the
amount of energy required to dissolve the gas into the liquid):

h(j)� = h(j)g + h(j)sol (13.19)

The overall liquid specific enthalpy is then given by a linear combination of
the water value (i = 1), the contributions from the solutes and those from the
noncondensible gas fractions (Eq. [13.19]), as follows:

h� = X(1)� h(1)� +
∑

solutes

X(i)� h
(i)
� +

∑
gases

X(j)�
[
h(j)g + h(j)sol

]
(13.20)

Specific enthalpy values have units kJ/kg.
Fluid phase dynamic viscosities µ�, µg. Again, pure water values are readily

available from correlation formulae over a wide range of (p,T) values; see
Ref. [22]. It is usually assumed that the liquid value µ� is altered negligibly
from the pure water value due to dissolved noncondensible gases. How-
ever, large concentrations of chemical solutes do affect the liquid viscosity;
in particular, very saline liquids are significantly more viscous than water at
the same (p,T) conditions. Correlations are available for such “pure” solu-
tions, but are reliable only over limited ranges of (p,T,X(i)� ) values (for NaCl
solutions, see Ref. [26]).

The overall mixture viscosity for the gas phase may be approximated by a
linear combination of the separate noncondensible gas component values:

µg =
∑
j

X(j)g µ
(j)
g (13.21)

This formula is an extension of that used in Ref. [23] for water + CO2. As
mentioned above, if the mass fractions of noncondensible gas components is
small, then the value of µg may be taken to be that of pure water (steam) for
the given temperature. Dynamic viscosity measurement units are kg/m/s.
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Kinematic viscosities ν�, νg. These are defined for each phase in terms of the
respective dynamic viscosities and densities by

ν� = µ�

ρ�
and νg = µg

ρg
(13.22)

with units m2/s. As will be shown in the section on one-dimensional flows
below, for horizontal two-phase flows a total, or effective, kinematic viscos-
ity can be defined, based on the separate phase viscosities being suitably
weighted by relative permeabilities.

13.3.6 Distribution Laws

In two-phase conditions, the components are distributed within both phases.
Usually salt concentrations within the gas phase are small, but noncondens-
ible gases may dissolve in the liquid phase.

13.3.6.1 Molecular diffusion

If a gas phase is present, molecular diffusion of different gas molecules is
taken into account through the last term in Eq. (13.6b). The net transport of
a particular component is proportional to the gradient of its concentration
expressed as a mass fraction of the total gas mixture. Since water vapor is
the dominant gas component, the transport of a minor component may be
regarded as controlled predominantly by its binary diffusion rate in water
vapor and is quantified byD(i)w , the mass diffusion coefficient of component i,
i = 2, . . . ,N in purewater vapor (i = 1). The coefficient forminor component i
may be expressed in the form:

D(i)w (p,T) = τcφSg
D(i)w (p0,T0)

p/p0

[
T + 273.15

273.15

]θ
(13.23)

Here, τc is the coefficient of tortuosity of the porous matrix (τc = 1/τ < 1
where the tortuosity τ > 1), and D(i)w (p0,T0) is the mass diffusion coeffi-
cient at some defined standard conditions; for example, the values (p0,T0) =
(1 bar, 0◦C) are used in Ref. [30]; θ is usually taken to be about 1.8. The diffu-
sion is reduced by the tortuosity of the paths followed by particles that diffuse
in the porous matrix.

As previously mentioned, diffusive fluxes of components in the liquid
phase are regarded as negligible compared with the advected compon-
ent transport by the liquid, and are usually neglected in geothermal
systems.
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13.3.6.2 Dalton’s law

Standard models of gas mixtures assume that each component is uniformly
distributed throughout the mixtures, and that the total density is the sum of
the densities of the parts:

ρg =
∑
i

ρ(i)g (13.24)

Each component contributes a partial pressure to the total gas pressure. Only
noncondensible gas componentsmake significant contributions. Bymodeling
all components as ideal gases, the total pressure can be approximated by the
sum of the partial pressures:

pg =
∑
i

p(i)g (13.25)

This then allows a connection to be made between the concentrations
of gas-phase components with their liquid-phase concentrations through
Henry’s law.

13.3.6.3 Henry’s law

Noncondensible gas solubility in the liquid phase may be expressed in terms
of Henry’s law, which gives a relationship between the partial pressure of a
component in the gas phase and itsmolar fraction in the liquid (e.g., see Perry
et al. [31]). This can be expressed by:

p(i)g = K(i)H
X(i)� /M

(i)(
X(1)� /Mw +∑i≥2 X

(i)
� /M

(i)
)

where component 1 is water and M(i) is the molecular weight of compon-
ent i. For single components at small concentration, the relationship is almost
linear:

p(i)g = K(i)H X
(i)
�

Mw

M(i) (13.26)

Here, K(i)H is Henry’s constant for component i in pure water; generally it
is a function of temperature T. At high concentrations, the relationship is
nonlinear; however, as mentioned at the outset, geothermal systems con-
tain mainly water, with other components in relatively small quantities, and
Eq. (13.26) serves as a reasonable approximation even when there are several
minor components.
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13.3.7 Boundary Conditions

To close the mathematical problem, boundary conditions are normally stated
in terms of thermodynamic state variables, or in terms of mass and/or heat
fluxes. Prescriptionof temperatures orpressures implies knowledgeof heat or
fluid reservoirs at the boundary that are unaffected in properties by fluid out-
flow or recharge. Examples include surface water at atmospheric conditions,
or recharge fluid available in groundwater aquifers adjacent to a geothermal
system. Impermeable boundaries may be modeled by specifying that the
normal mass flux is zero, while nonzero mass flows may be controlled by
boundary system pressures relative to a specified local exterior pressure.

13.4 Steady One-Dimensional Flows

Some of the main features of geothermal two-phase flows may be illustrated
by considering two special cases. In horizontal flows, gravity has negligible
effect and the motion is driven only by horizontal pressure gradients, while
gravitational effects are important for vertical flows. It is assumed in both
cases that capillary effects are negligible; the latter means that the pressures
in the gas and liquid phases are assumed to be the same, see Eq. (13.16).

13.4.1 Horizontal Flows: Total Viscosity and Flowing Enthalpy

13.4.1.1 Total, or effective viscosity

If capillary effects are neglected, then for horizontal flows with liquid and
gas pressures equal, use of Eqs. (13.5a,b) for the phase mass fluxes (all pro-
portional to the horizontal pressure gradient ∇hp) gives the total horizontal
specific mass fluxQmh in the form

Qmh =
[
kr�
ν�
+ krg
νg

]
kh(−∇hp) (13.27)

By comparison with the equation for horizontal flow of a single-phase fluid,
an equivalent viscosity νt, called the total or effective kinematic viscosity, is
defined by

1
νt
= kr�
ν�
+ krg
νg

(13.28)

Since the relative permeabilities are functions of liquid saturation S�, the
effective viscosity itself depends on the relative proportions of liquid and
gas present in the pores of the matrix.
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FIGURE 13.2
Variation of (a) effective viscosity νt and (b) flowing enthalpy hf with liquid saturation S� for
horizontal convection of two-phasewater atT = 250◦C. The relative permeability functions have
residual saturations S�r = 0.2, Sgr = 0.1: ———- straight line functions (Eq. [13.14a]), – – – Corey
curves (Eq. [13.14b]).

The dependence of νt on S� is shown in Figure 13.2(a) for the case where
T = 250◦C and for both sets of relative permeability functions described in
Eqs. (13.14a,b) with residual saturations S�r = 0.2 and Sgr = 0.1. For S� ≤
S�r = 0.2, νt takes the gas value νg, while for Sg ≤ Sgr (S� ≥ 1 − Sgr = 0.9),
νt = ν�. For intermediate values, the dependence on the form of the relative
permeability functions is clear and shows the sensitivity of the calculated
results to the choice of those functions.

13.4.1.2 Flowing enthalpy

The total specific energy flux is expressed by Eq. (13.10). If diffusive effects
are neglected, then for steady horizontal flows with liquid and gas pressures
equal, the total horizontal specific energy fluxQeh is given by

Qeh =
[
kr�h�
ν�
+ krghg

νg

]
kh(−∇hp) (13.29)

Afluid-averaged enthalpy value hf , termed the flowing enthalpy, is found by
dividing the magnitude of the total specific energy flux Qeh by that of the
total convected specific mass flux Qmh given in Eq. (13.27). This averaged
value is of the form:

hf =
h�(kr�/ν�)+ hg(krg/νg)
(kr�/ν� + krg/νg) =

[
h�
kr�
ν�
+ hg krg

νg

]
νt (13.30)

after using Eq. (13.28). For single-phase liquid conditions, S� = 1 and krg = 0,
leading to hf = h� as expected, while single-phase gas conditions lead to
hf = hg. The dependence of hf on S� is shown in Figure 13.2(b) for the same
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case as that for νt in Figure 13.2(a). Comments similar to those for the behavior
of νt are pertinent (see earlier).

13.4.2 Steady Vertical Flows: Heat Pipes

Since heat flow within a large portion of the central region of natural geo-
thermal systems is predominantly in the upward direction and exceeds that
which couldensue fromconductiononly, transfer of energy fromdeep regions
to the surface by convectiveprocesses is important.Within two-phase regions,
a phenomenon known as a heat pipe can take effect. Upward mass flux of
the gas phase, with its relatively high specific enthalpy, is balanced by a
downward counterflow of liquid at a similar mass flow rate, but with smaller
specific enthalpy. The effect is a small net mass transfer with a large upward
heat flux.

The process can be modeled by considering the steady-state, one-
dimensional vertical flow equations, with no internal sources. To simplify the
demonstration, it will be assumed that the fluids are pure water (note: no dif-
fusive flux in the gas phase), although amodel that includes a noncondensible
gas has been investigated by McKibbin and Pruess [27]. In a rectangu-
lar (Cartesian) coordinate system (x, y, z) where g = (0, 0,−g), the specific
mass flux is of the form Qm = (0, 0,Qmv). Then Eq. (13.3) requires that
dQmv/dz = 0, that is Qmv is independent of vertical position.

Assuming that the liquid and vapor pressures are the same, Eqs. (13.5a,b)
give the separate vertical liquid and vapor mass flows to be:

(Qm�)v = kv kr�ρ�
µ�

[
−dp

dz
− ρ�g

]
(13.31a)

(Qmg)v = kv krgρg
µg

[
−dp

dz
− ρgg

]
(13.31b)

where kv is theverticalpermeability and thenetverticalmassflux is thengiven
by Qmv = (Qm�)v + (Qmg)v. In general, the pressure decreases with height
(increases with depth) in a geothermal system, so dp/dz < 0 [−dp/dz =
dp/d(−z) > 0].

There are two special cases of interest. The case:

−dp
dz
= ρ�g (13.32)

is called the hydrostatic, or liquid-static gradient and occurs when there is no
vertical movement of liquid; it is the vertical pressure gradient that occurs in
a stationary single-phase warm water reservoir. The second special case is

−dp
dz
= ρgg (13.33)
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which is called vapor-static, or steam-static. It should be noted that ρg < ρ�
and these two special cases separate three flow situations:

1.

ρ�g < −dp
dz

This means that the pressure gradients are steeper than liquid-static
and, from Eqs. (13.31a,b), both phases move upward. For smaller
pressure gradients:

2.

ρgg < −dp
dz

< ρ�g

In this case the pressure gradient lies between liquid-static andvapor-
static. Liquid moves downward while vapor moves upward; this is
called counterflow.

3. When the pressure change with depth is small enough,

−dp
dz

< ρg g

and both liquid and steam fall.

While it is possible to set Qmv �= 0, corresponding to a net vertical mass
throughout (e.g., see McGuinness [32]), here the net mass flux is taken to
be zero. Then the downward liquid mass flux is equal to the upward steam
mass flux:

(Qm�)v = −(Qmg)v (13.34)

The pressure gradientmay then be determined explicitly fromEqs. (13.31a,b):

dp
dz
= − (kr�/ν�)ρ� + (krg/νg)ρg

(kr�/ν� + krg/νg) g

that lies between the liquid-static (S� = 1) and the vapour-static (S�= 0)
pressure gradients given in Eqs. (13.32) and (13.33) respectively (see
Figure 13.3[a]). Note that the pressure gradient so found is independent of
the vertical permeability kv. The vertical specific energy flux is then found
from Eq. (13.10):

Qev = (Qmg)v(hg − h�)− KdT
dz

(13.35)
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FIGURE 13.3
Variation of (a) the vertical pressure gradient dp/dz and (b) the ratio of the advected vertical
specific energy flux to vertical permeability, (Qev)adv/kv, with liquid saturation S� for vertical
counterflow of two-phase water at T = 250◦C. The relative permeability functions have residual
saturations S�r = 0.2, Sgr = 0.1: ———- straight line functions (Eq. [13.14a]), – – – Corey curves
(Eq. [13.14b]).

This shows that counterflow with zero net mass flux can transport
considerable amounts of energy, even when no mass is moved, since the
latent heat of vaporization hlg = hg − h� is large (about 1800 kJ/kg) for water
at typical reservoir temperatures.

The advected vertical specific energy flux is represented by the first term
on the right-hand side of Eq. (13.35): (Qev)adv = (Qmg)v(hg − h�). For a given
temperature, this depends on the liquid saturation S� and is directly
proportional to permeability kv.

The dependence on S� of the vertical pressure gradient dp/dz and the ratio
(Qev)adv/kv is shown in Figure 13.3 for the casewhere T = 250◦C and for both
sets of relative permeability functions defined in Eqs. (13.14a,b) with residual
saturations S�r = 0.2 and Sgr = 0.1 (conditions the same as in Figure 13.2). The
choice of relative permeability functions has amarked effect on the calculated
values, especially for the advected heat transfer. Note that for S� ≤ S�r, the
liquid relative permeability kr� = 0. The pressure gradient is vapor-static and
the gas phase does not move. Equation (13.35) indicates that the heat transfer
is then conductive only. Similar remarks apply for the liquid-static casewhere
Sg ≤ Sgr (S� ≥ 1− Sgr).

13.5 Numerical Simulation

Several numerical simulation computer packages have been developed for
solving the equations derived from conservation principles. In all techniques,
the total formation region of interest is partitioned into a finite number NVE
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of discrete, nonoverlapping subregions, or volume elements. Algorithms are
then based on discretized forms of the nonlinear differential equations, using
finite-difference, finite element (finite volume) or integrated finite-difference
techniques. The last is exemplified by the SHAFT–MULKOM–TOUGH
sequence developed by Pruess and coworkers [7,8,30,33]. It is also a method
that is conceptually closely allied to the intuitive method of dividing the sys-
tem region to be simulated into subblocks that are chosen to reflect the detail
required from the computed results.

In the integrated finite-difference scheme, which is the technique that also
most closely models the REV formulation used to derive the continuum
equations described earlier in this work, thermodynamic conditions are
assigned a uniform average value within each element. For any volume ele-
ment Vn, n = 1, 2, . . . ,NVE, the conservation of mass for component i is
encapsulated in the integro-differential equation:

d
dt

∫
Vn
A(i)m dV = −

∫
Sn
Q(i)

m · ndS+
∫
Vn
q(i)m dV (13.36)

where Sn is the boundary surface to the volume element andn is the outward-
pointing normal to Sn, whileA(i)m is defined in Eq. (13.2),Q(i)

m in Eq. (13.7) and
other parameters have already been defined. (Note that this equation may
be reduced to Eq. [13.1] by standard calculus techniques.) Introduction of
appropriate volume averages allows the mass accumulation for compon-
ent i in volume element n, the first volume integral in Eq. (13.36), to be
written:

∫
Vn
A(i)m dV = VnM(i)

n (13.37)

whereM(i)
n , a function of time t, is the average value of A(i)m over Vn.

The surface integrals are approximated by a sum of average fluxes between
an element and its neighbors:

−
∫
Sn
Q(i)

m · ndS =
∑
j

SnjQ
(i)
mnj (13.38)

where Snj is the surface area between element n and neighboring element j.
The areally averaged mass flux Q(i)mnj across surface Snj from element j into
element n is obtained from the discretized form of Eqs. (13.5) to (13.7), and
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may be expressed as:

Q(i)mnj = knj
{
X(i)
�nj

(
kr�ρ�
µ�

)
nj

[
p�i − p�n

dnj
+ ρ�nj gnj

]

+X(i)gnj

(
krgρg
µg

)
nj

[pgj − pgn
dnj

+ ρgnj gnj
]}

+D(i)wnjρgnj
X(i)gj X

(i)
gn

dnj
(13.39)

The subscripts (nj) indicate that the quantity is to be evaluated at the interface
between elements n and j, based on average values withinVn andVj. Various
weighting procedures are used to ensure stability. The distance dnj between
the nodal centers of elements n and j is used in calculation of gradients of
pressure and mass fraction.

The conservation of energy within volume element n is given by:

d
dt

∫
Vn
Ae dV = −

∫
Sn
Qe · ndS+

∫
Vn
qe dV (13.40)

where Ae is defined in Eq. (13.9),Qe in Eq. (13.10) and all the other paramet-
ers have already been defined. (Again, this may be reduced to Eq. [13.8] by
standard calculus methods.) Analogously to the mass term above, the energy
accumulation in volume element n is approximated by∫

Vn
Ae dV = VnEn (13.41)

The discretized form of the areally averaged energy flux from element j into
element nmay be deduced from Eq. (13.10) and the forms of Eqs. (13.38) and
(13.39).

For each of theNVE volume elements, themass accumulation termsM(i)
n for

each of the N fluid components as well as the energy accumulation term En
must be evaluated. These depend, through thermodynamic relationships, on
a set of primary variables that may be chosen according to the problem and
the phase composition. A common set is {Tn, pn,X(1)n ,X(2)n , . . . ,X(N)n } when
single-phase conditions exist in the element, or {Tn,Sln, p(1)gn , p

(2)
gn , . . . , p

(N)
gn }

when two phases are present. There is therefore a total of (N + 1) × NVE
primary variable quantities to be calculated from the same number of the
discretized forms of themass and energy balance equations.An implicit time-
stepping procedure is used to ensure stability, and the problem is reduced to
a set of coupled algebraic equations in the set of derived unknown quantit-
ies {(En,M(1)

n ,M(2)
n , . . . ,M(N)

n ),n = 1, 2, . . . ,NVE}, all of which are functions
of the primary variables. Fast algorithms for solving large sets of sparse
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linear equations are used, see Pruess [30,33]. Because the derived quantities
are nonlinear functions of the primary variables, Newton–Raphson iteration
techniques are used to speed up the convergence at each time step.

There ismuch literature dealingwith geothermal reservoir simulation, both
from the theoretical viewpoint and as case studies. The latter are often con-
tained in technical reports to companies or government agencies that need to
know the possible effects of exploitation of a resource. An excellent summary
article is provided by O’Sullivan et al. [9].

Theoretical studies are based on the sciences (physical chemistry, classical
physics, geophysics, geology, thermodynamics, mathematics, statistics, com-
putational methods) and establish commonality with other similar processes.
An extensive list of references would take too much space here and therefore
only a few published works are referred to here. The reader can work from
the reference lists provided therein [7,8,11–16,28–30,33].

13.6 Some Current Research Efforts

As mathematical modeling of geothermal systems at subcritical conditions
has advanced, somore attention is nowbeing focusedonmodeling thedeeper
regions that supply some fluid and most of the heat to the base of geothermal
reservoirs. The deep temperatures and pressures constitute conditions that
maybe regarded as supercritical for purewater, but since thedeepfluids carry
solutes and gases released from magma sources, such components need to be
included in any model of mass and heat flows at depth. The thermodynamic
state-space (phase-space) for such mixtures is not as simple as that for pure
water.

Very deep wells have not yet been drilled to sample fluids much below
the bottom of geothermal reservoirs. However, geochemical evidence from
nearer-surface fluid samples, as well as the chemical characteristics of surface
discharge features of geothermal systems, indicate that the main dissolved
salt is NaCl (perhaps 80% of total solutes) and the main noncondensible gas
component is CO2.

An attempt at constructing models of deep flows has first been made
by McKibbin and McNabb [19,20], with fluid properties based on a
H2O–NaCl–CO2 system. Since system conditions involving a brine saturated
with respect to chloride cannot be ruled out, contributions from the solid
chloride precipitate phase are explicitly included in the mass and energy
accumulation terms, and there are no internal mass or energy sources or
sinks.

The model is built by regarding the noncondensible gas as an effective
component added to the brine, the properties of which are determined by the
mass fractions of water and chloride relative to their own total mass, rather
than to the total mass of water plus chloride plus noncondensible gas. In this
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regard, the basic fluid is brine, rather than pure water as in the model already
described in the earlier sections for geothermal systems. The brine is then
treated as one “component” of the mixture, but is itself characterized by the
overall mass fraction X of chloride in the brine. It is assumed that the water
and any noncondensible gas reside only in the fluid phases.

Rock properties are based on a stationary rock matrix. However, at near-
magma depths, this assumption is probably not correct since the rock is not
crystalized, and themodelwould thennot apply. Otherwise, in regionswhere
the solid matrix assumption does apply, it is assumed that any solute depos-
ition does not alter the effective permeability. Improvements to the model
would require some dependence of permeability on voidage to be included,
and/or rock stress analysis to describe dilation of the formation as deposition
continues.

Fluid properties are the focus of recent attention; see, for example, Kissling
[29] and White and Kissling [34]. Correlations for NaCl brine properties for
the liquid phase at lower temperatures have been extended to the regions
of the p–T–X state-space for a H2O–NaCl brine mixture that would apply in
deep systems [24–26]. The p–T–X state-space itself is complicated, and mass
flows in such a brine system trace state-paths through the space. Addition of
a noncondensible gas [20,23,27] completes the essential ingredients of deep
high-pressure high-temperature systems.

13.7 Summary

An overview of some currently used mathematical models for geothermal
heat and mass transport processes has been given. The sets of partial dif-
ferential equations that describe the principles of conservation of mass,
momentum, and energy of suchmultiphasemulticomponent systems are fur-
ther complicated by complex dependence of the various formation and fluid
parameters on thermodynamic variables. The implementation of physical
and thermodynamicalmodeling through numerical simulation has produced
some nice challenges in optimal system discretization and solution of the
resulting large sets of algebraic equations.

While little has been said here about the related disciplines of geology,
geophysics, geochemistry, and reservoir engineering, these disciplines use
scientific methods to deduce the formation parameters for geothermal reser-
voirs, and also provide information about reservoir extent and likely bound-
ary conditions for simulations. Without such a multidisciplinary approach,
interaction and feedback about conceptual and mathematical models would
not be possible.

There are few analytical solution methods that produce useful results,
although some provide insights on a local scale. Numerical procedures
are successful in producing solutions to the governing equations, but, as
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mentioned above, require sophisticated discretization and matrix inversion
methods.

Recent efforts are focused more on deeper heat and mass flows in regions
below geothermal reservoirs, in order to provide better understanding of the
processes that transfer heat and chemicals fromdeepmagmatic sources to the
base of reservoirs and to surface discharge features. These investigationsmay
also eventually prove useful in modeling ore formation and other deposition
processes.
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14.1 Introduction

14.1.1 The Liquid Composite Molding (LCM) Processes

Polymer composite structures are fabricated using fibers as reinforcements
held in position with a polymer matrix. There are a variety of processes to
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manufacture composites, dependingupon the typeof applications, numberof
parts to be made, the geometry of the parts and the performance desired. For
an introduction to this, readers may refer to the following texts on composite
manufacturing [1–4].
Liquid composite molding (LCM) represents a class of composite manu-

facturing processes in which the fiber preforms are placed in a closed mold
and the liquid polymer is impregnated to saturate the empty spaces between
the fibers to create the composite structure. The reinforcing fiber preforms
are usually fabrics formed from continuous strands or tows of a few hun-
dred to 48,000 glass fibers, carbon fibers, or aramid fibers (such as Kevlar)
by stitching, knitting, or weaving them as shown in Figure 14.1. The ability
to tailor fiber directions allows the designer to build the structure for desired
mechanical properties. The polymer matrix used to bind the framework of
fabrics can be either thermoplastic or thermoset resin. Thermoplastic resins
are usually in solid phase at room temperature but at elevated temperatures
they melt into viscous liquids with viscosities of the order of about a mil-
lion times higher than that of water. It is very difficult to impregnate the tiny
empty spaces between and within the fiber preforms with the thermoplastic
resin. Hence, thermoplastic resins are rarely used for LCM processes. On the
other hand, most thermoset resins are in liquid phase at room temperature.
The viscosities of the thermoset resins are about 50 to 300 times higher than
water and relatively easier to saturate the fiber preform. However, thermoset
resins undergo an exothermal chemical reaction and cross-link, and hence are
difficult to recycle.
Thermoset resins are used for LCM processes mostly due to their low vis-

cosities, which enable them to infiltrate into the small spaces between the
fibers. The thermosets used are usually epoxies, vinylesters, or polyesters
with desired chemical or environmental resistance. In this chapter, we will
focus on a class of manufacturing processes for long fibers/thermoset resin
composites called liquid composite molding (LCM). LCM includes resin
transfer molding (RTM), vacuum assisted resin transfer molding (VARTM),
and structure reaction injectionmolding (SRIM). These processing techniques
arewidelyusedbecause they lend themselves toautomation, readily reducing

Random fabric Stitched fabric
Weave fabrics: plain

(1 over, 1 under)

FIGURE 14.1
Different types of fiber preforms.
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cost and time, and allows one to produce the nearly net-shaped composite
parts. Different industries may have different expectations on LCM pro-
cesses. For example, the automotive industry emphasizes the potential of
high volume manufacturing and good surface finish. On the other hand, the
requirement in the defense and aerospace industry [5–7] is to produce light,
high quality, complex composite structures. Civil or transportation applica-
tions, such as composite bridge decks, ship hulls, and wind turbine blades,
are usually large structures; hence the key constraints pertaining to them
are to reduce the mold tooling cost and enable resin infusion into the fabric
structure within reasonable time. The LCM process is versatile and flexible
enough to accommodate these needs and constraints. Thus, over the last dec-
ade researchers have focused on gaining a scientific understanding of this
process. Many mathematical models and simulations of the process have
been developed to create a virtual manufacturing environment as this would
help reduce the prototype development cost and time.
One of the representative LCM processes is the RTM, which can loosely

be divided into five steps, as illustrated in Figure 14.2. The first step is to
manufacture the fiber preform from glass, carbon, or Kevlar in a form as
shown in Figure 14.1. The second step is to stack the preforms in the mold
cavity. The mold is then closed, which compresses the fiber preforms into the
designed thickness andfiber volume fraction. This stationary compactedfiber
preform is a fibrous porous medium. The third step is to inject a thermoset
resin into the mold cavity and impregnate the fibrous porous mediumwith a
low viscosity thermoset resin. The fourth step is to initiate and accelerate the
cure process of the thermoset resin either by adding a catalyst or by heating
the resin that has saturated the empty pores between the fibers of the preform

3. Resin injection

2. Preform lay-up and
    compression

1. Manufacture preform

4. Resin cure

5. Demolding

FIGURE 14.2
Manufacturing steps for a typical RTM process.
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Flow runner channel

Distribution media

Preform
Gate — resin injected

at environmental
pressure (1atm)

Vent (vacuum)

Mold tool

Environmental pressure (1atm)

Resin flow front

Peel ply

Vacuum bag

FIGURE 14.3
Schematic of VARTM process.

and then cooling the solidified composite to room temperature. The last step
is to demold the net shaped composite part from the mold.
One of the limitations of RTM was that the cost of tooling and injection

machinery went up exponentially as the part size increased. VARTM was
invented to overcome this limitation. In the VARTM process, the preform is
placed on a flat tool surface and enveloped with a plastic bag. A vacuum
is applied to compact the preform and draw the resin from a reservoir at
atmospheric pressure into the mold cavity to saturate the preform as shown
in Figure 14.3. Thus, VARTM uses low pressures and one-sided tools to make
large composite structures. To reduce the infusion time of the resin into the
preform, flow channels and the distribution media are used to accelerate
the flow infusion process. The flow in the channels and/or the distribution
media makes the flow of resin in the anisotropic fibrous porous media truly
three-dimensional.

14.1.2 The Physics in LCM

This chapter will focus on addressing the transport phenomena in LCM
processes such as RTM and VARTM. The heat and mass transfer phenom-
ena dominate the resin impregnation and cure during the LCM process [3].
Because of the presence of the fiber preform, the system can be treated as
nonisothermal reactive flow through fibrous porous media. However, in
many cases, the process of resin impregnation into the fiber preforms is
isothermal. For such cases, the key parameter is the history of filling the
mold with resin, which will allow one to understand the resin impregnation
process.
In this chapter, wewill first review themodels and experiments that address

the essential heat and mass transfer phenomena associated with LCM. Next,
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we will discuss the need for numerical simulations of these models and how
these simulations can be used for optimization and control of the filling pro-
cess. The heat and mass transfer in LCM process is described by transport
theories for flow through porous media. The mold filling process is modeled
as flow through fibrous porous media using Darcy’s law to predict the loc-
ation of the resin front and the fluid pressure as it impregnates the fibrous
preforms [8–16]. The RTM composite parts are usually shell-like structures
about 3 to 10 mm thick as compared to being metered in length and width.
Hence the velocity in the thickness direction is averaged and the pressure
and the flow front motion are solved only in the in-plane direction. However,
the three-dimensional flow modeling is crucial for the VARTM process due
to the presence of flow enhancement network such as the flow runners and
flow distribution layers to accelerate the resin infiltration. For such cases, the
resin first flows through the flow runners and flow distribution layers due
to their higher permeability than the fiber preform and then impregnates the
fiber preform through the thickness requiring one to solve for flow through
the thickness direction as well.
The flow modeling issue can be addressed by solving a linear set of

equations; however, to predict the temperature field is more complex and
involved since the heat transfer is strongly coupled with the local velocity
field. Heat dispersion, which is known to be associated with pore-scale
heat convection in porous media, has to be considered in heat trans-
fer modeling. Furthermore, the heat transfer in the thickness direction is
not negligible in the modeling since the thickness of a composite part is
usually smaller than its other dimensions. In some cases, the viscosity var-
ies significantly with the temperature change and will influence the flow
solution.
Another important issue to be addressed is the exothermic chemical reac-

tions that the resins undergo during the LCM process. As the resin cures and
cross-links during the process, it becomes more viscous and continuously
releases heat as its degree of curing increases. The viscosity change and heat
generation of the curing resin will influence the velocity and thermal fields.
In general, one has to couple the flow, heat transfer, and the chemical reac-
tions for the LCM simulations unless one can clearly separate their dominant
time frames and show that there is very little overlap between the filling and
curing fields. This can be established by a simple scaling argument [4]. The
process models, once they are validated and established, are incorporated
into numerical simulations to aid in manufacturing with LCM.

14.1.3 LCM Simulations for Optimization and Control

One of the reasons to develop process simulations is for the enhancement of
the process design and manufacturing of composites with LCM. Simulations
allow one to investigate the best locations to inject resin into the mold. Such
simulations can be combined with optimization algorithms such as Genetic
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Algorithm (GA) [17,18] and Branch and Bound Search methods to optimize
the injection gate(s) and vent(s) locations [19] and curing methodology for
thick composite parts [20]. From the point of view of saving simulation cost,
artificial neural network (ANN), with enough training from filling simu-
lation, may be used to predict the LCM filling process and coupled with
GAs to optimize the gate location [21]. In addition to gate optimization, a
recent research showed that the methodology of coupling simulations and
GAs was effective and superior than the conventional trial-and-error experi-
mental approach in optimizing the flow runners and flow distribution media
in VARTM [22].
In LCM, control of the filling process is necessary because during the pre-

formplacement stage, imperfect fits between the preform edges and themold
wallswill cause the resin toflowfaster in these regions as shown inFigure 14.4.
These flowdisturbances, whose locationsmay be repeatable but the strengths

t1 t2 t3

Racetracking

FIGURE 14.4
Racetracking in RTM: the imperfect fits between the preform edges and themoldwalls that cause
the fluid to race along the edges.

Strong racetrackingMid racetracking

Mid racetracking Mid racetracking

R
esin injection

R
esin injection

FIGURE 14.5
Flow front histories in the same mold due to different strengths of disturbances along the mold
edges.
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are not, can cause very different flow histories during the filling stage as
shown in Figure 14.5.
The most prominent flow disturbance is racetracking [23] and it arises

because the local permeability along the mold edges will vary from one part
to the next andwill be a function of the preform type, the cuttingmethod, and
fiber preform placement into the mold cavity. As shown in Figure 14.4, the
imperfect fits between themoldwalls and the fiber preform edgesmay create
different sizes of flow channels and yield different resin filling patterns [24].
Hence, characterization of the permeability along the edges and control of the
resin flow infiltration during themold filling process become very important.
This chapter will review several recent advances that used the simulations as
a tool for sensing and characterizing such flow disturbances and the control
approaches to address them in LCM processes.

14.2 Modeling and Experiments

To model the LCM process, we consider the fiber preform as fibrous porous
media. The transport phenomena such as flow, heat, and mass transfer in
porous media are influenced by the microstructure of the porous media. In
practice, one uses volume-averaged properties to represent the macroscopic
behavior of the porous system as shown in Figure 14.6.

14.2.1 Flow in LCM

Tucker and Dessenberger [25] have derived and summarized the governing
equations for the LCMprocesses using the volume averaging technique. Here
we will just state them. The local volume-averaged continuity equation is

∇ · 〈uf〉 = 0 (14.1)

Macroscopic velocity and temperature
(volume-averaged velocity and temperature)

Fluid phase

Solid phase

Microscopic velocity
and temperature

ModelReality

FIGURE 14.6
Microscopic and macroscopic velocity and temperature in porous media.
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The operator 〈∗〉 := ∫V ∗dV is the volume average operator. uf is the velocity
of the fluid phase. The momentum equation is Darcy’s law.

〈uf〉 = − 1
µ

S · ∇〈Pf〉f (14.2)

here S is the permeability tensor. Pf is a modified fluid pressure, defined as

Pf := pf + ρfgz (14.3)

where pf is the pressure in the fluid, g is the acceleration due to gravity, and
z is the height above a reference point.

14.2.2 Heat Transfer in LCM

Conventionally, the local thermal equilibrium volume-averaged energy
equation [26] was widely used by modeling the heat transfer in LCM
[25,26,28,29]. The important characteristic of the local thermal equilibrium
model is its simplicity, which comes from the local thermal equilibrium
assumption. This assumption states that the fluid phase-averaged temper-
ature, the solid phase-averaged temperature, and the volume-averaged
temperature are equivalent locally. Though the local thermal equilibrium
simplifies the energy equation, some researchers do question its validity.
Amiri andVafai [30,31] discussed the validity of the local thermal equilibrium
model. The local thermal equilibrium volume-averaged energy equation is
given by:


∑
i=s,f

(ρcp)iεi


 ∂〈T〉

∂t
+ (ρcp)f〈uf〉 · ∇〈T〉 = ∇ · [(ke +KD) · ∇〈T〉] +

∑
i=s,f
〈ṡi〉

where 〈uf〉 is the Darcy velocity and 〈T〉 is the volume-averaged temper-
ature. The subscript s and f represent the solid phase and the fluid phase,
respectively. ke and KD are the effective thermal conductivity tensor and the
thermal dispersion [32–34] tensor, respectively. 〈ṡ〉 is the volume-averaged
heat source term that can be used to describe the cure kinetics of the
resin.
Another approach that deviates from the local thermal equilibriummodel is

the two-medium treatment [35–38]. By relaxing the local thermal equilibrium
assumption, they allow the fluid phase-averaged temperature to be different
from the solid phase-averaged temperature. Thus, this model requires one
to solve two coupled phase-averaged energy equations [30,31]. For example,
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the fluid phase-averaged energy equation [39] is given as:

εf(ρcp)f
∂〈Tf〉f
∂t
+ εf(ρcp)f〈uf〉f · ∇〈Tf〉f − uff · ∇〈Tf〉f − ufs · ∇〈Ts〉s

= ∇ ·
(
Kff · ∇〈Tf〉f +Kfs · ∇〈Ts〉s

)
− avh

(
〈Tf〉f − 〈Ts〉s

)
+ 〈ṡf〉

where av is the interfacial area per unit volume, h is the film heat transfer coef-
ficient, and uff , ufs are transfer coefficients in the fluid phase-averaged energy
equation, respectively. Kff andKfs are the total effective thermal conductivity
tensors in the fluid and the solid phase-averaged energy equation, respect-
ively. Note that the solid phase-averaged energy equation can be written in
the same way.
Most researchers expected the two-medium treatment to provide more

accurate results than the local thermal equilibrium model. However, the
complexity of the two-phase model makes it difficult to apply it to the LCM
process. In order to use the two-phase model, one will have to measure and
determinemany additional coefficients and there are no standard approaches
to collect such information. Second, the coupled two-energyequations require
extensive computational effort. In spite of the challenges, some attempts to
use the two-phase treatment to predict the heat transfer during mold filling
in LCM have been made [11,40]. One cannot validate the model experiment-
ally in LCM as the thermocouple measures only one temperature instead of
measuring the fluid phase temperature and solid phase temperature separ-
ately. Hence it makes more sense to assume some sort of average of the fluid
and solid temperatures at a spatial location rather than solve them separately
and then average them.
Togain both simplicity and accuracy, onemaywant to use only one volume-

averaged temperature as thegoverningvariable.Moreover, as themoldfilling
stage of LCM involves the moving nonisothermal boundary of resin in the
fibrous porous media, one may need an energy equation that can be used in
the moving observation frame of the resin flow front. Since both the local
thermal equilibrium model and the two-phase model are derived in the
stationary frame and not in the moving frame with resin flow front, a gener-
alized volume-averaged energy equation [41] that relaxes the local thermal
equilibrium can be used in any Newtonian frame and is given as:


∑
i=s,f

(ρcp)iεi


 ∂〈T〉

∂t
+ chc · ∂(∇〈T〉)

∂t
+

∑
i=s,f

(ρcp)i〈ui〉

 · ∇〈T〉

= ∇ · [K · ∇〈T〉 + (k2d · ∇)∇〈T〉] +
∑
i=s,f
〈ṡi〉 (14.4)

The solid forming the porous matrix (preform) and fluid (resin) values are
indexed with an “s” and “f,” respectively. Two assumptions have been made
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to differentiate volume-averaged values from microscopic values:

ui = 〈u〉 + ûi (14.5)

where 〈u〉 is Darcy’s velocity and

Ti = 〈T〉 + bi · ∇〈T〉 (14.6)

here 〈T〉 is the volume-averaged temperature. The temperature deviation
vector, bi, which maps Ti − 〈T〉 onto ∇〈T〉 is periodic for a periodic porous
medium and is a function of the geometry of the unit cell, thermal properties
of the materials, and the velocity field. The thermal capacity correction vec-
tor, which characterizes the sumof the difference between the volumetric heat
capacity of the solid and the fluid and the difference between phase-averaged
temperatures of the solid and the fluid phase, is expressed as

chc =
∑
i=s,f

(ρcp)i〈bi〉 (14.7)

The thermal diffusive correction vector, which characterizes the sum of the
difference between the heat conductivities of the solid and the fluid and the
difference between phase-averaged temperatures of the solid and the fluid
phase, is expressed as

k2d =
∑
i=s,f

ki〈bi〉 (14.8)

In this theory, the total effective thermal conductivity, K, is expressed as the
sum of three terms

K = ke +KD + Cmc (14.9)

The contribution from the thermal conduction (the effective thermal conduct-
ivity of the fluid saturated porous media) is given by

ke =
∑
i=s,f

ki

(
εiI+ 1

V

∫
Si

nbi dS
)

(14.10)

Here ks and kf refer to the thermal conductivity of the solid and the fluid, and
εs and εf refer to the volume fraction of the solid and the fluid, respectively.
If the porous medium is isotropic, we have ke ≡ keI. Torquato [42] suggested
that the value of ke be bounded by

kfks
εskf + εfks ≤ ke ≤ εsks + εfkf (14.11)
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The second contribution to heat dispersion is due to the difference in the local
velocity and the averaged velocity that can be best explained by Figure 14.6
and is given by

KD =
∑
i=s,f
− (ρcp)i

V

∫
Vi

ûibi dV (14.12)

Finally, the contribution from the macroconvection along with local thermal
nonequilibrium that can be lumped into effective thermal conductivity can
be expressed as

Cmc = −〈u〉chc (14.13)

Note that if the local thermal equilibrium is assumed, that is,

〈Ts〉s = 〈Tf〉f = 〈T〉 ⇒ 〈bs〉 = 〈bf〉 = 0 (14.14)

then chc, k2d, andCmc will be zero. Therefore, the generalizedmodel simplifies
to the local thermal equilibrium model [25]. Note that if the fluid and solid
have equal thermophysical properties, that is, (ρcp)f = (ρcp)s and kf = ks, chc,
Cmc, and k2d will be zero even if the local thermal equilibrium is not assumed
[43]. This is because

〈bs〉 + 〈bf〉 = 〈b〉 = 0 (14.15)

The volume-averaged heat flow from the general theory can be derived using
Fourier’s law.

〈qtotal〉 =

∑
i=s,f

(ρcp)i〈ui〉

 〈T〉 −K · ∇〈T〉 − (k2d · ∇)∇〈T〉 (14.16)

In order to assess the role of each term of the generalized volume-averaged
energy balance model in RTM, Hsiao et al. [44] conducted an experimental
investigation (see Figure 14.7 and Table 14.1) and adjusted the value of
each volume-averaging coefficient to match the thermocouple measurement.
In this study, a cold nonreactive viscous liquid was pumped through the
fibrousporousbedwith a constantmoldwall temperature. In this steady-state
heat transfer analysis, the heat conduction in the inflowdirection (x-direction)
wasneglectedbecause the thickness (y-direction) of themoldcavitywasmuch
smaller than its width and length. Furthermore, they assumed that the tem-
perature field was antisymmetric to the centerline along the flow direction of
the unit cell and obtained chcy = 0 and k2dy = 0. By analyzing the thermo-
couple measurements, they found that through the thickness, total effective
conductivity Kyy increases as the Darcy’s velocity (Péclet number) increases
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FIGURE 14.7
Dimensions of the mold cavity and the locations of thermocouples.

TABLE 14.1

Thermal Material Properties

Material ρ (kg/m3) cp (J/kg◦C) k (W/mK) dp (m)

Carbon fiber 1180 712 7.8 8.0× 10−6
E-Glass fibers 2560 670 0.417 1.4× 10−4
1/3 ethylene glycol + 2/3 glycerin 1202 2500 0.276 —

(see Figure 14.8 and Figure 14.9), and their relationship is approximately
linear in the typical RTM Péclet number range. Since Kyy = keyy + KDyy,
they compared the values of keyy with several models and found that the
series arrangementmodel and thehomogenizationmodel providedbyChang
[45,46] predict keyy reasonably well (see Table 14.2). After characterizing the
steady-state experiment, several transient experiments were conducted by
injecting cold liquid into the preheated porous bed with constant mold wall
temperature. By combining the history of thermocouple measurement and
order of magnitude analysis, it was justified that one can neglect all the
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FIGURE 14.8
The Kyy versus Péclet number: (a) for the experiments in which the porous medium was carbon
biweave preform with fiber volume fraction of 43%; (b) for the experiments with fibrous porous
media of random fiberglass with fiber volume fraction of 22%.

complex terms (chc,k2d,Cmc) introduced by nonlocal thermal equilibrium for
the low Darcy’s velocity in typical RTM. By using the Kyy measured in the
steady-state experiments, it is possible to predict the temperature history
fairly well as validated by the experimental data in Figure 14.10.

14.2.3 Chemical Reaction

It is possible to include the transport phenomenaof the conversionof chemical
species in porousmedia. However, to simplify the analysis, many researchers
[11,25,40,47] assumed that themass diffusion and dispersion can be neglected
since the mass diffusivity is very small compared with the convection and
transient terms. Hence, the reaction equation can be expressed as

εf
∂〈cf〉f
∂t
+ 〈uf〉 · ∇〈cf〉f = εfRc

{
〈cf〉f , 〈Tf〉f

}
(14.17)
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FIGURE 14.9
The significance of heat dispersion for the steady-state temperature predictions for four different
Darcy’s velocities; the dependence of Kyy on the Darcy’s velocity must be considered to match
the experimental data from the carbon biweave cases.

TABLE 14.2

Comparison of Various Prediction of ke for Carbon Biweave (The
Models were Collected byM. Kaviany. Principles of Heat Transfer in
Porous Media.New York: Springer-Verlag, 1995. With permission.)

Model Formula ke (W/mK) ke/kf

Parallel
arrangement

ke = kfεf + ksεs 3.59 13.01

Series arrangement ke = kfks
kfεs + ksεf

0.47 1.71

Geometric mean ke = (kf)εf (ks)εs 1.17 4.24

Homogenization of
diffusion equation
(Chang, 1982)
(two-dimensional
periodic unit cell)

ke
kf
= (2− εf)ks/kf + 1

2− εf + ks/kf
0.39 1.40

Note: For the carbon biweave experiments, we have εf = 57%, 0.385 ≤
Kyy ≤ 0.718 (W/mK), that is, 1.39 ≤ Kyy/kf ≤ 2.60.
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FIGURE 14.11
Rate of reaction of resin depends on the various resin temperature. (Taken fromAntonucci et al.
Int. J. Heat Mass Transfer 45: 1675–1684, 2002. With permission.)

here Rc is the reaction rate, which depends on the conversion of the chemical
reaction 〈cf〉f and the fluid phase-averaged temperature 〈Tf〉f . A typical rela-
tionship between the temperature and reaction rate history of stationary resin
is shown in Figure 14.11 [48].
Theviscosity of the resindependson the conversionof the chemical reaction
〈cf〉f and the fluid phase-averaged temperature 〈Tf〉f . Hence, we have

µ = µ
{
〈cf〉f , 〈Tf〉f

}
(14.18)

© 2005 by Taylor & Francis Group, LLC



588 Suresh G. Advani and Kuang-Ting Hsiao

Resin wets the thermocouple

End of mold filling

Steady-state region

Heat conduction + Chemical reaction
(Resin cure)

Time

Te
m

pe
ra

tu
re

Mold filling: conduction

+Convection
+Dispersion

FIGURE 14.12
Typical temperature history for a thermocouple located at the mid-plane of the mold and
embedded in the random fiberglass preform during RTM process.

Note that when the conversion approaches the gel point, the viscosity of a
thermosetting resin will approach infinity.
The chemical reaction, which contributes to the thermoset resin consolid-

ation and viscosity, is very important for process control in LCM. In typical
LCM design, it is better to separate the resin injection stage and chemical
reaction stage to gain better control of the process. A temperature history of
typical RTM design is illustrated in Figure 14.12.

14.3 Process Control and Optimization

With the capabilities to model the LCM processes, it is natural to extend
the process simulations for control and optimization. The LCM has been
developed for over two decades and the process design tasks rely mainly
on experienced molders. Process simulations are being used mainly to verify
the trial-and-error approach, which is still prevalent in the manufacturing
industry. However, as the composite structures being manufactured by LCM
become larger and more complex, use of process simulation will (i) aid in
improving the process design and (ii) increase the yield by counterbalan-
cing any unforeseen disturbances that may arise during the impregnation
phase if employed together with the methodologies for process optimiza-
tion and flow control. However, this would require one to (i) couple the
flow through fibrous porous media simulation with search techniques and
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FIGURE 14.13
Philosophy of Simulation-based Liquid Injection Control.

optimization algorithms, (ii) develop various statistically different scenarios
due to forecasted disturbances in the permeability of the preform along the
mold walls, (iii) formulate methodologies to integrate sensors in the mold to
detect these scenarios, and (iv) suggest control actions to redirect theflowwith
the help of auxiliary actuators to save a part that otherwise would have to be
rejected due to the disturbance. Figure 14.13 schematically exhibits the philo-
sophy of optimization and control. In the following sections, we summarize
the recent developments toward these endeavors.

14.3.1 Injection Gates and Vents and Flow Distribution
Network Optimization

An injection gate is a location through which the resin is impregnated in
a closed mold. A vent is a location through which the air is displaced. An
optimal selection of resin injection gate and vent locations is very essential
for successful resin impregnation in LCM. For simple geometry, analytical
solution may serve as a good rule of thumb for design practice. For example,
a simplified analyticalVARTMflowmodel [49] has beenderived fromDarcy’s
law and continuity equation and experimentally validated [50]. It has been
used by the industry for easy estimation of the fill time and to assess the
optimal sequential injection line and gate locations. However, for complex
geometries, researchers tend to combineflowsimulationswith selected search
algorithms, such as Simulated Annealing [51], GAs [17,18,21,52], and Branch
and Bound Search [19] to systematically locate optimal resin injection regions
for the geometry under consideration. The objective function that one must
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usuallymaximize orminimize to optimize for the best gate location is usually
a combination of void content (dry spot), mold fill time, and sometimes
advanced features such as cost of equipment [52].
In addition to optimizationof gate location, which focuses onfindinganode

that will deliver the lowest cost function, recent LCM development desires
a methodology to optimize the flow distribution network, such as the flow
runners and flow distribution media. The need to be able to optimize the
flow distribution network to accelerate resin impregnation and reduce dry
spot becomes more and more noticeable when the composite part becomes
larger andmore complex and contains inserts or internal features such as ribs.
For example, many large structures have ribs to support the skin as shown in
Figure 14.14. In such cases, the cocure VARTMprocess will be used. Contrary
to traditional LCM geometries, the arrangement of the distribution network
for such cocure VARTM process is very difficult to design by trial-and-error
approach even for a simple geometry as shown in Figure 14.14. The complex-
ity of this problem includes the variation in the fiber volume fraction under
the rib held in place using a compaction force and the three-dimensional
resin flow due to the presence of the distribution media. This requires one to
optimize regions of porousmedia rather than a single node for a selected cost
function. To simulate the three-dimensional flow in VARTM, Simacek et al.
[53] utilized the one- and two-dimensional elements to represent the flow
runner channels and the flow distribution media attached on the fiber pre-
form, which is represented by three-dimensional elements. Recently, Hsiao
et al. [22] attempted to optimize the flow distribution network by combining
GA for optimization and LCM flow simulations. The concept is illustrated in
Figure 14.15 and Figure 14.16.

Rib structure premanufactured by
autoclave process

Stack of dry woven fabrics

Cocured structure

Injection
gate

Vent

Flow front

Pressure applied on the
rib structure

Distribution media

FIGURE 14.14
Schematic of the steps in manufacturing the cocured rib structure.
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FIGURE 14.15
The number of plies of distributionmedia and the cross-section areas of the flow runner channels
are the design parameters for flow distribution network optimization. (Taken from K.T. Hsiao,
M. Devillard, and S.G. Advani. Simulation based flow distribution network optimization for
vacuum assisted resin transfer molding process. Modeling Simulation Mat. Sci. Eng. 12(3): S175–
S190, 2004. With permission.)

Flow runner channel (1D)

Distribution media (2D)

Preform (3D)

FIGURE 14.16
The distribution media and the flow runner channels can be modeled as two-dimensional
elements and one-dimensional elements and attached to the three-dimensional model that rep-
resents the preform. (Taken from P. Simacek, D. Modi, and S.G. Advani. Proceedings of the
10th US–Japan Conference on Composite Materials at Stanford, CA, 2002, pp. 475–486. With
permission.)

As shown in Figure 14.17, the combination of GA and LCM simulations
suggestedanonintuitivearrangementof theflowdistributionnetwork,which
was better than the trial-and-error intuitive design approach. Table 14.3
compares the results from the trial-and-error intuitive design and the
GA/simulation-based design and clearly shows that the GA/simulation-
based design provides better performance.
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FIGURE 14.17
Flow simulations and experimental results from the final intuitive design and the GA optimal
design for the cocured VARTM part. (Taken from K.T. Hsiao, M. Devillard, and S.G. Advani.
Simulation based flow distribution network optimization for vacuum assisted resin transfer
molding process.Modeling Simulation Mat. Sci. Eng. 12(3): S175–S190, 2004. With permission.)

TABLE 14.3

Comparison Between the Trial-and-Error Intuitive Design and GA
Simulation-Based Design (Taken from K.T. Hsiao, M. Devillard, and
S.G. Advani. Simulation based flow distribution network optimization
for vacuum assisted resin transfer molding process.Modeling Simulation
Mat. Sci. Eng. 12(3): S175–S190, 2004. With permission.)

Dry spot
content (%)

Fill time
(min)

Number of
experiments

Trial-and-error intuitive design 0.851 10.87 4
GA/simulation-based design (SLIC) 0.034 13.05 1
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14.3.2 Online Permeability Characterization

The LCMflow simulations are based onDarcy’s law and continuity equation.
In order to gain accurate numerical results, the correct input ofmaterial prop-
erties, such as resin viscosity and preform permeability, is very critical. The
in-plane preform permeability can be characterized by a one-dimensional
experiment or by a radial experiment as shown in Figure 14.18. The location
of the resin front with time is recorded with a camera through a transpar-
ent acrylic mold to calculate the permeability of the preform. This method
is valid for characterizing most of the preform bulk permeability. However,
many things can go wrong when an operator cuts and places the preform in
a mold cavity and closes the mold. For example, the permeability and fiber

Data acquisition equipment

Pressure sensor

Video camera

Mold

Fluid pump

Flow meter

Resin injection tube

Principal direction 1
of preform

Principal direction 2
of preform

FIGURE 14.18
On the left is a schematic of linear injection for permeability characterization. Equipment includes
a fluid flow meter, pressure sensor, and a video camera to record the experiment. On the right,
one can see the resinmovement for radial injection. (Taken from J. Slade, M. Sozer, and S.Advani.
J. Reinforced Plastics Composites 19: 552–568, 2000; G. Estrada and S.G. Advani, J. Composite Mater.
36(19): 2297–2310, 2002. With permission.)
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Mold wall
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a tool surface

K and Vf  change

Vacuum

Vacuum bag

Air channel (gap)

Distribution media

Resin

K and Vf change due to the compaction variation in VARTM

FIGURE 14.19
Local permeability and fiber volume fraction variation due to: edge effects, corner, draping, and
compaction.

volume fraction may vary locally at preform edges due to the low stiffness
of the acrylic mold, or due to preform draping [54] and compaction [55,56]
as shown in Figure 14.19. These local disturbances in permeability and fiber
volume fraction are difficult to characterize by classic permeability measure-
ment techniques and sometimes result in different mold filling patterns as
shown in Figure 14.4. Hence, it is very important to be able to accurately
characterize the preform properties before one can use flow simulations to
help the design of the LCM process.
To characterize the local permeability variation in real time, it is necessary to

use the flow simulationswith embedded flow sensors in themold and amold
filling pattern recognition algorithm. This methodology has been suggested
by using a dimensionless time vector system [52] defined as:

tk = tk − t0∑NDS−1
j=0 (tj − t0)

, for k = 0, 1, 2, 3, . . . ,NDS − 1 (14.19)

whereNDS is the number of flow detection sensors (k = 0, 1, 2, 3, . . . ,NDS−1)
in the mold cavity. Each flow sensor will be triggered when the resin covers it
andwill record the resin arrival time. Using this dimensionless time vector t̄k ,
onewill obtain the samedimensionless time vector values even if the injection
pressure and the resin viscosity are different from one experiment to the next.
Another irregular but important feature of this dimensionless time vector
definition is that it uses the sum of all resin arrival time, which are offset
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by “sensor 0” as the base value to create the dimensionless vector because it
is designed to characterize the local permeability variation during the mold
filling stage and allows the appropriate active flow control to be launched if
necessary.
This approach has also been experimentally verified and used to handle

several difficult permeability measurements, such as racetracking at the pre-
form edges [57] and distribution media permeability characterization [22].
Another use of this dimensionless time vector is to detect the flow disturb-
ance during the mold filling stage and allow the process control computer
(or operator) to select and launch suitable flow control action to avoid dry
spot and reduce the part rejection rate.

14.3.3 Flow Control

Flow disturbance such as racetracking at preform edges can yield very differ-
entmold filling patterns anddry spot formation as shown in Figure 14.20. The
flowdisturbance is inevitable and not repeatable. Hence, it requires flow con-
trol techniques to amend the scenario if flow disturbance is detected during
the mold filling stage.
If we examine Darcy’s law and given the predetermined preform per-

meability and resin viscosity, we find we can actuate the flow system by
either controling the injection flow rate or the injection pressure or even
the vent pressure. Thus, one can control either the pressure or the flow

Potential
racetracking

Potential racetracking

Line injection

Vents

Dry spot
Dry spot

FIGURE 14.20
Two composite parts in which different dry spot sizes and locations resulted from the identical
RTM tool and same processing conditions. The broken lines indicate possible racetracking
channels.
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rate of the resin delivery auxiliary sources. From literature review, it was
found that several different flow control systems have been investigated by
researchers. The flow rate control using multiple gates has been proven to
be effective for steering flow during the mold filling stage [51,58–62]. The
neural network process model, which was trained with off-line flow simula-
tions in advance, was reported to be useful for optimizing the flow control
decisions during the RTM filling stage [51,58,59,62]. Recently, Nielsen and
Pitchumani [62] developed a close-loop flow control methodology, which
uses the on-the-fly finite-difference-based numerical solution to optimize the
injection flow rates using multiple gates in real time. Sozer et al. [63] and
Bickerton et al. [60] investigated the concept of strategic flow rate control
for manipulating the resin flow to compensate for the disturbances due to
imperfect fits between mold and preform edges. In their work, the authors
used flow detection sensors to register the arrival of resin at several discrete
locations. In their approach, one must first specify where the disturbances
are likely to occur and also specify the strength of disturbances. Next, numer-
ical simulations are run for all possible permutations of scenarios. From the
results, locations for resin arrivals are selected to effectively identify and dis-
tinguish between various scenarios based on the sequence of resin arrival
at these locations. This information is stored in a database. By comparing
the sensor triggering sequence during the experiment with the stored data-
base, themanufacturing control computerwill distinguish the corresponding
flow disturbance mode online. After the disturbance mode is detected, the
flow rates at the preselected auxiliary gates can be changed to steer the
resin flow toward the vents. Recently, Lawrence et al. [64] used flow simula-
tions and GA to optimize the flow rates at the auxiliary gates as well. These
approaches were found to be useful for manufacturing complex composite
parts.
Though the flow rate control has been proven useful in counteracting the

flow disturbance, its effectiveness strongly depends on the relative locations
of the control gates and the resinflow front. Itwas observed that a gate loses its
controllability when the flow front moves far away from it and the sequential
logic control was proposed to open and close the injection gates and vents
sequentially during the filling process in order to adjust filling patterns [65].
Another disadvantage of the flow rate control is the complexity and cost
associated with the flow rate control equipment. In order to control the flow
rate of each individual gate, a flow rate controllable injection pump must be
connected to only one gate. As a complex LCMmold requires many injection
gates, to install and maintain so many pumps could soon make the system
out of reach for most molding operations. Hence, the on–off logic control
proposed by Berker et al. [65], which potentially allows the resin to be driven
by a single constant pressure pump, is relatively cost-effective comparedwith
the flow rate control setup.
The preliminary approach to control the flow in LCM successfully

demonstrated the feasibility and advantages of using active flow control.
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However, to design such an intelligent flow sensing-control system in LCM,
the challenge is to find where to place the sensors, injection gates, vents,
and the gates/vents control logic based on the sensors feedback for differ-
ent flow disturbance scenarios in addition to developing robust hardware
of auxiliary gates, embedded sensors, and computer controlled values to
open and close gates and vents. Theoretically, simulations and control
methodologies can be combined to develop such a system. Recently, Hsiao
and Advani [52] have developed and demonstrated the design algorithm,
which uses flow simulations, mold fill pattern recognition algorithm, and
GAs in optimizing the strategic flow actuation installation (locations of
gates/vents/sensors and selection of pumps) and control logistics (the tim-
ing to open/close gates/vents) for a given set of flow disturbance scenarios
(or modes). This system also allows the user to expand the database of
flow disturbance scenarios and has the potential to learn/self-improve from
its experience. In this design algorithm, all physical items and events are
translated to several sequences of numbers with a binary format. The rules
of the physical manufacturing process are implemented as constraints to
the sequences. Each set of sequences represents a design of intelligent
LCM and can be conducted virtually and evaluated with flow simula-
tions. A multitier GA was used to construct the set of design sequences
that search for the best performance. A reliability study further demon-
strated that an intelligent RTM initially designed based on only a few
disturbance scenarios can address expended disturbance scenarios reason-
ably well if these are bounded by the initial disturbance design domain.
In the numerical case study, Hsiao and Advani observed that the mold
filling success rate, which is the rate at which parts with dry spot con-
tent is less than 1% by volume, increased from 27 to 70% with active
flow control and a reasonable forecasting of the permeability disturbances
along the edges. An experimental streamlined design-manufacture sys-
tem [66,67] was achieved by transferring the process design files to a
process control computer to automatically implement and operate the aux-
iliary flow control based on the feedback from the embedded sensors.
The experimental results [67] showed that this approach was effective in
reducing LCM filling failure from unexpected flow disturbances such as
racetracking.

14.3.4 Temperature and Resin Cure Cycle Optimization

A typical LCM process involves the mold filling stage and the consolida-
tion stage. In most cases, the preferred process is to fill the mold with the
resin and then initiate cure because once the resin starts to cross-link, its
viscosity will increase rapidly and it will become increasingly difficult to
push the resin into spaces between the fibers, which will create a network of
undesirable voids in the composite. In the previous sections, the modeling
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of resin heating and curing and the experimental results were presented.
However, research into optimizing and controlling the heat transfer during
the filling stage has not arrived at any significant results though it is pos-
sible to numerically predict the temperature history for simple RTM cases
[28,29,44,68–70]. There are several reasons why not much research has been
carried out in this direction: (i) the nonisotropic heat dispersion tensor is
very difficult to characterize if one considers a very complex preform and
variations in resin flow direction from one experiment to the next; (ii) in
most of the manufacturing situations, the resin is injected under isothermal
conditions; and (iii) the error in prediction of material parameters is higher
than the error in prediction of the temperature of the resin during mold
filling.
However, there is an interest in optimizing the cure cycle after the

mold is saturated with the resin as one would like to minimize the
time for which the composite structure sits in the mold. Cure cycle
optimization is a continuous and general research topic for all types of
thermoset polymer composite manufacturing processes as the cure and
thermal history essentially influences the mechanical properties of the
composite materials. The cure cycle and the temperature history of the
composite can be controlled and managed by designing and optimiz-
ing the temperature profile applied to the mold walls. Integrated use
of process modeling and numerical simulations, experimental valida-
tion, and advanced sensors serve as useful tools to achieve this goal
[71–73]. In recent years, to acquire real-time information about the pro-
cess, sensors that monitor both the filling and the curing have been
developed. These sensor systems are based on different operating prin-
ciples, such as frequency dependent electromagnetic sensors [71], fiber optic
systems [72], and conductive filament grids [73]. The ability to monitor
temperature and cure will allow the possibility of control by modifying
the boundary conditions (the mold wall temperatures) during the curing
stage.
The modeling of the cure cycle usually involves a transient heat conduc-

tion equation and a source term for chemical reaction. The objectives are to
minimize the cycle time, the local gradients of degree of cure and temper-
ature that will reduce the thermal stress and strain in the composite [74],
and maximize the final degree of cure. Yu and Young [75] employed GA to
numerically optimize the cure cycle by analyzing the optimal mold wall tem-
perature profilewith respect to cycle time.Michaud et al. [76,77] developed an
in-site cure sensing technique to identify the cure model parameters in RTM
and applied adaptive control based on the simulated optimal cure cycle for
thick-section RTM composite panels. Antonucci et al. [48] used the dimen-
sionless arguments and the enthalpy of the resin reaction as a baseline to
numerically minimize the gradients of temperature, the degree of cure, and
the final cure temperature of the RTM process. The improvement of the uni-
formity of temperature and degree of cure can be found in Figure 14.21 and
Figure 14.22.
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FIGURE 14.21
History of temperature and conversion (degree of cure) in a nonoptimized cure cycle. (Taken
from V. Antonucci et al. Int. J. Heat Mass Transfer 45: 1675–1684, 2002. With permission.)

14.4 Conclusions and Outlook

The LCM can be generally described as a nonisothermal reactive liquid
(resin) flow through nonhomogeneous and nonisotropic porous media (fiber
preform). This process involves simultaneous mass, momentum, and heat
transfer in an anisotropic porous media. Fortunately, in LCM processes,
not all the phenomena are simultaneously equally important, which allows
one to decouple the flow and heat transfer equations and develop simula-
tions that can be used to address the issues in case of unforeseen variability
in the permeability of the porous media by introducing optimization and
control. The engineering approach for this problem is to simplify the model
to the level at which we can characterize and simulate flow using Darcy’s
law and the volume-averaging method. Based on these volume-averaged
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FIGURE 14.22
History of temperature and conversion (degree of cure) in an optimized cure cycle. (Taken from
V. Antonucci et al. Int. J. Heat Mass Transfer 45: 1675–1684, 2002. With permission.)

governingequations, theflow/thermal/chemical behaviors canbeexplained,
predicted, and verified. For simple geometry and well-conditioned experi-
ments, the numerical solutions predict the results reasonablywell. During the
last decade, researchers have started to use numerical simulations to optim-
ize the LCMdesign and have been achieving satisfactory advancement in the
LCM process. However, many uncertainties (or process instability) during
LCM have also been identified when researchers compared the simulated
results with the experiments. To address this disturbance induced by the
uncertainties, one has to monitor the process and introduce active control
if necessary. Recent efforts toward process sensing, control, and automation
have achieved some success in enhancing quality and yield over traditional
experience/trial-and-error based process development approaches in LCM.
Modeling flow through porous media and creating a virtual manufacturing
platform to address the needs of the process continue to fuel the science based
manufacturing of composite molding processes.
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Nomenclature

b closure vector function (m)
c conversion of chemical reaction
chc thermal capacity correction vector (J/m2 K)
cp specific heat (J/kgK)
Cmc correction of macro-convection (W/mK)
dp particle diameter (m)
e unit vector
g gravitational constant (m/sec2)
Gz Graetz number
hc heat transfer coefficient (W/m2 K)
hd half height of the two-dimensional unit cell (m)
I identity tensor
kf thermal conductivity of the fluid (W/mK)
ke effective thermal conductivity of the fluid saturated porousmedia

(W/mK)
k2d thermal diffusive correction vector (W/K)
K total effective thermal conductivity tensor (W/mK)
KD effective thermal conductivity for dispersion effect (W/mK)
l length of the two-dimensional unit cell (m)
NDS Number of resin flow front detection sensors
n normal vector
n normal direction or integer
P pressure (Pa)
Pe Péclet number
Pr Prandtl number
q heat flux (W/m2)
q heat flux vector (W/m2)
Rc reaction rate (sec−1)
S surface (m2)
S permeability tensor (m2)
ṡ heat source (W/m3)
t time (sec)
T temperature (K)
T0 initial temperature (K)
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u velocity vector (m/sec)
uD magnitude of Darcy’s velocity (m/sec)
upcf the reference velocity of the pure conduction frame (m/sec)
V representative volume (m3)
x, y, z Cartesian coordinates
xc, zc characteristic length (m)

Greek Letters


T temperature difference (K)
ε volume fraction
θ transformation of temperature
µ dynamic viscosity (Pa/sec)
ρ density (kg/m3)

Subscripts

f fluid phase
i material index
pcf pure conduction frame
s solid phase

Superscripts

f fluid phase
i material index
s solid phase
∧ deviation

Other

〈〉 local volume-averaging operator
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15.1 Introduction

Combustion processes in porous media are of great practical importance and
are encountered in numerous technological applications and systems such
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as VOCs oxidation, packed bed incinerators, regenerative-type combustors,
porous radiant burners, catalytic reactors and converters, direct energy gas
conversion devices and systems, in situ coal gasification, high-temperature
materials synthesis processing, smoldering of foam and cellulosic materials,
combustion of wood and agricultural waste, cigarette burning, and many
others. Numerous applications of theporousburner technology in energy and
thermal-engineering and processing industries have been identified which
are based on stabilized combustion in porous media [1–3]. When exothermic
chemical reactions release sufficient energy, continuous chemical reactions
can be sustained in porous media. Depending on the physical and chemical
nature of the porous materials, combustion in porous media can be classified
into three main types: (a) inert, (b) catalytic, and (c) combustible [4]. The
classification is somewhat arbitrary but it reflects the wide range of current
technological applications. The discussion in this chapter of the handbook
focuses exclusively on combustion in porous inert media (PIM).
Combustion of a gasmixturewithin the voids of a porousmediumhas char-

acteristics that are different from those observed in other (i.e., gas phase only)
systems. This is owing to the fact that the thermophysical properties of the
solid and gas phases are vastly different, and there is enhanced conduction
heat transfer in the solid matrix. The “long range” radiation heat exchange
between the surface elements of the solid phase and the large interfacial sur-
face area per unit volume contribute to effective heat transfer between the
gas and the solid phases. The energy release during the chemical reactions is
intimately coupled to heat transfer (i.e., extraction or addition to the flame) as
well as advective energy transport, and flammability limits aswell as stability
ranges that are different from those encountered in conventional designs.
Combustion in a PIM-based system can be characterized as a heat recircu-

lating device in which the reactants or combustion air alone are preheated
using heat “borrowed” from beyond the flame zone without mixing the two
streams [5,6]. The concept of heat recirculation is illustrated schematically
in Figure 15.1 for an adiabatic combustion system. A variety of such sys-
tems has been identified by Weinberg [5] and the comprehensive review has
been updated [6]. Combustion systems of this kind which take advantage
of heat recirculation are sometimes being referred as “excesses enthalpy,”
“super-adiabatic flame temperature” or “filtration” combustion. Although
the principle of heat recirculation is straightforward, the consequences of
its application can be far reaching concerning the process efficiency, fuel
conservation, combustion intensity, and pollutant emissions.
In the absence of conclusive observations, the consensus of opinion is that

four types of combustion are possible in inert porous media: (1) free combus-
tion takes place when a flame forms (say, above the porous burner surface)
that consists of small multiple flames; (2) surface combustion occurs when
the flame is “anchored” at the surface with some chemical reactions occur-
ring within the pores, and the combustion occurs when the flow rate of the
reactant mixture is set such that the gases reach their ignition temperature
inside the medium and the mixture burns just under the surface; (3) buried
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Enthalpy versus distance in heat-recirculating adiabatic burner.
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FIGURE 15.2
Schematic illustration of surface (a) and embedded (b) porous burners.

(embedded) combustion occurs within the medium in a stable fashion when
the mixture velocity is equal to the flame speed for the local temperature
and heat loss conditions; and (4) unstable combustion (i.e., flashback) occurs
when the flame speed exceeds the mixture velocity. The difference between
a surface and embedded (buried) porous burners is highlighted schematic-
ally in Figure 15.2. As illustrated in Figure 15.2(a), the fuel–oxidant mixture
passes through the PIM and then combusts partly near/or entirely in the
downstream gas phase in the vicinity of the PIM. Actually, the buried flame
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combustion shown in Figure 15.2(b) is also corrugated and is discontinuous
like the surface flame in Figure 15.2(a).
Porous burners operate on the combustion stabilization principle, which

allows stable operation of the premixed combustion process in the porous
matrix. The most important criterion which determines whether or not com-
bustion can take place inside the porous structure is the critical pore size.
If the size of the pores is smaller than this critical dimension, flame propaga-
tion inside the porous structure cannot be sustained; the flame is always
quenched. The experiments of Babkin et al. [7] established the limiting con-
dition in terms of the modified Péclet number, Pe = SLdmρcp/k > 65, where
SL is the laminar flame speed, dm is the equivalent pore diameter, and cp, ρ,
and k are the specific heat, density, and thermal conductivity of the gas mix-
ture, respectively. If Pe ≤ 65 flame quenching occurs since heat is transferred
to the porous matrix at a higher rate than is generated due to the chemical
reactions.
Premixed combustionwith the flame stabilized in aPIM is a newand innov-

ative technology that is promising for a variety of applications but which has
not been discussed in textbooks [8] or reference books [9]. Recent accounts
[1,4,10] provide excellent overviews of combustion in porous media, along
with extensive citations to the current literature. It is difficult, in a limited
space, to provide the reader with a fair and complete account of fundament-
als and applications of combustion in porous media, particularly when the
field is developing actively around the world. The best that can be hoped
for is that this chapter will serve as a useful source of references and back-
ground information for both the students and practicing engineers working
in the fields of combustion and thermal engineering. As already alluded to,
the field of combustion in porous media is very broad and wide ranging;
therefore, the discussion and scope in the chapter is exclusively focused only
on stable combustion with the reaction zone embedded in the PIM.

15.2 Physical and Mathematical Description of
Combustion in a PIM

15.2.1 Physical Description

A porous medium is formed by a solid phase and one or more fluid phases.
The solidmayhavea regular (i.e., packedbed) or random(i.e., heterogeneous)
structure, and each phasemay be continuous or dispersed [11]. The character-
istic sizes of the geometric heterogeneities may span a large range of length
scales (Figure 15.3). A variety of different porous media are being used to
support combustion of gaseous and liquid fuels and include the following:
(1) bedof ceramic particles, (2) open-cell ceramic foams (reticulated ceramics),
(3) metal and ceramic fiber mats, (4) bundles of small diameter tubes, (5) por-
ted metals or ceramics (i.e., monolithic materials containing a large number
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Schematic illustration of physicochemical processes in a porous buried flame burner depicting
microscale processes in a PIM. (Reprinted from A.A. Oliveira and M. Kaviany, Prog. Energ.
Combust. Sci. 27:523–545, 2001. With permission from Elsevier.)

of small passages, (6) metal-alloy wire mesh, (7) C/SiC lamellas, and others
[2,4]. The length scales can differ by orders of magnitude.
The heat and mass transfer processes taking place in the voids and at the

interfaces are identified in Figure 15.3. The heat fluxes include heat conduc-
tion (qk), interface surface convection (qku), radiation (qR), and intraphase
convection (qu); themass fluxes include reactants (mR) and products (mP). In
addition to the heat and mass fluxes, the energy release (q̇) and mass conver-
sion (ṁ) describe the transport and chemical reactions during combustion in
porous media. All porous materials have pore sizes, including small ones, in
which the flames may quench. In this case, the unburnt fuel from such pores
will be ignited downstream by products of combustion. Within the larger
pores premixed gas phase flames are stabilized. The solid surfacemay also be
at sufficiently high temperatures to support surface reactions. Furthermore,
since the gas phase and solid surface reactions are at low temperature, form-
ation of NOx is suppressed. However, due to the low temperature reactions,
some amount of nitrous oxide (N2O) may be formed. In summary, the physi-
cochemical processes occurring during combustion of a hydrocarbon fuel in
a porousmedium aremore complex than those taking place in free flames [8].
Figure 15.4 provides a schematic representation of a premixed porous

medium burner with a preheating region and a combustion region where
the chemical reactions take place. Depending on the particular application,
an additional region may be included in the design where the heat of com-
bustion is transferred to some type of a load (i.e., heat sink). As a concrete
example, consider a schematic of a one-dimensional (planar) porousmedium
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based buried flame burner shown in Figure 15.5. A homogeneous mixture of
natural gas and air enters the inert porous medium at the left face (x = 0). In
the preheat zone the solid matrix is at a higher temperature than the fuel–air
mixture due to the conduction and radiation heat transfer within the solid.
Heat is transferred to the gas mixture by convection. When the gas mixture is
heated to a sufficiently high temperature the chemical reactions take place in
the combustion region (�xc), and heat is liberated in the exothermic process.
In a large part of the combustion zone and to the right of the zone the gas
has a higher temperature than the solid matrix in which heat is transferred
by convection. The combustion is controlled inside the porous medium by
adjusting the mass flow rate of the fuel–air mixture and the flame speed so
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FIGURE 15.6
Schematic illustration of physicochemical processes during combustion in a PIM.

that flashback or blow off is prevented. Part of the heat of combustion is
transferred from the gas phase to the porous medium by convection.
Combustion of hydrocarbon fuels in a PIM involves strong interaction of

chemical reactions with heat transfer, and this is illustrated schematically
in Figure 15.6. The porous medium that supports combustion of premixed
reactants and in which combustion takes place can be considered as a heat
exchanger. Such exchangers are designed to incorporate a high degree of
heat recirculation (from burnt products to cold reactants) in the combustion
process for the purpose of making the burners more efficient. Heat recircu-
lation also extends the range of flame stability of lower heating value fuels
and leaner mixtures. The principle of recirculating heat from hot combustion
products to cold reactants by heat exchangewithout intermixing the reactants
has been the subject of many studies, and excellent reviews of the scheme are
available [5,6,12].
Irrespective of PIMs being used in a combustion device, the detailed design

of the system and the operating conditions, premixed porous media based
burners are characterized by strong interaction between heat transfer and
combustion (Figure 15.7). Results of calculations show that advection, con-
duction and radiation as well as convective heat exchange between the gas
and the solidmatrix are of about the same order of magnitude in the combus-
tion zone of the embedded flame porous burner, but these rates are somewhat
smaller than the chemical heat release rate. This suggests that allmodesofheat
transfer need to be considered in any theoretical combustion–heat transfer
model.

15.2.2 Mathematical Description

It is beyond the scope of this account to present a derivation and discussion
of the conservation equations for a porous medium which are needed for
the mathematical modeling of transport and combustion processes in a por-
ous medium. The theoretical developments and derivation of the transport
equations in porous media at the macroscopic level in the absence and in the
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FIGURE 15.7
Schematic representation of combustion interaction of and heat transfer in an embedded flame
burner.

presence of heat transfer are well in hand [11,13–17]. On themicroscopic level
the transport processes which occur in porousmedia are less understood, but
they are clearly very important during combustion [10]. Themacroscopic and
microscopic level transport processes which occur during the combustion of
liquid and gaseous hydrocarbon fuels in porous inertmediamust be coupled.
This coupling is affected through closure relations, and, in the case of heat
transfer, is accomplished by introducing a volume heat source/sink term in
the conservation of energy equations to account for convective heat transfer
between the two phases (i.e., gaseous fuel–air mixture and solid matrix).
Inmodeling combustion inporousmedia thegas and solidphases cannot be

treated as a “mixture” and separate energy equations must be written for the
gas and the solid phases, because the chemical reactions occur predominantly
in the gas and the chemical energy liberated is transferred by convection to the
solid matrix. This fact has been well recognized and accepted for modeling
heat transfer in porous media [4,12]. The governing conservation equations
for mass, momentum, and species transport in porous media are standard
[11,16,18]. The volume averaged conservation of energy equations for the gas
and the solid matrix are given, respectively, by

φ
∂(ρghg)
∂t

+ ∇ · (ρguhg) = ∇(keff,g∇Tg)−
N∑
i=1

ρgYicpiVi · ∇Tg

−
N∑
i=1

hiω̇iWi − hv(Tg − Ts) (15.1)
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and

(1− φ)ρscs ∂Ts
∂t
= ∇(keff,s∇Ts)− ∇ ·F − hv(Ts − Tg) (15.2)

Thefirst termon the right-hand side of Eq. (15.1) accounts for heat conduction,
the second for species interdiffusion, the third for chemical energy release
during the N reactions, and the fourth for convective heat transfer between
the gas and solid phases. In writing this equation it was assumed that the
opacity of the gas is negligible in comparison to the solid, and, therefore,
radiative transfer has been neglected. The first term on the right-hand side of
Eq. (15.2) accounts for heat conduction, the second for radiative transfer, and
the third for convective heat transfer. Note that inside the porous medium
the porosity φ is less than unity and outside the medium φ is equal to one.
Hence, the two-energy equation model can handle not only buried flame
but also surface burners if a radiation flux divergence term is added to the
conservation of energy Eq. (15.1).

15.3 Heat Transfer in Porous Media

Mathematical modeling (simulation) of combustion processes and predic-
tion of system performance requires phenomenological and/or empirical
description of conduction, convection, and radiation heat transfer on mac-
roscale in all devices which employ PIMs to support combustion. Owing to
the very complex geometrical and mechanical structure of PIMs it is very
difficult to develop models based on first principles to predict the coeffi-
cients and/or closure relations needed in the volume-averaged conservation
equations reviewed in the preceding section. The discussion in this section
is limited to thermal characteristics (i.e., effective thermal conductivity, heat
transfer coefficient and radiation absorption, and extinction coefficients) and
is restricted to packed beds comprised of particles and open-cell materi-
als which are typically employed as porous media in premixed combustion
systems.

15.3.1 Effective Thermal Conductivity

15.3.1.1 Packed beds

Effective thermal conductivity of packed beds has received considerable
research attention and reviews of earlier models are available [19–21]. More
recent accounts [22,23] include assessment of radiation contributions at high
temperatures. The effective thermal conductivity of a porous medium can be
calculated under the assumptions that the medium is a continuum, and the
temperature of the gas and the solid matrix are equal locally. The following
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expression can be employed for the effective thermal conductivity [23]:

keff = kcon + kdis + krad (15.3)

where the effective thermal conductivity is the sum of the conductivities due
to gas and solid matrix conduction (kcon), dispersion (kdis) (if the fluid is not
stagnant), and radiation (krad). The last contribution is included in the concept
only if radiation is considered to be a diffusion process. If radiation transfer is
treatedas a “long range”process, radiative transfer theory canbeusedand the
radiation characteristics of porous media will be needed. Recommendations
for the choice of the appropriate effective thermal conductivity models in
stagnant porous media [22,23], and the dispersion contributions in the axial
and radial directions [23] are available.

15.3.1.2 Consolidated porous media

Understanding of heat conduction in consolidated porous media such as
open-cell metal and ceramic foams, lamellae, etc. which are of interest in
combustion systems is incomplete, and discussion of available models and
experimental results is limited [1]. No general models or empirical correla-
tions which are capable of predicting separate conduction, dispersion, and
radiation contributions for consolidated materials of different mechanical
structures as a function of temperature are available.
The effective thermal conductivity of partially stabilized zirconia (PSZ)

open-cell foams at elevated temperatures (290 to 890 K) was measured by
Hsu and Howell [24]. Measurements were made in a hot-plate apparatus for
sample pore sizes of 4 to 26 PPC (pores per centimeter) (or 10 to 65 pores per
inch). Negligible temperature dependence of the thermal conductivity of PSZ
was observed, and a correlation of the data as a function of pore size is of the
form

ks = 0.188− 0.0175d̄ (in W/m K) (15.4)

where d̄ is the actual mean pore diameter in millimeter. The correlation is
limited to the temperature range noted and to pore diameters in the range of
0.3 < d̄ < 1.5 mm. The variation of the experimentally determined effective
thermal conductivity of PSZ as a function of the mean layer temperature
is illustrated in Figure 15.8. The results show the expected trends that as
the temperature increases, the radiation contribution to the effective thermal
conductivity, see Eq. (15.3), also increases.
Dul’nev’s cubic cell thermal conductivity model [25] has been extended

by Kamiuto [26] to account for the radiation contribution in open-cell porous
media. Themodelwas validated by comparing its predictionswith the exper-
imental data [24] for an open-cell partially stabilized Zirconia (ZrO2) layer.
Kamiuto has concluded that the Dul’nev’s model can be used to accurately
predict the conduction-radiation heat transfer characteristics of a porous
cellular layer in the absence of gas flow.
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Dependence of the effective thermal conductivity of open-cell partially stabilized zirconia on
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15.3.2 Convective Heat Transfer Coefficient

15.3.2.1 Packed beds

Convective heat (mass) transfer in unconsolidated porousmedia (i.e., packed
beds comprised of spherical, granular, etc. particles) has received consider-
able experimental research attention and organization. The early work has
been summarized by Wakao and Kaguei [19]. Most of the heat (mass) trans-
fer studies have used relatively large (deep) bed packings. The heat (mass)
transfer correlations in porous media are based on empirical data mainly for
Re > 10. For example, Wakao and Kaguei [19] found that the dimensionless
correlation for heat (mass) transfer coefficients for an isolated sphere can be
represented by

Nu(Sh) = 2.0+ 1.1Re0.6Pr1/3(Sc13) (15.5)

Achenbach [27] extended the lower and higher Reynolds number ranges and
deduced the following empirical correlation for the Nusselt number,

Nu =
{
(1.18Re0.58)4 +

[(
0.23(Re/φ)0.75

)]4}1/4
(15.6)
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This correlation is appropriate for air (Pr = 0.71), φ = 0.387 and 1 < Re/φ <
7.7 × 105. It should be noted that most experiments have been carried out
in deep beds. Hence, the bed thickness does not appear as a correlating
parameter in the equation. Also, the particle diameter has been used as the
characteristic length in both the Reynolds and Nusselt (Sherwood) numbers.
Various heat (mass) transfer studies have established that even for packed

beds comprised of spherical particles the theoretically derived limiting value
of 2 for Nu(Sh) is not valid as the Reynolds number decreases. The regres-
sion formula, Eq. (15.6), is consistent with experimental data only in the
turbulent flow regime (Re > 100). For Re < 200, Eq. (15.6), predicts lower
Nusselt numbers than Eq. (15.5). There is some controversy among the vari-
ous investigators concerning thediscrepancybetweendifferent correlations at
low Reynolds numbers, and alternate models have been proposed to explain
the discrepancy. Acomparison of accepted heat transfer correlations has been
made [28] and it has been found that there is a large discrepancy between the
published results, particularly for Re < 10.

15.3.2.2 Consolidated porous media

Understanding of convective heat transfer in consolidated porous media is
muchmore limited. The earlier experimental and theoretical studies ondense,
intermediate, and low density materials have been reviewed [28]. Here, only
the low density (φ > 0.6) PIMs are discussed since they are employed in com-
bustion systems [1]. Because the structures are too complex for theoretical
analysis, the practical needs are met by experimentation. The results are typ-
ically presented in terms of a volumetric heat transfer coefficient, hv(= avh),
where h is the conventional convective heat transfer coefficient and av is the
surface area per unit volume of the porous matrix.
There is no unique way to define a characteristic length needed for the

Reynolds andNusselt numbers. Themeanporediameter, hydraulic diameter,
strut diameter, and other lengths have been used to correlate the experi-
mental data [29]. Volumetric heat transfer coefficients were determined for
several different reticulated ceramics having a range of PPC and the data
were correlated in terms of the mean pore diameter dm,

dm =
√
φ/π/PPC (15.7)

as the characteristic length. The volumetric heat transfer coefficient data are
expressed in an empirical equation,

Nuv = hvd2m
k
= [0.0426+ 1.236/(L/dm)]Redm (15.8)

where L is the thickness of the porous layer. The correlation is based on data
for air (Pr = 0.71) and covers a Reynolds number range of 2 ≤ Redm < 836. In
an earlier study [30] it was found that the Reynolds number exponent instead
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of being unity as given in Eq. (15.8) depended on the specimen thickness L to
the mean pore diameter dm ratio L/dm.
More recent studies [31,32] have provided additional experimental volu-

metric heat transfer coefficient data. Ichimiya [31] utilized a steady-state
experimental method and correlated the results in terms of a mean pore
diameter as a characteristic length, whereas Kamiuto et al. [32] employed
a transient method and correlated the data in terms of a strut diameter. As a
consequence, the empirical correlations obtained are different, but so far the
available experimental results have not been generalized.

15.3.3 Radiation Characteristics

There are essentially two distinct approaches for treating radiative transfer in
porousmedia [33,34]: (1) discrete or discontinuousmodels and (2) continuous
or pseudocontinuous models. In the discontinuous approach the medium is
considered to be an array of unit cells of given idealized geometry. Radiat-
ive transfer in each cell is computed by macroscopic methods such as ray
tracing, Monte Carlo, radiosity, or hybrid. Discrete formulations are appro-
priate for porousmedia that have large characteristics lengths (i.e., particle or
void diameter, etc.) such as packed beds, foams, and cellular materials. The
continuous approach is based on the principle of radiant energy conservation
on an elementary control volume which is much larger than the wavelength
of radiation. In general, the assumptions of continuity, homogeneity, and
randomness are implied in the formulation, although they are not mandat-
ory. Homogeneity is essential for the medium to be treated as a continuum.
A porous medium may be considered homogeneous if the “particle” dimen-
sions are much smaller than some characteristic length of the system. The
pseudocontinuousmodel is a combination of the discrete and continuous for-
mulations. The absorption and scattering characteristics of the medium are
modeled as a random distribution of “particles” which are calculated based
on the discrete formulation. These radiation characteristics are then used in
the radiative transfer equations based on continuous formulation.
Since only the continuum formulation of radiative transfer in terms of the

integro-differential radiative transfer equation (RTE) is compatible with the
continuum formulation for chemically reacting flows, only this model is
discussed. Assuming that the opacity of the gas (void) phase is negligible
in comparison to that of the solid phase and averaging the RTE over a small
control volumewhich contains both phases results the local volume-averaged
RTE for the radiatively participating medium [34]. The spectral and total (on
the gray basis) absorption, scattering the extinction coefficients for porous
media needed as inputs in the volume-averaged RTE have been thoroughly
reviewed and extensive, up-to-date discussions are available [33–38].
The issue of independent and dependent scattering needs to be considered

for porous media in closed packed arrangements [39]. Independent scat-
tering implies that particles, say, in a packed bed, are assumed to interact
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with radiation incident upon them as if uninfluenced by the presence of
neighboring particles. Dependent scattering suggests that far-field effects res-
ulting from interference between the waves scattered by the particles with
phase differences and near-field effects resulting from multiple scattering in
an elementary volume, in which absorption and scattering characteristics of
a particle are affected by the proximity of the particle, need to be considered.
Tien and Drolen [39] have analyzed the experimental data and delineated the
independent and dependent scattering regimes in a plot relating the particle
size parameter versus the particle void fraction. They used the interparticle
particle clearance c to wavelength λ ratio c/λ to delineate the independent
and dependent scattering for different porous media. Other investigators
have established different criteria for independent and dependent scatter-
ing in packed and fluidized beds, fibrous media, fibrous composites, foams,
and reticulated ceramics. Reference is made to comprehensive discussions
of the theoretical and experimental approaches and results for radiation
characteristics of porous media [37,38].

15.3.3.1 Radiation characteristics of packed beds

Kamiuto [40]proposedaheuristic correlated scattering theorywhichattempts
to calculate the dependent radiation characteristics of a packed bed consist-
ing of large particles from the independent characteristics. The extinction
coefficient β and single scattering albedo ω are scaled as

β = γβind = 2γ2
(π
4
d2pnp

)
(15.9)

and

ω = 1− (1− ωind)/γ 2 (15.10)

where

γ2 = 1+ 1.5(1− φ)− 0.75(1− φ)2 for φ < 0.921 (15.11)

In these equations dp denotes the mean particle diameter, np is the particle
number density, and γ2 is the extinction enhancement factor. The subscript
“ind” refers to independent scattering. According to Eq. (15.9) the extinction
coefficient of a randomly packed bed of spheres (φ = 0.39) is greater than that
predicted by the Mie theory by a factor of 3.27. The single scattering albedo
and the scatteringphase function couldnot bederived theoretically; therefore,
a heuristic model is required. The validity of this theory for predicting the
extinction coefficients has been examined experimentally [40]. Reasonably
good agreement between model predictions and data has been obtained for
opaque spheres, but the model is not satisfactory for predicting the radiation
characteristics of packed beds of transparent or semitransparent spheres.
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The validity of various analytical models for predicting global quantities
(i.e., transmittance) have been assessed [23,34,35,41]. For example, Singh and
Kaviany [41] have calculated the transmittance through a bed of specularly
reflecting opaque spherical particles as well as of transparent and semitrans-
parent particles. They compared their results based on the Monte Carlo and
on the dependence-included discrete ordinates methods with the results of
Kamiuto [42] and found that his correlated theory for opaque particles over-
predicts the transmittance and for transparent particles underpredicts the
transmittance. However, the advantage of the simple correlated theory res-
ults over Monte Carlo or dependence-included discrete ordinate results for
analysis and design calculations is undeniable. Also, contrary to the findings
of Kamiuto and Yee [23] for radiative transfer based on their dependent scat-
tering theory, the predicted transmittance of a packed bed of glass spheres
based on the independent theory was found to be in good agreement with
experimental data [43].

15.3.3.2 Radiation characteristics of open-celled materials

The radiation characteristics of open, reticulated ceramics have been determ-
ined on total and spectral basis, and reviews of published data are available
[1,37,38]. For example, Mital et al. [44] measured total radiation emerging
from isothermal reticulated ceramics specimen and with an aid of a two-flux
approximation determined (recovered) the total extinction coefficient and
single scattering albedo of several materials (YZA, mullite, silicon carbide,
and cordierite).
Detailed experimental spectral extinction and scattering coefficients aswell

as spectral phase function measurements of open-cell ceramics have been
reported [45] for 4, 8, and 26 PPC (nominal) materials. This is probably the
most detailed study, of such materials, that has been published. The spec-
tral transmittance and reflectance data were used in an inverse procedure
to determine the spectral radiation characteristics of interest. The spectral
scattering phase distribution function has also been determined.
The radiation characteristics of foams can be estimated from the geometric

optics limit [39]. If the porous material can be represented as a monodisperse
assembly of independently scattering voids (“particles”) for large values of
the size parameter, the absorption and scattering coefficients are given by the
following relations

κ = ε(3/2d)(1− φ) (15.12)

and

σ = (2− ε)(3/2d)(1− φ) (15.13)
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where d is the mean void (pore) diameter, ε is the emissivity, and φ is the
porosity. Therefore, the extinction coefficient can be expressed as

β = κ + σ = (3/d)(1− φ) (15.14)

Comparison of experimental data with predictions based on the geometrical
optics theory, Eq. (15.14), reveals that the theory underpredicts the extinction
coefficients [45]. Instead of the coefficient being equal to 3, the range from
4.4 to 4.8 yields a better correspondence between the data and the model.
Best-fit empirical correlation for the extinction coefficient of PSZ has been
determined [24] to be

β = 1340− 1540d+ 527d2 (15.15)

where β is in m−1 and d is in mm. The above correlation is valid for the fol-
lowing conditions: 0.3 < d < 1.5 mm, 0.85 < φ < 0.87, 290 < T < 890 K,
and 3 < λ < 5 µm. A comparison of Eq. (15.15) with experimental extinction
coefficient data for other open-cell materials is available [1]. More compre-
hensive discussions of the radiation characteristics of open-cell materials can
be found in recent reviews [37,38].
Owing to the complex and irregular geometry of the open-cell porous

media the absorption and extinction coefficients cannot be quantified the-
oretically using simple physical descriptions. The Monte Carlo method,
weighted with some probabilitistic distribution of the pore geometry to
characterize the porous system, may present an option for calculating the
coefficients.

15.4 Overview of Porous Medium Based Combustors

Porous media based combustors have been designed to burn both gaseous
and liquid fuels. However, the past research and development has been
primarily directed to premixed combustors burning gaseous fuels, and the
early work is discussed in the literature [1–4,12]. But, in the more recent past
there have been a number of studies reporting on combustion of liquid fuels
in PIMs [46–50], and references cited therein just to provide a few examples.
In spite of this interest, this account focuses exclusively on premixed porous
medium combustors, burning gaseous fuels because of the imposed space
limitations for this chapter of the handbook. The interested reader can refer
to Howell et al. [1] for the discussion of the early work and to the references
cited for recent developments.
A gaseous premixed porous medium combustor (PPMC) (burner) in

which the flame is stabilized in the PIM is a promising technology for
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a variety of applications owing to low pollutant emissions and ability
to burn low heating value fuels [1–4,12,51]. Essentially, there are three
types of devices which take advantage of PIMs to support combustion
of the fuel: (1) combustors (burners), (2) burners–radiant heaters, and
(3) combustors–heaters. Acombustor is a device which converts the chemical
energy of the fuel to the thermal energy of the product streamwithminimum
of unavoidable heat losses. Examples of such combustion systems include
burners for destroying hazardous volatile organic compounds (VOCs), for
incinerating chlorohydrocarbons, and for converting chemical energy of the
fuel to thermal energy with minimum heat losses from the device. The func-
tion of the porous burner–radiant heater is to convert the chemical energy
of fuel stream into the product stream enthalpy and eventually into thermal
radiation directed to the target (load). Such burners–infrared radiant heat-
ers are widely used for materials processing and manufacturing operations,
human comfort and numerous other applications [1,2,51]. The function of the
combustor–heater (with an integrated heat exchanger) is to convert the chem-
ical energyof the fuel to the thermal energyof aworkingfluidbeing circulated
through the exchanger. Examples of such devices include fluid heaters, steam
generators, gasifiers, household appliances, etc. [2,3].
There is a great variety of PPMC devices used for various functions which

employ different porous materials to support stable combustion of gaseous
fuels under a wide range of operating conditions. The scope and space
limitations of this chapter do not allow one to be comprehensive. Before
discussing some specific devices based on combustion in porous media it
is desirable to compare the operating characteristics/features of these type of
systems against conventional combustion processes with free flames. Some,
but not all, of the advantages of PIM stabilized combustion systems are the
following [1–3]:

1. Intense heat transfer inside the porous structure allows for high
power density operation, with the combustion zone being about a
factor of ten smaller in volume than the corresponding conventional
burners for comparable thermal loads.

2. Wide variation in turndown ratio of 1:20 compared to conventional
premixed burners which have a turndown ratio of 1:3.

3. Stable combustion for equivalence ratios of 0.9 to 0.53 formethane–air
mixtures.

4. Low pollutant emissions (<7 mg/kWh of CO and <25 mg/kWh of
NOx) over the complete thermal input range, due to reduction of the
gas temperature in the reaction zone.

5. High combustion stability owing to the large heat capacity of the PIM.
6. Great flexibility in the choice of the burner geometry (i.e., cross-

section) which allows for easy adaption of heat transfer device to
demands of the application.
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In summary, themain advantages of premixed combustion of gaseous fuels
in porous inert media are the following:

1. The large specific surface area per unit volume of the PIM enlarges
the reaction zone and results in high heat transfer rates between the
gas and solid phases.

2. The excellent heat transfer characteristics of the PIM result in higher
combustion velocities and cool the reaction zone.

3. The high heat capacity of the PIM enhances combustion stability
against changes in the excess-air ratio and in thermal load.

In what is to follow, three combustion systems, starting with the simplest
and ending with the most complicated one, are discussed. The experimental
andmathematical modeling details cannot be included because of space con-
straints, and the interested reader can refer to the original literature for the
developments.

15.5 Premixed Porous Medium Combustors

A PPMC or burner is a device designed to convert chemical energy of the
gaseous fuel into enthalpy of the product stream, to destroy hazardous
VOCs, to incinerate (pyrolysis or oxidation) chlorohydrocarbons, and oth-
ers. A PPMC in which a premixed flame is stabilized within the solid matrix
is a promising technology. The main characteristics of this technology are the
high burning rates, increased flame stability at low combustion temperatures
which lead to low emission of key pollutants. Motivated by these advantages
and a wide range of applications, porous medium burners have received,
during the last twodecades, increased interest and research anddevelopment
attention, and comprehensive accounts are available [1,4,12].
APPMC usually consists of two or more porous materials having desirable

physical (geometrical), flow and heat transfer characteristics. A PIM-based
burner can be oriented vertically (with upward or downward flow) or hori-
zontally. A schematic diagram of a typical burner is illustrated in Figure 15.9.
Different porous media (i.e., ceramic spherical particles and saddles, ceramic
foams, metal wire meshes, metallic foils, etc.) are used as porousmedia in the
different sectionsof theunitwhich servedifferent functions. The fuel–oxidizer
mixture flows through a flame trap, followed by a preheating region which
consists of small sizeporousmaterial (particles or ceramic foam)withPe < 65.
Chemical reactions take place in the combustion region which consists of lar-
ger pore size porous material with Pe > 65. High-temperature insulation is
placed between the porous material and the combustor housing. Water or air
cooling can be provided at selected location for flame stabilization. In order
to stabilize the flame in the PIM and achieve the necessary preheating of the
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FIGURE 15.9
Schematic of a premixed porous medium combustor (PPMC).

fuel–air mixture the porous media need to be properly selected for their flow
and heat transfer characteristics.
Essentially, there are three types of approaches for simulating combustion

and heat transfer in matrix stabilized combustion systems: (1) pseudohomo-
geneous thermal equilibrium model [52,53], (2) volume-averaged models
[54–56], and (3) direct simulation [57]. In the pseudohomogeneous thermal
equilibrium approach the fluid and solid phases present locally are treated
as an artificial unique phase which is described by a single thermal energy
equation. Heat transfer between the gas and the solid phases is very effective,
and the two phases are essentially in thermal equilibrium. In the volume-
averagedapproach thefluid and the solidphases are considered, and separate
thermal energy equations are written for each phase, and the two phases are
coupled through the volumetric convective heat transfer rate term. A direct
simulation of premixed combustion allows for the study of the effect of the
pore-level fluid flow as well as heat and mass transfer processes on the flame
structure and speed. The approach is not necessarily more accurate, because
it is difficult to transfer a three-dimensional unordered structure into a two-
dimensional regular one. Although such direct simulations provide useful
hints about the thermal structure, flame speed, and interfacial heat transfer,
they are incapable of predicting the effects of the transport processes in the
flame.
Chemical reactions in the PPMCs have been modeled mathematically. The

flow field is considered to be non-Darcian with inertia, boundary, and buoy-
ancy effects modeled by the Forchheimer and Brinkman extensions of the
Darcy’s equation [11,16,17]. Since the gas is not in thermal equilibrium with
the solid matrix (i.e., the local volumetric convective heat transfer rate is not
infinite but finite), a two-energy equationmodel for the porousmediummust
be used in the combustion zone [18], see Eqs. (15.1) and (15.2). The model
equations are not presented here but can be found in the literature [52–54].
Suffice it to note that submodels are needed for flow in the porousmedia (i.e.,
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permeabilityK and inertial coefficientF), formation anddestructionof species
due to chemical reactions as a source/sink term ω̇k in the species transport
equation, the volumetric heat transfer hv which couples the gas and the solid
phase thermal energy equations, and extinction coefficient as well as scat-
tering albedo of the PIM for the radiative transfer equation [1,33,34]. These
submodels are specific to the combustion system, PIMused, andproblemcon-
sidered and cannot be described generically. For example, one-step [56] and
detailed (consisting of 20 species and 164 reactions) [58] chemical reaction
mechanisms have been considered in modeling combustor–heaters. Radi-
ative transfer in two- or three-dimensional porous combustors is treated
approximately using the Rosseland diffusion approximation [54] or solving
the radiative transfer equation on the gray basis [59]. Detailed mathematical
description of the PPMC is not given here because of space limitations, but it
is available in the original literature [53,54,58,59]. A one-dimensional porous
burner–radiant heater is described in detail in the section to follow.
Both experimental [60,61] and computational [53,62] studies have been

undertaken to adapt different porous media and burner geometries to new
applications. Most of the earlier studies were one-dimensional and used
simple one-step chemical kinetics models [12,63]. Hsu and Matthews [64]
found that one-step kinetics models lead to overprediction of peak flame
temperatures. Consequently, more detailed models have been used to calcu-
late the chemical reactions and temperature distributions in PPMCs [65,66].
For example, Zhu and Pereira [66] used 27 species and 73 reactions in order to
study formation and destruction of pollutants (CO, NO) in a porous matrix
stabilized burner. More recently, two-dimensional models with single-step
and multiple-step chemical kinetics have been used to model combustion in
porous media, and detailed accounts citing numerous relevant references are
available [53].
One-dimensional methane–air combustion in a two-layer PIM burner

has been modeled [66] and compared with experimental data of Hsu and
Matthews [64]. Four combustion models: full mechanism (FM, 49 species
and 227 elemental reactions), skeletal mechanism (SM, 26 species and 77
elemental reactions), four-step reducedmechanism (4RM, 9 species), andone-
step global mechanism (1GM) have been employed. A comparison between
predictions and available experimental data for the burning speed are shown
in Figure 15.10. The results of Hsu and Matthews [64] calculated with a mul-
tiple kinetics mechanism for the same conditions fall between those of the
FM and the SM but are not included in the figure for the sake of clarity. It
is evident that none of these four models and the published calculations [64]
predicts satisfactorily the burning speed. This discrepancymay be due to lim-
ited understanding of the transport processes in open-cell porous media and
the uncertainties in some of the model parameters (i.e., effective thermal con-
ductivity of the solid matrix, volumetric convective heat transfer coefficient
which couples the gas and the solid phases, and the extinction coefficient
as well as the single scattering albedo of the solid). A more comprehensive
discussion of earlier studies on flame speed in PPMCs is available [1].
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FIGURE 15.10
Comparison of burning speeds predicted using different models with experimental data of
Chaffin et al. [67] for methane–air combustion in a bilayer open-cell porous medium. (Reprin-
ted from X.Y. Zhou and J.C.F. Pereira, Fire Mat. 22:187–197, 1998. With permission from Wiley
Interscience.)

The stability ranges of different burners have been determined and
discussed [1,44]. Figure 15.11 is an example of a stability range plot for a
representative burner studied by Mital et al. [68]. As shown in the figure, the
stability limit was generally between an equivalence ratio of 0.6 and 0.7. Lift
off occurredfirst from the edges of the burner because of the higher heat losses
in this region, which reduce the flame speed compared to the central region
of the burner. With further decrease in the equivalence ratio the entire flame
lifted off and resulted in complete extinction. The lean limit was between
an equivalence ratio of about 0.5 to 0.6, depending on the firing rate. There
was no flashback below a firing rate of 300 kW/m2 for any porous burner
studied [68]; however, above this firing rate, the burners showed flashback
(Figure 15.11) at equivalence ratios close to stoichiometric.
Experiments have shown that pollutant emissions can be reduced in PIM-

based burners with air staging [61,69]. The methane–air mixtures of different
equivalence ratioswereburned in twoseparateporous ceramic (PSZ) sections.
A comparison of the two stage results with those obtained by burning the
entire mixture in a single state showed that the emissions of NO and CO from
the two stage burner were lower than those from the single stage burner [69].
Multiple staged combustion experiments ofmethane–airmixtures in alumina
oxide and silicon carbide foams as porous media have been carried out for
different equivalence and turndown ratios. The experimental results show
that staging further homogenizes the temperature distribution in the burner
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FIGURE 15.11
Stability range of a bilayer porousmedium burner-radiant heater. (Reprinted fromR.Mital et al.,
Combust. Flame 111:175–184, 1997. With permission from the Combustion Institute.)

and reduces NOx emission by 30 to 40% compared to the cleanest unstaged
porous medium burners [61].
A discussion of velocity measurements in packed beds and open-celled

(reticulated) ceramics typical of ceramic burners is available [1]. The pub-
lished data suggest that the flow passes from being essentially laminar at low
flow rates to a fully developed turbulence at high flow rates. The transition
from laminar to turbulent flow occurs at Reynolds number of approxim-
ately 150. However, it has not yet been conclusively established that what has
been attributed as turbulence in small pores is not dispersion coupled to flow
expansion in small size pores. There continues [70–72] to be a debate about the
existence of turbulence in porous media even in the absence of combustion
as the media are not accessible to any type of probes for experimentation.

15.6 Porous Medium Combustor–Radiant Heater

The function of a porous burner–radiant heater is to convert the chem-
ical energy of the fuel stream into product stream enthalpy and eventually
into directed radiation. In this type of a device combustion takes place in
a flame anchored at the surface (Figure 15.2[a]) or embedded in the por-
ous medium (Figure 15.2[b]) as shown schematically in Figure 15.2. In
the embedded (buried) mode of operation higher combustion radiation
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intensities can be achieved than with the surface-combustion mode. In
addition, higher conversion of thermal energy to radiant energy is possible
due to a combination of much higher opacities of the porous medium but
somewhat lower temperatures. Embedded flame porous burners–radiant
heaters have received considerable research and development attention and
recent accounts are available [1,51,73].
Porous burners–radiant heaters usually consist of one, two, or more layers

of PIMs having appropriate physical flow and heat transfer characteristics.
A schematic diagram and coordinate system of a bilayer unit is shown in
Figure 15.12. We consider premixed combustion stabilized inside a PIMwith
each layer being homogeneous and noncatalytic. The gas is not in thermal
equilibrium with the solid, and thermal energy equations are written separ-
ately for each phase. The main assumptions used in the one-dimensional
mathematical description of combustion and heat transfer are as follows:
(1) the Dufour, Soret, and viscous heat dissipation effects, “bulk” viscosity
and body forces are negligible; (2) the porous medium emits, absorbs, and
scatters thermal radiation as a gray homogeneousmedium, but gaseous radi-
ation is considered to be negligible in comparison with the solid radiation;
(3) potential catalytic effects of the high temperature solid are neglected as
fundamental understanding and needed data are not available; (4) the flame
is one-dimensional and neither stretch nor turbulence are induced by the flow
through the PIM, but thermal dispersion effects are accounted for; and (5) a
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Combustion
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Surroundings

Convection
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FIGURE 15.12
Schematic and coordinate system of a porous burner–radiant heater with the flame embedded
in the burner.
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model based on two-energy equations for the twophases is used to couple the
gas phase to the solid matrix through a volumetric heat transfer coefficient.
With the assumptions listed the conservation equations for the reacting gas

mixture and the porous matrix are as follows:

Governing equations for gas mixture
Conservation of mass (continuity) equation:

∂(φρg)

∂t
+ ∂(φρgu)

∂x
= 0 (15.16)

Conservation of momentum equation:

ρg

(
φ
∂u
∂t
+ φu∂u

∂x

)
= −∂p

∂x
+ ∂

∂x

(
µe
∂u
∂x

)
−
(
µe

K
+ Fφ√

K
|u|
)
u (15.17)

Conservation of species equation:

ρg

(
φ
∂Yk

∂t
+ φu∂Yk

∂x

)
= ∂

∂x

(
ρgDkm

∂Yk

∂x

)
+ ω̇kWk , k = 1, 2, . . . ,K (15.18)

Conservation of energy equation:

ρg

(
∂(φhg)
∂t

+ ∂(φuhg)
∂x

)

=
[
∂

∂x

(
kg
∂Tg
∂x

)
−

K∑
k=1

φhkω̇kWk −
K∑

k=1
φρgYkVkcpk

∂T
∂x

]
+ hv(Ts − Tg)

(15.19)

Equation of state:

ρg = pW̄/RTg (15.20)

Solid matrix
Conservation of thermal energy:

(1− φ)ρscs ∂Ts
∂t
= ∂

∂x

(
keff,s

∂Ts
∂x

)
− ∂F
∂x
− hv(Ts − Tg) (15.21)

Note that inside the porous medium the porosity φ is less than unity and
outside themedium φ is equal to one. Hence, themodel Eqs. (15.16) to (15.19)
and (15.21) can handle not only submerged flame but also surface burners if
the radiation flux divergence term (∂F /∂x) is added to the conservation of
energy equation, Eq. (15.17), in the gas phase and the burner is extended to
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account for the flame/products region ahead of the solid matrix where the
flame is anchored.
Appropriate initial conditions can be specified for both the gasmixture and

the solid matrix if one desires to predict the transient response of the burner.
At the faces of the PIM continuity of fluxes is enforced for the species mass
fractions and the energy. At the inlet (x = 0) to the burner,

u = ug,o, Tg = Tg,o, Yk = Yk,o, k = 1, 2, . . . ,K (15.22)

An energy balance on solid matrix which accounts for convection and
radiation yields

−(1− φ)ks ∂Ts
∂x
= (1− φ)ho(Ts − Tg)− (1− φ)εσ(T4

s − T4
sur,i) (15.23)

At the outlet face of the burner (x = L),

∂u
∂x
= ∂Yk

∂x
= 0, k = 1, 2, . . . ,K (15.24)

and the energy balance at the out face of the burner is

(1− φ)ks ∂Ts
∂x
= (1− φ)he(Ts − Tg)+ (1− φ)εσ(T4

s − T4
sur,e) (15.25)

Note that in writing Eq. (15.25) absorption of radiation emerging from the
solid matrix emitted by the gases as well as emission and self-absorption of
radiation by the combustion products upstream of the outlet has been neg-
lected. Of course, this neglect would lead to underprediction of the solid
matrix temperature. The disregard is justified on the basis that the matrix is
effectively opaque, and radiation emerging from it is much more intense
than that radiated by the optically thin gases (CO2 and H2O) at a lower
temperature than the matrix. Therefore, because of the uncertainties in the
model input parameters, the small opacity of the combustion products and
the additional complications of the analysis, the heating of the solid matrix
has been neglected. Any heating of the right face of the solid matrix (at x = L)
by the exhaust gases can be simulated by arbitrarily increasing the effective
surroundings temperature Tsur,e.
Submodels describing the flow in porous media, chemical reactions, con-

duction, and convection heat transfer as well as radiative transfer are needed
to complete the model description. These models are specific to the burner
design, PIMs used, and operating conditions. Suffice it to mention that one-
step [74–76] and detailed multiple chemical kinetics [64–66,73,77] models for
methaneoxidationhavebeenused. Probably themost comprehensive simula-
tions of premixed combustion in submerged porous burners–radiant heaters
has been reported by Diamantis et al. [73] and Leonardi et al. [77]. They used
GRI 2.11 mechanism (49 species and 249 reactions) to model the chemical
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kinetics of methane–air combustion in ceramic foam [73] and in metal fiber
mat [77] burners–radiant heaters. In all other major respects their models
were similar except that the different materials used for the burner pads had
different mechanical–structural and thermophysical characteristics as well as
radiative transfer models. The former authors used thicker (∼30 mm) and
the latter much thinner (=2 mm) thick porous media layers for supporting
submerged combustion. Radiative transfer has been modeled using discrete
ordinates method [77] and integral formulation [73]. Both absorption and
scattering of radiation by the solid matrix have been accounted for. The
presence of fuel–combustion products on radiative transfer in the PIM has
been neglected in comparison to that of the solid matrix as the pores are of
small size, and the opacity of the gases is negligible to that of the matrix.
Figure 15.13 illustrates the gas temperature measured in the flame (within

the flame support layer) as a function of positionwith a reticulated ceramic at
the centerof thepore fordifferentfiring ratesof the radiantburner [68]. In spite
of the fact that the thermocouple readings have been corrected for conduction
and radiation errors, the authors believe that the measured temperatures to
the left of the peak are too high. This is due to the fact that conduction along
the probe and catalytic effects ignite the incoming mixture. When the firing
rate is increased from 157 to 315 kW/m2, the peak flame temperature location
moves closer to the burner face. This is caused by an increase in the advective
velocity of the mixture beyond the burner flame speed at the lower firing
rate. At the new location, the heat transfer rate from the flame to the matrix
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FIGURE 15.13
Temperature distribution in a flame support layer of a bilayer reticulated ceramic radiant heater.
(Reprinted from R. Mital et al., Combust. Flame 111:175–184, 1997. With permission from the
Combustion Institute.)
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is reduced leading to flame stabilization at higher mixture velocities. This is
consistent with the conventional knowledge of laminar free flames [8]. For
higher firing rates (beyond 315 kW/m2) the flame moves further upstream
in the flame support layer. An additional increase in the firing rate results in
flashback, thereby limiting the operation of the burner.
Figure 15.14 shows typical temperature distributions calculated in the gas

and solid phases at an equivalence ratio of 0.9. For burning velocity ratios,
SL/SLO ≥ 1.09, with SLO being the laminar burning velocity of a free flame
at the same equivalence ratio, the flames are submerged in the porous mat-
rix. But, for a velocity ratio of 1.58 the flame is anchored at the front face of
the burner. The maximum flame temperature is below the adiabatic flame
temperature Tad which is shown in the figure. The results do not reveal
superadiabatic combustion which is evident for an equivalence ratio of 0.5
[73]. Upstream of the flame the solid is at a higher temperature than the gas.
The solid becomes colder than the gas downstream of the reaction zone in a
3-cm-thick porous ceramic. Similar results have been obtained for different
dimensionless flame speeds (SL/SLO), but with the flame position at different
locations in the PIM. The results show that lean submerged flames can have
burning velocities up to 2.5 times higher than laminar burning velocities.
The comprehensive models for flames in embedded porous media repro-

duce most experimental trends observed and reported in the literature. In
this mode of combustion the reaction zone is located fully inside the porous
medium and the flame temperature is below the adiabatic flame temperat-
ure. If the PIM is not sufficiently thick combustion is completed at the burner
exit [76]. Energy considerations in the gas-phase equation suggest that these
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flames have a structure similar to those of freely propagating flames with
preheated reactants. The local heat transfer rate from the gases to the solid
matrix is a small part of the chemical energy released. The inability of the
models to quantitatively agree with the experiments is due to both the exper-
imental difficulties in making local measurements in the porous matrix and
the uncertainties in the thermophysical and radiation characteristics of the
matrices used for the burners.
The predictions are in quantitative agreement with the data concerning

the gas outlet temperatures, pollutant emissions, and radiation efficiencies
[51,73,77]. The thermal performance predictions of the submerged flame
burners is sensitive to the convective heat transfer characteristics, the opacity
of the PIM (i.e., the thickness extinction coefficient product), and the operat-
ing conditions such as the firing rate and the equivalence ratio influence the
radiation efficiency of the burner–radiant heater. It has been observed that the
burners with the thicker flame support layer [51,68,76] have higher radiation
efficiency than their thinner counterparts at the same operating conditions.
This performance increase is owing to a combination of two factors: a longer
gas mixture residence time in the high-temperature region resulting in more
complete combustion and an effective increase in pad volume allowing for a
large fraction of thermal radiation emission not only fromwithin the PIM but
also from the solid of the burner face.

15.7 Premixed Porous Medium Combustors–Heaters

Porous inert media based burners–heaters with integral heat exchangers,
either in the PIM [52,54,79–81] or in the postcombustion region [58,59,82],
have potential applications in industrial fluid heating, household appliances,
etc. andhave received considerable experimental and theoretical research and
development attention during the last decade. PPMC heaters usually consist
of two or more different solid matrices having appropriate physical (geomet-
rical), flow, and heat transfer characteristics. The combustor can be located
vertically (with upward or downward flow) or horizontally. A schematic dia-
gram of a combustor is shown in Figure 15.15. A heat exchanger (i.e., tubes
through which a working fluid is circulated) is placed in the exhaust stream
of the postcombustion zone. The water vapor in the combustion products is
condensed and gives its latent heat to the heat exchanger. Mounting of the
burner vertically facilitates the gas flows from top to bottom and enables the
condensed water to flow out of the burner [82].
PPMC heaters have received both experimental and theoretical research

attention [58,59], and additional studies are cited in these references. As
shown in Figure 15.15 a typical PPMC unit with an integral heat exchanger
consists of three main regions: a preheat zone (P), a combustion zone (C),
and a heat exchanger zone (H). The preheating zone is composed of ceramic
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FIGURE 15.15
Schematic diagram of a PPMC with heat exchanger in the exhaust stream.
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(i.e., Al2O3) particles, and the combustion zone consists of ceramic particles,
open-cell ceramic (i.e., SiC) foams having different number of pores per unit
length and other porous materials. The burner walls are water cooled, but
the combustion region is insulated from the cold walls by a ceramic cylinder
(liner) in order to ensure stable combustion.
Temperature measurements made inside the porous matrix [82] using

type S thermocouples are illustrated in Figure 15.16. The porous matrix in
the combustion zone C was comprised of 16 mm diameter Al2O3 particles.
Methane–air mixtures of different compositions were burned in two different
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sections of the PPMC of the type discussed in this section. The results of the
figure show that the basic features of the flame stabilization and heat transfer
are satisfied.
Probably themost detailed analysis from the chemical kinetics point of view

is that of Brenner et al. [58]. They used a pseudohomogeneous thermal equi-
librium model for porous media to simulate a two-dimensional methane–air
combustor connected to a finned tube heat exchanger located past the burner
exit. Awater cooling jacket was placed around the combustion region which
contained the porous medium comprised of either Al2O3 or SiC lamel-
lae structure. The chemical kinetics model accounted for 20 species and
164 reactions. Radiative transfer in the porous media was treated empirically
through the Rosseland diffusion approximation, and the dispersion effects
were accounted for using an anisotropic effective thermal conductivity. The
two-dimensional temperature and species concentration distributions were
calculated for premixed methane–air combustion in burner with rectangular
cross-section geometry. A comparison of predicted and measured maximum
temperatures for different equivalence ratios and two firing rates is given in
Figure 15.17. The measured temperatures were corrected for errors, which
at the centerline of the burner were approximately 100 K. The experimental
and computational results show that the model is capable of simulating the
overall trends, which included the equivalence ratio, specific firing rate and
thermophysical characteristics of the PIMs used.
PPMCheaterswithheat exchangers embeddeddirectly in theporousmatrix

have the potential of greater compactness and higher thermal efficiency,
lower solid matrix temperatures and reduced pollutant emissions, but their
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development is not as far advanced as the combustors–heaters mentioned
in the preceding paragraphs. As already discussed, in PPMCs without heat
extraction in the solidmatrix there is usually an extended rangeof stable flame
speed which can be achieved at an equivalence ratio to maintain stable com-
bustion. At a particular equivalence ratio, when the velocity of the fuel–air
mixture in the solid matrix is higher than the corresponding stable flame
speed, the reaction zone is pushed downstream closer to the embedded
heat exchanger tubes. With the flame closer to the tubes, a large fraction
of heat released is extracted by the coolant, and the heat feedback needed to
preheat the fuel–air mixture is reduced. If this process continues, eventually
either the flame stabilizes in the gas-phase (i.e., becomes anchored at the front
face of the solid matrix) or blowout occurs. If, on the other hand, the velo-
city of the fuel–air mixture is lower than the stable flame speed, the process
discussed is reversed and the flame moves out of the porous material and
remains in the gas-phase upstream of the porous matrix.
Two-dimensional numerical simulations of a PPMC heater stabilized in

a packed bed of alumina (Al2O3) particles has been reported [52,54,80].
Either horizontal [52,54] or vertical [80] tubes were embedded in the bed
for extracting the heat of combustion. One-step chemical kinetics model was
employed for the premixed methane–air combustion. Radiation was treated
as a diffusion process, and effects of dispersion were accounted for in the
effective thermal conductivity model. The emphasis in the calculations was
on the flame location, temperature distribution in the bed, pressure drop, and
thermal efficiency. The effects of excess air, firing rate, particle diameter, activ-
ation energy, and thermal conductivity were investigated. Model predictions
were compared with available experimental data for a similar system, and
the predictions were found to agree with the available data within the experi-
mental uncertainty. It was found that there is a significant difference between
the predictions based on the thermal equilibrium [52] and the nonequilibrium
[54] models for larger particle diameters.
In spite of the fact that PPMC devices with the heater embedded in the

porousmatrix have potential for improved thermal performance and reduced
pollutant emissions, theunstable combustionobserved in experiments [79,81]
appears to have held back development. Means have to be found to overcome
design and operational problems to maintain stable combustion under fuel-
lean conditions with the equivalence ratio lower than the flammability of
free-burning systems.

15.8 Concluding Remarks

There are diverse technologies and fields of application of hydrocarbon fuel
(gaseous and liquid) combustion within porous inert material that stabilize
reactions in the pore structure of the matrix. Premixed fuel and air enters the
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porous matrix where it is convectively heated as it passes through the inter-
stitial voids of the matrix upstream of the reaction zone. The porous material
upstream of the reaction zone is heated by conduction and radiation. The
preheated fuel–air mixture then passes through the combustion zone where
chemical reactions occur and heat release takes place. The nonadiabatic com-
bustion taking place in the voids of the porous matrix is intimately coupled
to heat transfer by convection, conduction, and radiation in the porous
material.
Significant progress has been made in the development and application of

the innovative porous media combustion technology and reviews are avail-
able [1–4,8,12]. Reference is made to these accounts for detailed discussion
of research issues and specific applications of the technology. Briefly, the
problems needing research attention include improved understanding of
conductive, convective, and radiative heat transfer in unconsolidated and
consolidatedporousmedia, establishment of chemical kinetics parameters for
nonadiabatic combustion in porous media, flame quenching in small pores,
development and validation of more realistic transport-combustion models,
establishment of combustion regimes in different porous media, and their
stability limits. Most of all, the effect of chemical reactions and combustion
product expansion on flow and turbulence in porous media has not been
adequately studied and is not understood.
PPMC devices have been shown tomaintain stable combustion under fuel-

lean conditions with an equivalence ratio lower than the flammability of free-
flame burning systems. The flame speed of a porous burner has been found to
be significantly higher than in free-burning systems. The combustionwithin a
porousmatrix exhibits the characteristics of lowflame temperature, extended
chemical reaction zone, high preheating fuel–air mixture, and low NOx and
CO emissions. In summary, a properly designed and operated PPMC has the
potential of greatly improved thermal and combustionperformance aswell as
reducedpollutant emissions. However, significant research anddevelopment
issues remain to be resolved before the innovative technology, with its special
niche, can find greater acceptance and a wider range of applications.
The use of pseudohomogeneous and heterogeneous volume-averaged

models requires the quantification of numerous parameters that have to be
specified a posteriori using experiments. Amore rigorous approach of quanti-
fying these parameters can be performed a priori using the lattice Boltzmann
method (LBM). Such an innovative approach to predict the flow structure in
a packed bed has been used by Brenner et al. [53], but so far combustion and
heat transfer in a packed bed has not been simulated. This may be an area of
future research direction since knowledge of structural details of a bed may
allow LBM to be used efficiently to analyze porousmedia and extract import-
ant characteristics of bulk flow, direction dependent dispersion coefficients,
and other parameters needed to simulate combustion and heat transfer or for
incorporation in pseudohomogeneous models.
The solid matrix limits access by optical and mechanical probes for

experimentalmeasurements of flame structure inporousmedia. This presents
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a great challenge and identifies the need for experimental and theoretical
research of combustion phenomena and for determination of thermophys-
ical, transport, and radiation characteristics of porous media. The lack of
reliable information on the characteristics leads to discrepancies between
model calculations and the experimental data that need to be overcome in
the future.

Nomenclature

av surface area per unit volume
cp specific heat at constant pressure
cs specific heat of solid
D diffusion coefficient
d diameter of pore or of particle
F Forchheimer factor
F radiative flux in the x-direction
F radiation flux vector
h enthalpy or convective heat transfer coefficient
hv volumetric heat transfer coefficient (=hav)
K permeability of porous medium
k thermal conductivity
L thickness
Nu Nusselt number
p pressure
R universal gas constant
Re Reynolds number
Sc Schmidt number
Sh Sherwood number
T temperature
u velocity in the x-direction
u velocity vector
Yi mass fraction of species i
Wi molecular weight of species i
β extinction coefficient (=κ + σ)
ε emissivity
κ absorption coefficient
λ excess air ratio
µ dynamic viscosity
ρ density
σ scattering coefficient or Stefan–Boltzmann constant
φ porosity
ω̇i generation rate of species i
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Subscripts

con refers to conduction
dis refers to dispersion
eff refers to effective
g refers to gas
i refers to inlet (entrance)
m refers to mean
o refers to exit (outlet)
rad refers to radiation
s refers to solid
sur refers to surroundings
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Bioconvection is a new area of fluid mechanics, which has been developed
during the last few decades. The term “bioconvection” refers to macroscopic
convection induced inwater by the collectivemotion of a large number of self-
propelledmotilemicroorganisms. This convection is usually characterized by
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regularfluid circulationpatterns. Bioconvection is inducednotbymomentum
generated as a result of the swimming of individual microorganisms, but
rather by a density gradient, which occurs when a large number of these
microorganisms (which are heavier thanwater) accumulate in a certain region
of the fluid.

This chapter concentrates on the theory of bioconvection in porous media.
By using porous media with different permeabilities, it is possible to
have either a stable suspension (this happens if permeability is small) or
unstable suspension (this happens if permeability is large), in which case
bioconvection plumes will develop. Utilizing porous plugs in composite
porous/fluid domainsmakes it possible to control and, if necessary, suppress
bioconvection.

In this chapter, the stability criteria for bioconvection of gyrotactic microor-
ganisms in porous media are derived. It is established that there is a critical
permeability of a porous medium. If permeability is larger than critical,
bioconvection develops; if it is smaller than critical, it is suppressed. Crit-
ical permeability is determined as a function of parameters of upswimming
microorganisms through a linear stability analysis of governing equations.
The effect of cell deposition and resuspension as well as the effect of fouling
of porous media on the critical permeability is investigated.

The chapter also presents a theory of bioconvection plume in a suspension
of oxytactic bacteria in a deep chamber filled with a fluid-saturated por-
ous medium. The plume transports oxygen from the upper boundary layer,
which is rich in cells and oxygen, to the lower part of the chamber, which
is depleted of both cells and oxygen. A similarity solution of full governing
equations (without utilizing the boundary layer approximation) that describe
fluid flow as well as oxygen and cell transport in the plume is obtained.
The resulting ordinary differential equations are singular when the similarity
variable approaches zero; therefore, a series solution of these ordinary dif-
ferential equations, which is valid for small values of the similarity variable,
is obtained. This series solution is used as a starting point for a numerical
solution that makes it possible to investigate the plume for the whole range
of values of the similarity variable.

16.1 Introduction

Many living microorganisms (many species of bacteria and algae) can propel
themselves by rotating flagella, which are driven by reversible molecular
motors that are embedded in the cell wall. These microorganisms are gener-
ally heavier than water (the algae are approximately 5% denser than water,
whereas the bacteria are nearly 10% denser than water); therefore, the fluid
regions with a higher number density of motile cells become heavier than
the fluid regions with a smaller number density of the cells. Since the cells
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tend to swim in a particular direction in response to certain stimuli such as
gravity (gravitaxis), light (phototaxis), or chemical gradients (e.g., oxygen
gradient), they concentrate in certain regions of the fluid domain. This causes
density gradients in the fluid that may result in the development of convec-
tion instability. This instability leads to a spontaneous pattern formation in
suspensions of motile microorganisms, which is called bioconvection [1]. In
the case of upswimming microorganisms, the mechanism of development of
bioconvection is somewhat similar to the mechanism of the Rayleigh–Bénard
convection instability, yet, the development of bioconvection does not require
the vertical temperature gradient [2–4].

Most of the significant results in the area of bioconvection were obtained
over the last two decades [5–8]. A model for bioconvection depends on the
orientation of cell swimming, which depends on the species of microorgan-
isms. A typical behavior in algal suspensions is gyrotaxis. The direction
of swimming of gyrotactic microorganisms is determined by the balance
of two torques. The first one is the viscous torque that acts on a body
placed in a shear flow. The second torque is generated by gravity because
the center of mass of a typical microorganism is displaced from its cen-
ter of buoyancy. If microorganisms are heavier than the fluid, gyrotactic
behavior results in their swimming toward the regions of most rapid down-
flow. Therefore, the regions of downflow become denser than the regions of
upflow. Buoyancy increases the upward velocity in the regions of upflow and
downward velocity in the regions of downflow, thus enhancing the velocity
fluctuations [5,6,9]. The formation of almost regular patterns and gyrotactic
plumes in algal suspensions is documented innumerous experimental papers
[3,10–12].

Although there is a large number of publications on bioconvection in sus-
pensions of gyrotactic microorganisms, very little has been done concerning
the problem of separation of living and dead cells in these suspensions. One
possible approach is to suppress bioconvection so that living cells would
concentrate at the top of the fluid layer and dead cells would concentrate at
the bottom. This idea is based on the pioneering work by Kessler [13] who
suggested the utilization of upswimming of algal cells to concentrate the
cells, to purify cultures, and to separate vigorously swimming subpopula-
tions. For these applications, bioconvection is undesirable, because it would
prevent upswimming cells from concentrating near the surface of the cul-
ture. To suppress bioconvection, Kessler [13] suggested the use of a porous
medium (a surgical cotton wool), which must be sufficiently permeable to
allow cells to swim through it but sufficiently tight to prevent the develop-
ment of bioconvection instability. For practical purposes, it is desirable to
have the permeability of the porous medium as high as possible. This would
ensure that the cells can swim through it without cutting their tails off, and
this will also maximize the flux of the cells in the upward direction. Numer-
ical results by Kuznetsov and Jiang [14,15] and an analytical investigation
by Kuznetsov and Avramenko [16] suggest that there is a critical value of
the permeability of a porous medium. If the permeability is smaller than this
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critical value, bioconvectiondoes not occur andmicroorganisms simply swim
in the upward direction; if it is larger than critical, bioconvection instability
develops.

16.2 Stability of a Suspension of Gyrotactic Microorganisms
in a Fluid Saturated Porous Medium

16.2.1 Stability Analysis under the Assumption that a Porous
Matrix does not Absorb Microorganisms

16.2.1.1 General linear stability analysis

A powerful analytical result can be obtained under the assumption that the
porous matrix does not absorb microorganisms [16,17]. It is also assumed
that the suspension is dilute (nbθ � 1), where θ is the average volume of
the microorganism and nb is the number density of microorganisms in the
basic state. Governing equations for a three-dimensional unsteady flow in
a porous medium are obtained by volume averaging the equations in the
Pedley et al. [5]model. Thevolume-averagingprocedure isdescribed indetail
in Whitaker [18]. This procedure results in the replacement of the Laplacian
viscous terms with the Darcian terms that describe viscous resistance in a
porous medium [19].

The resulting governing equations are given below:

caρ0
∂u
∂t
= −∂p

∂x
− µu

K
(16.1)

caρ0
∂v
∂t
= −∂p

∂y
− µv

K
(16.2)

caρ0
∂w
∂t
= −∂p

∂z
− µw

K
− nsθ�ρg (16.3)

∂u
∂x
+ ∂v
∂y
+ ∂w
∂z
= 0 (16.4)

∂ns

∂t
= −div(nsv + nsWcp̂−Dn∇ns) (16.5)

where ca is the acceleration coefficient introduced in Nield and Bejan [19];
Dn is the diffusivity of the microorganisms (this assumes that all random
motions of the microorganisms can be approximated by a diffusive process);
g is the gravitational acceleration;K is the permeability of theporousmedium;
ns the number density of suspended motile microorganisms; p is the excess
pressure (above hydrostatic); p̂ is the unit vector indicating the direction of
swimming of microorganisms; t is the time; u, v, and w are the x-, y-, and
z-velocity components, respectively; v is the velocity vector, (u, v,w); Wcp̂ is
the vector of average swimming velocity relative to the fluid (Wc is assumed

© 2005 by Taylor & Francis Group, LLC



Modeling Bioconvection in Porous Media 649

to be constant); x, y, and z are the Cartesian coordinates (z is the vertical
coordinate);�ρ is the density difference, ρcell−ρ0; µ is the dynamic viscosity,
assumed to be approximately the same as that of water; and ρ0 is the density
of water.

Equation (16.5) is a simplified form of a more general cell conservation
equation for porous media, which can be presented as:

ϕ
∂ns

∂t
= −div(nsv + ns(Wc)effp̂−Dn,eff∇ns) (16.5a)

Porosity ϕ is involved in the term on the left-hand side of Eq. (16.5a) because
in the porous medium, the number density of cells (unlike the heat) is
advected/convected with the intrinsic velocity (not the Darcy filtration velo-
city) since the cells cannot pass through the solid phase. Extra factor ϕ has
been incorporated into the effective transport coefficients for the porous
medium, (Wc)eff and Dn,eff , in Eq. (16.5a). In a pioneering investigation, it
is desirable to keep things as simple as possible, also, there are no experi-
mental measurements for (Wc)eff and Dn,eff . Therefore, Eq. (16.5a) is reduced
to Eq. (16.5) by assuming that (Wc)eff = Wc and Dn,eff = Dn. It is also
assumed that ϕ is sufficiently close to unity (otherwise bioconvection cannot
develop).

To determine critical permeability, stability of the following basic state
is investigated. A uniform suspension of microorganisms, with number
density n0, in an infinite region occupied by an isotropic fluid-saturated
porous medium of uniform porosity is considered. In the basic state, no
macroscopic motion of the fluid occurs. All microorganisms are swimming
vertically upwards; however, because of the infinite size of the domain, this
upswimming does not change the cell concentration or the fluid density.

The perturbations in this system are introduced as follows:

ns(t, x, y, z) = nb + εn′s(t, x, y, z) (16.6)

u(t, x, y, z) = εu′(t, x, y, z) (16.7)

v(t, x, y, z) = εv′(t, x, y, z) (16.8)

w(t, x, y, z) = εw′(t, x, y, z) (16.9)

p(t, x, y, z) = pb(z)+ εp′(t, x, y, z) (16.10)

p̂(t, x, y, z) = k̂ + εp̂′(t, x, y, z) (16.11)

where pb(z) is the unperturbed excess pressure (∂pb/∂z = − nbθ�ρg from
Eq. (16.3)), k̂ is the unit vector in the vertically upward z-direction, a prime
denotes a perturbation quantity, and ε is the small perturbation amplitude.
Substituting Eqs. (16.6) to (16.11) into the governing equations (16.1) to (16.5)
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and linearizing gives the following equations for perturbation quantities:

caρ0
∂u′

∂t
= −∂p

′

∂x
− µu

′

K
(16.12)

caρ0
∂v′

∂t
= −∂p

′

∂y
− µv

′

K
(16.13)

caρ0
∂w′

∂t
= −∂p

′

∂z
− µw

′

K
− n′sθ�ρg (16.14)

∂u′

∂x
+ ∂v

′

∂y
+ ∂w

′

∂z
= 0 (16.15)

∂n′s
∂t
= −div

[
nb
(
v′ +Wcp̂′

)+ n′sWck̂ −Dn∇n′s
]

(16.16)

where v′ is the vector composed of perturbations of the corresponding
velocity components, (u′, v′,w′).

By analyzing the effect of gyrotaxes on orientation of swimming, Pedley
et al. [5] obtained the following equation for the perturbation of a unit vector
indicating the direction of swimming of microorganisms:

p̂′ = Bη̃î− Bξ̃ ĵ+ 0k̂ (16.17)

where î and ĵ are the unit vectors in the x- and y-directions, respectively.
In Eq. (16.17), B is the timescale for the reorientation of the microorganisms

by the gravitational torque against viscous resistance. In Pedley and Kessler
[7] this parameter is called the “gyrotactic orientation parameter.” It can be
expressed as:

B = α⊥µ
2hρ0g

(16.18)

where α⊥ is a dimensionless constant, relating viscous torque to the relative
angular velocity of the cell, and h is the displacement of the center of mass of
the cell from its center of buoyancy.

The parameters η̃ and ξ̃ in the x- and y-components of vector p̂′ in
Eq. (16.17) are:

η̃ = −(1− α0)
∂w′

∂x
+ (1+ α0)

∂u′

∂z
(16.19)

ξ̃ = (1− α0)
∂w′

∂y
− (1+ α0)

∂v′

∂z
(16.20)
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In Eqs. (16.19) and (16.20) α0 is a measure of the cell eccentricity, which is
given by the following equation:

α0 = a2 − b2

a2 + b2
(16.21)

where a and b are the semi-major and semi-minor axes of the spheroidal cell.
The substitution of Eq. (16.17) into Eq. (16.16) results in the following

equation for the perturbation of the number density of the cells:

∂n′s
∂t
+Wc

∂n′s
∂z
+WcBn0

(
∂η̃

∂x
− ∂ξ̃
∂y

)
= Dn∇2n′s (16.22)

where η̃ and ξ̃ are given by Eqs. (16.19) and (16.20).
The governing equations for the perturbation quantities, (16.12) to (16.15)

and (16.22), are linear and therefore, the stability of their solutions can be
examined in terms of individual Fourier modes. Following Pedley et al. [5],
perturbation quantities are introduced in the following form:

u′(t, x, y, z) = U exp[σ t+ i(kx + ly +mz)] (16.23)

v′(t, x, y, z) = V exp[σ t+ i(kx + ly +mz)] (16.24)

w′(t, x, y, z) =W exp[σ t+ i(kx + ly +mz)] (16.25)

p′(t, x, y, z) = P exp[σ t+ i(kx + ly +mz)] (16.26)

n′s(t, x, y, z) = Ns exp[σ t+ i(kx + ly +mz)] (16.27)

where k, l, and m are the wavenumbers in the x, y, and z directions, respect-
ively; and σ is the dispersion parameter characterizing the growth rate of
perturbations.

Substituting Eqs. (16.23) to (16.27) into Eqs. (16.12) to (16.15) and (16.22)
and accounting for Eqs. (16.19) and (16.20), the following equations for the
amplitudes (U, V, W, P, and Ns) are obtained:

kU + lV +mW = 0 (16.28)

kKP − iU(µ+ caρ0Kσ) = 0 (16.29)

lKP − iV(µ+ caρ0Kσ) = 0 (16.30)

mKP − iW(µ+ caρ0Kσ)− igNsK�ρθ = 0 (16.31)

Dnκ
2Ns + BnbWWc

(
k2 + l2

)
(1− α0)

−mWc[−iNs + Bnb(kU + lV)(1+ α0)] +Nsσ = 0 (16.32)
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where κ2 = k2 + l2 +m2. The elimination of amplitudes (U, V, W, P, and Ns)
from Eqs. (16.28) to (16.32) leads to the following dispersion relation:

κ2(Dnκ
2 + imWc + σ

)
(µ+ caρ0Kσ)

= BnbgKWc�ρθ
(
k2 + l2

)[
m2(1+ α0)+

(
k2 + l2

)
(1− α0)

]
(16.33)

Equation (16.33) can be solved for the growth rate parameter, σ . This results
in two roots:

σ = −caρ0K
(
Dnκ

2 + imWc
)+ µ

2caρ0K

±
{
4Bcaρ0nbgK2(k2 + l2

)
Wc�ρθ

[
m2(1+ α0)+

(
k2 + l2

)
(1− α0)

]

+ κ2
[
µ− caρ0K

(
Dnκ

2 + imWc

)]2 }1/2/
(2caρ0Kκ) (16.34)

Instability appears when the real part of σ has a positive sign. Since the root
with apositive sign in front of the second termhas the greater real part, further
analysis is concentrated on this root.

When the permeability is small, the system is expected to be stable because
of the large resistance that theporousmediumcreates to theflow. It is expected
that the increase of permeabilitywillmake the systemunstable. The permeab-
ility value corresponding to this transition is called the critical permeability.
It is assumed that the critical permeability value is small. In this case, the
solution for σ , given by Eq. (16.34) can be expended in Taylor series about
the point K = 0. Neglecting quadratic and higher order terms, this expansion
results in:

σ =−
(
Dnκ

2 + imWc

)
+
(
k2 + l2

)
BnbgWc�ρθ

[
m2(1+ α0)+

(
k2 + l2

)
(1− α0)

]
κ2µ

K +O(K2)

(16.35)

Thus for K = 0 the real part of σ has a negative real part −κ2Dn, and the
system is stable (unless the diffusivity of microorganisms, Dn, equals zero).
This illuminates the role of diffusion in the stability of bioconvection in por-
ous media. The diffusion stabilizes bioconvection, because it eliminates cell
concentration gradients and, consequently, density gradients.

To find the value of the critical permeability it is necessary to find the value
ofK when the real part of σ changes its sign. To do this, it is necessary to solve
the equation Re(σ ) = 0. Taking the real part of Eq. (16.35) and equating it to
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zero results in:

(
k2 + l2

)
BnbgWc�ρθ [m2(1+ α0)+

(
k2 + l2

)
(1− α0)]K̂ −Dnκ

4µ = 0 (16.36)

where K̂ denotes the value of K for which the real part of σ equals to zero.
Solving this equation for K̂ and replacing k2 + l2 with κ2 −m2 results in:

K̂(κ ,m) = κ4

(κ2 −m2)
[
m2(1+ α0)+ (κ2 −m2)(1− α0)

] Dnµ

BnbgWc�ρθ
(16.37)

To find the critical permeability value, it is necessary to find the minimum
value of K̂ for all wavenumbers. The investigation of function K̂(κ ,m) for
extremum gives two equations:

∂K̂
∂κ
= 2m2κ3 (4m2α0 + (1− 3α0)κ

2)(
κ2 −m2

)2 (2m2α0 + (1− α)κ2
)2 Dnµ

BnbgWc�ρθ
= 0 (16.38)

and

∂K̂
∂m
= − 2mκ4 (4m2α0 + (1− 3α0)κ

2)(
κ2 −m2

)2 (2m2α0 + (1− α0)κ2
)2 Dnµ

BnbgWc�ρθ
= 0 (16.39)

Both Eqs. (16.38) and (16.39) result in the same equation that relates κ and m:

4m2α0 + (1− 3α0)κ
2 = 0 (16.40)

Solving Eq. (16.40) for κ gives the following:

κ = ±2m
√

α0

3α0 − 1
(16.41)

Of the two roots given by Eq. (16.41), only the positive one is relevant.
Substituting it in Eq. (16.37) results in:

Kcrit = 8α0

(1+ α0)2
Dnµ

BnbgWc�ρθ
(16.42)

Equation (16.42) is valid only if the expression under the square root in
Eq. (16.41) is larger or equal to zero, which gives:

α0 ≥ 1
3 (16.43)

© 2005 by Taylor & Francis Group, LLC



654 A.V. Kuznetsov

By definition of α0, it may change between zero and unity. According to
condition (16.43), Eq. (16.42) for critical permeability can be used only for
1
3 ≤ α0 ≤ 1.
If α0 ≤ 1

3 , the function K̂(κ ,m) defined by Eq. (16.37) does not possess
an extremum. In this case its minimum value occurs at the boundary of the
domain, at m= 0, which physically corresponds to the case of no vertical
disturbances.

Substitutingm = 0 into Eq. (16.37) gives the following critical permeability
for the case of α0 ≤ 1

3 :

Kcrit = 1
(1− α0)

Dnµ

BnbgWc�ρθ
(16.44)

Equations (16.42) and (16.44) match at α0 = 1
3 . These equations for the critical

permeability are obtained assuming that its value is small, so that only the
linear terms in the Taylor expansion for σ must be retained. From Eqs. (16.42)
and (16.44), it follows that this is a good approximation if the diffusivity of
cells, Dn, is small.

Equations (16.42) and (16.44) reveal that increasing cell diffusivity increases
the critical permeability, which means that it makes the system more stable.
This is because diffusion eliminates concentration gradients and makes it
more difficult for the instability to develop. Increasing the fluid viscosity also
makes the system more stable. Increasing the number density of the cells
in the basic state, volume of the cell, density difference, and gravitational
acceleration decreasesKcrit, whichmeans that the system becomes less stable.
This is because increasing these parameters increases the buoyancy force on a
fluid particle, and thus stimulates the growth of the disturbances. Increasing
the average swimming velocity of the cells decreases Kcrit as well.

Following Pedley et al. [5], the following parameter is introduced:

γ =
(
BnbgWc�ρθ

Dnµ

)1/2

(16.45)

The parameter γ has the dimension 1/m. This suggests that 1/γ be used as a
length-scale and the introduction of a critical Darcy number defined as:

(Da1/γ )crit = Kcritγ
2 (16.46)

In this case Eqs. (16.44) and (16.42) can be recast as:

(Da1/γ )crit =
{
1/(1− α0) for 0 ≤ α0 ≤ 1

3
8α0/(1+ α0)

2 for 1
3 ≤ α0 ≤ 1

(16.47)

Figure 16.1 displays the dependence of the critical Darcy number on α0. It
shows that the transition between the two regions defined in (16.47) is smooth
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FIGURE 16.1
Dependence of the critical Darcy number on cell eccentricity. (Taken from Kuznetsov and
Avramenko, Transp. Porous Media 53: 95–104, 2003. With permission.)

and that (Da1/γ )crit monotonically increases from unity to two as α0 increases
from zero to unity.

16.2.1.2 Investigation of stability under the assumption that the
principle of exchange of stabilities is satisfied

If the principle of exchange of stabilities is satisfied, that is, σ is real and the
marginal states are characterized by σ = 0, the analysis can be simplified dra-
matically. In this case, time derivatives in equations for disturbances (16.12)
to (16.15), and (16.22) can be neglected. The substitution of Eqs. (16.23) to
(16.27) into these simplified steady equations and subsequent elimination of
amplitudes results in the following dispersion relation:

κ2µ
(
Dκ2 + imWc

)
= BnbgKWc�ρθ(κ

2 −m2)

× [m2(1+ α0)+ (κ2 −m2)(1− α0)
]

(16.48)

In Eq. (16.48), there is an imaginary term, imWc. Therefore, Eq. (16.48) predicts
a complex value of critical permeability unless m = 0. This proves that the
principal of exchange of stabilities is invalid for this system unless the min-
imumof the function K̂(κ ,m), which is defined by Eq. (16.37), occurs atm = 0.
In other words, if m is not zero, then there is a wave motion in the z-direction
which means that the system exhibits oscillatory convection. This conclusion
is consistent with the analysis carried out in Hill et al. [20] who found regions
of overstability for the case of gyrotacticmicroorganisms suspended in a clear
fluid layer of finite depth.
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16.2.2 Stability Analysis Accounting for the Absorption of
Microorganisms by the Porous Matrix and the Reduction of
its Permeability

If a porous matrix absorbs microorganisms, mathematical modeling becomes
more involved. In addition to the number density of the suspended motile
microorganisms, ns, there is also the number density of microorganisms
captured by the porous matrix, nc. In addition, absorption of microorgan-
isms by the porous matrix results in biofilm accumulation and thus leads to
the decrease of permeability of the porous media. Under these assumptions
Eqs. (16.1) to (16.4) still hold, but permeability of the porous medium, K, is no
more constant, but is a function of the number density of captured cells. To
calculate permeability in Eqs. (16.1) to (16.3) the Carman–Kozeny equation
[19] is utilized as:

K = d2ϕ3

180(1− ϕ)2 (16.49)

and porosity, ϕ, is connected to the number density of captured cells, nc, as:

ϕ = ϕ0 − ncθ (16.50)

where d is the effective average diameter of a particle or a fiber that compose
porousmatrix (this is a constant value in thismodel), nc is the number density
of captured microorganisms, ϕ is the porosity, and ϕ0 is the initial porosity
(when there are no captured cells and all cells are suspended cells). The object-
ive of this research is to find a critical value of the initial porosity (ϕ0)crit,
which determines the boundary between the stable and unstable regimes for
this system.

In place of Eq. (16.5) now there are two cell conservation equations, for the
suspended and captured cells, respectively:

∂ns

∂t
= −div(nsv + nsWcp̂−Dn∇ns)− Ra (16.51)

∂nc

∂t
= Ra (16.52)

where kdep is the rate of cell deposition, kdecl is the rate of cell resuspension
(declogging), nc is the number density of captured microorganisms, and Ra is
the net cell deposition rate per unit volume given by the following equation:

Ra = kdepns − kdeclnc (16.53)

This model assumes that once the cell is absorbed (captured) by the porous
matrix, it can still escape and become a suspended cell again. According to
Eq. (16.53), volume rates of cell deposition and resuspension are proportional
to number densities of suspended and captured cells, respectively.
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As in the previous case, a uniform suspension of microorganisms in an
infinite region occupied by an isotropic fluid saturated porous medium of
uniformporosity is considered. It is assumed that in thebasic state thenumber
density of suspended cells is nb and the number density of captured cells
is (kdep/kdecl)nb.

Theperturbations are introduced according to Eqs. (16.6)–(16.11).Addition-
ally, the perturbation of the number density of captured cells is introduced as:

nc(t, x, y, z) = (kdep/kdecl)nb + εn′c(t, x, y, z) (16.54)

Substituting Eqs. (16.6)–(16.11) and (16.54) into the governing equations
(16.1)–(16.4) and (16.51)–(16.53) and linearizing gives equations for perturb-
ation quantities. Four of these equations are identical to Eqs. (16.12)–(16.15),
however, since permeability nowdepends on the number density of captured
cells,thefollowingTaylorexpansionfor1/KmustbeusedinEqs.(16.12)–(16.14):

1
K
= 180kdecl(kdecl + kdepnbθ − kdeclϕ0)

2

d2(−kdepnbθ + kdeclϕ0)3

+ 180k2declθ(kdepnbθ − kdecl(−3+ ϕ0))(kdecl + kdepnbθ − kdeclϕ0)n′c
d2(kdepnbθ − kdeclϕ0)4

ε

(16.55)

The following two equations hold in place of Eq. (16.16):

∂n′s
∂t
= −div

[
nb
(
v′ +Wcp̂′

)+ n′Wck̂ −Dn∇n′
]− (kdepn′s − kdecln′c

)
(16.56)

∂n′c
∂t
= kdepn′s − kdecln′c (16.57)

Equations (16.17) to (16.20) for the perturbation of a unit vector indicating the
direction of swimming of microorganisms, p̂′, still hold.

The substitution of Eq. (16.17) into Eq. (16.56) results in the following
equation for the perturbation of the number density of the suspended cells:

∂n′s
∂t
+Wc

∂n′s
∂z
+WcBnb

(
∂η̃

∂x
− ∂ξ̃
∂y

)
= Dn∇2n′s −

(
kdepn′s − kdecln′c

)
(16.58)

where η̃ and ξ̃ are still given by Eqs. (16.19) and (16.20).
The governing equations for the perturbation quantities, (16.12)–(16.15),

(16.57), and (16.58) are still linear, and therefore, the stability of their solutions
can be examined in terms of individual Fourier modes. Perturbation quant-
ities are introduced by Eqs. (16.23)–(16.27). Additionally, the perturbation of
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the number density of captured cells is introduced as:

n′c(t, x, y, z) = Nc exp[σ t+ i(kx + ly +mz)] (16.59)

Substituting Eqs. (16.23)–(16.27) and (16.59) into Eqs. (16.12)–(16.15), (16.57),
and (16.58) and accounting for Eqs. (16.19) and (16.20), equations for the
amplitudes (U, V, W, P, Nc, and Ns) are obtained. The first of these equations
coincides with Eq. (16.28), and the following five equations hold in place of
Eqs. (16.29)–(16.32):

ikP +U

(
caρ0σ +

180kdeclµ(kdecl + kdepnbθ − kdeclϕ0)
2

d2(−kdepn0θ + kdeclϕ0)3

)
= 0 (16.60)

ilP + V

(
caρ0σ +

180kdeclµ(kdecl + kdepnbθ − kdeclϕ0)
2

d2(−kdepnbθ + kdeclϕ0)3

)
= 0 (16.61)

imP + gNs�ρθ + caWρ0σ +
180kdeclµ(kdecl + kdepnbθ − kdeclϕ0)

2

d2(−kdepnbθ + kdeclϕ0)3
W = 0

(16.62)

kdepNs − kdeclNc +Dnκ
2Ns + Bn0WWc(κ

2 −m2)(1− α0)

−mWc[−iNs + Bnb(kU + lV)(1+ α0)] +Nsσ = 0 (16.63)

kdepNs − (kdecl + σ)Nc = 0 (16.64)

The elimination of amplitudes (U, V, W, P, Nc, and Ns) from Eqs. (16.28),
(16.60)–(16.64) leads to the following cubic equation for the growth rate σ :

− BnbgWc�ρθ(κ
2 −m2)

[−m2(1+ α0)+ (κ2 −m2)(−1+ α0)
]
(kdecl + σ)

− (µ/Kb)κ
2
{
Dnκ

2(kdecl + σ)+ kdecl(imWc + σ)+ σ(kdep + imWc + σ)
}

− caρ0σκ2
{
Dnκ

2(kdecl + σ)+ kdecl(imWc + σ)+ σ(kdep + imWc + σ)
}
= 0

(16.65)

where Kb is the permeability of the porous matrix in the basic state, which is
different from the initial permeability of the porous matrix (the permeability
of the porous matrix when no cells are attached to it). Because the number
density of capturedmicroorganisms in the basic state isnb(kdep/kdecl)θ ,Kb can
be calculated as:

Kb =
d2(ϕ0 − nb(kdep/kdecl)θ)

3

180[1− (ϕ0 − nb(kdep/kdecl)θ)]2 (16.66)
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Asa cubic equation, Eq. (16.65) has three roots. Tofind the critical permeability
value, it is necessary to solve the equation Re(σ1) = 0, where σ1 is the root
with the greatest real part. Because permeability is not constant (it depends on
the number density of cells absorbed by the porous matrix, nc), it is possible
to talk either about critical initial permeability (when no cells are yet attached
to the porous matrix) or about critical permeability in the basic state, (Kb)crit.
Because Kb is naturally present in the dispersion relation (Eq. (16.65)), it is
more convenient to solve for (Kb)crit. It is also more convenient to present
the results in the dimensionless form to minimize the number of parameters
involved. Using 1/γ as a length-scale (parameter γ is defined in Eq. (16.45)),
the critical permeability in the basic state, (Kb)crit, can be used to define the
following critical Darcy number:

(Da1/γ )crit = (Kb)critγ
2 (16.67)

The analysis of Eq. (16.65) (for details of the numerical analysis see Kuznetsov
and Avramenko [21]) shows that (Da1/γ )crit defined by Eq. (16.66) does not
depend on the rates of cell deposition and resuspension, but only depends
on cell eccentricity and can be computed utilizing Eq. (16.47).

Once (Da1/γ )crit is calculated according to Eq. (16.47), the critical initial
porosity (ϕ0)crit can be calculated by solving the following equation:

((ϕ0)crit − (kdep/kdecl)(nbθ))
3

180
[
1− ((ϕ0)crit − (kdep/kdecl)(nbθ))

]2 = (Da1/γ )crit
(γ d)2

(16.68)

and the critical initial permeability can be calculated by substituting the
obtained value of (ϕ0)crit into Eq. (16.49).

16.2.3 Stability Analysis of Bioconvection of Gyrotactic Microorganisms
in a Layer of Final Depth

This problem was analyzed in Nield et al. [22]. For this analysis, it is
assumed that the porous matrix does not absorb microorganisms. Further, it
is assumed that the pores are large comparedwith themicroorganisms so that
the permeability of the medium is not changed by the presence of microor-
ganisms. Governing equations for this problem are given by Eqs. (16.1)
to (16.5).

A horizontal layer of porous medium of depth H is considered. Cartesian
axes with the vertical z-axis are chosen, so that the layer is confined between
z = 0 and z = H. The layer is unbounded in the x and y directions. The
equation of continuity admits a steady-state solution where nb, the number
density of the microorganisms in the basic state and Pb, the pressure distri-
bution in the basic state are functions of z only, while all components of the
velocity are zero.
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Under this assumption Eq. (16.5) can be solved to give

nb(z) = ν exp
(
Wcz
Dn

)
(16.69)

The integration constant ν, which represents the value of the basic number
density at the bottom of the layer, is related to the average concentration of
suspended microorganisms, ns, by

ν = n̂sQ
exp(Q)− 1

(16.70)

where

n̂s = 1
H

∫ H

0
nb(z)dz (16.71)

and the Péclet number for bioconvection caused by gyrotactic microorgan-
isms, Q, is defined by

Q = WcH
Dn

(16.72)

The perturbations are introduced by Eqs. (16.7)–(16.11), and the perturba-
tion of the number density of suspended cells is introduced by the following
equation:

ns(t, x, y, z) = nb(z)+ εn′(t, x, y, z) (16.73)

where nb(z) is given by Eq. (16.69). Substituting Eqs. (16.7)–(16.11) and (16.69)
into Eqs. (16.1)–(16.5) and linearizing results in the following equations for
perturbations, four of which coincide with Eqs. (16.12)–(16.15), and the
following equation replaces Eq. (16.16):

∂n′s
∂t
= −div

[
nb
(
v′ +Wcp̂′

)+ n′sWck̂ −Dn∇n′s
]

(16.74)

Equations (16.17)–(16.20) for the vector p̂′ still hold and Eq. (16.74) can be
rewritten as follows

∂n′s
∂t
= −w′ ∂nb

∂z
−Wc

∂n′s
∂z
−WcBn0

(
∂η̃

∂x
− ∂ξ̃
∂y

)
+Dn∇2n′s (16.75)

A normal mode expansion is introduced in the following form:

[u′, v′,w′, p′,n′] = [U(z),V(z),W(z),P(z),N(z)] f (x, y) exp(σ t) (16.76)
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Substituting Eq. (16.76) into Eqs. (16.17)–(16.20) and (16.75), the following
equations for the amplitudes U, V, W, P, and N are obtained:

U
∂f
∂x
+ V

∂f
∂y
+ dW

dz
f = 0 (16.77)

KP
∂f
∂x
+U(µ+ caρ0Kσ)f = 0 (16.78)

KP
∂f
∂y
+ V(µ+ caρ0Kσ)f = 0 (16.79)

K
dP
dz
+W(µ+ caρ0Kσ)+ gK�ρθN = 0 (16.80)

In order to separate the variables, the horizontalwavenumberm is introduced
as a separation constant, so that

∂2f
∂x2 +

∂2f
∂y2 = −m2f (16.81)

EliminatingP,U, andV fromEqs. (16.77)–(16.80), these equations are reduced
to the following two equations for W(z) and N(z):

(µ+ caρ0Kσ)

[
d2

dz2
−m2

]
W = m2gK�ρθN (16.82)

and [
Dn

d2

dz2
−Wc

d
dz
− (Dnm2 + σ )

]
N

=
[
dn0

dz
+ Bn0Wc

(
m2(1− α0)− (1+ α0)

d2

dz2

)]
W (16.83)

To recast Eqs. (16.82) and (16.83) in nondimensional form, the following
scalings are introduced:

z = z
H

, a = mH, W =
(
νθWcH2

D2
n

)
W , N = Nθ (16.84)

The dimensionless Rayleigh number R and the gyrotaxis number G are
introduced as:

R = νθgKH2Wc�ρ

µD2
n

, G = α⊥Dnµ

2ghH2ρ0
(16.85)
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According to Eq. (16.85),R is the product of a regular Rayleigh–Darcy number
gKH�ρ/(µDn), the Péclet number Q, and a microorganism number νθ ,
while G = DnB/H2.

As indicated inNield et al. [22], there is no restoringmechanismherewhich
can cause oscillatory instability, and hence the principle of exchange of sta-
bilities [23] can be invoked and σ can be set to zero for the onset of instability.
(Hill et al. [20] confirmed by numerical calculation that, in the case of a clear
fluid, oscillatory convection could not occur unless vorticity was produced
as a result of a no-slip condition at a rigid boundary, and clearly this effect is
absent here.) Equations (16.82) and (16.83) then reduce to

[
d2

dz2
− a2

]
W = a2RN (16.86)

[
d2

dz2
−Q

d
dz
− a2

]
N = exp(Qz)

[
1+ G

(
a2(1− α0)− (1+ α0)

d2

dz2

)]
W

(16.87)

Equations (16.86) and (16.87) constitute a fourth-order differential equation
system. Theymustbe solvedsubject to fourboundary conditions, which in the
case of boundaries that are impermeable to both the fluid and the swimming
organisms, are

W = dN
dz
−QN = 0 at z = 0 and z = 1 (16.88)

For the solution of this system, a simple Galerkin method is utilized. Suitable
trial functions (satisfying the boundary conditions) are

W1 = z− z2 (16.89)

N1 = 2−Q(1− 2z)−Q2(z− z2) (16.90)

The standard procedure [24] leads to

Rcrit = min
a

(10+ a2)Q3[a2(120− 10Q2 +Q4)+ 10Q4]
{30a2(10−Q2)16− a2G(4+Q)2(−1+ α0)+Q(8+Q(1− 4G(1+ α0)))

+eQ[−16+ a2G(−4+Q)2(−1+ α0)+Q(8+Q(−1+ 4G(1+ α0)))]}
(16.91)

Equation (16.91) corrects a typo in Eq. (41) of ref. [22].
The fact that there exists a critical value of the bioconvectionRayleigh number
defined in Eq. (16.91) shows that a critical value Kcrit of the permeability K

© 2005 by Taylor & Francis Group, LLC



Modeling Bioconvection in Porous Media 663

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1
Q

R
cr

it

G = 0 G = 0.01

G = 0.1

G = 1 G = 10 G = 100

�0 = 0.2

FIGURE 16.2
Plots of critical bioconvection Rayleigh number Rcrit versus bioconvection Péclet number Q, for
various values of the gyrotaxis number G, for cell eccentricity α0 = 0.2. (Taken from Nield et al.,
Transp. Porous Media 54: 335–344, 2004. With permission.)
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FIGURE 16.3
Plots of critical wavenumber acrit versus bioconvection Péclet number Q, for various values of
the gyrotaxis number G, for cell eccentricity α0 = 0.2. (Taken from Nield et al., Transp. Porous
Media 54: 335–344, 2004. With permission.)

must be exceeded for bioconvection to occur in a porous medium, namely

Kc = µD2
n

RcνθgH2Wc�ρ
(16.92)

In Figure 16.2 and Figure 16.3, the critical bioconvection Rayleigh number
Rcrit and the corresponding criticalwavenumber acrit, respectively, areplotted
against the bioconvection Péclet numberQ for various values of the gyrotaxis
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number G, for a typical value (α0 = 0.2) of the measure of cell eccentricity.
It is seen that both Rcrit and acrit increase as Q increases, and decrease as G
increases. For large G, Rcrit is approximately inversely proportional to G.

16.3 Stability of a Suspension of Oxytactic Microorganisms
in a Fluid Saturated Porous Medium and Analysis of a
Bioconvection Plume Caused by these Microorganisms

16.3.1 Stability of a Shallow Layer

Many bacterial species swim up the oxygen gradients. This behavior is
called oxytaxis. Bioconvection in suspensions of oxytactic bacteria is invest-
igated in Hillesdon et al. [25], Hillesdon and Pedley [26], and Metcalfe and
Pedley [27, 28].

Oxytactic bacteria require oxygen for their metabolism and swim up the
oxygen gradients. They require a minimum oxygen concentration, Cmin, in
order to be active. Since this chapter deals with a shallow layer, it is assumed
that even at the bottom of the layer the oxygen concentration is larger than
the minimum concentration. In this case, the average swimming velocity of
a bacterium can be approximated as

V = bWcĤ(C)∇C (16.93)

where

C = (C − Cmin)/(C0 − Cmin) (16.94)

is the dimensionless oxygen concentration, C is the dimensional oxygen con-
centration, C0 is the free-surface oxygen concentration, b has dimensions of
length, and Wc has dimensions of velocity (the product bWc is assumed to be
constant). Since for the shallow layer C > 0 throughout the layer thickness,
the Heaviside step function, Ĥ(C), equals to unity. The layer is of depth H
and is assumed to be infinitely large in the horizontal dimensions.

The governing equations for this problem can be presented as follows. The
momentum equation is

caρ
∂U
∂t
= −∇pe − µKU + nsθ�ρgk (16.95)

where ca is the acceleration coefficient; g is the gravity; k is the vertically
downward unit vector; K is the permeability of the porous medium; ns is
the number density of oxytactic cells; pe is the excess pressure (above hydro-
static); t is the time; U is the fluid filtration velocity whose components are
(u, v,w); x, y, and z are theCartesian coordinates (z is the vertically downward
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coordinate);�ρ is the density difference, ρcell − ρ; µ is the dynamic viscosity,
assumed to be approximately the same as that of water; θ is the average
volume of the bacterium; and ρ is the density of water.

The continuity equation is

∂u
∂x
+ ∂v
∂y
+ ∂w
∂z
= 0 (16.96)

The equation expressing the conservation of cells is

∂ns

∂t
= −∇ · (nsU + nsbWcĤ(C)∇C −Dn∇ns

)
(16.97)

whereDn is the cell diffusivity (the diffusion termmodels the random aspects
of cell swimming). The equation expressing the conservation of oxygen is

∂C
∂t
= −∇ · (CU −DC∇C

)− γ̃ns

�C
(16.98)

whereDC is the oxygen diffusivity, the term−γ̃ns describes the consumption
of oxygen by the bacteria, and �C equals C0 − Cmin.

Similar to Eqs. (16.5) and (16.5a), Eqs. (16.97) and (16.98) are the simplified
forms of the following more general equations:

ϕ
∂ns

∂t
= −∇ · (nsU + ns(bWc)eff Ĥ(C)∇C −Dn,eff∇ns

)
(16.97a)

ϕ
∂C
∂t
= −∇ · (CU −DC,eff∇C

)− γ̃effns

�C
(16.98a)

Equations (16.97a) and (16.98a) take into account that in the porous medium,
the concentrations of cells and oxygen are advected/convected with the
intrinsic velocity since the cells and oxygen cannot pass through the solid
phase. Utilizing assumptions similar to those made for the transformation of
Eq. (16.5a) toEq. (16.5), Eqs. (16.97a) and (16.98a) canbe reduced toEqs. (16.97)
and (16.98), respectively.

Governing equations (16.95) to (16.98) must be solved subject to the
following boundary conditions:

At z = 0: C = 1, nsbWc
∂C
∂z
−Dn

∂ns

∂z
= 0, w = 0 (16.99)

where the second equation in (16.99) means no cell flux through the free
surface.

At z = H:
∂C
∂z
= 0, nsbWc

∂C
∂z
−Dn

∂ns

∂z
= 0, w = 0 (16.100)
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Initially, the fluid is assumed to be well-stirred and motionless:

At t = 0: C = 1, ns = n0, u = v = w = 0 (16.101)

Dimensionless variables are introduced as follows:

n = ns/n0, [x, y, z] = [x, y, z]/H, t =
(
Dn

H2

)
t

[u, v,w] =
(

H
Dn

)
[u, v,w], pe =

(
H2

µDn

)
pe (16.102)

Dimensionless constants are defined as

δ = DC/Dn, Pe = bWc/Dn, β = (γ̃n0H2)/(DC�C)

Da = K/H2, Sc = µ/(caρDn), Ra = �ρθn0g
µDn

H3
(16.103)

where Ra is the Rayleigh number and Sc is the Schmidt number. Ra char-
acterizes the ratio of the rate of oxygen consumption to the rate of oxygen
diffusion, it can be regarded as a depth parameter [26]. Pe can be regarded as
a ratio of characteristic velocity due to oxytactic swimming to characteristic
velocity due to random, diffusive swimming.

In Cartesian coordinates the dimensionless governing equations can be
presented as:

Da
Sc
∂u

∂t
= −Da

∂pe
∂x
− u (16.104)

Da
Sc
∂v

∂t
= −Da

∂pe
∂y
− v (16.105)

Da
Sc
∂w

∂t
= −Da

∂pe
∂z
− w+ RaDan (16.106)

∂u
∂x
+ ∂v
∂y
+ ∂w
∂z
= 0 (16.107)

∂n

∂t
+
(
u+ Pe

∂C
∂x

)
∂n
∂x
+
(
v+ Pe

∂C
∂y

)
∂n
∂y
+
(
w+ Pe

∂C
∂z

)
∂n
∂z

+Pe n

(
∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2

)
= ∂2n

∂x2 +
∂2n

∂y2 +
∂2n

∂z2
(16.108)

∂C

∂t
+ u

∂C
∂x
+ v

∂C
∂y
+ w

∂C
∂z
= δ

(
∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2

)
− βδ n (16.109)
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Dimensionless boundary and initial conditions are:

At z = 0: C = 1, Pe n
∂C
∂z
− ∂n
∂z
= 0, w = 0 (16.110a–c)

At z = 1:
∂C
∂z
= 0, Pe n

∂C
∂z
− ∂n
∂z
= 0, w = 0 (16.111a–c)

At t = 0: C = 1, n = 1, u = v = w = 0 (16.112a–c)

In the basic state thefluid ismotionless and the cell andoxygen concentrations
change in the z-direction only. Dimensionless equations for the basic state are:

dCb

dz
dnb

dz
+ nb

d2Cb

dz2
= 1

Pe
d2nb

dz2
(16.113)

d2Cb

dz2
− β nb = 0 (16.114)

where subscript b denotes the steady-state solution for the basic state.
Equations (16.113) and (16.114) must be solved subject to boundary condi-

tions (16.110a,b) and (16.111a,b). In addition, the following integral constraint
must be satisfied:

∫ 1

0
nb dz = 1 (16.115)

Solution of this problem is found in Hillesdon et al. [25] as:

Cb(z) = 1− 2
Pe

ln
(

cos{A1(1− z)/2}
cos{A1/2}

)
(16.116)

nb(z) =
A2

1
2Peβ

sec2
(
A1

2
(1− z)

)
(16.117)

where constant A1 is found as:

tan(A1/2) = Pe β/A1 (16.118)

The solution for the basic state given byEqs. (16.116) to (16.118) is valid as long
as the oxygen concentration is positive throughout the layer. InHillesdon and
Pedley [26], it is shown that this condition holds as long as

Pe β ≤ 2φ tan−1 φ (16.119)

where φ2 = exp(Pe)− 1.
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Perturbations to the basic state are introduced as follows:

u(t, x, y, z) = εu′(t, x, y, z) (16.120)

n(t, x, y, z) = nb(z)+ εn′(t, x, y, z) (16.121)

C(t, x, y, z) = Cb(z)+ εC ′(t, x, y, z) (16.122)

pe(t, x, y, z) = pe,b(z)+ εp′e(t, x, y, z) (16.123)

where primes denote the perturbation quantities; the components of u and
u′ are (u, v,w) and (u′, v′,w′), respectively; ε is a small perturbation amp-
litude; Cb(z) and nb(z) are the steady-state solutions in the basic state
which are given by Eqs. (16.116) and (16.117); and dpe,b/dz = Ranb(z) from
Eq. (16.106).

Upon substituting Eqs. (16.120)–(16.123) into dimensionless governing
equations (16.104)–(16.109), the following equations for perturbation quant-
ities are obtained:

Da
Sc
∂u′

∂t
= −Da

∂p′e
∂x
− u′ (16.124)

Da
Sc
∂v′

∂t
= −Da

∂p′e
∂y
− v′ (16.125)

Da
Sc
∂w′

∂t
= −Da

∂p′e
∂z
− w′ + RaDan′ (16.126)

∂u′

∂x
+ ∂v

′

∂y
+ ∂w

′

∂z
= 0 (16.127)

∂n′

∂t
+ w′dnb(z)

dz
+ Pe n′d

2Cb(z)

dz2
+ Pe

dnb(z)
dz

∂C
′

∂z
+ Pe

dCb(z)
dz

∂n′

∂z

+ Pe nb(z)

(
∂2C
′

∂x2 +
∂2C
′

∂y2 +
∂2C
′

∂z2

)
= ∂2n′

∂x2 +
∂2n′

∂y2 +
∂2n′

∂z2
(16.128)

∂C
′

∂t
+ w′dCb(z)

dz
= δ

(
∂2C
′

∂x2 +
∂2C
′

∂y2 +
∂2C
′

∂z2

)
− βδ n′ (16.129)

From Eqs. (16.124)–(16.127) it follows that

−
(
∂2p′e
∂x2 +

∂2p′e
∂y2 +

∂2p′e
∂z2

)
+ Ra

∂n′

∂z
= 0 (16.130)
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Thus u′ and v′ are eliminated, and Eqs. (16.126) and (16.128)–(16.130) contain
p′e, w

′, n′, and C
′
only. From Eq. (16.126) the following is obtained:

Da
Sc

∂

∂t

(
∂2w′

∂x2 +
∂2w′

∂y2 +
∂2w′

∂z2

)

= −Da
∂

∂z

(
∂2p′e
∂x2 +

∂2p′e
∂y2 +

∂2p′e
∂z2

)
−
(
∂2w′

∂x2 +
∂2w′

∂y2 +
∂2w′

∂z2

)

+ RaDa

(
∂2n′

∂x2 +
∂2n′

∂y2 +
∂2n′

∂z2

)
(16.131)

Substituting ∇2p′e from Eq. (16.130) into Eq. (16.131), the following is
obtained:

Da
Sc

∂

∂t

(
∂2w′

∂x2 +
∂2w′

∂y2 +
∂2w′

∂z2

)
= RaDa

(
∂2n′

∂x2 +
∂2n′

∂y2

)

−
(
∂2w′

∂x2 +
∂2w′

∂y2 +
∂2w′

∂z2

)
(16.132)

Thus p′e is also eliminated, Eqs. (16.128), (16.129), and (16.132) are expressed in
terms of w′, n′, and C

′
only. Decomposing w′, n′, and C

′
into normal modes as

[
w′,n′,C′

]
= [W(z),N(z),�(z)] f (x, y) exp(σ t) (16.133)

where W(z), N(z), and �(z) are the amplitudes of perturbed values and f is
the horizontal planform function, which satisfies the following equation:

∂2f

∂x2 +
∂2f

∂y2 = −k
2
f (16.134)

In Eq. (16.134), k is a constant dimensionlesswavenumberwhich is defined as

k = kH (16.135)

and which corresponds to the dimensionless wavelength λ = 2π/k.
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Substituting Eqs. (16.133) into Eqs. (16.128), (16.129), and (16.132) results in
the following equations for the amplitudes W(z), N(z), and �(z):

Pe
dCb(z)

dz
dN(z)

dz
+ dnb(z)

dz

{
W(z)+ Pe

d�(z)
dz

}
+N(z)

(
k
2 + σ + Pe

d2Cb(z)

dz2

)

− d2N(z)

dz2
+ Pe nb(z)

{
−k2�(z)+ d2�(z)

dz2

}
= 0 (16.136)

βδN(z)+ (k2δ + σ )�(z)+W(z)
dCb(z)

dz
− δd

2�(z)

dz2
= 0 (16.137)

Da k
2
Ra ScN(z)− (Sc+Da σ)

{
k
2
W(z)− d2W(z)

dz2

}
= 0 (16.138)

where steady-state solutions for the basic state, Cb(z) and nb(z), are given by
Eqs. (16.116) and (16.117), respectively.

Equations (16.136) to (16.138) represent a sixth-order system of ordinary
differential equations that must be solved subject to the following boundary
conditions:

At z = 0: � = 0, Pe

(
nb|z=0

d�
dz
+ dCb

dz

∣∣∣∣∣
z=0

N

)
− dN

dz
= 0, W = 0

(16.139)

At z = 1:
d�
dz
= 0,

dN
dz
= 0, W = 0 (16.140)

For an oscillatory instability to occur, there must be two competing phys-
ical mechanisms at work, one destabilizing and one stabilizing. According to
Hillesdon and Pedley [26], double-diffusive convection itself cannot provide
the second (stabilizing) mechanism in this case because one of the diffusing
species (oxygen) does not contribute to buoyancy. Hillesdon and Pedley [26]
have shown that in the case of a deep layer there are indeed two mechanisms,
thedestabilizingmechanismobviously comes from theunstable density strat-
ification in the upper region while the stabilizing mechanism comes from the
stable density stratification in the lower region (the region where the oxygen
concentration is so low that the bacteria become inactive). For the case of a
shallow layer there is no lower region because the oxygen concentration is
larger than the minimum concentration throughout the layer; therefore, only
the destabilizing mechanism is present. For this reason, it is logical to assume
that the principle of exchange of stabilities [23] applies to this problem, the
instability is stationary, and σ can be set to zero for the onset of instability.

Solution of Eqs. (16.136) to (16.138) (once σ is set to zero) depends on four
dimensionless parameters: δ, β, Pe, andDaRa. For the solution of this system,
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a simple Galerkin method is utilized. Suitable trial functions (satisfying the
boundary conditions [16.139] and [16.140]) are

W = z− z2, � = z− 1
2z

2, N = 1+ υ(z− 1
2z

2) (16.141)

where

υ = A1(A1 − β sinA1)

β(1+ cosA1)
(16.142)

Following the standard procedure [24], the following equation for the critical
value of RaDa is obtained [29]:

(RaDa)crit

= min
b

8(10+ b)Pe βδ
{
(I4 + b{2+ (4υ/3)+ (4υ2/15)})(5+ 2b)+ A3

1I3(5+ 2υ)
}

A3
1b(20+ 7υ){15A1I1I3 + 2I2(5+ 2b)(1+ δ)}

(16.143)

where b = k
2
and

I1 =
∫ 1

0
(z− 2)(z− 1)z2 tan

{
1
2A1(1− z)

}
dz

I2 =
∫ 1

0
zF(z)dz, I3 =

∫ 1

0
F(z)dz

(16.144)

F(z) = (z− 1)
(
1− 1

2 (z− 2)zυ
)
sec2

{
1
2A1(z− 1)

}
tan

(
1
2A1(z− 1)

)
(16.145)

I4 =
∫ 1

0

(
1− 1

2 (z− 2)zυ
) [

2υ + A2
1{2− (z− 2)zυ} sec2

{
1
2A1(z− 1)

}
+ 2A1(z− 1)υ tan

(
1
2A1(1− z)

)]
dz (16.146)

One of the objectives of this chapter is to investigate whether bioconvec-
tion of oxytactic bacteria can develop in porous media at all. From the linear
stability analysis presented above, it follows that there is a critical value of
permeability; if permeability is larger than critical, bioconvection develops,
if it is smaller than critical, the basic state remains stable. In the analysis that
follows the critical permeability is calculated as a function of the depth of
the layer.

According to Hillesdon and Pedley [26] who investigated bioconvection of
oxytactic bacteria Bacillus subtilis, dimensionless parameters relevant to this
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FIGURE 16.4
The effect of the layerdepth,H (m), on the critical permeability,Kcrit(m)2. (Taken fromKuznetsov
and Avramenko, Int. Comm. Heat Mass Transfer 30: 593–602, 2003. With permission.)

problem can be estimated as follows:

δ = 16, β = 7 × 106 H2, Pe = 1.5× 104 H, Ra = 1012 H3 (16.147)

where H is measured in meters.
Figure 16.4 displays the effect of the depth of the layer on the critical per-

meability value, which is computed as Kcrit = DacritH2 = (RaDa)critH2/Ra,
where (RaDa)crit is computed according to Eq. (16.143). Figure 16.4 shows
that the critical permeability decreases from 7.4×10−7 to 1.3×10−8 m2 as the
depth of the layer increases from 0.5 × 10−3 to 3 × 10−3 m. This means that
in a deeper layer bioconvection can develop at smaller permeability of the
porous medium than in a layer of smaller depth. Nield et al. [30] reported
that some porous aluminum forms exhibit permeability up to 8 × 10−6 m2,
which is much larger than the critical permeability displayed in Figure 16.4.

16.3.2 Self-Similarity Solution for a Falling Plume in Bioconvection of
Oxytactic Bacteria in a Deep Fluid Saturated Porous Layer

Hillesdon et al. [25] and Kessler et al. [31] describe experiments that show
the formation of falling plumes in a deep chamber (7 to 8 mm in depth) that
contains a suspension of oxytactic bacteria B. subtilis. These bacteria consume
oxygen and swim up the oxygen gradient as they require a certain minimum
concentration of oxygen to be active. Since the diffusivity of oxygen in water
is very small, sufficient amounts of oxygen can penetrate by diffusion only
in the upper portion of the fluid layer. In the lower part of the chamber, the
bacteria consume all the oxygen keeping the oxygen concentration very low;
therefore, the bacteria in this region become inactive. The chamber is thus
divided into two regions, the upper cell-rich boundary layer, which contains
actively swimming cells, and the lower region of the chamber, where the
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concentration of oxygen is smaller than the minimum concentration and the
cells are therefore inactive. Since the bacteria are heavier thanwater, the upper
cell-rich boundary layer becomes unstable, which results in the formation of
falling plumes that carry cells and oxygen into the lower part of the chamber.
The plumes provide for an additional convective transport mechanism into
the depth of the chamber which is more efficient than the diffusion transport
mechanism. The oxygen transported by falling plumes resuscitates some of
the inactive cells in the lower part of the chamber.

Once bioconvection instability has developed, the falling plumeswill even-
tually deplete the upper boundary layer of oxygen andbacteria. However, the
timescale for the development of bioconvection plumes is much smaller than
that for thedepletionof theupperboundary layer. Therefore, theplumecanbe
assumed to be quasi-steady and concentrations of oxygen and bacteria at the
free surface can be assumed to be constant. Utilizing these assumptions, Met-
calfe andPedley [28] obtained a similarity solution for a fallingplume in a sus-
pension of oxytactic bacteria in a clear (of solid material) fluid. In Kuznetsov
et al. [32,33], a similarity solution for a falling plume in a suspension of oxy-
tactic bacteria in a fluid saturated porous medium is obtained. Becker et al.
[34] obtained a numerical solution for a falling plume in a porous layer.

A schematic diagram of the problem is displayed in Figure 16.5, which
showsa fallingbioconvectionplumeemerging fromtheupperboundary layer
that is rich in cells and oxygen. The dimensionless oxygen concentration, C, is
again definedbyEq. (16.94) and the bacterial swimmingvelocity,V, is defined
by Eq. (16.93).

As in Metcalfe and Pedley [28], Kuznetsov et al. [32,33] investigated a
steady-state (more precisely, a quasi-steady) axisymmetric falling plume.

Free surface

0 r

Cell-rich upper boundary layer

Outer region

Falling
plume

v (r, z)

z

FIGURE 16.5
Schematic diagram of falling bioconvection plume in a fluid saturated porous medium. (Taken
from Kuznetsov et al., Int. J. Eng. Sci. 42: 557–569, 2004. With permission.)
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Governing equations for this problem can be presented as follows. The
steady-state conservation of cells equation can be presented as:

div(J) = 0 (16.148)

where J is the volume-average cell flux given by the following equation [5]:

J = nsU + ϕnsV − ϕDn∇ns (16.149)

where ns is the concentration of cells (ns is understood as a volume-average
property), U is the filtration velocity vector, Dn = Dn0H(C) is the cell dif-
fusivity in the fluid, and Dn0 is a constant. The first term on the right-hand
side of Eq. (16.149) corresponds to cell flux due to advection by the bulk fluid
filtration flow, the second term corresponds to cell flux due to cells swimming
up the oxygen gradient, and the third term corresponds to cell flux by dif-
fusion. It is assumed that random aspects of cell motion such as cell-to-cell
interactions, Brownianmotion, and distribution of swimming velocity can be
modeled through a diffusion process.

Substituting Eq. (16.149) into Eq. (16.148), the following equation of
conservation of cells is obtained:

∇ ·
(
nsU + ns(bWc)effĤ(C)∇C

)
= ∇(Dn,eff∇ns) (16.150)

Note that extra factors ϕ have been incorporated into (bWc)eff and Dn,eff . For
simplicity, the subscript eff is dropped in further analysis. The plume in the
upper part of the chamber, where the oxygen concentration is larger than
Cmin and all bacteria are actively swimming, is considered. In this part of the
chamberC > 0; therefore, the step function,H(C), is identically equal to unity
and Eq. (16.150) can be recast as:

(
v+ bWc

∂C
∂z

)
∂ns

∂z
+
(
u+ bWc

∂C
∂r

)
∂ns

∂r
+ bWcns

(
∂2C
∂z2
+ ∂

2C
∂r2
+ 1

r
∂C
∂r

)

= Dn

(
∂2ns

∂z2
+ ∂

2ns

∂r2
+ 1

r
∂ns

∂r

)
(16.151)

where r is the radial coordinate, z is the vertically downward coordinate, u is
the radial velocity component, and v is the vertical velocity component.

Oxygen flux is due either to advection by the bulk flow or diffusion of
oxygen in water. Also, bacteria consume oxygen to remain active; therefore,
the equation of conservation of oxygen must include a term describing a sink
of oxygen due to bacterial consumption. This results in the following form of
oxygen conservation equation:

∇ · (CU) = DC,eff∇2C − γeffns (16.152)
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where DC,eff is the effective oxygen diffusivity in the porous medium and
the term −γeffns describes the consumption of oxygen by the bacteria. To
account for the reduction of cell activity in the lower part of the chamber,
where cell concentration is smaller than in the upper layer, it is assumed that
γeff = γ0(ns/nfs)H(C), where nfs is the concentration of bacteria at the free
surface (assumed to be constant) and γ0 is a constant characterizing the rate
of oxygen consumption by the bacteria. Again the subscript eff is dropped in
further analysis.

For axisymmetric plume, Eq. (16.152) can be recast as:

v
∂C
∂z
+ u

∂C
∂r
= DC

(
∂2C
∂z2
+ ∂

2C
∂r2
+ 1

r
∂C
∂r

)
− γns

�C
(16.153)

where �C = C0 − Cmin.
The suspension is assumed to be dilute and Darcy’s law is assumed to be

valid. Utilizing the Boussinesq approximation, the z-momentum equation
can be presented as:

∂p
∂z
+ µ

K
v− nsθ�ρg = 0 (16.154)

where p is the pressure; K is the permeability of the porous medium; θ is
the average volume of the bacterium; �ρ is the density difference, ρcell − ρ0;
µ is the dynamic viscosity, assumed to be approximately the same as that of
water; and ρ0 is the density of water. The last term on the left-hand side of
Eq. (16.154) is the buoyancy term that represents the increase of density in the
control volume as more bacteria enter the control volume (because bacteria
are heavier than water).

Utilizing Darcy’s law, the r-momentum equation can be presented as:

∂p
∂r
+ µ

K
u = 0 (16.155)

The suspension is assumed to be incompressible; therefore, the continuity
equation is simply ∇ ·U = 0, or

1
r
∂(ru)
∂r
+ ∂(v)

∂z
= 0 (16.156)

Eliminating the pressure from Eqs. (16.154) and (16.155) results in:

µ

K

(
∂v
∂r
− ∂u
∂z

)
− ∂ns

∂r
θ�ρg = 0 (16.157)

Equations (16.151), (16.153), (16.156), and (16.157) must be solved subject to
the following boundary conditions. Utilizing symmetry of the plume about
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r = 0, the following boundary conditions are imposed at r = 0:

∂ns

∂r
= 0,

∂C
∂r
= 0, u = 0,

∂v
∂r
= 0 (16.158)

At r→∞ the following boundary conditions are imposed:

ns→ 0,
∂C
∂r
→ 0, v→ 0 (16.159)

The following self-similar transformation is utilized. The similarity variable
η is defined as:

η = r
z

(16.160)

and the new dimensionless functions N(η), G(η), and F(η) are defined as:

ns = K1/2

θ
z−1N(η), C = G(η), ψ = µ

ρ
zF(η)

u = µ

ρ
z−1

[
F′(η)− F(η)

η

]
, v = µ

ρ

z−1

η
F′(η) (16.161)

where the streamfunction is defined as ∂ψ/∂r = vr and ∂ψ/∂z = −ur.
The continuity equation (16.156) is automatically satisfied. Substituting

Eqs. (16.160) and (16.161) into Eqs. (16.151), (16.153), and (16.157), the fol-
lowing equations for the dimensionless functions N(η), G(η), and F(η) are
obtained:

(1+ η2)N ′′ +
[
4η + 1

η
(1+ Sc F)− PeG′(1+ η2)

]
N ′

+
[
2+ Sc F′

η
− Pe

1
η
G′ − PeG′′(1+ η2)− 3ηPeG′

]
N = 0 (16.162)

(1+ η2)G′′ +
(

1
η
+ Sc
η

Dn

DC
F + 2η

)
G′ − βN2 = 0 (16.163)

(1+ η2)F′′ − F′

η
− ArηN ′ = 0 (16.164)

where prime denotes the derivative with respect to η and

Pe = Wcb
Dn

, Sc = µ

ρDn
, Ar = gK3/2ρ�ρ

µ2 , β = Kγ0
DCnfs�Cθ2

(16.165)
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In Eqs. (16.165), Pe is the Péclet number, Sc is the Schmidt number, Ar is the
Archimedes number, and β is the dimensionless parameter that represents
the strength of oxygen consumption relative to its diffusion.

Equations (16.162) to (16.164)mustbe solvedsubject to the followingbound-
ary conditions that are obtained by transforming the boundary conditions
given by Eqs. (16.158) and (16.159)

At η = 0: N ′ = 0, G′ = 0, F′ − F
η
= 0,

F′′

η
− F′

η2
= 0 (16.166)

As η→∞: N = 0, G′ = 0,
F′

η
= 0 (16.167)

An additional condition that the solution must obey can be obtained from
Eq. (16.151). Integrating this equation with respect to r from zero to infinity
and rearranging, the following is obtained:

∫ ∞
0

∂

∂r

[
run+ rbWcn

∂C
∂r
− rDn

∂n
∂r

]
dr

+
∫ ∞
0

∂

∂z

[
rvn+ rbWcn

∂C
∂z
− rDn

∂n
∂z

]
dr = 0 (16.168)

The first integral identically equals zero due to boundary conditions (16.166)
and (16.167).

FromEq. (16.168) it follows that the integral given below is a constant (takes
on the same value at any cross-section independent of z):

Q = 2π
∫ ∞
0

[
rvn+ rbWcn

∂C
∂z
− rDn

∂n
∂z

]
dr = constant (16.169)

This integral characterizes the flux of the cells in the plume in the z-direction
due to advection by the bulk flow (the first term in this integral), due to the
cells swimming up the oxygen gradient (the second term), and due to cell
diffusion (the third term). Thus, Eq. (16.169) means that the total flux of the
cells in the z-directiondue to these three factors is the same inanycross-section
of the plume for any value of z.

Equation (16.169) can be recast in the dimensionless form as

Q = Qθρ
2πµK1/2 =

∫ ∞
0
[NF′ − Pe Sc−1η2NG′ + Sc−1η(N +N ′η)]dη = constant

(16.170)

where Q is the dimensionless flux of cells in the z-direction.
Equations (16.162) to (16.164) as well as boundary conditions (16.166) are

singular at η = 0. To initiate the numerical solution a series solution must
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be obtained for small η. The following series expansions are assumed for
functions N(η), G′(η), and F(η):

N(η) =
6∑

i=0

niηi, G′(η) =
6∑

i=0

giηi, F(η) =
6∑

i=0

fiηi (16.171)

Boundary conditions at η = 0 given by Eqs. (16.166) yield the following
relations:

n1 = g0 = f0 = f1 = f3 = 0 (16.172)

It is assumed that n0 �= 0 and f2 �= 0 to provide for nonzero concentration
of bacteria and nonzero axial fluid velocity in the center of the plume. The
solution is obtained in terms of n0 and f2 as:

N(η) = n0 + 1
4
n0(−2− 2f2Sc+ n2

0Peβ)η
2

+ 1
64DC

(2DCn0(12+ Sc(Ar n0 + f2(18+ 4f2Sc+ Ar n0Sc)))

− n3
0Pe(2Dnf2Sc+DC(18+ 12f2Sc+ Ar n0Sc))β + 4DCn5

0Pe
2β2)η4

+ 1
2304D2

C

(−2D2
Cn0(360+ Sc(24f32Sc

2 + Ar n0[66+ Ar n0Sc]

+ 2f22Sc(126+ 11Ar n0Sc)+ f2[660+ Ar n0Sc(90+ Ar n0Sc)]))
+ n3

0Pe{8D2
nf

2
2Sc

2 + 2DCDnSc[2Ar n0 + f2(62+ 26f2Sc+ 3Ar n0Sc)]
+D2

C(660+ Sc(176f22Sc+ Ar n0[94+ Ar n0Sc] + f2[760+ 52Ar n0Sc]))}β
−DCn5

0Pe
2{2Dn(15f2 + Ar n0)Sc+DC(254+ 148f2Sc+ 15Ar n0Sc)}β2

+ 36D2
Cn

7
0Pe

3β3)η6

(16.173)

G′(η) = 1
2
n2
0βη +

n2
0β

8DC
[−Dnf2Sc+DC(−5− 2f2Sc+ n2

0Peβ)]η3

+ 1
192D2

C

[n2
0β(4D

2
nf

2
2Sc

2 +DCDnSc(2Ar n0 + 2f2(22+ 4f2Sc+ Ar n0Sc)

− n2
0(6f2 + Ar n0)Peβ +D2

C(132+ 2Sc(Ar n0 + f2(46+ 8f2Sc+ Ar n0Sc))

− n2
0Pe(46+ 20f2Sc+ Ar n0Sc)β + 6n4

0Pe
2β2))]η5

(16.174)
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F(η) = f2η2 + 1
16
[−2f2(2+ Ar n0Sc)+ Ar n0(−2+ n2

0Peβ)]η4

+ 1
384DC

[2DC{24(f2 + Ar n0)+ Ar n0(30f2 + Ar n0)Sc

+ Ar f2n0(4f2 + Ar n0)Sc2} − Ar n3
0Pe{2Dnf2Sc

+DC(30+ 12f2Sc+ Ar n0Sc)}β + 4ArDCn5
0Pe

2β2]η6 (16.175)

For computational results displayed in Figures 16.6 to 16.8, the following
parameter values are utilized: Ar = 1, Dn/DC = 1, Pe = 10, Sc = 20, and
β = 106. Since Eqs. (16.162)–(16.164) and boundary conditions (16.166) are
singular at η = 0, to initiate numerical solution a series solution given by
Eqs. (16.173)–(16.175) is used. The utilization of this series solution requires
an assumption concerning the values of n0 and f2 that are present as paramet-
ers in this series solution. Values of n0 and f2 are initially guessed and then
their values are iteratively improvedby the ShootingMethoduntil the bound-
ary conditions at η→∞ and the integral condition given by Eq. (16.170) are
satisfied. Utilizing this series solution, computations are performed up to
η = 0.01. At η = 0.01, values of N(η), N ′(η), G′(η), F(η), and F′(η) are evalu-
ated utilizing the series solution. These values are used as the initial condition
for the numerical solution. For η > 0.01, Eqs. (16.162)–(16.164) are solved
numerically utilizing RKF45 ordinary differential equation solver.

Figure 16.6 displays the dimensionless cell concentration, N(η), for differ-
ent values of the dimensionless cell flux in z-direction, Q. The increase of Q
corresponds to larger concentration of cells, as expected. The width of the
plume slightly decreases with the increase of Q.

�

N
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10
3

10–1 100 101
0

1

2

Q = 1 × 10–4

Q = 2 × 10–4

Q = 3 × 10–4

Q = 4 × 10–4

FIGURE 16.6
Similarity solution: dimensionless cell concentration, N(η). (Taken from Kuznetsov et al., Int. J.
Eng. Sci. 42: 557–569, 2004. With permission.)
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FIGURE 16.7
Similarity solution: (a) dimensionless rate of change of oxygen concentration, G′(η); (b) dimen-
sionless oxygen concentration,G(η), computed assuming thatG(∞) = 1. (Taken fromKuznetsov
et al., Int. J. Eng. Sci. 42: 557–569, 2004. With permission.)

Figure 16.7(a) displays the dimensionless rate of change of oxygen con-
centration, G′(η), and Figure 16.7(b) displays the dimensionless oxygen
concentration, G(η), which is computed by integrating G′(η) assuming
that G(∞) = 1. The oxygen concentration decreases toward the center of
the plume. This happens because the center of the plume has the largest
concentration of cells (cf. Figure 16.6) that consume oxygen. This result is in
agreement with the clear fluid results obtained in Metcalfe and Pedley [28].
The increase of Q increases the number of the cells in the plume which
increases the rate of oxygen consumption; therefore, the increase ofQ leads to
a smaller oxygen concentration in the center of the plume. It should be noted
that the proposed model is valid only as long asC > 0 (orC > Cmin), which is
true only in the upper part of the plume, where oxygen concentration around
the plume is relatively high. In the lower part of the chamber, the oxygen
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concentration in the bulk of the fluid is smaller than Cmin, and the plume
will provide the convective mechanism for the oxygen and cell transport
into the lower part of the chamber. However, the solution obtained in this
chapter is valid only as long as C > Cmin, and this explains why the oxygen
concentration in the center of the plume is a little smaller than at its edges.

Figure 16.8(a) displays the dimensionless streamfunction, F(η), while
Figure 16.8(b) displays the dimensionless downward fluid filtration velocity,
F′(η)/η. The downward fluid velocity increases as Q increases, as expected;
the axial velocity takes its maximum value in the center of the plume and
decreases to zero at the edge of the plume.
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FIGURE 16.8
Similarity solution: (a) dimensionless streamfunction, F(η); (b) dimensionless downward fluid
filtration velocity, F′(η)/η. (Taken from Kuznetsov et al., Int. J. Eng. Sci. 42: 557–569, 2004. With
permission.)
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Further experimental research is needed to verify theoretical models
reported in this chapter. Magnetic Resonance Imaging (MRI) [35,36] is one
of the promising techniques for this type of investigation.
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Nomenclature

Roman Letters

a semi-major axis of the spheroidal cell, m
A1 parameter defined by Eq. (16.118)
b semi-minor axis of the spheroidal cell, m
B gyrotactic orientation parameter, α⊥µ/(2hρ0g), sec
ca acceleration coefficient
C oxygen concentration, molecules/m3

Cmin minimum oxygen concentration that oxytactic bacteria require
to be active, molecules/m3

C dimensionless oxygen concentration, (C − Cmin)/(C0 − Cmin)

Cb dimensionless steady-state oxygen concentration for the basic
state

d average diameter of a particle or a fiber that compose the porous
matrix, m

DC diffusivity of oxygen, m2/sec
Dn diffusivity of microorganisms, m2/sec
Da Darcy number for bioconvection caused by oxytactic microor-

ganisms, K/H2

D̂a1/γ (κ ,m) Darcy number based on γ−1 as a length-scale for bioconvection
caused by gyrotactic microorganisms, K̂(κ ,m)γ 2

(Da1/γ )crit critical Darcy number based on γ−1 as a length-scale for
bioconvection caused by gyrotactic microorganisms, Kcritγ

2

g gravitational acceleration, m/sec2

G gyrotaxis number defined by Eq. (16.85)
h displacement of the center of mass of the microorganism from

its center of buoyancy, m
H depth of a horizontal layer, m
Ĥ Heaviside step function
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î unit vector in the x-direction
ĵ unit vector in the y-direction
k wavenumber in the x-direction, m−1

kdep rate of cell deposition, sec−1

kdecl rate of cell resuspension (declogging), sec−1

k̂ unit vector in the vertically upward z-direction
K permeability of the porous medium, m2

Kb permeability in the basic state for the case when the porous matrix
can absorb microorganisms, defined by Eq. (16.66), m2

K̂ permeability value forwhich the real part of the dispersion parameter
σ equals zero, m2

Kcrit critical permeability, m2

l wavenumber in the y-direction, m−1

m wavenumber in the z-direction, m−1

m dimensionless wavenumber in the z-direction, mDn/Wc
nb number density of suspended microorganisms in the basic state,

cells/m3

n0 initial uniform number density of oxytactic bacteria, cells/m3

nc number density of captured microorganisms, cells/m3

ns number density of suspended motile microorganisms, cells/m3

n̂s average number density of suspended microorganisms in a layer of
final depth, given by Eq. (16.71), cells/m3

n dimensionless number density of suspended oxytactic
microorganisms

p excess pressure (above hydrostatic), Pa
pb(z) unperturbed excess pressure in the basic state, Pa
pe dimensionless excess pressure, H2pe/(µDn)

p̂ unit vector indicating the swimming direction of microorganisms
Pe Péclet number for bioconvection caused by oxytacticmicroorganisms,

Wcb/Dn
Q Péclet number for bioconvection caused by gyrotactic

microorganisms, WcH/Dn
r radial coordinate, m
R Rayleigh number for bioconvection caused by gyrotactic

microorganisms, defined by Eq. (16.85)
Rcrit critical Rayleigh number for bioconvection caused by gyrotactic

microorganisms
Ra net rate of cell deposition per unit volume, m−3/sec−1

Ra Rayleigh number for bioconvection caused by oxytactic
microorganisms, defined by Eq. (16.103)

Sc Schmidt number, µ/(caρDn)

t time, sec
t dimensionless time, Dnt/H2

u x-velocity component, m/sec
u dimensionless x-velocity component, Hu/Dn
v y-velocity component, m/sec
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v dimensionless y-velocity component, Hv/Dn
v velocity vector, (u, v,w), m/sec
v′ vector composed of perturbations of the corresponding velocity

components, (u′, v′,w′), m/sec
V average swimming velocity of an oxytactic bacterium, defined by

Eq. (16.93)
w z-velocity components, m/sec
w dimensionless z-velocity component, Hw/Dn
Wcp̂ vector of average swimming velocity of a gyrotactic microorganism

relative to the fluid, m/sec
x Cartesian coordinate, m
x dimensionless coordinate, x/H
y Cartesian coordinate, m
y dimensionless coordinate, y/H
z Cartesian (vertically upward) coordinate, m
z dimensionless upward coordinate, z/H

Greek Letters

α0 measure of the cell eccentricity, (a2 − b2)/(a2 + b2)
α⊥ dimensionless constant relating viscous torque to the relative angular

velocity of the cell
β dimensionless parameter defined by Eq. (16.103), (γ̃n0H2)/(DC�C)
γ parameter definedbyEq. (16.45) (inverse to characteristic length-scale),

m−1

γ̃ parameter characterizing the rate of oxygen consumption by
microorganisms, molecules/(cell sec)

δ dimensionless parameter defined by Eq. (16.103), DC/Dn
�ρ density difference, ρcell − ρ0, kg/m3

ε small perturbation amplitude
η similarity variable defined by Eq. (16.160), r/z
η̃ parameter defined by Eq. (16.19), sec−1

θ average volume of the microorganism, m3

κ combination of wavenumbers, (k2 + l2 +m2)1/2, m−1

κ dimensionless form of parameter κ , κDn/Wc
µ dynamic viscosity of suspension (assumed to be approximately the

same as that of water), kg/(m sec)
ν integration constant defined by Eq. (16.70), m−3

ξ̃ parameter defined by Eq. (16.20), sec−1

ρcell density of microorganisms, kg/m3

ρ0 density of water, kg/m3

σ dispersion parameter characterizing the growth rate of perturbations,
sec−1

υ dimensionless parameter defined by Eq. (16.142)
ϕ porosity
ϕ0 initial porosity (when there are no deposited cells)
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Summary

This chapter is concerned with the inverse problem of the identification of
the hydraulic properties of porous materials in the context of petroleum,
civil, and mining engineering. The applicability of the novel technique of
genetic algorithms (GAs), which attempt to imitate the principles of biolo-
gical evolution in the construction of optimization strategies and have led to

© 2005 by Taylor & Francis Group, LLC



Parameter Identification using Genetic Algorithms 689

the development of a powerful and efficient optimization tool, is studied for
such purposes.

First, we model a one-dimensional hydraulic pump–flow permeability test
and formulate an inversion technique in order to retrieve homogeneous or
spacewise dependent material property coefficients, with the extension in
the homogeneous situation to the case of layered materials. The direct prob-
lem is solved using the finite-difference method (FDM) while the recovery
of the material parameters is achieved through a GA approach. Both exact
and simulated noisy data are incorporated at optimally selected instants in
time through the test, the data measurements used being consistent with
a sensitivity analysis of each problem. Second, both steady-state and tran-
sient experiments are modeled for the case of anisotropic materials. The
direct solution procedures are based on the boundary element method for
the steady-state situation while the FDM is chosen for the transient case.
Surface measurements, by means of simulated ports along the sealed bound-
aries of the materials, serve as information to the GA-based optimization
procedure, hence enabling a modified least-squares functional to minimize
the difference between the observed and the numerically predicted bound-
ary pressure and/or average hydraulic flux measurements under current
hydraulic conductivity tensor and specific storage estimates. Composite
anisotropic materials, that is, with the incorporation of faults, are also studied.

Parameter identifiability in inverse problems is numerically investigated
and the results are found to provide an accurate means of recovering the
required material properties. A comparison on the performance of the inver-
sion highlights the advantages that a GA-based optimization approach offers
in comparison to a traditional gradient-based optimization procedure.

17.1 Introduction

One of the basic tasks of engineering and science is the extraction of inform-
ation from data. In this respect, parameter estimation is a discipline that
provides tools for the efficient use of data in the estimation of physical prop-
erties that appear in mathematical models, and for assisting in obtaining
a better model of the phenomena under investigation.

Parameter estimation can be regarded as a study of inverse problems. In
general, in the solution of a partial differential equation we seek a solution
in a domain knowing both the boundary and initial conditions as well as
any of the constants or parameters involved. In the inverse problem, not
all of these parameters are known. Instead, discrete measurements of the
dependent variable(s), or its (their) derivatives, must be used to estimate the
values of such unknown parameters.

In experiments we can often measure the states (independent variables)
directly, but not the parameters (dependent variables). Approximate values,
or estimates, of the parameters are inferred from state measurements.
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This chapter deals with the identification of the hydraulic properties of
porous materials in the context of petroleum, civil, and mining engineering.
Two main categories of models have been used in the field of petroleum
engineering, namely analog models and physical models. The most com-
mon analog models are the electrical models; see [1] for a comprehensive
description of such models. Physical models can be classified into two cat-
egories, namely, scaled models and elemental models. In a scaled laboratory
model, the reservoir dimensions and the fluid and rock properties are scaled
so that the ratio of the various forces in the reservoir and in the model are the
same. Such a model would provide results that can be directly applied to the
field. However, full-scale models are difficult, sometimes impossible, to con-
struct [2]. In an elemental model, the experiments are conducted with actual
(or simulated) rocks and fluids. While the results of such a model cannot be
applied directly to the field, they can provide some important information
about the reservoir mechanics. Numerical reservoir models can also be veri-
fied, or even improved, by using the results of the physical models, and then
used to predict the field performance.

The optimal design of experiments to obtain the “best” parameter estimates
is a problem that is closely related to the notion of sensitivity coefficients. Such
sensitivity coefficients are important because they indicate the magnitude of
the change of the dependent variable due to perturbations in the values of
the parameters, therefore providing indicators of how well an experiment is
designed. In general, sensitivity coefficients are desired to be uncorrelated.

Although traditional, gradient-based, optimization procedures can be
applied, in this chapter we focus on the use of the GA to design experiments
and develop estimation methodologies for the determination of the hydraulic
properties. The suitability of the GA approach in the optimization and design
of experiments for parameter estimation in the related context of heat transfer
has been confirmed; see, for example, [3–5].

The attempt to imitate the principles of biological evolution in the construc-
tion of optimization strategies has led to the development of the powerful and
efficient process of GAs, also known as evolution strategies. GAs have been
successfully applied to nonlinear optimization problems in many dimen-
sions, where more traditional methods are often found to fail. Moreover,
deterministic, gradient-based optimization methods do not search the entire
parameter space and can tend to converge toward local extrema of the func-
tion to be optimized (or fitness function), which is clearly unsatisfactory
for problems where the fitness varies nonmonotonically with the paramet-
ers. On the other hand, GAs are able to depart from local optima due
to the variability of the parameters within the “gene pool” and the ele-
ment of randomness inherent within the methods. Furthermore, GAs do
not require knowledge of the gradient of the fitness functions, which makes
them particularly suited to optimization problems for which an analytical
expression for the fitness function is not known. A complete descrip-
tion of the GA technique has been provided by several authors; see, for
example, [6,7].
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A GA performs a multidirectional search. It starts with a randomly
initialized population of candidate solutions and implements a probabil-
istic, parallel search in the solution space using domain-independent “genetic
operators” to form a new population of candidate solutions. The population
undergoes a simulated evolution process. At each generation the relatively
“good” solutions reproduce, while the relatively “bad” solutions die. To
distinguish between different solutions we use an objective (evaluation) func-
tion that plays the role of an environment. There are unary transformations
(mutation type) which create new individuals by small changes in single
individuals, and higher-order transformations (crossover type) which create
new individuals by combining parts from several (two or more) individuals.
Crossover and mutation produce new areas of the solution space to explore.

The central theme of research on GAs has been related to its robustness, the
balance between efficiency and efficacy necessary for survival in many dif-
ferent environments. GAs are a class of general purpose search methods that
strike a remarkable balance between exploration and exploitation of the search
space. They have been successfully applied to many optimization problems,
such as wire routing, scheduling, adaptive control, game playing, cognit-
ive modeling, transportation problems, traveling salesman problems, and
optimal control problems; see, for example, [6] and the references therein.

The inverse problem of recovering the hydraulic properties of materials,
for example, the spatially dependent hydraulic conductivity of an isotropic
rock, has been considered by several researchers; see also [8,9] in the related
field of heat transfer. In the study [10], the authors have been concerned with
the simultaneous estimation of the linearly varying thermal conductivity and
heat capacity, which are the analog heat paradigms for hydraulic conductiv-
ity and specific storage. However, these studies used multiple internal spatial
and temporal measurements made during the transient process, whereas the
main approach here is to use as little information as possible at the bound-
aries, thus reducing the damage to the samples to be tested which can cause
associated changes in the hydraulic properties. The restriction of using bound-
ary measurements solely was first taken into account in [11] during a study
of “slightly” heterogeneous materials with linear and exponential spatially
varying properties.

The problem of accurately quantifying the flow properties of faults is
central to groundwater simulations and the modeling of hydrocarbon reser-
voirs [12]. An individual fault is a break or planar surface in a rock across
which there is observable displacement, that is, the cohesion of the material
is lost, and they may be seen in any rock exposure. There exists a large range
of heterogeneities that are created by both the stratigraphic and fault archi-
tectures, and thus local flow conduits, baffles, or barriers can be formed; see,
for example, [13]. Depending on the stress history, temperature, stratigraphy,
etc., some fault surfaces contain relatively coarse rock fragments that can act
as a conduit for migrating oil or gas, whereas the surface of other faults are
smeared with impermeable clays or crushed grains that can act as a fault
seal. Single large-scale faults observed from seismic surveys are in reality
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(a) (b)

(c) (d)

FIGURE 17.1
Outcrop-scale images of complex regions of faulting from (a) the Moab fault zone, Utah, USA,
and (b) the ninety-fathom fault, Whitley Bay, UK, which provide analogs for reservoir-scale
flow simulations. (c) Flow pathways across, and (d) a planar slice through, a three-dimensional
stochastically generated fault zone.

composed of many millions of smaller faults, samples of which can be found
within cores through fault zones. The accurate modeling of these “damage
zones” is a topic currently being studied by many research groups and oil
companies. Figure 17.1 shows some natural examples of the complexity that
is encountered when studying fault zone architectures and their fluid flow
properties, together with some recent examples of geometric and flow mod-
els for such systems [14–16]. The limitations of upscaling detailed geological
information has often led to such systems being modeled as a single fault
with an applied “multiplier,” from which the fluxes are calculated as a func-
tion of the transmissibility between pairs of grid blocks [17]. The inclusion
of multiphase fault rock properties is now being recognized to be crucial in
providing more accurate models for production forecasting. The production
of hydrocarbons from a reservoir is modeled through saturation-dependent
relative permeability and capillary pressure (the pressure needed for oil to
enter a rock) functions, which have a major influence on the predictions of
phase-specific cross-fault flow [18]. The success of the future predictions of
the fluid flow behavior will depend upon the ability to upscale from local
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observations, as well as being able to interpret detailed rock properties and
behavior from large-scale flow measurements.

After providing an introduction to the basic fluid flow equations for single-
phase and multiphase flow, with reference to models in petroleum reservoir
simulation, in Section 17.2 and the class of nonclassical optimization proced-
ures known as GAs in Section 17.3, we consider some models of hydraulic
pump–flow tests for determining the permeabilities of rock samples.
Section 17.4 provides a finite-difference model of a one-dimensional hydraulic
pump–flow test, as developed by Clennell [19] for the permeability estimation
of tight (low permeability) rocks. The inverse analysis that is performed makes
use of the GA approach for various spatial dependencies of the hydraulic
properties of the sample. Section 17.5 extends this finite-difference forward
model and GA-based inverse model to deal with the case of faulted rocks
or geological discontinuities due to the sedimentary layering. The situation
where the location of the discontinuity is unknown, but where the hydraulic
conductivity is known, has been investigated in [20]. The case of unknown
piecewise homogeneous hydraulic conductivity, but with a known discon-
tinuity location, has been briefly investigated numerically in [21]. A thorough
comparison with experimental results is undertaken, highlighting the flaws in
the model, and thus the direction of improvements in the experimental design.

Section 17.6 introduces the same problem of the identification of the
hydraulic parameters, but for the case of anisotropic materials where the
hydraulic conductivity is represented by a symmetric tensor. A classical
boundary integral equation method, see, for example, [22,23], is used in order
to solve the direct well-posed problem. Since all the numerical approxima-
tions take place only at the boundaries, the dimensionality of the problem is
reduced by one and a smaller system of equations is obtained in comparison
with those achieved through finite-difference and finite element methods.
Section 17.7 extends this formulation to deal with composite and anisotropic
materials. The mathematical model developed is for the case of two such
anisotropic materials that are butted together and the hydraulic experiment
is performed over the whole of the linked material. Methods of identifying
the components of the hydraulic conductivity tensors and the fault position(s)
are devised by employing the GA technique.

In Section 17.8 the relevance of the GA technique is discussed by means of
a comparison with a more traditional, gradient-based technique. The results
are compared with the ones presented in [24,25] and a further investigation
into the comparative performance of the approaches is undertaken for one of
the problems investigated in Section 17.7.

17.2 Fluid Flow Equations

17.2.1 Multiphase Fluid Systems in Porous Media

Sand, sandstone, soil, fissured rocks, ceramic, foam rubber, industrial filters,
wicks, bread, and lungs are examples of porous materials encountered in
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practice. Common to all of them is the presence of both a persistent solid
matrix and a persistent void space. The latter is occupied by one or more fluid
phases. A phase is defined as a portion of space, whether connected or non-
interconnected, that is separated from other such portions by a well-defined
surface, referred to as an interface, or interphase boundary. A phase is charac-
terized by the fact that its behavior at all points within it can be described by
the same set of state variables. There can be only a single gaseous phase in the
void space, as all gaseous phases are completely miscible and do not maintain
a distinct interface between each other. However, we may have a number of
liquid phases, each occupying a well-defined portion of the void space. We
often regard certain liquids as immiscible, even when certain components con-
tained in them do cross interphase boundaries in small quantities and thus
diffuse in both phases, as long as a distinct sharp interface is maintained.

The concept of a continuum is a great convenience because it permits a
description of the physical behavior of the fluid by the use of differential
expressions. However, this concept cannot be extended to immiscible fluids
that are separated by interfaces across which pressure discontinuities exist.
In this case it is necessary to consider each individual phase as a separate
continuum.

When two or more fluids exist within the pore space, they are separated by
boundaries, called interfaces, across which discontinuities in density and pres-
sure exist. The existence of the interfaces is characteristic of what are called
immiscible fluids. In the case of miscible fluids there is no distinct boundary,
at least on the microscopic scale, for example, in a groundwater aquifer into
which salt water has intruded. Then, on a macroscopic scale it is possible to
find distinct regions of salt and fresh water, but on a microscopic scale there
is no interface.

The concept of different “phases” implies that interfaces exist. An interface
is made possible by the existence of forces called “interfacial forces” that act
only at boundaries between separate phases and these forces act tangentially
to the boundaries between the different phases. When these boundaries are
curved, the tangential interfacial forces produce pressure discontinuities at
the interfaces. Each phase may consist of a number of chemical constituents,
but they are assumed to be homogeneous within themselves and to constitute
physical continua to which the mathematical methods of fluid mechanics can
be applied.

17.2.2 Single-Phase Flow

Consider the three-dimensional flow of a fluid of density ρ (single-phase and
single component) in a porous medium. The law of mass conservation can be
written as

−∇ · (ρu) = ∂

∂t
(ρφ)+ q̃ (17.1)
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where u is the fluid velocity vector, φ is the porosity, and mass accumulates
due to a sink of strength q̃. In addition, we require a linear momentum
conservation equation that relates the fluid flow rate and the pressure gradient
in each phase. This could be Darcy’s law discovered in 1856, see, for example,
[26], which has the following differential form:

u = −K
µ

(
∇p− ρ g

gc

)
(17.2)

whereK is the absolute permeability tensor of the porous medium that must
be determined experimentally, µ is the fluid viscosity, g is the gravitational
acceleration vector, gc is a conversion constant, and the z-axis is oriented in
the vertically downward direction. In some practical problems it is possible
(or sometimes necessary) to assume that K is a diagonal tensor given by

K =

Kx 0 0

0 Ky 0
0 0 Kz


 (17.3)

If Kx = Ky = Kz then the medium is called isotropic, otherwise it is ortho-
tropic. If off-diagonal terms exist then K is anisotropic.

Based upon measuring z vertically downward, we can write

ρ
g

gc
= ρ g

gc
∇z = γ∇z (17.4)

and with the above definition of γ = ρg/gc we can rewrite Darcy’s law as
follows:

u = −K
µ
(∇p− γ∇z) (17.5)

Finally, Eq. (17.5) can be substituted into Eq. (17.1) to obtain

∇ ·
[
ρK

µ
(∇p− γ∇z)

]
= ∂

∂t
(ρφ)+ q̃ (17.6)

17.2.3 Multiphase Flow

The mass conservation equations can be generalized, if we consider several
phases, as follows:

−∇ · ṁl = ∂ml

∂t
+ q̃l (17.7)
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where ml is the mass of the phase l in a unit volume of the medium, ṁl is the
mass flux of the phase l, and ∇ · ṁl is the rate of mass efflux per unit volume.

There are two important mathematical models that are frequently used in
a petroleum reservoir simulation, namely, multiphase or single-phase flow
when more than two hydrocarbon components are considered, and mul-
tiphase flow when the hydrocarbon system can be approximated by two
components, a nonvolatile component (black oil) and a volatile one (gas) that
is soluble in the oil phase. The latter model is called the β-model or black-oil
model [27].

In the β-model it is assumed that there are at most three distinct phases,
namely oil, water, and gas. Usually water is the wetting phase, oil has an
intermediate wettability, and gas is the nonwetting phase, where water and
oil are assumed to be immiscible and they do not exchange mass or change
phase. Gas is assumed to be soluble in oil but usually not in water. If we
assume that the solubility of gas is zero at stock tank (or standard) conditions
(STC) then reservoir oil may be considered to be a solution of two compon-
ents, namely stock tank oil and gas at standard conditions. Furthermore,
we can consider the fluids to be at a constant temperature and in thermo-
dynamic equilibrium throughout the reservoir. Under these conditions, the
pressure–volume–temperature behavior of the system can be expressed by
the formation of the volume factors as follows:

Bo =
[Vo + Vdg]RC

[Vo]STC
= fo(po) (17.8)

Bw = [Vw]RC

[Vw]STC
= fw(pw) (17.9)

Bg = [Vg]RC

[Vg]STC
= fg(pg) (17.10)

where the subscripts o, w, and g refer to the oil, water, and gas phases, respect-
ively, RC to the reservoir conditions, STC to the stock tank (or standard)
conditions, and dg to the dissolved gas.

For fluids that can be approximated by the isothermal β-model, formation
volume factors and viscosities are functions of the pressure only and should
be determined at the reservoir temperature. It should be noted that Bg is
related to the gas compressibility (as expressed by the perfect gas law). The
mass transfer between the oil and gas phases is described by the solution gas
to oil ratio, namely

Rs =
[
Vdg

Vo

]
STC

(17.11)

which gives the amount of gas dissolved in the oil as a function of the oil-phase
pressure. The densities of the three phases at reservoir conditions are related
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to those at the STC as follows:

ρo =
ρo,STC + Rsρg,STC

Bo
(17.12)

ρw = ρw,STC

Bw
(17.13)

ρg =
ρg,STC

Bg
(17.14)

The density of the oil phase may also be expressed in the following form:

ρo = ρo + ρdg, ρo =
ρo,STC

Bo
, ρdg =

Rs

Bo
ρg,STC (17.15)

where ρo and ρdg are the densities of the two oil components.
Before considering multiphase flow we must introduce the concept of satur-

ation. The saturation Sl of the phase l is the part of the pore volume occupied
by phase l, and clearly we have

∑
l Sl = 1. The equation of mass conservation

can be written by considering Eq. (17.7) for each phase and, in particular, for
the oil component we have

ṁo = ρouo (17.16)

mo = ρoφSo (17.17)

Substituting Eqs. (17.16) and (17.17) into Eq. (17.7) and dividing both sides of
the resulting equation by ρo,STC, we obtain

−∇ ·
[

1
Bo
uo

]
= ∂

∂t

[
1
Bo
φSo

]
+ qo (17.18)

where qo = q̃o/ρo,STC. The mass conservation equation for water is obtained
in a similar way, while that for the gas component is more complicated since
it exists in both the gas phase and in solution in the oil phase.

Darcy’s law may be extended to describe simultaneously the fluid flow of
more than one fluid phase as follows, see, for example, [26]:

ul = −KKrl

µl

(
∇pl + ρl ggc

)
(17.19)

whereKrl is the relative permeability tensor of phase l and K is the permeab-
ility of a single phase based upon an isotropic situation. Darcy’s law may be
substituted into the mass conservation equation for each phase to obtain the
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fluid flow equations as follows:

∇ · [ko(∇po − γo∇z)] = ∂

∂t

[
φSo

Bo

]
+ qo (17.20)

∇ · [kw(∇pw − γw∇z)] = ∂

∂t

[
φSw

Bw

]
+ qw (17.21)

∇ · [Rsko(∇po − γo∇z)+ kg(∇pg − γg∇z)] = ∂

∂t

[
φ

(
Rs

Bo
So + Sg

Bg

)]
+ Rsqo + qfg

(17.22)

where the transmissibility tensors kl with l ∈ {o, w, g} are defined by

kl = Krl

µlBl
K (17.23)

and the subscript fg denotes free gas. While the conservation equation is
sufficient to describe single-phase flow, the only dependent variable being p,
this is not the case for multiphase flow and Eqs. (17.20) to (17.22) contain
six dependent variables. To complete the description of multiphase flow we
need three additional conditions that relate capillary pressures, Pc, and the
saturations in the following form:

So + Sw + Sg = 1 (17.24)

Pc,ow = po − pw = fow(Sw,Sg) (17.25)

Pc,og = pg − po = fog(Sw,Sg) (17.26)

where the relationships between the capillary pressures and the saturations
are usually given empirically. In a first approximation, capillary pressure
can be considered to be a function of the reservoir rock only. Capillarity
depends on the saturation of the wetting fluid and the direction of saturation
change, called a drainage or imbibition curve [27]. Leverett and Lewis [28]
first investigated the functions defined in Eqs. (17.25) and (17.26) and found
some justification for the following assumptions:

Pc,ow = fow(Sw), Pc,og = fog(Sg) (17.27)

which are still generally used.
The mathematical model for the fluid flow is not complete without the

necessary boundary and initial conditions. The reservoir being simulated
interacts with its surroundings through the conditions specified at the bound-
aries. It is essential that the boundary conditions be formulated and approx-
imated so that the desired interaction of the reservoir with its surroundings
takes place.
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Usually, the initial condition of a reservoir, first treated in the literature
in [29], is the state of static equilibrium at which the velocities of all phases
are zero.

17.3 Introduction to Genetic Algorithms

17.3.1 What are Genetic Algorithms?

There is a large class of interesting and challenging problems for which no
reasonably fast algorithms have been developed and many of these prob-
lems are optimization problems that arise frequently in practical applications.
For some difficult optimization problems we can use probabilistic algorithms
which, although they do not guarantee the optimum value, rely on randomly
choosing sufficiently many “witnesses,” and then the probability of the error
may be made as small as we wish to specify.

There are many important practical optimization problems for which high
quality algorithms have become available, for example, simulated annealing
for wire routing or the traveling salesman problem; see [30] for more details.
Moreover, many other large-scale combinatorial optimization problems can
be solved approximately by using Monte Carlo techniques. In general, any
problem to be solved can be perceived as a search through a space of potential
solutions. Since we seek “the best” solution for the problem, we can view
this search as an optimization process. For small search spaces the classical
optimization methods usually suffice, whereas for larger spaces such methods
frequently fail. In the latter case special artificial intelligence techniques can
be employed.

Genetic algorithms use a vocabulary borrowed from natural genetics. We
may talk about individuals in a population and often refer to these individuals as
strings of chromosomes. This might be a little misleading since each cell of every
organism of a given species carries a certain number of chromosomes. How-
ever, we consider only one-chromosome individuals, which are composed
of genes arranged in linear succession, each gene controlling the inheritance
of one or more characteristics, for example, the color of hair. Any character-
istic of an individual can manifest itself differently; the states in which the
gene can occur are called alleles (feature values). Each genotype represents a
potential solution to a problem and a particular chromosome is interpreted
externally by an encoding. An evolution process run on a population of chro-
mosomes corresponds to a search through a space of potential solutions to
the corresponding optimization problem.

A GA performs a multidirectional search. Given a population of candid-
ate solutions, it implements a probabilistic, parallel search in the solution
space using domain-independent “genetic operators” that simulate evolu-
tion processes. At each generation the relatively “good” solutions reproduce,
while the relatively “bad” solutions die. A predefined objective (evaluation)
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function allows the “fitness” of potential solutions to be determined, and this
function plays the role of an environment. The individuals undergo a pro-
cess of selection in which the chromosomes of the fittest individuals of every
generation are most likely to survive and produce children for the next genera-
tion. Genetic information is exchanged by the process of recombination to form
children and some random mutations occur, thereby producing new areas of
the solution space to explore.

In summary, a GA must have the following components:

1. A genetic representation for potential solutions to the problem.
2. A method for creating an initial population of potential solutions.
3. An evaluation function that plays the role of the environment, rating

solutions in terms of their “fitness.”
4. Genetic operators that alter the composition of subsequent “genera-

tions” of a population of individuals.
5. Values for various parameters that the GA uses, for instance, the

population size and the probabilities of applying genetic operators.

Genetic algorithms have been developed by John Holland, his colleagues,
and his students at the University of Michigan since 1962. Since then sev-
eral authors have investigated their applications in many fields of research
such as biology [31,32], computer science [33], engineering and opera-
tions research [34,35], hybrid techniques [36], image processing and pattern
recognition [37], physical sciences [38], social sciences [39], but also in the
development of the GA technique, for example, the work of [6,40], and
further ideas in [7,41–44]. GAs have been applied with much success to
many optimization problems such as wire routing, scheduling, adaptive
control, game playing, cognitive modeling, transportation problems, trav-
eling salesman problems [6], optimal control problems, and database query
optimization.

17.3.2 Advantages of Using Genetic Algorithms

Genetic algorithms are perhaps the most widely known type of evolution-
ary algorithms in the field of evolutionary computation, which also includes
evolution strategies and evolutionary programming [45]. By imitating genetic
and selection mechanisms of nature, GAs are easily programmed and are
neither bound to assumptions regarding continuity nor limited by required
prerequisites, citing [6], “GAs are blind.”

A search in the space of potential solutions requires balancing two object-
ives, namely, exploitation of the best solutions and exploration of the search
space. This is referred to as the robustness of the search technique. The method
of hillclimbing is an example of a strategy that exploits the best solution for
possible improvement; on the other hand, it neglects exploration of the search
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space. Hillclimbing methods provide local optimum values only, depending
crucially on the selection of the starting point, and no information on the
relative error of the solution found. Random search, which chooses the new
point at random from the search space if the new point provides a better
value than the current one, is a typical example of a strategy that explores the
search space ignoring its promising regions. The simulated annealing technique,
see, for example, [46], inspired from the formation of crystals in solids dur-
ing cooling, eliminates most of the disadvantages of hillclimbing methods.
In this approach solutions no longer depend on the starting point and are,
usually, close to the optimum point. The Monte Carlo method [47], provides
approximate solutions to a variety of mathematical problems by performing
statistical sampling experiments on a computer, and is applicable to problems
with absolutely no probabilistic content. Among all numerical methods that
rely on n-point evaluations in m dimensions, the Monte Carlo technique has
an absolute error of estimate that decreases as n−1/2 whereas, in the absence
of an exploitable structure, all others have errors that decrease as n−1/m at
best. This property gives the Monte Carlo method a considerable advantage
in computational efficiency as m, the size of the problem, increases.

The use of GAs over conventional optimization methods actually finds
its justification for problems where the search space is large, multimodal
and noisy, and fraught with discontinuities. The ergodicity of the evolution
operators makes GAs potentially effective at performing global searches (in
probability). GAs have been successfully applied to multidimensional nonlin-
ear optimization problems in many dimensions, where traditional methods
frequently fail. Moreover, deterministic, gradient-based optimization tech-
niques tend to converge toward local extrema of the objective function, which
is clearly unsatisfactory for problems where the objective function varies
nonmonotonously with the parameters. While it is likely to be more expens-
ive in computing time, the GA approach undertakes a more complete search
of the parameter space.

In summary, GAs are different from other optimization and search proced-
ures in the following ways:

1. GAs work with a coding of the parameter set and not the parameters
themselves.

2. They search through a population of points and not a single point.
3. They use information based only upon an objective function rather

than its derivatives or other auxiliary knowledge.
4. They use probabilistic transition rules, not deterministic rules, to

guide their search.

However, the use of probability does not suggest that the method is some
simple random search. GAs use randomized operators as a tool to guide
a search toward promising regions of the solution space. These differences
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contribute to the robustness of a GA and its resulting advantage over other
more commonly used techniques.

17.3.3 Components of a Genetic Algorithm

The mechanics of a basic GA are surprisingly simple, involving nothing
more complex than copying fixed-length binary strings and swapping par-
tial strings. An explanation of why this simple process works is given in
Section 17.3.4.

In a simple GA, the process of evaluation assigns each candidate (poten-
tial) solution in a population an associated fitness value which measures the
candidate’s survivability. A GA does its search through an iterative process
in which this population evolves at each generation according to the three
operations of selection, crossover, and mutation. Given an initial popula-
tion, usually randomly assigned, selection probabilistically chooses better
candidates for a new generation, while crossover and mutation manipulate
candidate solutions to generate new individuals for the selection procedure
to process again.

17.3.3.1 Binary encoding of individuals

Suppose we wish to maximize a function of k variables, f (x1, . . . , xk) : Rk → R.
Further, suppose that each variable xi can take values from a domain Di =
[ai, bi] ⊆ R, for i = 1, . . . , k. A precision of di decimal places for the ith para-
meter can be specified by employing an ni digit binary representation, where
ni is the least positive integer such that (bi − ai)10di � 2ni − 1.

Now, each chromosome, as a potential solution, is represented by a binary
string of length n =∑k

i=1 ni. The first n1 bits define a gene that maps into a
value from the range [a1, b1], the next group of n2 bits map into a value from
the range [a2, b2], and so on until the last group of nk bits that map into a value
from the range [ak , bk].

17.3.3.2 Selection operators

Selection is a process in which individual strings are copied according to
their objective function values or fitness. The higher the fitness, the more
likely an individual is to be selected. The process of selection or sampling
must be considered at two separate stages of the GA procedure, namely, the
selection of parents of the next generation from the individuals of the previous
population and the selection of the individuals of the next generation from
the parents and children derived from the previous population.

Selection processes are, of course, an artificial version of natural selection,
a Darwinian survival of the fittest among strings. There are several selection
methods available, but probably the simplest one is the roulette wheel selec-
tion in which a biased roulette wheel is defined such that each current string
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in the population has a slot sized in proportion to its fitness. The selection
procedure is based upon spinning the roulette wheel and selecting a single
chromosome. Thus, the individuals with the highest fitness have a better
chance of being selected relative to the less-fit individuals and also fitter indi-
viduals may be selected more than once, which is in accordance with the
Schema theorem (see Section 17.3.4). However, due to its large stochastic
errors, the roulette wheel selection does not guarantee that high-fitness can-
didate solutions propagate to the next generation. To overcome this, several
researchers have investigated a number of alternative selection schemes. The
first recognized work is due to De Jong [48] who, in his doctoral dissertation,
considered several variations of the simple selection procedure. One such
approach, named the elitist model, preserves the best chromosome out of the
old population and transfers it directly into the new population. Other meth-
ods were proposed by Brindle [42] in his doctoral thesis, namely deterministic
sampling, remainder stochastic samplingwithout replacement, tournament selection,
and remainder stochastic sampling with replacement. Baker [44] presented an
improved version of selection called stochastic universal sampling. The method
uses a single wheel spin of the roulette wheel with exactlyNpop equally spaced
markers as opposed to Npop repetitions of the random positioning of a single
marker.

Other methods to sample a population are based on introducing artificial
weights. The chromosomes are selected proportionally to their rank rather
than actual function evaluation values. These methods are based on the belief
that premature convergence is caused by the presence of high-fitness super
individuals that have a large number of offspring and prevent other individuals
from contributing any offspring. In a few generations a super individual can
eliminate desirable chromosome material and cause rapid convergence to
some (possibly) local optimum.

The k-tournament selection method utilizes the idea of ranking. This method
(in a single iteration) randomly selects some number k of individuals from
the population and, from this pool of individuals, one member is selected as
a parent for the next generation. The selection of one member of the pool of
k individuals begins by ranking them according to their fitness. The highest
ranking individual is then selected with some probability pt, the tournament
probability. If this individual is not selected then the second-ranking individual
is selected with the probability pt(1 − pt). This process is repeated until we
have a successful selection or until we have reached the end of the pool, in
which case the lowest ranking individual is selected, and this occurs with
probability (1 − pt)

k−1. It is clear that large values of k increase the selection
process. A typical value for many applications is k = 2, where the parameter
k is called the tournament size.

17.3.3.3 Crossover operators

Crossover is the mating process that allows information exchange during the
creation of Nchild children from the population of Npop parents. The most
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simple crossover operator is one-point crossover. One of the parameters of
a genetic system is the probability that a chromosome will undergo crossover,
pc. For each pair of coupled chromosomes selected for crossover we mate
them by choosing a random crossing point and exchanging bits beyond this
location, thereby producing a pair of offspring.

If the crossover probability pc is close to unity, then highly fit individuals
mate more and are discarded faster than selection can produce improvements.
On the other hand, if the crossover rate is close to zero, then the search might
stagnate for lack of exploration. Usually pc lies between 0.5 and 1.

The extension to N-point crossover is achieved by cutting the parents in the
specified number of places, with locations chosen at random, and creating
offspring by splicing. Various kinds of improved crossover techniques are
available, for example, segmented crossover and shuffle crossover [49,50]. A fur-
ther generalization of multipoint crossover is uniform crossover [51], which,
for each position, randomly chooses between the bits from each parent with
a certain probability. This kind of crossover can combine features regard-
less of their relative location and for some problems this ability prevents the
destruction of the “building blocks,” see Section 17.3.4.

17.3.3.4 Mutation operators

The mutation operator is performed on a bit-by-bit basis, that is, changes
in one or several bits of the chromosome. Another parameter of the genetic
system is the probability of mutating an individual bit, pm. Every bit has an
equal chance to undergo mutation, that is, change from 0 to 1, or vice versa.

17.3.3.5 Further genetic algorithm techniques

Genetic algorithm theory provides some explanation as to why, for a given
problem formulation, we may obtain the convergence to some desired optimal
point. Unfortunately, practical applications do not always follow the theory.
Under certain conditions, GAs fail to determine the optimal solution due to
premature convergence to some local optimum, which is a common problem
in many other optimization algorithms. If convergence occurs too rapidly,
then the valuable information developed in part of the population is often
lost. There are several strategies to prevent premature convergence, includ-
ing a mating strategy called incest prevention, the use of uniform crossover,
and the detection of duplicates in the population’s strings. Another direc-
tion in fighting premature convergence is trying to fix the function itself by
introducing a scaling mechanism [6].

It is also important to specify a termination condition to be used in the
algorithm. The simplest one would check the current generation number and
end the search if the total number of generations exceeds a prescribed con-
stant. In many versions of evolution programs, not all individuals need to
be reevaluated when passing from one generation to another without alter-
ation. If the number of function evaluations that are necessary is monitored,
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then the algorithm search can be terminated when the chance for significant
improvements is small. Other categories of termination conditions use the
characteristics of the search for making termination decisions [6].

17.3.4 A Theoretical Basis for the Genetic Algorithm Approach

Section 17.3.3 portrayed an accurate, but somewhat crude, picture of GAs
and their mechanisms and power. The theoretical foundations of GAs rely
on a binary string representation of solutions and on the notion of schemata,
templates allowing exploration of similarities among chromosomes.

A schema is built by introducing the “wildcard” symbol (∗) in the binary
alphabet of genes. A schema represents all strings (a hyperplane or a subset
of the search space) which match it on all positions other than “∗”. The order
of a schema S, denoted by o(S), is defined as the number of fixed positions
within the chromosome, that is, those specified as 0 and 1, and this notion
defines the speciality of a certain schema. The defining length of a schema S,
denoted by δ(S), is the distance between the first and the last fixed positions
in the template and it defines the compactness of information contained in
a schema. These two notions are useful in calculating survival probabilities of
a certain schema under the operations of mutation and crossover, respectively.

Let us assume that, at a given time step t, there are ξ representatives of a
particular schema S in the population. The growth equation for the number
of this schema can be estimated as follows [7]:

ξ(S, t+ 1) � ξ(S, t)
f (S)

f

[
1− pc

δ(S)
n− 1

− o(S)pm

]
(17.28)

where the three terms in the bracket represent contributions due to repro-
ductive, crossover, and mutation operations, respectively. Thus, schemata
with both above-average performance and a short defining length will be
sampled at exponentially increasing rates. This final growth equation (17.28)
can be interpreted as the Schema theorem.

Schema theorem Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generations of a GA.

An immediate result of this theorem is that GAs explore the search space
by short, low-order schemata which are used subsequently for information
exchange during crossover.
Building block hypothesis A GA seeks near-optimal performance through the
juxtaposition of short, low-order, high-performance schemata, called the building
blocks.

Although some research [52] has been done to prove this hypothesis, for
most nontrivial applications we rely mainly on empirical results. Numerous
GA applications were developed supporting the building block hypothesis
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in many different problems. Nevertheless, this hypothesis suggests that the
problem of coding for a GA is critical for its performance and that such
a coding should satisfy the idea of short building blocks.

17.3.5 Details and Example of the Genetic Algorithm Technique
Employed in this Chapter

When applying a GA approach to an optimization problem, the details of the
optimization procedure strongly depends on the problem under considera-
tion. In the scheme that we use, the population evolves through a sequence
of generations and the details of the scheme are as described below. These
concepts are most easily explained through an illustrative example, for which
we have chosen to maximize the following function of two variables over the
domain D with (x, y) ∈ D = [2, 3] × [−1, 3]:

f (x, y) = (x − 1.5)2 sin(8πx)+ (y + 0.5)(y − 2.5)2 sin(7πy)+ 21.5 (17.29)

This function has multiple peaks (local optimum values) on its domain of
definition and is illustrated in Figure 17.2. The maximum value of the func-
tion over D is 28.3076 and this occurs at the point for which x = 2.8149 and
y = −0.9345.

For our example, we wish to maximize the function (17.29) of two variables.
Let us suppose that a precision of four decimal places is required for each
of the variables x and y. Then, as in Section 17.2.3.1, we must employ nx
digit and ny digit binary representations for x and y, respectively, where nx
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FIGURE 17.2
The function of two variables presented in Eq. (17.29).
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and ny are the least positive integers such that (3 − 2) × 104 � 2nx − 1 and
(3 − (−1)) × 104 � 2ny − 1. Thus, we choose nx = 14 and ny = 16 and each
chromosome is represented by a binary string of length n = 14 + 16, where
the first nx = 14 bits define a gene which maps into a value x from the range
[2, 3] and the next ny = 16 bits map into a value y from the range [−1, 3].

The GA algorithm now proceeds as follows:

1. Initialization of the population
We randomly construct an initial population of Npop chromosomes,
each of which characterizes an estimate to the solution of the prob-
lem through its separate genes, which represent encodings of all the
unknown parameters over some specified ranges.

For our example, we chooseNpop = 50. Each of the 50 chromosomes
consists of 30 bits and to initialize the population we set each of these
50×30 bits randomly as either 0 or 1. An example pair of chromosomes
would be as follows:

C1 = (01100011100101 | 1101000101110101)

C2 = (11110001000011 | 0001011100111001)
(17.30)

where the symbol “|” indicates the division of the chromosome
into its separate genes. As binary numbers, the two genes in C1
equate to 6,373 and 53,621. Therefore, C1 represents the coordin-
ates (2.3890, 2.2728) and its “fitness” value, namely the value of the
function (17.29), is f = 21.1875.

2. Selection of the parents for the next generation
Using k-tournament selection and some value for the probability pt,
we can choose a single parent for the next generation from the old
population of individuals based upon a fitness evaluation function.

For our example, we choose k = 2 and pt = 0.8 and follow the
description in Section 17.3.3.2. Thus, we randomly choose two indi-
viduals from the population and rank them according to their fitness
value. We want to choose one of these two individuals to be a parent
for the next population. The first, higher-fitness individual is chosen
with a probability pt = 0.8 and the second is chosen with a probability
1− pt = 0.2. This process is repeated and the two chosen parents will
be used to produce offspring.

3. Construction of children from a pair of parents
Using two-point crossover with some probability pc of crossover
occurring, we produce two child chromosomes from the given two
parent chromosomes. For every child produced, each bit within the
chromosome is selected for mutation with a probability pm.

For our example, we choose pc = 0.65 and pm = 0.02. Suppose that
we have selected two parents, P1 and P2, and they are the chromo-
somes given in Eq. (17.30). Further, suppose that we have randomly
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chosen to apply two-point crossover (with probability pc), rather than
simply retaining the parent chromosomes. We then randomly choose
two locations (indicated below by the symbol “|”) along the chro-
mosome pair and interchange the bits of the parents between these
locations to produce the chromosomes O1 and O2. Finally, the muta-
tion process takes each of the 30 bits of each child chromosome and
randomly changes it from 0 to 1, or vice versa, with probability pm.
The resulting chromosomes O1 and O2 are now two of the children,
or “offspring,” of the generation. This process can be represented as
follows:

P1 = (011000111 | 00101110100010111 | 0101)

�
P2 = (111100010 | 00011000101110011 | 1001)

Two-point crossover =⇒
O1 = (011000111 | 00011000101110011 | 0101)

O2 = (111100010 | 00101110100010111 | 1001)

Mutation =⇒
O1 = (011000011000110001011100110101)

O2 = (111100010001011101000101111101)

(17.31)

where the two mutated bits are indicated in bold type.
4. Construction of the next generation

By repeating the steps of parent selection, crossover, and mutation
we can generate a pool of offspring of size Nchild. By merging the
parents and offspring we can construct the next generation of Npop
individuals. The ne fittest (elitist model) individuals from the parent
population are first copied into the next generation. The children are
then ranked and the fittest (unique) chromosomes used to complete
the next generation.

For our example, we produce Nchild = 60 children and merge the
parent and child populations, under an elitist model with ne = 2, to
produce the next population of Npop = 50 individuals.

5. Evolution of generations
The steps 2 to 4 are repeated until a specified number of generations
has been performed.

The above procedure was applied to the maximization of the func-
tion (17.29) and 10,000 generations were performed. In a typical
run of this optimization process, the maximum value of the func-
tion (17.29) was predicted to occur at (x, y) = (2.8149,−0.9348), where
f = 28.3074, and clearly these results are in excellent agreement with
the known optimal solution. Figure 17.3 demonstrates how the values
of x, y, and the fitness f each evolve with the generation number,
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FIGURE 17.3
The evolution of (a) the fitness f , see Eq. (17.29), (b) the coordinate x, and (c) the coordinate y, as
a function of the generation number. The value plotted at each generation represents the current
fittest individual and the dotted line indicates the known optimal solution.

where the value plotted at each generation represents the current
fittest individual. Clearly, the required accuracy of solutions can be
viewed in relation to the number of generations prescribed, and such
considerations are important in the design of parameter inversion
routines when the evaluation of the fitness of an individual is com-
putationally expensive. In our example, a fitness of f = 28.3004 has
been achieved after 1,000 generations, and the predicted optimum
solution is x = 2.8146 and y = −0.9321. Such a solution may be con-
sidered to be “sufficiently” accurate according to the problem under
investigation.

In this section a basic introduction to the GA concept has been presented.
Much more could have been reviewed, including numerous different applic-
ations and many different theoretical approaches. However, the intention
here was to show that GAs are on their way to becoming another powerful
approach for solving optimization problems. In the following sections we
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study the applicability of the GA approach to the field of inverse problems,
especially in the determination of the hydraulic properties of porous media.

17.4 Parameter Identification within Rock Samples

17.4.1 Introduction

Transient flow analyses have numerous geophysical and geotechnical applic-
ations and they are necessary for the understanding and development of
laboratory measurement techniques in rock and soil mechanics, particu-
larly in the determination of the permeability of substances. In petroleum
reservoirs and aquifers the flow rate and pressures throughout the sys-
tem are continually changing in response to the withdrawal or injection
of fluids within boreholes, in accordance with known poroelastic phe-
nomenon that couple the stress and displacement fields of the fluids and
rocks [53]. Clearly, the hydraulic properties are transient and can be described
in terms of the propagation of perturbations through a diffusive system.
The topic of well test analysis relies on an understanding of these transi-
ents in order to recover hydraulic properties [54]. Transient methods have
been used to determine the hydraulic conductivity of rocks [55], and their
storage properties [56–59], using boundary measurements alone. By chan-
ging the applied boundary conditions, a variety of other methods have
been proposed for probing the internal structure of the rock sample [60,61].
In this section we investigate the identification of the hydraulic proper-
ties of rocks using boundary measurements in time of the pressure and/or
hydraulic flux in transient hydraulic experiments; see [24,62–64] for more
details.

The fluid flow within petroleum reservoirs is strongly dependent upon both
the heterogeneity and/or the anisotropy of the rock structure. However, any
attempt to accommodate both in an approach that retrieves internal informa-
tion on the physical properties of the rock from boundary measurements alone
is highly complex and, at the moment, very difficult to achieve. Viewed from
the fluid flow, anisotropy and heterogeneity are closely related properties and
can be presented by a single approach if one views the hydraulic conductivity
as a tensor whose principal directions are functions of the space coordin-
ates. Clearly what is required is a detailed knowledge of this tensor and the
question is whether, and how well, information from laboratory small-scale
experiments and numerical calculations from mathematical models can help
to achieve this kind of knowledge. One of the main problems is that exper-
iments, simply by their laboratory-modified constraints, for example, the
sides of the sample being confined within an impermeable material, make
the scaling-up of any of the results obtained very difficult.

It is known that the flow pattern in a rectangular rock sample is significantly
changed if the no-fluid-flow condition is imposed on the side walls of the rock
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sample, according to both the orientation of the sample axis with respect to
the principal directions of the hydraulic conductivity tensor and the ratio
of the principal values of the hydraulic conductivity. Hence, in discussing
any one-dimensional model of the fluid flow in a rock, its limitations in any
scale-up prediction have to be understood. A mathematical model needs to
be initially validated by experiments and it has to be subject to the same
restrictions as the experiments.

In general, laboratory permeability tests are performed using the following
techniques:

1. Constant head testing
A pressure gradient is imposed suddenly across opposite faces of a
saturated rock or soil sample. If there are no compressibility or inertial
effects, then the flow is established in the steady-state condition in
accordance with Darcy’s law, see Al-Dhahir and Tan [65] who plotted
a graph of the outflow rate against the square root of time to show
when a steady-state flow rate had been reached.

2. Transient (pulse decay)
See [55,56,66]; Brace et al. [55] showed that the permeability of a small
and rigid sample can be calculated from the decay constant of the
exponential pressure function. The decay constant is the slope of the
curve of the natural logarithm of the pressure plotted as a function of
time and the permeability is calculated from a formula involving this
constant as well as the system compliance, which is a small number
representing the volume of water required to change the pressure (or
head) by a unit amount, and this quantity can be measured.

3. Constant flow rate (pump–flow)
See [67,68]; this method is fully discussed and taken into considera-
tion in this chapter.

The above-mentioned articles provide analytical solutions assuming that
the specimen is homogeneous; it is the purpose of this section to provide
numerical solutions for heterogeneous rock samples.

In a hydraulic pump–flow test, a cylindrical rock sample is placed in a
sealed pressure cell and the permeability is measured by injecting fluid at a
constant rate into the inflow end of the rock sample using the “syringe infu-
sion pump–flow method” [69,70]. The pressure across the sample builds up to
a steady-state value, which, if the sample is homogeneous, can be used to cal-
culate the effective permeability of the whole sample through the application
of Darcy’s law. After the pressure has reached its steady-state value, or even
before that, the pump may be switched off. The technique has the advant-
age of an easy setup and computer control, a high level of accuracy at low
permeabilities, and, in general, short testing times, that is, a short transient
period before the steady state is reached. In real time the pressure is easy to
measure very accurately using electron transducers. However, if the sample
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is heterogeneous then there is little information that can be deduced about
the permeability structure from the steady-state pressure response. The ini-
tial, transient part of the pressure response that follows the onset of pumping,
and the pressure decay that follows the cessation of pumping, can be used to
obtain information about the permeability and storage properties of the
sample [67].

In the studies [67,71], a constant hydraulic flux at the upstream face of the
sample (rock) is prescribed. However, the constant hydraulic flux boundary
condition is not physically achievable in a real experiment as the upstream
storage of an upstream reservoir, which is maintained in hydraulic contact
with the sample, is never zero. The approach in [67] is strictly valid for the
case when the specific storage of the sample dominates the compressibility
of the system, as in the case of large soil samples, and not for small samples
or rigid rock specimens that are investigated here.

In this section we make use of the experimental setup designed by
Clennell [19], shown schematically in Figure 17.4(a), and the numerical results
of Lesnic et al. [24], who investigated the case of the spatial dependence of
the properties of the material (rock sample) using a constrained optimization
NAG routine. This requires the calculation of the gradient of a least-squares
functional using finite differences and, in addition, it may be dependent
upon the choice of initial guess, so that the search for the global optimum
may become trapped in a local optimum region. In order to overcome such
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FIGURE 17.4
(a) Schematic representation of the pump–flow experiment designed by Clennell [19], and
(b) a typical differential pressure response within the sample during a pump–flow experiment.
This type of experimental setup is used throughout this chapter.

© 2005 by Taylor & Francis Group, LLC



Parameter Identification using Genetic Algorithms 713

restrictions, we use a GA-based optimization procedure which does not
depend on the initial guess and, moreover, does not require any gradient
calculations. A typical pressure response within the sample as a function of
time is shown in Figure 17.4(b), where the pressure buildup, the steady state,
and the decay response can be observed.

17.4.2 Experimental Method

Samples to be tested are first saturated fully in the chosen permeant solution
by immersion in de-aired water under vacuum for several hours. Cylindrical
samples (2.5–5.5 cm in diameter and 2–10 cm in length) are mounted in a close-
fitting polypropylene sleeve and placed in a stainless steel sample holder,
and the experimental setup is similar to that shown later in Figure 17.6. The
confining pressure is set to a constant value of 100 kPa and maintained at this
value by a servo pump. A constant back pressure of 300 kPa is employed in
order to ensure that the sample is fully saturated and this is provided via a
second pressure generator. Flow rates between 1.2×10−7 and 0.3 cm/sec can
be set via a computer control system and this may be changed at any time
during the test. An inflow of fluid mass is applied at an upstream reservoir
that is in hydraulic contact with the rock sample. The pressure drop induced
across the sample by the flow of permeant is measured with an accurate
differential pressure transducer. The flow rate of the pump is chosen so that
the equilibrium pressure lies between 10 and 120 kPa. The readings for the
differential pressure during the test are accurate to within 0.1 kPa.

In general, the temperature affects the pressure readings as water expands
and contracts in the pipes. However, all the experiments are performed for
samples with a permeability that is greater than 10−13 cm2 and under such
circumstances the obtained results are essentially unaffected by temperature
changes.

Using the above description of the equipment and procedures it is pos-
sible to measure permeabilities over a wide range of values, namely 10−16 to
10−8 cm2. The upper limit of this range is set by the syringe volume and the
tendency of the flow to be non-Darcian, that is, at high flow rates the fluid
flow enters the Forchheimer regime and inertial effects become important. In
contrast, the lower limit is imposed by the temperature variation in the labor-
atory, but this can be overcome by performing the experiments in a sealed,
air-conditioned environment.

The time taken to reach equilibrium, that is, when no further increase in the
pressure distribution across the sample is observed, and the timescales of all
the transient phenomena are largely dictated by the elastic compliance of the
system to fluid pressure changes. Short testing times are obtained by minim-
izing this compliance and this can be achieved by the design having short,
rigid lengths of thick-walled stainless steel tubing and a small upstream dead
volume in the sample holder. The upstream compliance is a system constant
and can be measured by replacing the sample with a steel blank and pumping
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permeant into the upstream tubing and dead volume at a constant rate, while
the pressure is monitored. The downstream compliance of the system that we
take into consideration is infinite as the back pressure is buffered at a constant
value with an air line.

While the compliance of the system is quite small, the samples are generally
small in size and have low porosity, so that the measured transient response
and the overall elastic storage of the system are dominated by the upstream
compliance of the apparatus. This means that, while the permeability can be
measured with great accuracy, the exact value of the sample elastic storage
coefficient, and consequently the specific storage of the rock, cannot be meas-
ured accurately. So we assume the value of sample storage� to be small and
known and all the meaningful remaining storage is ascribed to the storage
coefficient�u, termed the compressive storage of the upstream reservoir and
comprising the dead volume including the syringe and tubing at the injection
end of the system; see Figure 17.4(a). However, the pump–flow mathematical
model, which is developed in Section 17.4.3, provides numerical justification
for the fact that the pressure measurements at the upstream face of the sample
are found to be insensitive to values of �, while being sensitive to the value
of �u because of the rate of fluid flow that is supplied at the entrance of the
upstream reservoir [24].

17.4.3 Mathematical Formulation

17.4.3.1 The governing equation

By ignoring the influence of gravity and in the absence of any source terms,
the governing equation (17.6) has the following form:

∇ · (k∇p) = ∂

∂t

[
φ

B

]
(17.32)

after dividing by ρSTC and using the definitions of the formation volume
factor B = [V]RC/[V]STC and the hydraulic conductivity k = (1/µB)K . Since
de-aired water is used in the experiments, a simplified form for the equation
of state for the pore fluid can be assumed, namely

ρ = ρ0 exp(cf(p− p0)) (17.33)

where ρ0 is the fluid density at some reference pressure p0 and cf is the fluid
compressibility. This is considered to be a good description of the isothermal
flow of most fluids of constant and small compressibility. IfB0 is the formation
volume factor at p0 then

ρ

ρ0 =
B0

B
≈ 1+ cf(p− p0) or

1
B
= 1

B0 [1+ cf(p− p0)] (17.34)
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since cf is sufficiently small (around 10−5 to 10−6) for terms of O(c2
f ) to be

neglected. If the rock porosity is assumed to be constant, then Eq. (17.32) may
be recast in the following form:

∇ · (k∇p) = φ cf

B0
∂p
∂t

(17.35)

Here the reference pressure is considered to be the back pressure in the exper-
imental device. Since the observed pressure rise throughout the sample, in
time, is one or two orders of magnitude lower than the back pressure and
cf is a small quantity, Eq. (17.34) indicates that B and B0 can be assumed con-
stant and equal. If we consider the flow to be one-dimensional along a sample
of length L, then Eq. (17.35) may be recast in the form of a one-dimensional
partial differential equation with spacewise dependent coefficients, that is,

∂

∂x

(
k(x)

∂p
∂x

)
= �(x)∂p

∂t
(x, t) for (x, t) ∈ (0,L)× (0,∞) (17.36)

where �(x) = cfφ(x)/B0 is the sample specific storage and k(x) is the
hydraulic conductivity of the rock.

17.4.3.2 Boundary conditions

In order to complete the mathematical model, we require some boundary
conditions which are derived from the pump–flow experiment [19]. At the
start of the experiment, the pressure distribution in the sample (rock) is taken
to be zero, that is,

p(x, 0) = 0 for x ∈ [0,L] (17.37)

The downstream face of the sample, x = L, is maintained at its initial pressure
value, namely

p(L, t) = 0 for t ∈ (0, t∞] (17.38)

where t∞ represents the time at which the pump is switched off, which is
usually a time at which the flow is in a steady state.

The third boundary condition is obtained by applying the mass con-
servation law at the sample–reservoir interface and applying Darcy’s law,
to give

�u
∂p
∂t
(0, t) = k(0)A

∂p
∂x
(0, t)+Qu for t ∈ (0,∞] (17.39)
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where A is the cross-sectional area of the sample, Qu is the inflow rate at
the entrance of the upstream reservoir, and �u = γwcfVu is the compressive
storage of the upstream reservoir of volume Vu [24].

17.4.3.3 Direct solution for the homogeneous case

The first step in the inverse analysis of identifying the hydraulic properties of
the rock is the development of the corresponding direct solution technique.
The numerical method adopted is a time-weighted average FDM, using a
Galerkin weight factor δ ∈ [0, 1], and uniform space and time grids.

A set of experiments were used to validate this model for samples of
medium and large dimensions subjected to various inflow rates. Figure 17.5
shows examples of the numerical simulated data and the experimental data
as a function of time at the upstream face of the sample, x = 0, for
two different inflow rates. The sample has a length of L = 3 cm, a cross-
sectional area of A = 22.6 cm2 and a measured hydraulic conductivity of
k = 1.35× 10−6 cm/sec. The specific and compressive storages of the sample
were taken to be� = 10−9 cm−1 and�u = 0.75×10−4 cm2, respectively. This
study has also been thoroughly validated in [24,63].

17.4.4 Inverse Problem Formulation

The inverse analysis requires the determination of both the spatially varying
hydraulic conductivity and specific storage. Although uniqueness conditions
for this inverse problem are difficult to prove, it is to be expected that strong
additional information should be provided in order to render a unique solu-
tion. In initial cases for which only the hydraulic conductivity needs to be
identified, an a priori estimate of the specific storage is provided. The first
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FIGURE 17.5
Numerical solutions (solid lines) and experimental values (× symbols) for the pressure at the
upstream face of the sample, p(0, t), when L = 3 cm and k = 1.35 × 10−6 cm/sec, for (a) Qu =
3.2× 10−3 cm3/sec and (b) Qu = 4.8× 10−3 cm3/sec.
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case that we study is the particular situation when the unknown hydraulic
conductivity k(x) belongs to the space of at most quadratic polynomials,
that is,

k(x) = k0 + k1x + k2x2 for k0, k1, k2 ∈ R and x ∈ [0, 1] (17.40)

Our approach is simple but rational, namely we start with one to three
unknowns, that is, the coefficients for constant, linear, and quadratic space-
wise dependencies of the hydraulic conductivity, to be retrieved from the
same number, namely one to three, of time measurements of available inform-
ation, that is, pressure and hydraulic flux, which is the minimal necessary
condition for identifiability. In all cases, the same mean hydraulic conductivity
k∗ = ∫ L

0 k(x)dx/L is maintained.
In general, only boundary measurements are available if we are not to

damage the sample. Therefore, in practice, possible reliable measurements
involve the temporal pressure values at the upstream face of the sample x = 0,
that is, p(0, t), and values for the hydraulic fluxes at both ends of the sample,
that is, q0(t) = q(0, t) = k(0)∂p/∂x(0, t) and q1(t) = q(1, t) = k(1)∂p/∂x(1, t).
We consider a modified least-squares fitness functional and maximize it using
the GA-based optimization technique described in Section 17.3.5.

Using values derived from the hydraulic experiments, simulated pressure
buildup curves are produced at the upstream face of the sample. After the
equilibrium in pressure has been reached, the supply of the inflow mass
of fluid is closed and the simulated decay curve is also recorded. In the
direct problem the mean hydraulic conductivity of the sample is taken to
be k∗ = 1.48 × 10−8 cm/sec and the specific storage of the sample is � =
10−9 cm−1. A very low constant inflow rate of Qu = 3.33 × 10−5 cm3/sec is
supplied at the upstream reservoir, the length of the sample is L = 3.42 cm,
and the pump is switched off after t∞ = 20,000 sec with a corresponding
pressure value of p∞ = 96 kPa. The compressive storage of the upstream
reservoir was measured to be �u = 2× 10−4 cm2.

17.4.5 Sensitivity Coefficients

Once the mathematical model has been validated, prior to performing the
inverse analysis, it is useful to undertake a sensitivity analysis of the bound-
ary data with respect to the unknown parameters. In general it is desired that
the sensitivity coefficients are uncorrelated, that is, they are linearly inde-
pendent [72]. The degree of uncorrelation of these coefficients can then be
illustrated by the departure of ratios of sensitivity coefficients from a constant
value. Based on this criterion we can determine the values of the time meas-
urements to be imposed and recorded in order to reduce the ill-posedness
of the inverse-formulated problem. Therefore, a study of the sensitivity coef-
ficients, prior to performing experiments, can lead to better experimental
designs. The (normalized) sensitivity coefficients, as a function of the time t,
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are calculated using forward finite differences, that is,

Sens(T; ki) = ki
∂T
∂ki
= ki

(
T(ki + h)− T(ki)

h

)
for i = 0, 1, and 2 (17.41)

where h is a small perturbation of the hydraulic conductivity coefficients and
T is a measured value.

17.4.6 The Homogeneous Hydraulic Conductivity Case,
k (x) = k0 = constant

A single time measurement of the pressure has been found to be sufficient in
order to retrieve the value of the unknown parameter k0 [24]. We aim to choose
a time instant so that the sensitivity coefficient has its maximum absolute
value, and a time instant close to the moment when the pump is switched off
gives a high sensitivity coefficient. Therefore, the pressure measurement was
recorded at t = 18,600 sec. The range in which we search for the unknown
parameter, namely the constant hydraulic conductivity k0, is given by the
domain D = [0.5, 2.5] × 10−8 cm/sec which encloses the expected value to
be retrieved, namely k0 = 1.48× 10−8 cm/sec. These limits on the domain D
ensure a sufficiently large variation for the simulated steady-state values of
the pressure at x = 0 within the range of values 32 kPa � p(0,∞) � 162 kPa,
so that good agreement with the experimental data may be achieved.

As there are no general guidelines as to how to choose the values of the
GA parameters, a study was made in [63,64] of the effect of changes in the
evolution parameters on the convergence to the optimal solution. As a result,
the evolution parameters Npop = 50, Nchild = 60, k = 2, pt = 0.8, ne = 2,
Ngen = 150, pm = 0.02, and pc = 0.65 were chosen for the GA description
given in Section 17.3.5. These are typical values of the evolution parameters
that have been used for different purposes by other authors [7].

Even in this simple problem, the GAproves its ability to perform an effective
search in the given domain, which is in contrast with the results obtained
using the procedure in [24] for the same type of information in the inversion.
A typical recovered value for the constant hydraulic conductivity was the
highly accurate k0 = 1.4799954× 10−8 cm/sec; see [62–64] for further details.

When incorporating normally distributed (zero mean) noise into the inver-
sion process, the error can be decreased as soon as an overspecified situation
is prescribed. When increasing the number of measurements the effect of
noise is canceled out. This leads to the situation in which the best fit to the
noisy data is a curve that resembles the “exact” one, producing, in turn,
a very good approximate value for the constant hydraulic conductivity k0.
For example, when using all the available information for one case of 1% (of
the mean pressure) generated noise, an error of 0.02% in the predicted value
of k0 was achieved.
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17.4.7 Linear Hydraulic Conductivity, k (x) = k0 + k1x

For the heterogeneous linear hydraulic conductivity, the values of the
constants k0 and k1 that are to be retrieved are chosen to maintain the
mean hydraulic conductivity measurement k∗ = 1.48× 10−8 cm/sec so that,
for example, we choose k0 = 3k∗/4 = 1.11× 10−8 cm/sec and k1= k∗/2L=
2.164×10−9 cm/sec. As argued in [24], and due to the near correlation of
the corresponding sensitivity coefficients, boundary pressure measurements
alone do not contain sufficient information for the identification of both con-
stants k0 and k1, and therefore flux measurements at the upstream face x = 0
of the sample have to be considered. Also, the sensitivity coefficients of the
hydraulic fluxes at x = L appear to be correlated, while the hydraulic fluxes
at x = 0 are uncorrelated and therefore identifiability is expected for both
parameters. Hence, we consider measurements of differential pressures and
hydraulic fluxes at the upstream face of the sample, and the time instant
at which the sample measurements are recorded is chosen according to the
sensitivity analysis to be t = 12,000 sec. Again, the boundary values were
input as exact or noisy measurements. Typical retrieved values were accur-
ate to within about 0.005% of the “exact” values for the coefficients, and
this high accuracy was maintained with the introduction of random noisy
measurements [62–64].

17.4.8 Quadratic Hydraulic Conductivity, k (x) = k0 + k1x + k2x2

The constant values for the coefficients of the quadratic hydraulic
conductivity, namely, k0 = k∗/7, k1 = 6k∗/7L, and k2 = 9k∗/7L2, to be
retrieved are again a choice that maintains the mean hydraulic conductiv-
ity k∗. In order to retrieve these coefficients a sensitivity analysis shows that
sufficient information is provided by one measurement of each of the differen-
tial pressure and the hydraulic flux measurements at both ends of the sample
[24,62–64], and also indicates the optimal time instants at which these meas-
urements should be taken. As for the constant and linear hydraulic conduct-
ivity problems, accurate results for the prediction of the unknown parameters
are achieved for both exact and noisy simulated measurement data.

17.4.9 Simultaneous Retrieval of Constant Hydraulic Conductivity
and Constant Specific Storage

The problem considered in Section 17.4.6 can be extended by additionally
retrieving the constant specific storage of the sample. As suggested by the
sensitivity analysis, we can recover accurate values for both parameters
based upon differential pressure measurements at x = 0 and hydraulic flux
values at x = L, using either the minimum amount of information, adding
redundant information (all measurements in time), or by incorporating noisy
measurements [62–64].
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17.5 Hydraulic Conductivity Measurements in Composite
Homogeneous Rocks

A transient hydraulic experiment, similar to that performed in the single
homogeneous rock case, has been performed for composite rocks, namely
homogeneous rocks butted together and representing a faulted rock sample.
The experimental setup and apparatus in [70] is updated and improved,
and new specimens are tested. Unlike the previous single-sample experi-
ment in Section 17.4, in which boundary data alone was sufficient to retrieve
a constant, linear, or quadratic variation of k(x), preliminary numerical
investigations performed in [25] indicate that internal pressure measurements
within the sample might be necessary for a successful retrieval of a discontinu-
ous hydraulic conductivity. Therefore, the previous pump–flow experimental
setup in [19] is improved by a new data acquisition and control system and the
Rock Deformation Research transient permeameter, see [73] and Figure 17.6,
which allows for internal pressure measurements to be made at “ports” along
the sample. For at most two rocks butted together, a mathematical analysis of
the steady-state situation enables the hydraulic conductivities and the fault
location to be determined. For the unsteady case, the FDM direct procedure
used for the single-sample situation is extended and combined with a GA-
based optimization technique in order to retrieve the unknown hydraulic
parameters; see [62–64] for further details.
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FIGURE 17.6
Data acquisition and control system and the Rock Deformation Research transient permeameter.
The pressure values indicated are measured in kPa, and DPT denotes a differential pressure
transducer.
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17.5.1 Experimental Setup and Limitations

We aim to test tight rocks, that is, rocks with low permeabilities, and we again
consider the pump–flow method, using an extension of the experimental
setup designed by Clennell [19]. The new setup is designed for the simultan-
eous determination of both the specific storage and the hydraulic conductivity
of the specimen. The new design shown in Figure 17.6 is based around a 5 cm
diameter custom steel sample holder that accepts cores of upto 13 cm long.
There is an extra pump to regulate the pressure on the downstream end (x = L)
of the samples to within 0.5 kPa, and this enables the volume of fluid leaving
the sample at x = L to be measured to a precision of 1 µl. Transient interior
pressure measurements within the specimen are now available, to a precision
of three significant figures, by the provision of a holder of the “Hassler” type
with three internal pressure ports in a polymer confining sleeve. However,
the internal pressure measurements change the transient behavior of both
the boundary pressure and the flux because the storage associated with the
transducer is quite large in comparison with that of the sample.

17.5.2 Mathematical Formulation

The formulation given by Eqs. (17.36) to (17.39) for the single-sample case is
again appropriate for describing the flow through the composite specimen.
For composite homogeneous rocks the hydraulic conductivity is assumed to
be piecewise constant, that is, for Nf layers of homogeneous materials that
are butted together we have

k(x) = ki, �(x) = �i for x ∈ [xf
i−1, xf

i ] and i = 1,Nf (17.42)

where xf
0 = 0, xf

Nf
= L, and xf

i for i = 1, (Nf − 1) are the discontinuity locations
at which the pressure and the hydraulic flux are assumed to be continuous;
see Figure 17.7. The inverse problem requires the determination of the piece-
wise homogeneous values ki for the hydraulic conductivities, the piecewise
constant values �i for the specific storages, the constant specific storage �u
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FIGURE 17.7
A composite homogeneous rock sample, comprising Nf different layers.
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of the upstream reservoir, and the fault locations. The lack of information is
compensated for by additional pressure readings within the linked sample.
A necessary condition for identifiability is that the number of conditions to
be imposed has to be greater than or equal to the number of unknowns.

For the case of no faults, that is, Nf = 1, numerical FDM and bound-
ary element methods (BEM) have produced reasonable agreement with the
experimental data, as presented in Section 17.4 for the homogeneous case, or
see [24].

17.5.3 Steady-State Mathematical Analysis

A steady-state analysis shows that the pressure distribution inside the ith part
of the sample as t→∞ is given by

p(x,∞) = Qu

A


− x

ki
+ L

kNf

+
Nf−1∑
j=i

xf
j

(
1
kj
− 1

kj+1

) (17.43)

see Figure 17.7. If we make use of a single steady-state pressure reading within
each layer, combined with the steady-state pressure at x = 0, then we can
retrieve the hydraulic conductivities and the positions of each fault if and
only if the number of layers is either one or two [25].

For the case of two homogeneous rocks that are butted together, we provide
one reading for the steady-state pressures p(xT ,∞) = pT and p(xM,∞) = pM
within each rock at the ports xT and xM, respectively, combined with the
reading of the steady-state pressure p(0,∞) = p∞ at the upstream surface of
the linked sample. Thus, the hydraulic conductivities and the position of the
fault can be recovered as follows:

k1 = QuxT
A(p∞ − pT)

, k2 = Qu(L− xM)
ApM

, xf
1 =

p∞xT(L− xM)− pMxTL
(p∞ − pT)(L− xM)− pMxT

(17.44)

The estimation of the hydraulic conductivity in either sample is very sensitive
to small errors in these steady-state pressure measurements when its value is
of O(10−5) cm/min in comparison to the case when it is of O(10−6) cm/min.
However, there are a few drawbacks when using the steady-state approach,
as given below:

1. The values of �i, for i = 1,Nf , and �u may be required.
2. The steady state may not exist, or it may take a long time to reach,

which is practically expensive.
3. Insufficient internal measurements of the static pressure may be

available.
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4. The transient pressure distribution may also be required.
5. The number of faults may be greater than two and then the

steady-state analysis cannot be utilized.

Therefore, in order to deal with such potential practical difficulties, the
transient case must be considered. In the unsteady case, analytical and semi-
analytical solutions for the pressure were obtained in [20,74–77], but only
for the semi-infinite strip and the radially symmetric and radially asymmet-
ric cases in aquifers. However, for realistic finite porous samples there is, as
yet, no analytical study, and therefore we numerically investigate the recov-
ery of the hydraulic conductivities based upon data measurements from the
transient process. Numerous runs of the GA-based optimization were per-
formed in an attempt to recover all the unknown parameters, namely the
sample hydraulic conductivities, the sample specific storages, the compress-
ive storage of the upstream reservoir and the position of the fault, using only
additional transient pressure readings at ports along the specimen. Although
none of these were successful, the insight gained from these calculations
led to a possible scenario from which a successful retrieval of the required
parameters can be achieved.

17.5.4 The Composite Homogeneous Situation

We consider two cylindrical homogeneous samples “X” (a Darley Dale
sandstone) and “Y” of lengths 2.4 and 4.3 cm, respectively, and cross-sectional
area A = 20.5 cm2, which are butted together to give a total length of
L = 6.7 cm. The compressive storage of the upstream reservoir �u =
1.2 × 10−5 cm2 and the constant inflow rate of Qu = 10.02 × 10−3 cm3/min
mean that the steady-state pressure is encountered at t∞ = 25 min. Follow-
ing individual tests on each sample, X was found to be approximately
20 times less permeable than Y, namely kX = 2.121× 10−6 cm/min and kY =
4.68×10−5 cm/min. The corresponding specific storages are�X = 10−6 cm−1

and �Y = 2 × 10−6 cm−1. The configurations “XY” and “YX” are both con-
sidered, that is, X followed by Y, and Y followed by X, respectively, and
for both configurations additional pressure readings are recorded at the two
ports xT = 2.4 cm and xM = 5.05 cm. The corresponding pressure transients
at the ports and the upstream face are shown in Figure 17.8. In the con-
figuration “XY” the steady-state pressure measurements are pT = 4.41 kPa
and pM = 1.69 kPa, while in the second configuration “YX” we have
pT = 56.20 kPa and pM = 37.30 kPa. The steady-state pressure at the active
boundary x = 0 is p∞ = 58.66 kPa, regardless of the configuration being
considered.

17.5.5 Retrieval of the Hydraulic Conductivities

The identification of the hydraulic conductivities, as well as the position
of a single fault, has been investigated fully by Lesnic et al. [25] using
pressure readings at the upstream face of the linked sample and one port
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FIGURE 17.8
Buildup of the pressure curves for the configurations (a) “XY,” and (b) “YX,” at the upstream
face (solid line), the port xT (dashed line), and the port xM (dotted line).

location within each sample. The direct solver made use of the BEM, and
an inverse minimization technique based on a least-squares approach was
solved using the NAG routine E04UCF. Here we consider a GA-based optim-
ization procedure and a FDM direct solver, which is most easily applied if the
fault position is first calculated from the steady-state analysis.

Using the steady-state pressure measurements from the configuration
“XY,” Eq. (17.44) accurately defines the position of the fault to be xf

1 = 2.4 cm.
A sensitivity analysis shows that only pressure measurements in time at the
upstream face of the linked sample are required to retrieve the hydraulic con-
ductivities of the two samples, and that small times are the most optimal ones
for reducing the degree of ill-posedness of the problem. Typical recovered val-
ues for the hydraulic conductivities were kX = 2.12099 × 10−6 cm/min and
kY = 4.68130×10−5 cm/min, and therefore the hydraulic conductivities were
recovered to a high degree of accuracy [63,64]. If xf

1 is additionally assumed
to be unknown, then transient pressure measurements from both ports are
needed to retrieve accurate values of the hydraulic conductivities of each
sample together with the fault locations [64].

17.5.6 Simultaneous Retrieval of the Compressive Storage of
the Upstream Reservoir and the Specific Storages
of the Samples

The sample hydraulic conductivities kX and kY and the fault position xf
1 are

assumed to have been calculated precisely from the steady-state analysis,
and we investigate the simultaneous retrieval of the compressive storage of
the upstream reservoir, �u, and the two specific storages of the samples,
�X and �Y , using the pressure variation in time at the upstream face of the
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TABLE 17.1

Results Obtained from the Three-Step GA Retrieval of �X , �Y , and �u, using
Pressure Measurements at the Upstream Face of the Linked Samples

Configuration Time (min) �X (×10−6 cm−1) �Y (×10−6 cm−1) �u (×10−5 cm2)

“XY” 2.4, 4.8, 7.1 0.2182 1.9997 1.4407
“YX” 2.4, 4.8, 7.1 0.9996 1.5601 1.3383
“XY” 7.1 0.9996 1.9997 1.2000

Known values 1.0 2.0 1.2

Notes: Italicized values indicate those parameters which are not expected to be retrieved at that
step, and are therefore not accurate. In the third step �X and �Y are fixed (indicated by bold
values) at their values determined from the first two steps.

linked samples. A sensitivity analysis shows that the sensitivity coefficients
for�u and the specific storage of the first sample are always correlated, while
those for the other two hydraulic parameter pairings are always uncorrel-
ated. Therefore only the retrieval of the specific storage of the second sample
for either configuration is possible and we must study both configurations.
An inverse analysis of the configurations “XY” and “YX” separately, specify-
ing upstream pressure values at three small time instants, defines accurate
values for �Y and �X , respectively. Fixing these values, we obtain �u from
an inverse analysis of either configuration using a single upstream pressure
measurement.

As an example, pressure transients were simulated for �X = 10−6 cm−1,
�Y = 2× 10−6 cm−1, and �u = 1.2 × 10−5 cm2, and we consider the three
time instants t = 2.4, 4.8, and 7.1 min. The results presented in Table 17.1
show that the required hydraulic parameters can be recovered accurately. Fur-
ther details, including examples with noisy data and for which the hydraulic
parameters can again be recovered accurately, are given in [62–64].

17.5.7 Comparison with Experimental Data

Figure 17.9 shows results obtained from an attempt to match experimental
data from a hydraulic test performed on two, assumed homogeneous, rock
samples [63,64]. The fault position was assumed to be known and the
hydraulic conductivities of each sample were determined from a steady-state
analysis based on pressure measurements at x = 0 and one port. As was
found with this initial experimental data, difficulties may be encountered
in estimating the sample storativities and the compressive storativity of the
upstream reservoir if the experiments are conducted with ports connected
and the compliance of the transducers is not very small. Therefore, another
set of experiments was performed with no transducers connected to measure
only the upstream pressure. Utilizing the experimental data for times less than
t = 10 min, and repeating the inversion process presented in Section 17.5.6,
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FIGURE 17.9
Numerically simulated pressure curves (dotted lines) compared with the experimental data
(solid lines) for the configurations (a) “XY,” and (b) “YX,” at the upstream face of the sample.

the retrieved values for�X ,�Y , and�u generated a good graphical agreement
over the transient regime, as can be observed in Figure 17.9.

17.6 Hydraulic Conductivity Measurements in
Anisotropic Rocks

17.6.1 Introduction

The production of gas and oil in many reservoirs is seriously affected by their
highly heterogeneous and/or anisotropic structure. The origin of anisotropy
in rocks was discussed in [78] from the transport properties point of view. One
conclusion is that the directionality of the pore structure, namely the preferred
orientation of the micro-cracks or of nonspherical grains, can only produce
moderate hydraulic conductivity anisotropy (experimental evidence was
given in [79]). Strong hydraulic conductivity anisotropy is more likely to ori-
ginate from fine-scale heterogeneities in, for example, sand–shale sequences,
aeolian deposits, and jointed or fractured rock masses. As a consequence,
anisotropy, like heterogeneity, is scale dependent [80]. The scaling-up of the
hydraulic conductivity from the centimeter scale, as in cores or well logs,
to the scale of hundreds of meters, such as grid blocks in large-scale numer-
ical simulations, is a problem that is frequently encountered by reservoir
engineers. Many techniques have been proposed to perform this task, more
commonly known as determining grid block effective hydraulic conductiv-
ities. However, difficulties are often encountered, especially in the case of
multiphase flow [81].

A number of methods have been proposed to measure the full hydra-
ulic conductivity tensor in rocks or soils. In one approach, two flow
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measurements were simultaneously performed on a prepared soil, with the
fluid outlets aligned with the assumed principal directions, and then the
ratio of the principal hydraulic conductivities was determined [82]. The mag-
nitudes of the principal hydraulic conductivities were measured separately.
In another experimental procedure, the streamlines were forced to be straight
lines parallel to the sample axis [83]. However, this method involves the
reshaping, by trial and error, of the sample, and so is difficult to implement
in practice. All these methods assume that the sample axis can be oriented
parallel, or perpendicular, to one of the principal directions. This is not as
serious a restriction as it might appear since, in many cases, at least one of the
principal directions can be deduced from, for example, the bedding planes
or the preferred orientation of the micro-cracks. The commonly used concept
of horizontal and vertical hydraulic conductivities implicitly assumes that
the principal hydraulic conductivity directions in situ are likewise, but this
is not always the case. However, samples can be taken in directions parallel
and perpendicular to the bedding planes when they are visible, instead of the
usual practice of sampling parallel and perpendicular to the axis of the core.

If the principal directions cannot be estimated then a different method
becomes necessary. The best solution would be to measure the full hydraulic
conductivity tensor in one single sample by imposing periodic boundary con-
ditions [84–87]. While this can be achieved, it is rather difficult to implement
in practice. Alternatively, it may be possible to perform a suite of independent
flow measurements, each one with a different set of Neumann and Dirichlet
boundary conditions. As this is perfectly possible in laboratory measure-
ments, this method may yield enough information to allow one to infer the
full hydraulic conductivity tensor [88,89].

17.6.2 Mathematical Formulation

As in Section 17.4.3, the governing equation for single-phase flow in a two-
dimensional anisotropic, homogeneous, porous medium can be derived as
follows:

∇ · (k∇p) ≡ k11
∂2p
∂x2 + 2k12

∂2p
∂x∂y

+ k22
∂2p
∂y2 = �

∂p
∂t

(17.45)

where the hydraulic conductivity tensor k has components k11, k12 = k21,
and k22 in the reference frame x, y. In the principal-axes frame we use k1 and
k2 to denote the principal hydraulic conductivities, with the convention that
k1 > k2. For a single homogeneous sample, sufficient information [63], can
be gained from the steady-state flow (∂p/∂t = 0 in Eq. [17.45]) in order to
retrieve all three components of the hydraulic conductivity tensor.

The most significant quantity to characterize the anisotropy of the medium
is the determinant of the hydraulic conductivity coefficients, that is, |kij| =
k11k22 − k2

12. The smaller the value of |kij|, the more asymmetrical are the
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pressure field and the hydraulic flux vectors. Since the criterion |kij| > 0
determines the type of differential equation, parabolic for transient problems
and elliptic for steady problems, the smaller the value of |kij| the more difficult
are the numerical calculations.

In conventional laboratory measurements, rock samples are shaped into
cylinders with circular cross-sections. In two dimensions, they can simply
be represented as a rectangle or, for simplicity, a square, whose dimension
we take to be L. A steady-state flow is forced through the sample by applying
the constant pressures p0 and p0−δp0 on opposite faces, while the sides of the
plug are jacketed with impermeable material. Thus, the boundary conditions
are as follows:

p|x=0 = p0, p|x=L = p0 − δp0, q · n|y=0 = q · n|y=L = 0 (17.46)

where q = −k∇p is the fluid velocity, n is the normal to the face (n = −j
and +j on y = 0 and L, respectively) and the final equation expresses the
no-flow conditions along the sides of the sample.

The solution of this direct, well-posed problem is obtained by employing a
classical BEM approach [22,23], and a full description of the implementation
and validation of this technique is given in [63,90].

Before performing the numerical calculations, the steady-state form of
the governing equation (17.45) and the boundary conditions (17.46) are
nondimensionalized according to

x = x
L

, y = y
L

, p = p− (p0 − δp0)

δp0
, kij =

kij
k∗

(17.47)

where k∗ is a representative value of the hydraulic conductivity. Then, after
dropping the bars for simplicity, we have the following boundary-value
problem:

k11
∂2p
∂x2 + 2k12

∂2p
∂x∂y

+ k22
∂2p
∂y2 = 0

p|x=0 = 1, p|x=1 = 0,
(
k12
∂p
∂x
+ k22

∂p
∂y

)∣∣∣∣
y=0
=
(
k12
∂p
∂x
+ k22

∂p
∂y

)∣∣∣∣
y=1
= 0

(17.48)

Rather than providing the coefficients of the hydraulic conductivity tensor,
we provide the magnitudes of the principal hydraulic conductivities and the
angle of inclination θ of the x-axis of the sample with the larger principal
direction, that is, the direction of k1. Figure 17.10 shows the pressure and
velocity fields when θ = 0◦ and 60◦, and the nondimensional values for
the principal hydraulic conductivities are k1 = 5 and k2 = 1. It should be
noted that if the applied (global) pressure gradient does not lie in one of the
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FIGURE 17.10
The pressure contours and velocity field within the sample when k1 = 5, k2 = 1, and (a) θ = 0◦
and (b) θ = 60◦. Note that uniform pressures of p = 1 and p = 0 have been applied to the faces
x = 0 and x = 1, respectively. The pressure contours are at intervals of 0.1.

principal directions of the hydraulic conductivity tensor then the local fluid
flux is not simply perpendicular to the local pressure gradient (i.e., not normal
to the pressure contours). Also, if θ is not close to 0◦ or 90◦ then the pressure
field is strongly distorted due to the presence of the impermeable jacket.

17.6.3 Inverse Problem Formulation

The inverse analysis requires the identification of the values of the principal
hydraulic conductivities k1 and k2 and the angle θ only from local measure-
ments of the pressure and/or average (rather than pointwise) hydraulic flux
on the boundary of the rock sample. Therefore, in practice, possible reliable
measurements involve pressure readings along the sides of the sample and
total flux readings at the downstream or upstream faces of the rock sample,
which will be equal in the steady-state case. The GA-based optimization tech-
nique is employed to search in an a priori specified range for each of the
parameters k1, k2, and θ .

A sensitivity analysis for measurements of the pressure along the sides of
the sample shows that this information is insufficient to fully retrieve the
unknown values of k1, k2, and θ , and that only the ratio of k1/k2 and the angle
θ can be determined [63,90]. This observation can be argued from the mathem-
atical formulation (17.48), since, on dividing the governing equation and the
boundary conditions on y = 0 and 1 by k22, we obtain an equivalent problem
that is dependent upon only two parameters, namely k11/k22 and k12/k22, or,
in our case, k1/k2 and θ . In addition, when measuring the average hydraulic
flux, the sensitivity coefficients for k1 and k2 are correlated, whereas the other
two remaining pairings of sensitivity coefficients are uncorrelated.
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17.6.4 Numerical Results

The approach proposed in [63,90] was to consider a two-step inversion process
and provide information in the form of three pressure readings and the aver-
age hydraulic flux. The problem considered was simulated experimental data
for the case of k1 = 5, k2 = 1, and θ = 10◦. Pressure readings alone will not
provide sufficient information to fully retrieve k1, k2, and θ , and only the
ratio k1/k2 and θ can be found. By employing a method in which the search
space of the GA was gradually reduced, accurate values of k1/k2 = 5.00 and
θ = 9.99◦ were achieved. Having found the ratio k1/k2 and the angle θ , the
inversion was continued by fixing θ and providing the average hydraulic
flux at the downstream face of the sample. Typical estimates for the principal
permeabilities were k1 = 5.003 and k2 = 0.990.

This problem was also considered in [91] in the context of the related
heat conduction problem of determining the thermal conductivity tensor
of anisotropic heat conductors using measurements provided by heat flow
experiments. Using a FDM direct solver and a GA-based inversion technique,
the components of a spatially dependent (linear) conductivity tensor have
also been successfully retrieved in the situations of an orthotropic thermal
conductivity [91] and an anisotropic hydraulic conductivity [63,92].

17.7 Hydraulic Conductivity Measurements in Composite
Anisotropic Rocks

The formulation of Section 17.6 can be extended to deal with the identification
of the hydraulic properties of composite anisotropic materials, namely, the
case in which two rocks are butted together and a steady-state flow is forced
through the linked sample by the application of the constant pressures p0 and
p0 − δp0, where δp0 > 0, on two opposite faces.

17.7.1 Mathematical Formulation

The boundary-value problem is essentially the same as in the case of a single
piece of anisotropic material, namely Eq. (17.48), except that we take the
total nondimensional length of the butted sample to be 2. A straight fault is
located within the linked sample, namely between samplesX (at the upstream
face in the initial “XY” configuration) and Y (at the downstream face in the
initial “XY” configuration), and it is defined by the straight line joining the
coordinates (xf

b, 0) and (xf
t , 1), the subscripts “b” and “t” denoting locations

along the bottom and top no-flow boundaries, respectively. The fault is again
considered to provide a perfect discontinuity in the hydraulic properties of
the materials, while, clearly, the pressure and hydraulic flux must remain
continuous across this interface. The BEM formulation of Section 17.6 can be
readily extended to this situation [63].
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In the parameter identification problems that we consider, we look at the
following two situations:

1. Fault perpendicular to the x-axis of the sample, xf
t = xf

b
We let sample X have a nondimensional length of 1.33 and sup-
pose that the magnitudes of the principal hydraulic conductivities
are given by kX1 = 5 and kX2 = 1, with θX = 30◦. The reminder of
the linked sample, Y, has a nondimensional length of 0.67 and the
hydraulic properties are defined by kY1 = 5, kY2 = 1, and θY = 60◦.
The pressure contours and the velocity field within the linked sample
are shown in Figure 17.11(a).

2. Fault inclined to the x-axis of the sample, xf
t �= xf

b
The hydraulic properties remain the same as in (1), but the fault is now
determined by xf

t = 1.42 and xf
b = 1.23. The pressure contours and the

velocity field within the linked sample are shown in Figure 17.11(b).
Clearly, the fault has a significant influence on the flow field loc-
ally, but otherwise the fluid pressure and velocity is similar to the
case shown in Figure 17.11(a). Figure 17.11(c), in which the hydraulic
properties of sample Y have been modified to kY1 = 7, kY2 = 2, and
θY = −45◦, shows a situation in which the preferred direction for flow
(the larger of the two principal directions) is very different in sample
Y in comparison with sample X. The fluid flow across the fault is
focused around the portion near the x-axis and the surrounding flow
pattern is influenced to a greater extent than in Figures 17.11(a,b).

17.7.2 Inverse Problem Formulation

The inverse analysis requires the identification of the values of the principal
hydraulic conductivities and the angles θ within each sample together with
the fault location, defined by a further one or two parameters, respectively,
according to whether the fault is perpendicular or inclined to the x-axis. The
only (simulated) experimental data provided is in the form of local pressure
measurements from ports situated on the bottom and top no-flow boundaries
and average hydraulic flux values at either end of the linked sample. As stated
in Section 17.6.3, pressure alone does not provide sufficient information for
a successful retrieval of the hydraulic parameters.

17.7.3 Numerical Results and Discussion

17.7.3.1 The case when the fault is perpendicular to
the x-axis of the sample, x f

t = x f
b

Through a detailed investigation of this situation, it was shown in [63]
that measurements from pressure ports must be taken within both samples
simply to retrieve the fault location. Moreover, a minimum of seven
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FIGURE 17.11
The pressure contours and velocity field within the linked sample when kX1 = 5, kX2 = 1, and
θX = 30◦. In (a) the fault is vertical (at x = 1.33) and in (b) the fault is inclined between the
coordinate points (1.23, 0) and (1.42, 1). Sample Y has the hydraulic properties (a,b) kY1 = 5,
kY2 = 1, and θY = 60◦, and (c) kY1 = 7, kY2 = 2, and θY = −45◦. Note that uniform pressures of
p = 1 and p = 0 have been applied to the faces x = 0 and x = 1, respectively, while the top and
bottom surfaces of the sample are no-flow boundaries. The pressure contours are at intervals of
0.025, while the dots indicate the locations at which the velocity vectors apply.
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independent measurements, namely pressure readings from six ports located
along the top and bottom no-flow boundaries together with the average flux
at the inflow face, are required to successfully retrieve the fault location and
the hydraulic conductivity tensor within each sample.

In the first approach, the ports at which the simulated experimental
data was taken had the coordinate positions (0.35, 0), (0.65, 0), (1.55, 0),
and (1.85, 0) on the bottom no-flow face and (0.55, 1) and (1.75, 1) on
the top no-flow face, so that three ports lie within each sample. Typ-
ical retrieved parameter values were accurate to within 1%, namely
(kX1 , kX2 , θX)= (5.0156, 1.0015, 29.9717), (kY1 , kY2 , θY)= (4.9804, 1.0000, 59.9843),
and xf

b= xf
t = 1.3292.

Another technique, utilizing three separate steps for the inversion process,
was proposed to improve on this accuracy. In the first step and starting
with the configuration “XY,” the ports are all moved to lie within sample
X only with the coordinate positions (0.25, 0), (0.35, 0), (0.45, 0), (0.25, 1),
(0.35, 1), and (0.45, 1). When this information is coupled with the average flux
value at the inflow face, it is expected that there will be insufficient inform-
ation to determine the fault location or the hydraulic conductivity tensor in
sample Y, while the determination of the hydraulic conductivity paramet-
ers kX1 , kX2 , and θX in sample X constitutes an overspecified problem. In the
second step, after switching the samples around, namely considering the con-
figuration “YX,” the same information is expected to allow the retrieval of
kY1 , kY2 , and θY . Typical results from each of these two steps are provided
in Table 17.2, and the hydraulic parameters which were sought at each step
were retrieved accurately. With the hydraulic conductivity tensors accurately
obtained from the first two steps of the inversion, the final step of imposing
pressure readings in both samples allows the fault location to be obtained
accurately. For the chosen example and the configuration “XY” these pressure
readings were taken on the bottom no-flow boundary at (0.35, 0) and (1.65, 0).

TABLE 17.2

Numerical Results for the GA Simultaneous Recovery of the
Sample Hydraulic Conductivities and the Fault Position when the
Inversion is Performed in Three Steps

Parameter Exact value Step 1 Step 2 Step 3

kX1 5 4.9919 5.3656 4.9919

kX2 1 0.9986 0.9797 0.9986

θX 30◦ 29.9825 23.6439 29.9825

kY1 5 5.4287 4.9921 4.9921

kY2 1 0.7973 0.9917 0.9917

θY 60◦ 69.3777 60.0307 60.0307
xf

b = xf
t 1.33 1.6277 0.8613 1.3298

Notes: Italicized values indicate those parameters which are not expected to
be retrieved at that step, and are therefore not accurate. Bold values indicate
those parameters which are specified for the final step of the inversion.
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TABLE 17.3

Numerical Results for the GA Simultaneous Recovery of
the Sample Hydraulic Conductivities and the Fault Posi-
tion when the Inversion is Performed in Three Steps and for
Different Numbers of Ports for the Pressure Measurements

Parameter Exact Six ports Eight ports Nine ports

kX1 5 5.1891 5.0783 5.0531

kX2 1 1.0391 1.0146 1.0131

θX 30◦ 31.2898 30.4689 30.2750

kY1 5 4.5788 4.7918 5.0525

kY2 1 1.0316 1.1139 1.0624

θY 60◦ 58.2246 61.4308 61.8755

xf
b 1.23 1.1524 1.0616 1.1494

xf
t 1.42 1.3891 1.4374 1.4574

A typical value retrieved for the position of the fault was xf
b = xf

t = 1.3299.
The relatively large number of measurements that are taken from ports makes
this approach quite expensive from a practical point of view.

17.7.3.2 The case when the fault is inclined to the x-axis
of the sample, x f

t �= x f
b

Applying the same three-step inversion process as described for the case
xf

t = xf
b, the retrieved parameters are no longer as accurate as for the case

considered in Section 17.7.3.1 [63]. The inversion process was carried out for
varying numbers of ports. As can be seen from Table 17.3, as the number
of ports is increased there is a general improvement in the accuracy of the
retrieved parameters. However, for a reasonable number of ports, we do
not reach a similar accuracy of retrieval as for the case when the fault was
perpendicular to the x-axis of the sample.

17.8 Comparison of Methods

In this section, by means of a comparison with the more traditional,
gradient-based, optimization techniques, we discuss the relevance of the GA
technique to some of the problems that we have studied in previous sections.

In Section 17.4 we applied for the first time our GA optimization scheme
to the inverse problem of determining the heterogeneous hydraulic conduct-
ivity of a rock from a transient hydraulic experiment, and we compared the
results with those from Lesnic et al. [24]. All these numerical simulations were
fully specified situations, namely a certain number of unknown parameters
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to be retrieved from at least the same number of independent boundary
information items. However, the sophisticated NAG routine E04UCF that was
used in [24] for solving the constrained minimization problem produced, for
the same type and amount of information, about the same level of accuracy
as the GA optimization scheme. For the composite sample situation, the GA
results were again equally as good as the ones produced by the same NAG
routine [25].

We now perform a more detailed comparative study by referring to the par-
ticular problem presented in Section 17.7.3.1, namely the identifiability of the
components of the hydraulic conductivity tensors and the fault position (per-
pendicular to the x-axis) for a butted sample composed of two anisotropic
rocks. The iterative NAG routine that we use, namely E04KCF, is a quasi-
Newton algorithm for finding the minimum of a function of several variables
subjected to fixed upper and lower bounds on the independent variables
when the first derivatives are available. The function that we consider is the
least-squares functional that minimizes the difference between the observed
and the BEM-predicted boundary pressure and average hydraulic flux meas-
urements at the inflow face. Initially, (i) a single port in each sample was used
at (0.35, 0) and (1.55, 0), and then the number of ports was gradually increased
by adding ports at (ii) (0.55, 1), (iii) (1.75, 1), (iv) (0.65, 0), and (v) (1.85, 0), the
latter case being the fully specified situation when pressure measurements
are provided from three ports within each sample, as in Section 17.7.3.1. It
should be stated that in each of the cases the average flux value at the inflow
face of the sample was also prescribed in the inversion. The results of the
NAG inversion are presented in Table 17.4. As can be observed from these
results, as we move toward the fully specified situation the errors in the
estimates decrease, the numerical technique producing very accurate results
in the final case (v). It should be mentioned that whenever an underspecified
situation is encountered, the results obtained, while providing a very good
match to the data, are not the optimal ones. This is due to the nonuniqueness

TABLE 17.4

Numerical Results of the Inversion Process when using the NAG
Routine and the Information (i)–(v) Described in the Text

Parameter Exact (i) (ii) (iii) (iv) (v)

kX1 5 4.5001 4.5001 5.5000 5.0081 5.0000

kX2 1 0.7638 0.8290 1.1325 1.0032 1.0000

θX 30◦ 20.0001 23.3569 34.6067 30.0737 30.0000

kY1 5 4.5000 4.5000 4.5000 4.5001 5.0000

kY2 1 0.9750 0.8612 0.9816 0.9848 1.0000

θY 60◦ 57.7295 50.0000 58.2044 58.2645 60.0000

xf
b = xf

t 1.33 1.1863 1.1304 1.3532 1.3226 1.3300

© 2005 by Taylor & Francis Group, LLC



736 S.D. Harris and D.B. Ingham

that the underspecification produces, a situation that was also encountered in
the case of the GA optimization. However, in such cases, in order to produce
better results, we can provide good initial guesses for the NAG routine as
results from the GA optimization. Then, despite the underspecification of the
situation it is possible to achieve results close to their optimal values [63].

If we now consider the fully specified situation encountered in the three-
step inversion of Section 17.7.3.1, then, unless an initial guess close to the
optimum is prescribed, the NAG routine does not retrieve the correct solution.
This is due to the fact that such a situation implies a degree of underspecific-
ation for the second sample. However, the GA optimization procedure does
not encounter such problems as it effectively combines the information in
the same domain of search to produce close-to-optimal solutions for the first
sample.

Clearly, there is a strong relationship between the fitness function and the
degree of specification of the unknowns. When an underspecified situation
is prescribed, then a detailed investigation of the “landscape” of the fitness
function reveals the presence of more than one peak. Thus, for such cases, the
results of the NAG inversion, while providing a very good match to the data
imposed in the inversion, are not the optimal ones. A traditional hillclimb-
ing technique might find this misleading, especially when the initial guess
is taken far from the solution. The results presented in Table 17.4 possess a
high GA fitness, yet they reach such values in areas around local “peaks”
as opposed to the area around the peak of the “optimal” solution. This is
something which can be overcome by employing the GA procedure since it
uses the entire search space to produce a multitude of possibilities as can-
didate solutions. However, where there is a fully specified situation, or an
overspecified one, the “landscape” of the fitness function has usually just one
sharp peak and therefore, provided that an initial guess does not fall in a
very “flat” region, the hillclimbing approach will converge faster than the
GA procedure.

In conclusion, in the case of a fully specified situation the NAG optimization
technique behaves, for this particular problem, better than the GA optimiza-
tion. However, whenever some degree of underspecification is encountered
the GA usually produces better results. A method of producing good results
when an underspecified and realistic situation is encountered is to combine
the GA with the NAG optimization technique.

17.9 Conclusions

In this chapter we have studied the applicability of the GA approach to
the inverse parameter identification problem of identifying the hydraulic
properties of porous materials.

For one-dimensional problems, a hydraulic pump–flow test has been
directly and inversely mathematically modeled and the investigations were
performed for both experiments based upon a single sample and a composite
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sample. The sensitivity analysis provided indicators of which measurements
should be recorded for the inversion to be successful. In contrast with other
inverse formulations that lack physical motivation, see, for example, [10],
only boundary pressure and hydraulic flux values were used as available
information due to both laboratory and real-life difficulties that would be
encountered when considering internal measurements. For the various spa-
tial dependencies of the hydraulic parameters considered, accurate estimates
were obtained by the GA parameter identification process for both exact and
noisy (simulated) experimental measurements.

The same techniques were then successfully extended to the case of aniso-
tropic materials, for which the hydraulic conductivity is represented by a
symmetric tensor. Again, the sides of the sample were jacketed with imper-
meable material and a pressure gradient was applied to drive the fluid flow.
The situations of both a single sample and a composite sample, namely
two samples butted together at a planar fault (simply considered to be
a discontinuity in the hydraulic properties), were considered.

Acomparison with a traditional gradient-based optimization technique has
been performed for the particular case when the fault between the two aniso-
tropic materials is perpendicular to the sample horizontal axis. While a fully
specified situation produced better results than the GA approach, whenever
some degree of underspecification was encountered the GAusually produced
superior results. However, in underspecified situations, which can com-
monly be encountered in practice, a combination of the GA with a traditional
optimization technique is thought to produce good results.
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