
Chapter 1

Anti-patterns in Ontology-driven
Conceptual Modeling: The Case of Role

Modeling in OntoUML

Tiago Prince Sales

Department of Information Engineering and Computer Science,
University of Trento, Italy
Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo, Brazil

1.1. Introduction

Given the increasing complexity of ontology-driven conceptual modeling and on-
tology engineering, there is an urging need for developing a new generation of
complexity management tools for these disciplines [12]. These include a number
of methodological and computational tools that are grounded on sound ontologi-
cal foundations. In particular, we should advance in these disciplines a well-tested
body of knowledge in terms of Ontology Patterns, Ontology Pattern Languages
and Ontological Anti-Patterns . This chapter focuses on the latter.

An anti-pattern is a recurrent error-prone modeling decision [15]. In this pa-
per, we are interested in one specific sort of anti-patterns, namely, model struc-
tures that, albeit producing syntactically valid conceptual models, are prone to
result in unintended domain representations. In other words, we are interested
in configurations that when used in a model will typically cause the set of valid
(possible) instances of that model to differ from the set of instances represent-
ing intended state of affairs in that domain [11]. We name these configurations
Anti-Patterns for Ontology-Driven Conceptual Modeling, or simply, Ontological
Anti-Patterns.

In this chapter, we focus on the study of Ontological Anti-Patterns in a par-
ticular conceptual modeling language named OntoUML [11]. OntoUML is an



example of a conceptual modeling language whose meta-model has been designed
to comply with the ontological distinctions and axiomatization of a theoretically
well-grounded foundational ontology named UFO (Unified Foundational Ontol-
ogy) [11]. UFO is an axiomatic formal theory based on theories from Formal On-
tology in Philosophy, Philosophical Logics, Cognitive Psychology and Linguistics.
OntoUML has been successfully employed in a number of industrial projects in
several different domains, such as petroleum and gas, digital journalism, complex
digital media management, off-shore software engineering, telecommunications,
retail product recommendation, and government [12].

This chapter can be seen as complementary to our earlier work [23]. How-
ever, while previously we have focused on anti-patterns that are connected to the
modeling of relations, here we focus on anti-patterns that emerge in connection
to the modeling of role types, i.e., anti-rigid and relationally dependent types
[11]. Stereotypical examples of role types include husband, student, employee,
president, wife, etc. For instance, student is an anti-rigid type, i.e., a type that
classifies its instances contingently. In other words, no student is necessarily a
student (in a modal sense) and every instance of student can cease to be a stu-
dent without ceasing to exist. Moreover, in order to be student, someone must be
enrolled in an educational institution, i.e., being a student is a type of relationally
dependent property.

The contributions of this chapter are three-fold. Firstly, we contribute to the
identification of three new Ontological Anti-Patterns for Conceptual Modeling,
in general, and for OntoUML, in particular. We do that by carrying out an
empirical qualitative approach over a model benchmark of 54 OntoUML models.
Secondly, after precisely characterizing these anti-patterns, we propose a set of
refactoring plans that can be applied to the models in order to eliminate the
possible unintended consequences induced by the presence of each of these anti-
patterns. Finally, we present an extension for Menthor Editor, an OntoUML
model-based editor with a number of features for: (i) automatically detecting anti-
patterns in user models; (ii) supporting the user in exploring the consequences
of the presence of an anti-pattern in the model and, hence, deciding whether
that anti-pattern indeed characterizes a modeling error, either because it allows
unintended model instances or because it forbids intended ones; (iii) automatically
executing refactoring plans to exclude these unintended model instances, which
can take the form of Object Constraint Language (OCL) [18] constraints or direct
interventions in the model.

The remainder of this chapter is organized as follows: in Section 1.2, we briefly
elaborate on the modeling language OntoUML and some of its underlying onto-
logical categories; Section 1.3 discusses the notion of Ontological Anti-Patterns
as taken in this work with some brief discussion of related work; Section 1.4
discusses the anti-pattern elicitation method employed here and characterizes the
model benchmark used in this research; Section 1.5 presents the elicited Ontologi-
cal Anti-Patterns with their unintended consequences, as well as possible solutions
for their rectification in terms of model refactoring plans; Section 1.6 discusses
empirical data about the occurrence of these anti-patterns in our model reposi-
tory and presents the results of an additional industrial empirical study aimed at
investigating the accuracy of our anti-pattern catalog as well as the efficacy of the



proposed refactoring plans; Section 1.7 elaborates on the extensions implemented
in the OntoUML editor taking into account these anti-patterns; Finally, Section
1.8 presents some final considerations.

1.2. Ontological Foundations

OntoUML is a language for Ontology-driven Conceptual Modeling, whose meta-
model was designed to comply with the Unified Foundational Ontology (UFO)
[11]. OntoUML has constructs that represent the ontological distinctions put forth
by UFO as well as constraints on how these constructs can be combined. These
OntoUML metamodel constraints are derived from the UFO axiomatization of
the respective ontological distinctions. In the sequel, we briefly introduce some
few OntoUML constructs that are germane for the purposes of this article. For a
complete presentation and formal characterization of the language, the reader is
referred to [11].

One of UFO’s fundamental notions is that of rigidity. Rigidity is a property
of types (i.e., a meta-property) that specifies whether its instantiation is essential
or accidental for its instances. Rigid types are the ones that aggregate essential
properties to all its instances, requiring them to instantiate it while existing (e.g.
Car, Forest, Person, Band). Anti-rigid types, in contrast, aggregate accidental
properties for its instances. If an individual instantiates an anti-rigid type in a
given situation, there is at least one other alternative situation where it does not
do so (e.g. Adult, Student, Customer, Husband).

In this paper, for the sake of conciseness in our presentation, we restrict
ourselves to a fragment of OntoUML focused on sortal types. A sortal type is
a type that carries a uniform principle of identity for its instances. Rigid sortal
types, as the name suggests, are rigid types whose instances follow a unique
principle of identity (e.g person, man, dog). A particular type of rigid sortal is
the substance sortal type, which supplies a principle of identity for its instances
(e.g. person, organization, car). In UFO and, hence, in OntoUML, substances
sortals are either kinds, collectives or quantities. Since the examples used in
this chapter are centered around functional entities of everyday experiences (e.g.,
people, organizations, computer systems), focusing on the notion of kind will
suffice and will not cause a loss of generality. Still within the category of rigid
sortals, we have rigid types that specialize substance sortals. These are termed
subkinds (e.g. man, woman, Brazilian). Among the category of anti-rigid sortals,
we have phases (e.g. adult, puppy, living) and roles (e.g. employee, student). In
summary, in OntoUML, a sortal type is either a substance sortal (e.g., a kind) or
a subtype of unique substance sortal (e.g. a subkind, role or phase). For more
information, please see [11].

For this chapter, the notion of «role» is central. A Role is a type that is not
only anti-rigid but also relationally dependent, i.e., a type whose instantiation
depends on individuals bearing relational properties of certain sorts. In other
words, in order to instantiate (play) a certain role, an individual must participate
in certain material relations. Examples of roles and their respective relational
dependencies include: a student and its enrollment in a school, an employee and
its employment contract with a company, and a father with his legal children.



UFO (and, hence, OntoUML) distinguishes between two broad categories of
relations, namely formal and material relations. In order for a set of individuals
to participate in a material relationship (i.e., a relation instance), they must be
connected (mediated) by yet another entity termed a relator. A relator is said
to be the truthmaker of that material relationship [10]. Take for instance the
relation studies-at that can hold between a student and an university. For it to
be true that Camila studies at University of Trento, there must be a particular
enrollment connecting them (the relator). Other examples of material relations
and their respective relator types are married-to and marriage, works-at and
employment, and being-the-president-of and presidential mandate.

In OntoUML, we represent material relations using the «material» stereotype,
and relator types are marked with the «relator» stereotype. Relations stereotyped
as «mediation» are used to connect the related types (typically «role» classes) to
the corresponding relator type (stereotyped as «relator»). Finally, the «deriva-
tion» relation is a formal relation connecting a material relation to the relator
type whose instances are the truthmakers of the instances of that material rela-
tion (e.g., it connects the married-with relation to the relator type Marriage such
that, for instance, married-with(Tiago,Camila) holds iff there is an instance of
Marriage mediating the two).

Relators are examples of existentially dependent entities in UFO and On-
toUML. In fact, they are examples of multiply existentially dependent entities,
i.e., entities that depend on a multitude of individuals [11]. They belong, how-
ever, to a broader class of existentially dependent entities termed moments (also
termed tropes, abstract particulars, objectified properties or particularized prop-
erties) [11]. So, relators are multiply dependent moments. In UFO; a moments
that is existentially dependent on single entity is either a mode (e.g., a symptom,
a belief, a disposition) or a quality (e.g., the color of an apple, the weight of a
person) [11].

1.3. What is an Anti-pattern in Ontology-driven Conceptual
Modeling?

Inspired by the Gang of Four’s seminal work on design patterns [9], Andrew
Koenig coined the term “anti-pattern” [15]. His original definition states that an
anti-pattern is just like a pattern, in the sense that it is a recurrent solution for a
given problem, but it is one that entails more bad consequences than good ones.
To an anti-pattern, a proper pattern is to be associated as a better solution to the
problem at hand. “The Blob” is an example of an anti-pattern for object-oriented
software design [5]. The authors of that anti-pattern describe it as a procedural
style design in an object-oriented environment, which cause one or few classes to
aggregate most of the functionalities of the system, while the remainder classes
just carry basic data or perform simple tasks.

In the late 90’s, Fowler introduced the notion of code smells (or bad smells) [8].
The concept of code smell stands for a distinct code structure that requires careful
attention because it is likely to produce maintainability and comprehensibility
issues on the software being developed. The name smell conveys the idea of
something “fishy” regarding the code. In their proposal, code smells are guides



for code refactoring. The most basic example of a code smell presented by Fowler
is the “Duplicate Code”. Its definition is straightforward, a given code structure
repeated in different places throughout a larger body of code.

In our work, we bring the ideas of anti-patterns and code smells to ontology-
driven conceptual modeling, in general, and to OntoUML, in particular. Instead
of software development, we deal with the problem of accurately capturing and
formalizing a given conceptualization into a domain conceptual model. Instead
of dealing with code structures, we deal with model structures. The idea is that
“fishy model structures”, in this in this context, lead to domain misrepresentations
from an ontological point of view.

We define an ontological anti-pattern as a modeling pattern that, despite
producing syntactically valid conceptual models, it is prone to be the source
of domain-related ontological misrepresentations. An anti-pattern must have a
defined structure and refactoring options (or rectification plans) associated to it.
Note that our definition combines the ideas behind anti-patterns and code smells.
On one hand, we identify structures that capture recurrent modeling decisions
that are prone to decrease model quality. Moreover, we combine these structures
with appropriate solutions. In this spirit, our anti-pattern definition resembles
the original one of Koenig. On the other hand, because our anti-patterns point to
decisions that are not always incorrect and mean to serve as a guide for modelers
to validate (and possibly refactor) their models, they also resemble code smells.
We emphasize that our notion of anti-patterns is not as synonym for a modeling
error or a bad modeling practice. One should think of it as model fragments that
are worth “putting under the microscope”. On one hand, unlike Koenig’s definition
of anti-pattern, the modeling solution at hand is not necessarily a bad one. On
the other hand, unlike code smells, the decisions do not imply maintainability or
architectural issues.

We should also differentiate an anti-pattern from a recurrent modeling expres-
sion that when created in a particular language always represents an error. Take,
for instance, the situation in which an anti-rigid type is represented as a supertype
of a rigid type, i.e., a type that classify its instances necessarily (e.g., the natural
kind Person). This situation always leads to a logical contradiction [11]. As such,
this is not an example of an anti-pattern, it is a logical (and ontological) mistake.
In order to avoid this mistake, a language should include a syntactical constraint
in its metamodel to always deem such a situation as syntactically invalid (i.e., as
a syntactical error). This is exactly what is done in OntoUML [11], in which the
incorporation of ontological constraints in its meta-model prevents the represen-
tation of ontologically non-admissible states of affairs [11], i.e., representations
that would contradict UFO’s domain-independent axiomatization. However, as
discussed in [11] there is no way a domain-independent language can exclude in a
prioristic manner models that admit as instances representations that contradict
domain-specific axiomatizations, i.e., instances that represent unintended state of
affairs according to domain-specific conceptualizations [11].

To illustrate this point, suppose a conceptual model representing a transplant.
In this case, we have domain concepts such as Person, Transplant Surgeon, Trans-
plant, Transplanted Organ, Organ Donor, Organ Donee, etc. Suppose that this
model has as a possible instance one that represents a state of affairs in which



the Donor, the Donee and the Transplant Surgeon are one and the same Per-
son. Now, suppose that this instance represents an unintended state of affairs
according to our assumed conceptualization of the domain of transplants. Notice
that the state of affairs represented by this instance is only considered inadmis-
sible (unintended) due to domain-specific knowledge of social and natural laws.
As discussed in [11], the presence of this unintended instance is typically caused
in OntoUML models by the introduction of a particular model fragment. Such
a model fragment would be an example of what we term here an Ontological
Anti-Pattern.

1.3.1. Related Works: Anti-Patterns in the Semantic Web

Since Koenig’s original proposal [15], the concept of anti-pattern has been applied
in a variety of fields other than software design. We are unaware of other works in
the literature that systematically study anti-patterns for ontology-driven concep-
tual modeling. For this reason, we compare our take on anti-patterns to related
in the context of the semantic web. As it shall become clear in the sequel, when
referring to anti-patterns or similar notions, these works assume an interpretation
of the term that differs significantly from the one employed here.

In [20], Roussey et al. focus on OWL anti-patterns. For them, an OWL
anti-pattern is a pattern that is commonly used by domain experts in their OWL
implementations and that normally result in inconsistencies. They argue that
anti-patterns come from a misuse and misunderstanding of description logics ex-
pressions by ontology developers. Their anti-patterns are classified in three ex-
clusive categories: (i) logical, which represents errors that reasoners detect; (ii)
cognitive, which classifies possible modelling errors that are not detected by rea-
soners; and (iii) style (originally named “Guidelines”), which describes logically
correct expressions made unnecessarily complex, e.g using the complement oper-
ator instead of disjointness. Our approach differs from theirs in the nature of the
problems we investigate. First, we are not concerned with inconsistency issues
here because the most typical logical mistakes that are of an ontological nature
are prevented by OntoUML’s metamodel by design. Moreover, we are also not
concerned with anti-patterns as conventional guidelines in the same spirit because
we want to improve model precision and accuracy, not readability or maintainabil-
ity. Lastly, cognitive anti-patterns include problems like expression redundancy,
which is also out of the scope of our anti-pattern validation approach.

Poveda-Villalón et al. build their validation approach [19] around the concept
of common ontology pitfalls . A pitfall stands for an anomaly or worst practice in
ontology design identified through empirical analysis. As Roussey et al., they also
see these recurrent problems as misunderstanding and misusing the description
logics constructs. The authors classify the common pitfalls identified in RDF
and OWL ontologies, from two different perspectives. First, regarding the type
of problems they can cause, the pitfalls are classified into structural, functional
and usability pitfalls; second, regarding the quality criteria they affect, they are
classified into the categories of consistency, completeness and conciseness pitfalls.
The use of pitfalls for ontology validation is supported by a tool named OOPS!
Ontology Pitfall Scanner [19]. In our work, we require anti-pattern definitions



to prescribe finite and identifiable model structures. In contrast, many pitfalls
proposed in OOPS! do not have this property. An example is the pitfall “Merging
different concepts in the same class”, which rely on an analysis of class names, to
identify the use of the operators “and” or “or” on the class name.

Baumeister and Seipel investigate recurrent anomalies in OWL ontologies en-
riched with SWRL rules [4]. They distinguish between four types of anomalies,
namely circularity, inconsistency, redundancy, and deficiency. Circularity refers to
circular definitions in the ontology, involving either classes, properties and rules,
that hinder the performance of reasoners. The inconsistency category describes
anomalies that produce actual logical contradictions in the ontology. A very com-
mon example, according to the authors, is the definition of a class as subclass of
two disjoint classes. Anomalies related to redundancy point out knowledge that
can be excluded from the ontology without changing its semantics. Lastly, defi-
ciency anomalies refer to problem of completeness, understandability and main-
tainability of the ontology. An example of deficiency is the “lazy class”, which
stands for classes that have little use in practical applications of the ontology.

In summary, our approach differs from all the aforementioned efforts on a
very key aspect. We do not intend that our anti-patterns support modelers in
building the models correctly, but in building the (ontologically) correct model
for the domain. In other words, our focus is on model validation instead of model
verification [11]. Because of that, we do not focus on modeling patterns that
are always wrong (e.g. patterns that lead to logical inconsistency). Instead, we
focus on anti-patterns that represent structures that frequently (as empirically
demonstrated) cause dissociations between the set of valid instances admitted by
a model and the set of intended instances admitted by the underlying domain
conceptualization [11].

1.4. Empirically Uncovering Ontological Anti-patterns

1.4.1. Method

Our approach to identify ontological anti-patterns is an empirical qualitative anal-
ysis. It starts with the selection of a particular model for analysis. Within the
selected model, the second step is to select relevant fragments for analysis. Such
fragments can consist of a whole diagram, a subset of a diagram or even a new
“artificial” diagram produced for the sake of analysis (model inspection).

Step three is to inspect the selected portion of the model and identify possible
problems. We conduct this activity using visual model simulation [12]. This
simulation consists in converting OntoUML models into Alloy [14] specifications,
generating possible model instances and contrasting these instances with the set
of intended instances of the model. The set of intended instances correspond
to those that represent intended state of affairs [11] according the creators of
the models. Upon the identification of a mismatch, we register it as a potential
problem.

After detecting a possible problem, we analyze the model in order to identify
which structures (i.e., combination of language constructs) caused that problem.



In the sequence, we interact with the modelers (when available) or inspect the
documentation accompanying the model to define whether the identified structure
is indeed problematic. If it is, we propose a possible solution to rectify the model
and register it as a (problem, solution) pair. With a recently modified model, we
go back to step three. This iteration is repeated until no more problems can be
identified in the fragment and then, another fragment is selected. The analysis
stops whenever we inspect all relevant model fragments. After inspecting each
model, we analyze the generated problem-solution pairs in order to generalize
them into pairs of anti-patterns and refactoring plans.

1.4.2. Model Repository

Our empirical analysis for uncovering anti-patterns was performed using a repos-
itory of 54 models1. Tables 1.1 and 1.2 provide an summary on the models our
repository according to the following dimensions:

• Name: the name provided by the model’s authors. If none was provided,
we baptized the model with a chosen intuitive name.

• Context: the scenario in which the model was developed. The model is
placed in one of the following categories: Government Project, for mod-
els developed by or in cooperation with governmental entities; Industrial
Project, for models produced by or in cooperation with private companies;
Graduate course assignment (assignment) for models produced by gradu-
ate students as a final assignments of an “Ontology Engineering” 60-hour
course offered by the Graduate School on Informatics of the Federal Uni-
versity of Espírito Santo; PhD Thesis (PhD), MSc Dissertation (MSc) and
BSc Monograph (Bsc), for models produced as outcome of academic re-
search in each of these respective levels; and Other, for the models that do
not fit the aforementioned categories.

• Purpose: describes the motivation for building the model at hand. The
category termed interoperability is intended for those models created as
reference models for semantic interoperability between agents and/or sys-
tems; ontological analysis (ontol. analysis) classifies models developed to
evaluate conceptual modeling languages or other domain formalizations;
reference model (reference model) classify those models that are proposed
as reference ontologies for a given community; knowledge-based application
(kb application) stands for models created to support the development of
this kind of applications; lastly, unspecified categorizes models whose au-
thors did not provide further characterizing information on this topic.

• Expertise (Exp.): describes the authors’ familiarity to the OntoUML
language during the development of the ontology. We classify a modeler
as a beginner (beg) if he/she had at most a year of experience using the
language, and as advanced (adv) otherwise.

• Number of Participants (Part.): provides an estimated number of peo-
ple involved in the production of the ontology. We consider as participants

1The conceptual models in this table are publicly available at: http://www.menthor.net/

model-repository.html. The few exceptions of missing models are due to non-disclosure agree-
ments that prohibited their publication.

http://www.menthor.net/model-repository.html
http://www.menthor.net/model-repository.html


those actively involved in either scope definition, knowledge acquisition,
design or evaluation. For published models, we estimate the number of
participants using the authors of the publication, whilst for those models
developed in the context of theses, we consider the student and all official
supervisors.

Table 1.1 lists the 32 models developed as graduate course assignments, whilst
Table 1.2 present the remainder 22. From these, 11 models were developed dur-
ing academic research without industry collaboration. An example is The Con-
figuration Management Task Ontology [6], a product of a Masters dissertation.
Furthermore, seven models had total or partial participation of private companies
and/or governmental organizations. The most significant one is the MGIC On-
tology [3], developed in the context of a research project with a regulatory agency
responsible for controlling ground transportation services in Brazil. Finally, the
development contexts of 4 models were not available.

Concerning the purpose for which the models have been created, the reposi-
tory contains 10 models (16%) that are intended to serve as a reference domain or
core ontologies (e.g. UFO-S [17] for the domain of services). Another 10 models
(16%) have been developed in order to perform ontological analysis on existing
formalizations, databases or modeling languages. An example is the refactoring
of the Conceptual Schema of Human Genome presented in [16]. The reposi-
tory also contains 8 models (13%) designed for supporting the development of
knowledge-based applications, 6 (10%) whose main intention was to support se-
mantic interoperability between systems and/or organizations, and only two (3%)
for the purpose of enterprise modeling. For the remainder 26 models (42%), there
is no information w.r.t. this classification dimension.

Regarding the modeler’s overall expertise in OntoUML, 22 models (41%)
have been developed by beginners (18 of these models are also graduate course
assignments) and 32 (59%) developed by experienced modelers. Finally, we look
into the total number of modelers involved in the model construction. A single
person participated in the development most of the models (35 models, roughly
65%). However, 15 models were the product of collaboration efforts between 2-4
people and 4 models involved 7-10 conceptual modelers.

1.5. Ontological Antipatterns

In this section, we extend the anti-pattern library presented in [13, 22, 23] with
three anti-patterns centered around OntoUML’s «role» construct. In order to
facilitate learning and usage of these anti-patterns, we describe them following a
consistent format. First, we discuss each anti-pattern in natural language. Next,
for each anti-pattern, we present a table that summarizes the anti-patterns es-
sential characteristics. Lastly, we exemplify that anti-pattern with one its occur-
rences in the models presented in the model repository considered in this study.
For each anti-pattern, we then describe the following information:

• Name and Acronym: unique identification in the catalogue;
• Description: a general description of the anti-pattern;



Table 1.1. Overview of models in the repository developed as assignments.

Model Context Main Purpose Exp. Part.
Gi2MO Refactored assigment ontol. analysis adv 1
Internal Affairs Ontology assignment ontol. analysis adv 3
Library Model assignment unspecified beg 1
Public Tenders Model assignment unspecified adv 1
Social Contract Model assignment unspecified beg 1
Clergy Model assignment unspecified beg 1
FIFA Football Model assignment unspecified adv 1
IDAF Model assignment unspecified adv 1
University Model assignment unspecified beg 1
GRU MPS.BR Model assignment unspecified beg 1
Experiment Model assignment unspecified beg 1
Parking Lot System assignment unspecified adv 1
Quality Assurance Ontology assignment unspecified adv 1
Music Ontology Refactored assignment ontol. analysis adv 1
Internship Model assignment unspecified adv 1
G.809 Model assignment unspecified beg 1
Online Mentoring Model assignment unspecified adv 1
Help Desk System Model assignment unspecified beg 1
IT Infrastructure Model assignment unspecified beg 1
Photography Model assignment unspecified beg 1
FIRA Ontology Refactored assignment onto analysis adv 1
Banking Model assignment unspecified adv 1
Chartered Service Model assignment unspecified adv 1
Health Organization Model assignment unspecified beg 1
Bank Model 2 assignment unspecified adv 1
PROV Ontology Refactored assignment ontol. analysis beg 1
WSMO Refactored assignment ontol. analysis beg 1
Recommendation Model assignment kb application beg 1
Project Management Model assignment unspecified beg 1
Construction Model assignment unspecified beg 1
Stock Model assignment unspecified beg 1
Real State Model assignment unspecified beg 1



Table 1.2. Overview of models in the repository developed in various contexts.

Model Context Main Purpose Exp. Part.
OpenFlow Ontology BSc kb application beg 2
CMTO MSc interoperability adv 2
OntoEmerge MSc kb application adv 8
PAS 77:2006 Ontology MSc ontol. analysis adv 4
Cloud Vulnerability
Ontology

MSc reference model adv 4

OntoUML Org Ontology MSc ontol. analysis adv 2
ECG Ontology MSc interoperability adv 3
Requirements Ontology MSc kb application adv 2
Open proVenance Ontology PhD reference model adv 3
CSHG Refactored PhD ontol. analysis adv 3
UFO-S PhD reference model adv 7
MGIC Ontology government enterprise model adv 10
MPOG Ontology Draft government reference model beg 7
OntoBio government interoperability adv 3
Normative Acts Ontology government reference adv 3
G.805 Ontology industry ontol. analysis adv 4
G.805 Ontology 2.0 industry kb application adv 3
G.800 Ontology industry kb application adv 3
TM Forum Model other unspecified beg 1
School Transport Model other application beg 1
ERP System Model other interoperability adv 1
Inventory System other interoperability adv 1



• Structure: structural definition of an anti-pattern, consisting of (i) pattern
roles, to describe the elements that participate in the anti-pattern, their
possible stereotypes and cardinalities; and (ii) a generic example, i.e., a
graphical exemplification of the anti-pattern’s generic structure;

• Refactoring Plan: recurrent alternative solutions defined as a sequence of
actions that can be used to rectify the model containing the problem created
by the occurrence of that anti-pattern. Includes: (i) constraint definition,
to indicate the specification of an OCL constraint; (ii) element modification,
to indicate a change in a model element (e.g. meta-property change); and
(iii) element creation, to indicate the introduction new elements to the
model.

Note that mediation (and characterization) relations always have a minimum
cardinality of at least 1 and an immutability meta-property (i.e., readOnly =
true) in their target association end, i.e., on the association end of this relation
connected to the mediated (characterized) type. For the sake of brevity, we
refrain from repeating these constraints in each depiction of these relations when
presenting anti-pattern structures.

1.5.1. Relator Mediating Rigid Types

The first anti-pattern we introduce here is called Relator Mediating Rigid Types
(RelRig). Its occurrence is characterized by a «relator» class R connected to one
or more rigid sortal classes T1..Tn (e.g. «kind», «subkind») through «mediation»
relations. RelRig’s main characteristics are presented in Table 1.3.

A type Ti is deemed relationally dependent if it is connected to a «relator» R
through a «mediation» m. In other words, for an individual x to be an instance
of type Ti there must exist an instance of R that mediates x [11]. For instance,
Student is typically a relationally dependent type whose instances are mediated
by instances of Enrollments, i.e., in order for someone to be a Student, she must
be mediated by a particular Enrollment. Notice that in this example, Student is a
«role». The issue at stake with this anti-pattern is that rigid sortal types aggregate
essential properties of individuals and thus are usually relationally independent
types [11]. Mediation relations, in contrast, are commonly used to define roles,
i.e., anti-rigid types that aggregate accidental relational properties.

In our empirical investigation, we confronted ontologists regarding the models
in which they judged that this anti-pattern really introduced an error (i.e., an
unintended representation). Our goal was to find out which was the original
modeling intention that caused (by mistake) the introduction of this anti-pattern
in the model.

(i) the mediated type Ti at hand should actually be modeled as a role. For
instance, suppose one represents a type Public Enterprise as a «subkind»
of Enterprise that is connected to a «relator» type Public Offering. In this
case, if an Enterprise can exist before going public, it means that being a
Public Enterprise is a contingent (and relationally dependent) subtype of
Enterprise;



Table 1.3. Summary of the RelRig anti-pattern

Name (Acronym) Description
Relator Mediating
Rigid Types (RelRig)

A relator connected to one or more rigid types
through mediations. This is a potential problem
because relational dependencies are commonly de-
fined for anti-rigid types.

Pattern Roles
Mult. Name Allowed Metaclasses

1 R «relator»
1..* mi «mediation»
1..* Ti «kind», «quantity», «collective», «subkind»

Generic Example

Refactoring Plans
1. Role: Change T

0
i s meta-class to role.

2. Role subtype: Create a role that specializes Ti and reconnect the
respective mi to it.

3. Reversed dependency: a) change Ti to mode and Mi to characteri-
zation or b) change Ti to relator and invert mi.

4. Bidirectional dependency: transform R into a sortal and change mi

into an essential and inseparable parthood relation.



(ii) the «mediation» relation was not supposed to be declared with a mandatory
cardinality constraint from the perspective of Ti (i.e., in the association
end opposite to Ti in the «mediation» relation). Now, if this cardinality
constraint is an optional one, this means that there is a subtype STi of
Ti that has been omitted in the model. Notice that STi is defined as the
type instantiated by the instances of Ti when mediated by instances of the
«relator» R at hand. As such, STi is by definition a «role» since: it is
anti-rigid - the instances of STi can exist (as instances of Ti) without being
instances of STi; instances of Ti become instances of STi when mediated
by instances of R. As an example of this situation suppose that someone
represents a constraints stating that instances of Person are necessarily
connected to a Citizenship (a «relator»). After inspection, the modeler can
realize that actually there are people that do not have a Citizenship (e.g.,
people that were born but not yet formally registered) and that there is
a subtype of Person (namely Citizens) that have a Citizenship connecting
them to a Country ;

(iii) there is indeed an existential dependency that should be represented in the
model but in the reverse direction, i.e., it is the type Ti that has instances
that are existentially dependent on corresponding relators, not the other way
around. This means that this otherwise mediated type is not a sortal type
but a type whose instances are moments. This case has still two variants:

(a) the case in which Ti is a type whose instances are modes, in which
case the «mediation» relation between Ti and R should be replaced by
a «characterization» relation. As an example, take the case in which
we have a Bundle of Rights that one has in the scope of a particular
Employment ;

(b) the case in which Ti is a type whose instances are relators, in which
case the mediation relation between Ti and R is indeed a mediation
relation but it is Ti that connects instances of R to instances of an-
other type and not the other way around. As an example, suppose we
have a Chairmanship as a Parliament Commission Chairman, which
existentially depends on a Mandate «relator» (as well as on a specific
Commission). As this example shows, finding out that Chairmanship
is actually a relator triggers a process of instantiating the entire Rela-
tor Pattern [12], which in turn leads to the possible discovery of the
role Parliament Commission Chairman (a «role» played by instances
of the «role» Congressman) as well as the type Commission;

(iv) finally, we have a case in which there are indeed mutual existential depen-
dence relationships between instances of Ti and instances of R. However, as
discussed in depth in [11], sortals are not existentially dependent on entities
from which they are mereologically disjoint. In other words, if a sortal x is
existentially dependent on sortal y then either x must necessarily be a part
of y (which we term an inseparable part) or y must necessarily be a part of
y (which we term an essential part) (see [11] for details). As an example of
this case, suppose that one wants to model that a Social Contract R creates



a Joint Venture between a number of organizations T1..Tn that only exist
for the scope of that transient Joint Venture, i.e., once the social contract
ceases to exist then the organizations themselves cease to exist. In this case,
the relation between an Organization instance of Ti and an instance r of R
is not one of mediation but one of inseparable and essential parthood. In
other words, r is defined as a mereological sum of instances of Ti and each
instance of Ti only exist as part of that Joint Venture r.

Figure 1.1. RelRig example extracted from the PAS-77 Ontology [7].

Figure 1.1 presents a model fragment adapted from the PAS-77 Ontology [7]
that contains a RelRig occurrence. This simplified fragment states that a Website
has to be installed in one or more Servers. It also states that a Server has at least
one Website running on it. Finally, the authors distinguish Servers with regard
to where they are located, i.e., within a company or in a remote location.

As it is, the model does not account for recently acquired or formatted com-
puters, which would not have any application running on them. If this is a
desired possibility, the authors have improperly characterized Server as a «kind».
Instead, it is a «role» a Computer System play when hosting an application or a
website. Regarding the representation of Website, the model forbids the existence
of instances of website that are not installed in any server. If we consider that a
Website exists since its development, when it is not running anywhere, then we
may want to include a new «role» in the model, namely Active Website.

1.5.2. Free-Floating Role Specialization

The Free-Floating Role Specialization (FreeRole) anti-pattern focuses on uncov-
ering (possibly) missing conditions for certain roles to be instantiated. Its generic
structure consists of: a «role» Ro connected to relators Ri..Rn through media-
tions mi..mn; the «role» Ro is specialized by one or more roles SRoi..SRon; the
specializing SRoi..SRon are not directly connected to any additional «mediation»
relations. The essential features of the FreeRole anti-pattern are summarized in
Table 1.4.

Our empirical investigation suggests that FreeRole occurrences are often mod-
elling errors, which can be corrected by applying one of the following role special-
ization refactoring plans:

(i) Derived sub-role: this should be applied when SRoi is instantiated according
to a derivation rule. For example, a Person plays the role of Student when



Table 1.4. Summary of the FreeRole anti-pattern.

Name (Acronym) Description
Free Role Specializa-
tion (FreeRole)

A role connected to a relator through a media-
tion, is specialized by one or more roles, which, in
turn, are not connected to additional mediation
relations. This pattern suggests that a properly
characterized instantiation criteria for these spe-
cializing roles might be missing.

Pattern Roles
Mult. Name Allowed Metaclasses

1 Ro «role»
1..* mi «mediation»
1..* Ri «relator»
1..* SRoi «role»

Generic Example

Refactoring Plans
1. Derived sub-role: add proper OCL constraint defining the derivation
rule at hand.
2. Role-of-a-role: create a new relator R and connect it to SRoi using a
new mediation relation.

3. Intentional sub-role: create a new relator SRi by specializing Ri

and connect it to SRi using a new mediation.



she enrolls at an Educational Institution; Students are classified as Freshmen,
if enrolled for less than a year, and as Seniors otherwise;

(ii) Role-of-a-role: this should be applied when SRoi is instantiated due to an
additional relational dependency. To exemplify, we use the Student concept
once more. A Student becomes an Intern when she starts an Internship
program (a new relator) within a Company ;

(iii) Intentional sub-role: this is suggested when SRoi is instantiated due to
a particular subtype of the generic dependence relation characterizing role
Ro. As an example, consider the concepts of Bachelor Student and Gradu-
ate Student. These are both types of Student, and thus, both are defined by
Enrollments. However, each of these student roles requires particular sub-
types of Enrollments with particular characteristics. For instance, unlike a
Bachelor Enrollment, a Graduate Enrollment requires the assignment of a
Thesis Supervisor.

Figure 1.2. FreeRole example extracted from the OntoEmerge Ontology.

The small model fragment depicted in the right side of Figure 1.2 corresponds
to a FreeRole occurrence encountered in OntoEmerge [2], an ontology for the
emergency domain. In this current presentation, the model accepts that for a
given allocation, a person can play an emergency-related role at a given time and
a non-emergency one at another, without any apparent property being changed in
the allocation itself. The intentional sub-role pattern can then be used to provide
a more suitable representation for this domain. In this case, two subtypes of the
relator would be created, one for each type of business resource role.

1.5.3. Multiple Relational Dependency

Roles are relationally dependent types. This means that an individual plays (or
instantiates) a role whenever a particular type of material relation is established
with another individual. OntoUML, however, does not impose any constraint
with respect to the number of material relations that can be use to characterize a
role, each possibly representing a different source of relational dependence. The
Multiple Relational Dependency (MultDep) anti-pattern focuses the attention of
the modeler on types whose definition includes multiple material relations char-
acterizing a role. Structurally, its identification consists of a sortal class directly



connected to two or more «mediation» relations. Table 1.5 provides an overview
of the MultDep anti-pattern.

A MultDep occurrence requires attention because, through our empirical anal-
ysis, we identified that it might indicate:

(i) The model might be over-constrained, in the sense that one or more «me-
diation» relations represented as mandatory relations are in fact optional
relations. This could in itself can potentially hide other implicit role types;

(ii) In addition to (i), there is a particular order in which two or more optional
«mediation» relations can be established;

(iii) The model is lacking a relationship between two or more of the «relator»
types that characterize the multiple sources of relational dependence.

The first step to analyze a MultDep occurrence is to verify whether the as-
cribed mediation relations are indeed mandatory. If that is not the case for a given
mediation relation, the appropriate refactoring solution is the transformation of
that mediation relation into an optional one. This is followed by the inclusion
of a new role in the model, which would “carry” the mediation relation for itself.
In the particular case in which a modeler concludes that two or more mediation
relations are optional, an evaluation of whether they are established in a partic-
ular sequence is in order. To exemplify, consider two roles that can be played
by a person: the student role, when related a school (via an enrollment relator),
and the employee role, when related to a company (via an employment relator).
A priori, one cannot make any assertion w.r.t the order in which one becomes
a student and an employee. Conversely, if we consider the roles of student and
intern (and their implied dependencies) there is clearly a restriction regarding
the order in which these two roles should be played, namely, that a person could
only become an intern if she is already a student. This means that the internship
(a relator) connecting an intern to a company depends on the existence of an
enrollment (another relator) connecting that intern as a student to a school.

If the class that characterizes the MultDep occurrence has more than two
mediations connected directly to it, a modeler might refactor it by simultaneously
defining ordered and unordered optional mediation relations. Nonetheless, when
creating unordered dependencies, all new roles should specialize the same super-
type. If an order is required, the modeler should create the new roles as subtypes
of one another, i.e., they should obey a pre-defined hierarchical order.

Figure 1.3. MultDep example extracted from the MGIC Ontology [3].



Table 1.5. Summary of the MultDep anti-pattern.

Name (Acronym) Description
Multiple Relational
Dependency (MultDep)

A sortal class directly connected to two dis-
tinct relators through mediation relations.
This structure might indicate redundancy,
over constraining or scope issues.

Pattern Roles
Mult. Name Allowed Metaclasses

1 T All sortal types
2..* mi «mediation»
2..* Ri «relator»

Generic Example

Refactoring Plans
1. Unordered optional dependency: For each selected mi, create a
direct subtype of T and connect mi to it.

2. Ordered optional dependency: For each selected mi, create a new
role following the chosen instantiation order.

3. Relator dependency: For each identified dependency, create a medi-
ation connecting the two relators.



Regardless if a MultDep occurrence identifies optional mediation relations or
not, the next step is to analyze if there are relational dependence sources that
depend on other relational dependence sources. In other words, if there are ex-
istential dependence relations between the relators that embody these different
relational dependence sources. To illustrate this point, consider the following sce-
nario: A person becomes an undergraduate student when she enrolls in a bachelor
program at a university, e.g. Computer Science or Philosophy. A unique num-
ber identifies each enrollment. Victor, a very curious and dedicated young man,
decides to pursue, simultaneously, a major in Philosophy and Computer Science.
To do that, he would need to enroll two times at the university. After his enroll-
ments, Victor wants to apply for Logics 101 as a Computer Science major and
apply for Sociology 101 as a Philosophy major. To do that, each course applica-
tion must not only identify Victor as the applying student, but also identify the
particular enrollment he is using to apply.

The identification of the enrollment in the course application suggests that
a course application is existentially dependent of the student, the course and
the actual specific enrollment associated to a particular major. We propose the
formalization of this dependency in an OntoUML model as a new «mediation»
relation from course application to enrollment in a major.

The MultDep example we selected comes from the ontology developed in the
MGIC project, whose goal was to develop a model for knowledge and informa-
tion management for the Brazilian Ground Transportation Regulatory Agency
(ANTT). The small model fragment depicted on Figure 1.3 states that a public
employee has one or more designations (for a permanent position in the public
administration) and exactly one valid contract. The sensitive issue here is that,
according to the law governing these public positions in Brazil, a given contract
is grounded on a particular designation (a part of the public employment process
in Brazil). As presented in Figure 1.3, the model allows for an independent vari-
ation of contracts and designations, which should not be allowed. Refactoring
plan 3 should be adopted to rectify this model, thus formalizing an existential
dependency from contract to designation.

1.6. Anti-Pattern Evaluation

We define semantic anti-patterns as being error-prone recurrent modeling deci-
sions. Therefore, in order to evaluate them, we analyze two dimensions. This
first is frequency, which measures how recurrent the modeling decisions are. The
second is usefulness, which indicates how error-prone the anti-patterns are. In
this section, we report on the results of two studies we conducted to assess each
of these aspects.

For the sake of clarity, we have only discussed anti-patterns that arise from
role modeling in the case of sortals. However, these anti-patterns are generalizable
to also take into account roleMixins. A roleMixin [11] is just like a role, but instead
of being played by instances of the same kind (e.g. student-person), it is played
by instances of different kinds. Examples of roleMixins include Customer and
Insured Item, the former being played by both people and companies, whilst the
latter being played by cars, houses, and paintings.



We highlight that the following studies use these generalized versions of the
anti-patterns presented in this chapter. Nonetheless, they are still useful assess-
ments of how frequent and how problematic an anti-pattern is. For more details
on the extended version of the anti-patterns, please refer to [21].

We also make emphasize that the version of the RelRig anti-pattern pre-
sented in this chapter is an evolution of the version used in the empirical studies
reported here. The major improvement regards an alteration in the refactoring
plan named "Bidirectional dependency". The previous solution suggested that
modelers should keep the relation under analysis as a mediation and specify it
as a bidirectional dependency. However, this would contradict UFO’s definition
of objects (substantial individuals), which prevents theses individuals from being
existentially dependent of other individuals that are mereologically disjoint from
them. To follow this constraint, the refactoring plan was modified to suggest the
representation of bidirectional dependencies as part-whole relations.

1.6.1. Frequency Analysis

Our first study measured is anti-pattern frequency, i.e., how often modelers de-
sign structures that fit an anti-pattern definition. At this moment, we did not
assess if the identified structures were indeed mistakes. To conduct the study,
we implemented algorithms to automatically query the models for anti-pattern
occurrences, which we later incorporated into the Menthor Editor.

Table 1.6. Frequency evaluation results.

Anti-pattern Occ. M.Occ. M.Occ.
AllMo

RelRig 282 37 69%
FreeRole 199 18 33%
MultDep 105 28 52%

To understand how frequent an anti-pattern occurrence is we organize the
results in Table 1.6. The meaning of each column is the following: Occ. is
the sum of all anti-pattern occurrences in all models of the analyzed repository;
M.Occ. is the number of models with at least one given anti-pattern occurrence
in the analyzed repository; M.Occ.

AllMo represents the percentage rate between M.Occ.
and all models (AllMo) in the repository (i.e., 54, in the case of this repository);

As Table 1.6 shows, the three anti-patterns identified here are indeed recurrent
modeling decisions. RelRig, MultDep and FreeRole were identified 282, 105 and
119 times, respectively, throughout the 54 models. The fact that these modeling
decisions can be found in a significant subset of the inspected models (as shown by
M.Occ.
AllMo ) also corroborates their recurrent nature. Among the three anti-patterns,
RelRig is the most frequent one, found in 69% of the models, whilst MultDep was
identified in a little more than half (52%) of the models, and FreeRole in roughly
a third of them (33%).



1.6.2. Usefulness Analysis

In this second study, we focus on anti-pattern usefulness. The goal is to measure
two things: (i) the probability of an occurrence to characterize a domain misrep-
resentation, i.e., an actual modeling error; and (ii) how often we can predict the
solution for an occurrence whenever a problem is identified, i.e., how often our
rectification solutions to the problems at hand are adopted by the modelers.

It is not possible to conduct a study of this nature in a fully automatic way,
since judging whether an anti-pattern occurrence is an error is a matter of domain
knowledge. With that in mind, we chose to conduct the anti-pattern usefulness
evaluation as a case study using the MGIC ontology [3]. The first reason we chose
this ontology is its size: 3800 classes, 1918 associations, 3616 generalizations,
698 generalization sets, 71 data types, 865 attributes and 149 constraints. The
ontology also contains occurrences of all anti-pattern types, having been developed
by ten modelers throughout three years. Lastly, the ontology was a product of a
governmental project and we had access to the modelers who produced it.

Eight modelers participated in the case study. We assigned sub-domains to
each of them, taking into account their knowledge about the domain and its
complexity (represented by the number of classes and relations used to formalize
it). To guarantee that the modelers would have enough knowledge to analyze
the anti-pattern occurrences, we mostly assigned parts of the ontology that they
designed. We also encouraged modelers to interact with each other during the case
study. Modelers conducted the anti-pattern detection and analysis exclusively
using a modeling environment called Menthor Editor.

Together, the participants analyzed 241 occurrences of the anti-patterns pre-
sented in this chapter. We summarize the results in Table 1.7. The column Occ.
stands for the number of analyzed occurrences of a given anti-pattern type, whilst
the ones labeled as Error and Error

Occ. refer to the total number and percentage of
occurrences considered as modeling errors by the participants, respectively.The
columns Refac., Partial and Custom stand for the sum of occurrences the par-
ticipants fixed using: (i) exclusively our proposed solutions; (ii) a variation of
one of our proposed solutions; (iii) and exclusively custom solutions, respectively.
Refac.
Error presents the percentage of anti-pattern occurrences fixed exclusively using
proposed refactoring plans.

Table 1.7. Usefulness evaluation results.

Anti-pattern Occ. Error Error
Occ.

Refac. Refac.
Error

Partial Custom
RelRig 161 107 66.5% 105 98.1% 1 1
FreeRole 39 23 59.0% 19 82,6% 2 2
MultDep 41 23 56,1% 16 69,6% 6 1
Total 241 153 63,5% 140 91,5% 9 4

By comparing the first two columns of Table 1.7, we have a positive indication
that the proposed anti-patterns are indeed error prone structures. In all three
cases, the participants considered more than half of the analyzed structures errors.
Among the three, RelRig seems to be the most pernicious one, since two thirds



of its occurrences were considered problematic.
This case study also provides positive evidence that the refactoring plans are

actually viable recurrent solutions. RelRig’s refactoring plans were used in almost
all scenarios in which a problem was identified, roughly 98% of the cases. Free-
Role’s predefined solutions were a little less accurate, but still helped participants
in 82.6% of the time. The least accurate refactoring plans belong to MultDep,
even though the results are still positive, namely 69.6%. We hypothesize that this
lower predictability is caused by the limited variety of refactoring plans. In fact,
we only provide alternatives to move the dependencies down the hierarchy, i.e. to
new or existing subtypes, and we neglect the possibility of moving dependencies
up the hierarchy.

1.6.3. Combined Results

To provide a conclusion on anti-pattern evaluation, we cross the frequency of
occurrence of the anti-patterns (measured the percentage of qualified models
containing a given anti-pattern occurrence) with problem-rate (measured by the
number of errors divided by number of occurrences) and effectiveness of our rec-
tification plans (quantified as the number of adopted refactoring plans divided
by the number of occurrences considered as errors). The higher all these three
values are for an anti-pattern, the more useful the anti-pattern is. Anti-patterns
that always occur, with a high probability of characterizing a mistake, and with
effective associated rectification solutions are more likely to be useful in practice.
Less useful anti-patterns, on the other hand, are not those that rarely occur,
but instead those that we frequently find but are rarely the source of domain
misrepresentations. That is because they require a lot of effort to analyze and
provide little gain in model quality. This is not the case of any of the anti-patterns
presented in this chapter.

Table 1.8 describes the combined results of the evaluation. Instead of the
actual percentages for each measurement, we adopted a discrete scale to classify
the values, specified as follows: Very High (80-100%), High (60-80%), Medium
(40-60%), Low (20-40%) and Very Low (0-20%).

Table 1.8. Usefulness evaluation results.

Anti-pattern Frequency Problem Rate Predictability

RelRig High High Very High
FreeRole Low Medium Very High
MultDep Medium Medium High

The results show that among the three anti-patterns presented in this chap-
ter, RelRig is the one that can contribute more during model validation. It is
frequently found, it often points to a modeling error and we are frequently able
to precisely automate its associated refactoring solutions. Although FreeRole and
MultDep did not perform as well, they still fit our criteria for useful anti-patterns,
since they suggest a still relevant problem rate and their solutions are highly au-
tomatable.



1.7. Tool Support

Menthor Editor2, formerly known as OntoUML Lightweight Editor (OLED), is an
ontology-driven conceptual modeling environment. It provides support for model
specification (through ontological patterns), automatic syntax verification, vali-
dation (through visual simulation) and code generation for the semantic web (RD-
F/OWL) and software development (information models). We used the Menthor
Editor environment to implement the anti-pattern management functionalities.

In order to make the anti-patterns helpful for model validation, we repeated
the strategy adopted in [23]. Firstly, we implemented algorithms to automatically
detect occurrences, accessible through the Detection Dialog depicted in Figure 1.4.
In the sequence, based on our pre-defined solutions, we implemented wizards to
interact with users to support anti-pattern analysis. The wizard for RelRig is
also depicted in Figure 1.4. Lastly, we implemented algorithms to automatically
rectify the model using the input provided during the interaction with the wizard.

Figure 1.4. Tool support for anti-pattern management implemented in the Menthor Editor.

1.8. Final Considerations

In this chapter, we extended our work on ontological anti-patterns, proposing
three new error-prone structures in combination with pre-defined rectification
solutions. In particular, the anti-patterns reported here all related to the notion
or roles. Role modeling is of fundamental importance in conceptual modeling
in general and in ontology engineering in particular. For instance, in the MGIC

2Available at http://www.menthor.net

http://www.menthor.net


ontology analyzed in one of our empirical studies, «role» is by far the most used
construct in the model with 1066 occurrences. Hence, the identification of these
anti-patterns and their associated rectification plans as well as their automation
in a model-based computational tool constitutes important contributions to the
theory and practice of these disciplines.

In order to identify these anti-patterns, we have used two empirical studies.
In the first study, by analyzing a model repository of OntoUML models, we inves-
tigated the actual frequency of occurrence of these anti-patterns. In the second
study, by using a real-world massive governmental ontology, we have investigated
how informative are these anti-patterns (how likely they are to spot an actual
modeling error) and how effective are the rectification plans associated to them.

Since anti-patterns signal deviations between intended and valid model in-
stances, and since intended model instances only exist in the mind of domain ex-
perts, anti-pattern discovery is a human-centric activity. Hence, the anti-patterns
currently making our catalog (reported here and in [23]) were discovered in a heav-
ily manual process. As a future work, we intend to addresses these challenges by
studying strategies to (semi) automate the anti-pattern discovery process. For
instance, we would like to provide mechanisms that could automatically learn the
recurrent correlation between (a) structures in the unintended model instances,
(b) structures in the conceptual models that cause them, and (b) solutions pro-
vided by the conceptual modelers over (b) in order to rectify the unintended
situation identified in (a). Once these strategies are identified and implemented
in our computational support, we intend to extend this tool support to be able to
automatically identify these anti-patterns across different conceptual models in
our model repository. A possibly promising path for investigation in that respect,
in the spirit of [1], is the combination of inductive logic learning mechanisms with
the counter-example generation capabilities of our model simulation environment
(based on Alloy).

Bibliography

[1] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Automated support for
diagnosis and repair. Communications of the ACM, 58(2):65–72, 2015.

[2] J. ao L.R. Moreira, L. Ferreira Pires, M. van Sinderen, and P. Dockhorn
Costa. Towards ontology-driven situation-aware disaster management. Jour-
nal of applied ontology, 10(3-4):339–353, December 2015.

[3] C. A. M. Bastos, L. Rezende, M. Caldas, A. S. Garcia, S. M. Filho, and
J. Castro Junior. Building up a model for management information and
knowledge : the case-study for a Brazilian regulatory agency. In Proceedings
of the International Workshop on Software Knowledge, SKY’11, 2011.

[4] J. Baumeister and D. Seipel. Anomalies in ontologies with rules. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 8(1):55–68,
2010.

[5] W. Brown, R. Malveau, H. McCormick, and T. Mowbray. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons, New York, USA, 1998.



[6] R. F. Calhau and R. de Almeida Falbo. A configuration management task
ontology for semantic integration. In Proceedings of the 27th Symposium on
Applied Computing, SAC ’12, pages 348–353, New York, USA, 2012. ACM.

[7] H. C. e Silva, R. de Cassia Cordeiro de Castro, M. J. N. Gomes, and A. S.
Garcia. Well-founded IT architecture ontology: an approach from a service
continuity perspective. In Proceedings of the 4th Networked Digital Tech-
nologies International Conference (NDT’12), pages 136–150. Springer, 2012.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Reading, USA, 1999.

[9] E. Gamma, R. Johnson, R. Helm, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Boston, USA,
1994.

[10] N. Guarino and G. Guizzardi. “We need to discuss the relationship”: re-
visiting relationships as modeling constructs. In Proceedings of the 27th
International Conference on Advanced Information Systems Engineering
(CAISE’15), pages 279–294. Springer, 2015.

[11] G. Guizzardi. Ontological Foundations for Structural Conceptual Modeling.
Centre for Telematics and Information Technology, University of Twente,
Enschede, The Netherlands, 2005.

[12] G. Guizzardi. Ontological patterns, anti-patterns and pattern languages for
next-generation conceptual modeling. In Proceedings of the 33rd Interna-
tional Conference on Conceptual Modeling (ER’14), pages 13–27. Springer,
2014.

[13] G. Guizzardi and T. P. Sales. Detection, simulation and elimination of se-
mantic anti-patterns in ontology-driven conceptual models. In Proceedings of
the 33rd International Conference on Conceptual Modeling (ER’14), pages
363–376. Springer, 2014.

[14] D. Jackson. Software Abstractions: logic, language, and analysis. MIT press,
2012.

[15] A. Koenig. Patterns and antipatterns. Journal of Object-Oriented Program-
ming, 8(1):46–48, 1995.

[16] A. M. Martínez Ferrandis, O. Pastor López, and G. Guizzardi. Applying the
principles of an ontology-based approach to a conceptual schema of human
genome. In Proceedings of the 32th International Conference on Conceptual
Modeling (ER’13), pages 471–478, Berlin, Heidelberg, 2013. Springer.

[17] J. C. Nardi, R. de Almeida Falbo, J. P. A. Almeida, G. Guizzardi, L. Fer-
reira Pires, M. J. Van Sinderen, and N. Guarino. Towards a commitment-
based reference ontology for services. In Proceedings of the 17th International
Enterprise Distributed Object Computing Conference (EDOC’13), pages 175–
184. IEEE, 2013.

[18] OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January
2012.

[19] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez. Validat-
ing ontologies with OOPS! In Proceedings of the 18th International Confer-
ence Knowledge Engineering and Knowledge Management, pages 267–281.
Springer, 2012.

[20] C. Roussey, O. Corcho, and L. M. Vilches-Blázquez. A catalogue of OWL



ontology antipatterns. In Proceedings of the 5th International Conference on
Knowledge Capture, pages 205–206. ACM, 2009.

[21] T. P. Sales. Ontology Validation for Managers. Universidade Federal do
Espírito Santo, Vitória, Brazil, 2014.

[22] T. P. Sales, P. P. F. Barcelos, and G. Guizzardi. Identification of semantic
anti-patterns in ontology-driven conceptual modeling via visual simulation.
In Proceedings of the 4th International Workshop on Ontology-Driven Infor-
mation Systems (ODISE’12), 2012.

[23] T. P. Sales and G. Guizzardi. Ontological anti-patterns: Empirically uncov-
ered error-prone structures in ontology-driven conceptual models. Data &
Knowledge Engineering, 99:72–104, 2015.


	Anti-patterns in Ontology-driven Conceptual Modeling: The Case of Role Modeling in OntoUML
	Introduction
	Ontological Foundations
	What is an Anti-pattern in Ontology-driven Conceptual Modeling?
	Related Works: Anti-Patterns in the Semantic Web

	Empirically Uncovering Ontological Anti-patterns
	Method
	Model Repository

	Ontological Antipatterns
	Relator Mediating Rigid Types
	Free-Floating Role Specialization
	Multiple Relational Dependency

	Anti-Pattern Evaluation
	Frequency Analysis
	Usefulness Analysis
	Combined Results

	Tool Support
	Final Considerations
	Bibliography


