
January 2016

Towards an Ontology of Requirements at
Runtime

Bruno Borlini DUARTE a, Vı́tor E. Silva SOUZA a,1 André Luiz de Castro LEAL b

Ricardo de Almeida FALBO a Giancarlo GUIZZARDI a and
Renata S. S. GUIZZARDI a

a Ontology & Conceptual Modeling Research Group (Nemo) – Department of
Informatics – Federal University of Espı́rito Santo (Ufes)

b Department of Mathematics – Federal Rural University of Rio de Janeiro (UFRRJ)

Abstract. The use of Requirements at Runtime (RRT) is an emerging research area.
Many methodologies and frameworks that make use of requirements models during
the execution of software can be found in the literature, but very few of them use
ontologies to ground the models that are used at runtime. In this paper, we intro-
duce the Runtime Requirements Ontology (RRO), a domain ontology that intends
to represent the nature and context of RRT. Following a well-known Ontology En-
gineering method, we evaluate RRO using verification and validation techniques.

Keywords. Requirements, Runtime, Ontology, UFO, RRO

1. Introduction

In the last years, we have witnessed a growing interest in software systems that can mon-
itor their environment and, if necessary, change their requirements in order to continue
to fulfill their purpose [1,2]. This particular kind of software usually consists of a base
system responsible for the main functionality, along with a component that monitors the
base system, analyzes the data and then reacts properly to make sure that the system
continues to execute its required functions.

There are many works in the literature that propose different solutions to this issue,
such as adaptive or autonomic systems (e.g., [3,4,5]). We are especially interested in
those that deal with this monitoring–adaptation loop using requirements models at run-
time. In this context, proposals use different kinds of models and terms to represent what
are the system requirements, specify what is to be monitored and prescribe how to adapt.
As result, the vocabulary used by these methodologies is very similar, but the semantics
of the entities present in the models used by different proposals are not always the same,
thus resulting in a domain with overloaded concepts. This problem has motivated us to
propose a domain reference ontology [6] on the use of Requirements at Runtime (RRT).

The objective and contribution of this work is to provide, through the proposed on-
tology, a formal representation of the use of RRT, giving a precise description of all do-

1Corresponding Author: Ufes - Departamento de Informática (CT7), Av. Fernando Ferrari, 514, Goiabieras,
Vitória, ES, Brazil; E-mail: vitor.souza@ufes.br.



January 2016

main entities and establishing a common vocabulary to be used by sofware engineers and
stakeholders for better communication and enhanced problem-solving within the RRT
domain. The ontology also defines the distinctions underlying the nature of requirements
during the execution of a software system.

The Runtime Requirements Ontology (RRO) was developed following the process
defined by the SABiO method [6] and using UFO [7] as foundation ontology. To extract
consensual information on RRT concepts, we performed an extensive Systematic Map-
ping [8,9] of the literature and discussed the results with a group of specialists. Finally,
RRO was evaluated by verification and validation as proposed in SABiO.

The rest of the paper is structured as follows. Section 2 summarizes the general
concepts of the RRT domain. Section 3 describes the methodology used to build RRO.
Section 4 introduces the ontological foundations for the proposed ontology. Section 5
presents RRO, the main contribution of this paper. Section 6 evaluates the ontology.
Section 7 discusses related work. Finally, Section 8 concludes the paper.

2. Requirements at Runtime

Requirement Engineering (RE) is the field of Software Engineering (SE) concerned with
understanding, modeling, analyzing, negotiating, documenting, validating and manag-
ing requirements for software-based systems [10]. In the RE literature, there is a strong
overloading of the term requirement and, hence, different texts refer to requirements in
different possible senses including as an artifact, as an intention, as a desire, as a property
of a system, etc.

The seminal work by Zave & Jackson [11] defines the term requirement as a desired
property of an environment, which comprehends the software system and its surround-
ings, that intends to express the desires and intentions of the stakeholders concerning a
given software development project. A requirement, however, can be seen as an intention
or a desire when acting as a high-level requirement, or as an artifact, when documented
as part of a specification. In turn, such documentation can have different levels of ab-
straction, for instance, depending on whether it is part of an early requirements analysis
or a machine-readable artifact (file) that allows reasoning over requirements during the
execution of the software. Features such as the latter have motivated research (e.g., [12])
on the topic of Requirements at Runtime (RRT).

For instance, Feather et al. [13] monitor violation of requirements using Linear Tem-
poral Logic expressions that are observed by a monitoring component at runtime in order
to try and reconcile system requirements and behavior. Requirements are documented
using a Goal-Oriented RE (GORE) approach for design-time purposes and as the afore-
mentioned logical expressions for runtime purposes. The Requirements Reflection ap-
proach [14] proposes not only that requirements be reified as runtime entities but that
they keep traceability to the architectural models and all the way back to high-level goals.

Souza et al. [15] define a requirement at runtime as the classes or scripts that repre-
sent the requirements being instantiated during the execution of a program, i.e., a com-
piled code artifact loaded in memory to represent the fact that someone (or something)
is using the system in order to satisfy a requirement. Qureshi & Perini [16] have a sim-
ilar vision, as they understand that a requirement at runtime is expressed by the users
requests, which are captured by the software user interface and also monitored in order
to check if it is in an agreement with the original specifications.



January 2016

More recently, Dalpiaz et al. [1] propose, in the context of GORE, the distinction
between a Design-time Goal Model—used to design a system—and a Runtime Goal
Model—used to analyze a system’s runtime behavior with respect to its requirements.

These and other works illustrate the diversity of concepts, models and features that
have been proposed in the field of RRT, motivating us to develop a reference ontology
about this domain. The purpose is to fix an interpretation for requirements and then to
characterize how it relates to other intimately connected elements in the RRT domain.

3. Methodology

To build the Runtime Requirements Ontology (RRO), we used SABiO, a Systematic Ap-
proach for Building Ontologies [6]. SABiO’s development process is composed of five
phases: (1) purpose identification and requirements elicitation; (2) ontology capture and
formalization; (3) design; (4) implementation; and (5) test. These phases are supported
by well-known activities in the Requirements Engineering lifecycle, such as knowledge
acquisition, reuse, documentation and evaluation. SABiO aims at developing both refer-
ence ontologies (phases 1 and 2) and operational ontologies (phases 3, 4 and 5). In this
work, we are interested in building a domain reference ontology (phases 1 and 2 only).

The purpose of RRO is to improve human knowledge and problem-solving in the
Requirements at Runtime (RRT) domain. As non-functional requirements for RRO, we
defined that it would: be grounded on a well-know foundational ontology (NFR1); and
be based on consensual work from the literature (NFR2).

Competency Questions (CQs) were elicited as functional requirements for RRO.
CQs are questions that the ontology should answer [17] and they help to determine the
scope of the ontology [6]. For RRO, CQs were identified and refined using a bottom-up
strategy, starting with simpler questions and proceeded to find more complex ones. The
result is listed below:

• CQ1: What is a running program?
• CQ2: Where does a running program execute?
• CQ3: What can be observed by a running program execution?
• CQ4: What is the relation between a running program and its requirements?
• CQ5: What is a requirement at runtime?
• CQ6: How are requirements used at runtime?

In order to identify proposals that use RRT, provide a primary input for knowl-
edge acquisition and satisfy NFR2, we performed a systematic mapping of the litera-
ture. Kitchenham & Charters [9] define a Systematic Mapping as an extensive study on
a specific topic that intends to identify evidence available on this theme.

Following the methodology presented in [9], we applied the steps illustrated in Fig-
ure 1. First, we defined a search string that intended to cover all the relevant aspects of
our research. Then, we applied it in several search engines, in an attempt to find most
of the literature about the research domain. 1581 studies returned (a). The search string
was validated by checking if the control articles (6) that were chosen beforehand were
retrieved from the databases (b).

Next, papers returned from all search engines were combined and duplicate entries
were removed. As result from this step, 912 studies remained (c). Then, we applied two



January 2016

Figure 1. Steps of the Systematic Mapping process on RRT.

filters, considering inclusion and exclusion criteria established at the beginning of the
process. In this first filter, only the abstracts were read to evaluate if a paper should be
selected or excluded from the mapping (d). Then, the selected publications (203) were
once again analyzed against the selection criteria, but now considering the full text of
the publication (e). To help reduce bias, publications were analyzed in the second filter
by different specialist from the first. As result, 142 publications were found to satisfy the
selection criteria, which accounts for a 91,02% reduction from the starting 1581 results.

During the mapping, we classified publications by purpose of use of RRT, separat-
ing them in two major categories: Monitor Requirements and Change Requirements. The
former covers publications that propose checking if requirements defined at design time
are being achieved at runtime, whereas the latter covers papers in which requirements
are used not only as guidelines to monitoring but also as rules on how the system should
adapt in order to keep satisfying its requirements. The results of the mapping are be-
ing compiled into a paper that will soon be submitted for publication. Although briefly
summarized here, the focus of this paper is the ontology, not the mapping.

During the entire process, we conducted weekly meetings in which the primary as-
pects and the scope of the ontology were defined. These meetings were attended by
several specialists in the areas of Requirements Engineering and Ontology Engineering
(expanding the initial group of four engineers), who played different roles [6] depend-
ing on the context: in requirement elicitation meetings they acted as Domain Experts on
RRT, whereas in verification meetings, in which the many versions of the ontology were
analyzed and polished, they also played the role of Ontology Engineers.

Given the requirements (CQs) for RRO and the results of the Systematic Mapping,
we started illustrating the categories and relations of RRO. This construction process
was highly iterative, using the aforementioned weekly meetings with specialists to refine
the models. Results are presented later, in Section 5. Next, we present the ontological
foundations that satisfy RRO’s NFR1.



January 2016

Figure 2. Fragment of UFO showing Goals, Agents and Intentions.

4. Ontological Foundations

For building the Runtime Requirements Ontology (RRO), we reused Wang et al.’s On-
tology of Software Artifacts [18] and Guizzardi et al.’s interpretation of Non-Functional
Requirements [19]. Moreover, we grounded RRO in the Unified Foundational Ontology
(UFO) [7,20].

We choose UFO because it has been constructed with the primary goal of develop-
ing foundations for conceptual modeling. Consequently, UFO addresses many essential
aspects for conceptual modeling, which have not received a sufficiently detailed atten-
tion in other foundational ontologies [7]. Examples are the notions of material relations
and relational properties. For instance, this issue did not receive up to now a treatment
in DOLCE [21], which focuses solely on intrinsic properties (qualities). Moreover, UFO
has been sucessfully employed in a number of semantic analyses, such as the one con-
ducted here (see detailed discussion in [22]).

In Figure 2 we present only a fragment of UFO containing the categories that are ger-
mane for the purposes of this article. Moreover, we illustrate these categories and some
contextually relevant relations with UML (Unified Modeling Language) diagrams. These
diagrams express typed relations (represented by lines with a reading direction pointed
by I) connecting categories (represented as rectangles), cardinality constraints for these
relations, subsumption constraints (represented by open-headed arrows connecting a sub-
category to its subsuming super-category), as well as disjointness constraints relating
sub-categories with the same super-category, meaning that these sub-categories do not
have common instances. Of course, these diagrams are used here primarily for visualiza-
tion. The reader interested in an in-depth discussion and formal characterization of UFO
is referred to [23,7,20,24].

Endurants and Perdurants are Concrete Individuals, entities that exist in reality and
possess an identity that is unique. Endurants are entities that do not have temporal parts,
but persist in time while keeping their identity (e.g., a person). Perdurants, also called
Events, are composed by temporal parts (e.g., a trip) [7].

Substantials are existentially independent Endurants. They can be agentive (Agent),
i.e., bear intentional properties (states) such as beliefs, desires, intentions; or non-
agentive (Object). Agents can bear special kinds of moments called Intentional Mo-
ments. An Intention is a specific type of Intentional Moment that refers to a desired
state of affairs for which an Agent commits to pursuing (e.g., the intention of a student



January 2016

Figure 3. Fragment of the Ontology of Software Artifacts [18].

to take an exam). A Goal is a Proposition (the propositional content of an Intention) that
can be satisfied by a Situation, i.e., a portion of the reality that can be comprehended as a
whole, iff the Situation is the truthmaker of the Proposition expressed by the Goal [20].
Functions and Dispositions are Intrinsic Moments, i.e existentially dependent entities
that have potential to be realizable through the ocurrence of an Event, this occurence
brings about a Situation.

Based on UFO, Guizzardi et al. [19] present an interpretation of the difference be-
tween Functional and Non-Functional Requirements (FRs/NFRs), a frequently used cate-
gorization scheme in Requirements Engineering. According to the authors, requirements
are Goals (as in UFO) and can be functional and/or non-functional requirements. Func-
tional Requirements are those which refer to Functions, whereas NFRs refer to Qualities
taking Quality Values in particular Quality Regions.

Finally, we also reused the conceptualization established in Wang et al.’s Ontology
of Software Artifacts [18]. According to them, software is a special kind of entity that
is capable of changing while maintaining its numerical identity. These changes (i.e., a
simple bug fixing or an entirely new release) are necessary for the natural evolution of
software and are also one of the engines that move the software industry. When we start
to think in specific software such as, e.g., Microsoft Excel, this fact becomes clearer:
Excel has many releases and even more versions throughout its 30 years of existence, but
has always maintained its identity as Microsoft’s spreadsheet software.

To try to answer questions like “what does it mean for software to change?”, “What
is the difference between a new release and a new version?” and to address the onto-
logical reasons for software being able to change while maintaining its nature, Wang et
al. [18] propose an ontology of software inspired by the Requirements Engineering liter-
ature, depicted in Figure 3. This ontology makes the distinction between three artifacts:



January 2016

Software Product, Software System and Program. It also deals with the differences
between a Program seen as a piece of Code and as a process, running in a medium.

A Program is a special type of Abstract Artifact, i.e., a non-physical entity created
by humans [25], with temporal properties and constituted by Code (a sequence of ma-
chine instructions). A Program is created with the purpose of performing a function of
a given type, which is specified in a Program Specification. The Program is considered
an Abstract Artifact because of its complex nature: it behaves as a universal since it has
characteristics that are repeatable in its copies, but it also does not exists outside space
and time, unlike a universal.

A Software System is constituted by a set of Programs. A Software System intends
to determine the behavior of the machine towards the external environment. This behav-
ior is specified by the Software System Specification. The Software Product is consid-
ered an Abstract Artifact that intends to implement the High Level Requirements, which
represent the stakeholders intentions and goals.

5. The Runtime Requirements Ontology (RRO)

In this section, we present RRO. To try and manage the complexity of the model, it is
divided in figures 4 and 5. Concepts from the ontologies described in Section 4 were
imported and are prefixed by the acronym of their original ontology, using NFR for
Guizzardi et al.’s ontological interpretation of Non-Functional Requirements [19] and
OSA for Wang. et al.’s Ontology of Software Artifacts [18].

Figure 4 explains the nature of requirements at runtime. As in [19], a Requirement
is a Goal in the sense of UFO, i.e., the propositional content of an Intention. Once it is
documented in some kind of requirements specification (e.g., as result of a requirements
phase of a software process), there is a Requirement Artifact describing the Require-
ment. A Requirement Artifact is an Artifact in the sense of OSA, which we also infer
to be an Object in the sense of UFO.

The description of requirements in artifacts can occur in several ways, like a text in
natural language that is written in the software requirements specification or in a compu-
tational file that could be processed by a program. The latter, if meant to be used at run-
time, constitutes a Runtime Requirement Artifact. Thus, a Runtime Requirement Arti-
fact is responsible for describing at runtime, in some way, a Requirement that represents
a stakeholder goal.

On the other side of the figure, a Functional Requirement refers to a Software Func-
tion Universal (i.e., it describes characteristics that are common to all function individu-
als inhering in specific machines). A Program intends to fulfill a set of Software Func-
tion Universals, which, collectively, can be considered as an abstract requirements spec-
ification for this program (one can make it concrete by describing each Requirement
using a Requirement Artifact).

Wang et al.’s [18] Program is an Abstract Artifact constituted by code written for a
specific machine environment (e.g., Microsoft Excel for MacOS). To get to runtime, one
must own a copy of the program and execute it. Irmak [25] defines such copy as phys-
ical dispositions of particular computer components (e.g., the hard drive) to do certain
things. He then describes the execution of the program as a kind of event, the physical
manifestation of the aforementioned dispositions.



January 2016

Figure 4. Fragment of RRO describing the nature of Requirements at Runtime.

In the RRT domain (cf. Section 2), requirements are used not only to monitor (which
can be done by observing the events referred to by Irmak) but also to adapt (i.e., change)
the program. In that case, neither events (which are immutable) nor the copy at the hard
drive (which is not running) can help. We are, thus, interested in the Loaded Program
Copy as the materialization of a Program, inhering in a Machine, e.g., a copy of Mi-
crosoft Excel loaded in primary memory by MacOS on my MacBook.

The Loaded Program Copy is a complex Disposition, constituted by one or more
Software Functions which are, in turn, instances of Software Function Universals. When
the software development process is done correctly, the functions that constitute the
(loaded) program copy are instances of the exact universals the program is intended to
fulfill. Moreover, the Loaded Program Copy, being a Disposition, is a kind of endurant
and, thus, can change qualitatively while maintaining its identity.

Finally, as in [25], the Program Copy Execution is an Event in which the Machine
participates. Here, RRO defines a characteristic that distinguishes Runtime Requirement
Artifacts from their non-runtime counterparts: they can be used by Program Copy Exe-
cutions at runtime.



January 2016

Figure 5. Fragment of RRO showing the relation between requirements at runtime and running programs.

The second fragment of RRO, shown in Figure 5, describes the relation between re-
quirements and programs at runtime. Runtime Requirement Artifact is further special-
ized into two specific subtypes: a Monitoring Runtime Requirement Artifact defines the
criteria for verifying if a requirement is being satisfied or not at runtime; on the other
hand, a Change Runtime Requirement Artifact specifies adaptations on the system’s
behavior, in order for the software system to keep fulfilling its mandate. RRT propos-
als from the Systematic Mapping categorized as Monitoring Requirements present only
Monitoring Runtime Requirement Artifacts in their models, whereas Change Require-
ments proposals present both types of runtime requirements artifacts.

The aforementioned artifacts are used by two important events, i.e. the Compliance
Program Copy Execution and the Adaptation Program Copy Execution. The Program
Copy Execution brings about a particular type of situation (in the sense of UFO-B dis-
cussed in [24]). We term this situation here an Observable State. As discussed in [24],
a situation is a particular configuration of a part of reality that can be understood as a
whole, akin to notion of state of affairs in the philosophical literature. Situations can be
characterized by the presence of objects, their intrinsic and relational moments, by the
values that the qualities of these objects assume in certain quality regions, etc. (e.g., the
situation in which “John has 38◦C of fever”, or that “a particular network connection is
inactive” or the situation in which “the free space on the hard disk is null”).

We assume here that an Observable State is a situation involving qualities and qual-
ity values (qualia) of the Machine in which the Loaded Program Copy inheres as well
as of entities residing in this Machine (including the Loaded Program Copy itself). The
Compliance Program Copy Execution monitors the Observable State to verify if the
runtime requirements comply with the criteria specified in the Monitoring Runtime Re-
quirements Artifact. If one or more requirements are not being fulfilled accordingly, the



January 2016

Adaptation Program Copy Execution changes the Loaded Program Copy, following
the Change Runtime Requirement Artifact specification.

Considering the models of RRO presented in figures 4 and 5, it is important to ob-
serve that:

• The RRT literature uses terms such as base or target system to refer to the program
whose execution’s observable state is monitored or whose loaded copy is changed.
We do not include a specific concept to represent a target system in RRO. One
can easily identify which instances of Program (or Loaded Program Copy) are
target systems from the above description;

• Specializations of Program Copy Execution (e.g., Compliance Program Copy
Execution) are, naturally, executions of some sort of Loaded Program Copy (e.g.,
a Compliance Loaded Program Copy) which, in turn, are materializations of
some sort of Program (e.g., a Compliance Program). Specializations of Loaded
Program Copy and Program, however, are not included in the models for sim-
plicity reasons (one can derive them in a straightforward manner);

• Compliance and adaptation programs can be internal components of the target
application or an external application that communicates with the target applica-
tion through specific channels. We have considered this out of the scope of the
ontology, therefore RRO does not make this particular distinction;

• Compliance and adaptation program copies, when executing, are also subject
to being monitored/changed by other executions of compliance/adaptation pro-
grams, forming hierarchies of requirements monitoring/adaptation frameworks.
RRO considers this situation.

• Only categories and relations are shown. We intend to provide a formal charac-
terization for the domain specific categories and eventual formal constraints in-
volving them in an extension of this paper. However, by reusing the foundational
categories present in UFO, the semantics of the domain-related terms are already
constrained by the inherited semantics of the corresponding terms in UFO.

Lastly, for a better understanding of the ontology, its categories were instantiated
using the Meeting Scheduler example used by the Zanshin framework [26]. Table 1 il-
lustrates the results of this instantiation.

6. Evaluation

For ontology verification, SABiO suggests a table that shows the ontology elements that
are able to answer the competency questions (CQs) that were raised. For validation, the
reference ontology should be instantiated to check if it is able to represent real-world
situations.

Table 2 illustrates the results of verification. Moreover, it can also be used as a
traceability tool, supporting ontology change management. The table shows that RRO
answers all of its CQs.

Regarding validation, RRO was instantiated with individuals extracted from the
Meeting Scheduler, mentioned earlier in Section 5. This evaluation intended to check if
the ontology was able to represent real world situations.



January 2016

Table 1. Results of RRO instantiation using the Meeting Scheduler example presented in [26].

Concept Instance
Requirement A stakeholder wants a software system that allows users to (among

other things) characterize meetings before scheduling them.

Software Function Universal The function of producing meeting characterizations from appro-
priate user input as required by the stakeholders.

Program An implementation of the Meeting Scheduler system for a specific
machine environment (e.g., a specific operating system).

Software Function The disposition of the specific Meeting Scheduler implementation
to produce characterizations when given proper inputs.

Loaded Program Copy Materialization of a Meeting Scheduler implementaton loaded in a
machine’s main memory.

Program Copy Execution The event of the loaded copy of the Meeting Scheduler executing
in the machine.

Observable State When given the characteristics of a meeting, the Meeting Scheduler
produces the record of a new meeting (e.g., in a database).

Requirement Artifact Characterize Meeting task, from the requirements (goal) model.

Runtime Requirement Artifact Characterize Meeting task, represented in XML to be consumed by
Zanshin components at runtime.

Compliance Program Copy Exe-
cution

The Monitor component of Zanshin running in some machine.

Monitoring Runtime Require-
ment Artifact

Characterize meeting should never fail Awareness Require-
ment [2], represented in XML.

Adaptation Program Copy Exe-
cution

The Adapt component of Zanshin running in some machine.

Change Runtime Requirement
Artifact

Retry Characterize Meeting after 5 seconds Evolution Require-
ment [15], represented in XML.

Table 2. Results of RRO verification.

CQ Concepts and Relations
CQ1 Loaded Program Copy is a subtype of Disposition and a materialization of Program.

Program Copy Execution is a subtype of Event and an execution of Loaded Program Copy.

CQ2 Loaded Program Copy inheres in Machine, which is a subtype of Object.
Machine participates in Program Copy Execution.

CQ3 Observable State is a subtype of Situation.
Program Copy Execution brings about Observable State.
Compliance Program Copy Execution monitors Observable State.

CQ4 Loaded Program Copy is constituted by Software Functions, which are instances of Software
Function Universals.
Loaded Program Copy is a materialization of Program, which intends to fulfill Software Func-
tion Universals.
Functional Requirement, a subtype of Requirement, refers to Software Function Universals.

CQ5 Runtime Requirement Artifact is a subtype of Requirement Artifact, which is a subtype of
Artifact, which is a subtype of Object.
Runtime Requirement Artifact is used by a Program Copy Execution.

CQ6 Monitoring Runtime Requirement Artifact is a subtype of Runtime Requirement Artifact
and is used by a Compliance Program Copy Execution to monitor Observable States.
Change Runtime Requirement Artifact is a subtype of Runtime Requirement Artifact and
is used by an Adaptation Program Copy Execution to change the Loaded Program Copy.



January 2016

7. Related Work

During the systematic mapping of the literature and the early stages of RRO’s develop-
ment process we have taken in consideration ontologies and ontological analysis of re-
quirements. In this section we will present some of these ontologies that were relevant to
our research.

By definition, a core ontology is a mid-term ontology, that is not as specific as a
domain ontology but also not so domain-independent as a foundational ontology. In [27],
Jureta et al. propose a new core ontology for requirements (CORE), based on Zave &
Jackson’s work [11] and grounded in DOLCE [21]. The authors extend Zave & Jackson’s
formulation of the requirements problem, in order to “establish new criteria for determin-
ing whether RE has been successfully completed” [27]. CORE covers all types of basic
concerns that stakeholders communicate to requirements engineers, thus establishing a
new framework for the Requirements Engineering process. CORE was, by far, the ontol-
ogy that was used the most as basis for works included in the results of the systematic
mapping, including, e.g., Zanshin [26,2,15]. However, CORE does not cover concepts
that are specific of the RRT domain.

Guizzardi et al. [19] propose an ontological interpretation of non-functional require-
ments (NFRs) in the light of UFO. As briefly mentioned in Section 4, NFRs and func-
tional requirements (FRs) are seen as goals, with the major difference that the former
refer to qualities and the latter to functions. In UFO, qualities and functions are both
sub-categories of intrinsic moments, however, qualities are properties that are manifested
whenever they exist, whereas functions are dispositional properties that are manifested
only through the execution of an event. In their work, the authors advance the work of
CORE and motivate the choice for adopting UFO as opposed to DOLCE in this domain.
In our work, we have imported the distinction of FRs and NFRs in order to relate require-
ments to functions, but we have not explored the ontology of [19] extensively, which is
subject to future work.

Nardi & Falbo [28] propose a new version of the Software Requirements Ontology
(SRO), reengineering an existing ontology and grounding it in UFO. SRO is a domain
ontology that was built for formalizing the knowledge in the RE domain and to sup-
port the integration and development os RE tools. Compared with RRO, SRO treats Re-
quirements as Artifacts, however, in RRO, we made a distinction in which we defined
Requirements as Goals and their descriptions as the Artifacts that are mentioned in SRO.
Despite this difference, since both ontologies are grounded in UFO, they share similar
conceptualizations and could be reused together if necessary.

In effect, RRO, SRO and the interpretation of NFRs [19] are complementary to
each other: they represent different aspects of Requirements Engineering, which could
be combined if necessary.

8. Conclusions

The main contribution of this paper is the definition of RRO, a domain reference ontol-
ogy about the use of requirements at runtime. To build it, we followed the SABiO ap-
proach for identifying the purpose, eliciting requirements, capturing, formalizing, veri-
fying and validating the ontology. During requirements elicitation, we performed a sys-



January 2016

tematic mapping of the literature on requirements at runtime, which played a key role in
our work, since it was the primary source of shared knowledge about the domain.

Given that RRO was based on an extensive mapping of the literature and evalu-
ated positively through verification and validation techniques proposed by SABiO, we
believe it fits well its purpose as a common vocabulary about the RRT domain and a
precise description about its concepts, successfully representing the state-of-the-art on
requirements at runtime.

As future work, we intend to: (a) extend on the validation of this ontology by using
formal validation techniques (e.g., Alloy); (b) provide a full formal characterization of
RRO, including eventual domain-related formal contraints; (c) use RRO in particular
implementations under the domain of Adaptive Systems, which serves as an additional
form of evaluation; (d) analyze the need/possibility of developing an Ontology Pattern
Language (OPL) for this domain, as done by out research group in other software-related
domains.

Regarding item (c) above, our intention is to create an ontology that combines con-
cepts of RRO with concepts from Goal-Oriented Requirements Engineering (GORE), a
paradigm that is very popular in Requirements Engineering research (fact that is con-
firmed by the systematic mapping results). At first hand, we decided to not base our on-
tology in GORE or any other specific RE approach, with the purpose of making it as
generic as possible, not excluding any potential users. Then, we plan on deriving meta-
models from this ontology in order to develop a new version of the Zanshin framework
for adaptive systems, now properly grounded on an ontology about RRT and GORE.

9. Acknowledgments

Nemo (http://nemo.inf.ufes.br) is currently supported by Brazilian research agen-
cies Fapes (# 0969/2015), CNPq (# 461777/2014-2), and by Ufes’ FAP (# 6166/2015).
We would like to thank Nicola Guarino, Pedro Negri and Beatriz Franco Martins for their
participation during discussions about the research contained herein.

References

[1] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos. Runtime goal models. In Proc. of the IEEE 7th
International Conference on Research Challenges in Information Science, pages 1–11, Paris, France,
may 2013. IEEE.

[2] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos. Awareness Requirements. In
R. Lemos, H. Giese, H. A. Müller, and M. Shaw, editors, Software Engineering for Self-Adaptive Systems
II, volume 7475 of Lecture Notes in Computer Science, pages 133–161. Springer, 2013.

[3] M. C. Huebscher and J. A. McCann. A survey of Autonomic Computing—Degrees, Models, and Ap-
plications. ACM Computing Surveys, 40(3):1–28, 2008.

[4] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors. Software Engineering for
Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science. Springer, 2009.

[5] R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, editors. Software Engineering for Self-Adaptive
Systems II, volume 7475 of Lecture Notes in Computer Science. Springer, 2013.

[6] R. A. Falbo. SABiO: Systematic Approach for Building Ontologies. In G. Guizzardi, O. Pastor, Y. Wand,
S. de Cesare, F. Gailly, M. Lycett, and C. Partridge, editors, Proc. of the Proceedings of the 1st Joint
Workshop ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Information Systems Engi-
neering, Rio de Janeiro, RJ, Brasil, sep 2014. CEUR.

http://nemo.inf.ufes.br


January 2016

[7] G. Guizzardi. Ontological Foundations for Structural Conceptual Models. Phd thesis, University of
Twente, The Netherlands, 2005.

[8] B. A. Kitchenham, D. Budgen, and O. P. Brereton. The value of mapping studies: A participantobserver
case study. In Proc. of the 14th International Conference on Evaluation and Assessment in Software
Engineering, EASE’10, pages 25–33, Swinton, UK, UK, 2010. British Computer Society.

[9] B. A. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews in Software
Engineering. Technical report, Keele University, UK, 2007.

[10] B. H. C. Cheng and J. M. Atlee. Research Directions in Requirements Engineering. In Future of
Software Engineering (FOSE ’07), pages 285–303. IEEE, may 2007.

[11] P. Zave and M. Jackson. Four Dark Corners of Requirements Engineering. ACM Transactions on
Software Engineering and Methodology, 6(1):1–30, jan 1997.

[12] N. Bencomo, E. Letier, A. Finkelstein, J. Whittle, and K. Welsh, editors. Proceedings of the 2nd Inter-
national Workshop on Requirements@Run.Time. IEEE, 2011.

[13] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling system requirements and
runtime behavior. In Proc. of the 9th International Workshop on Software Specification and Design,
pages 50–59. IEEE, 1998.

[14] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements Reflection: Require-
ments as Runtime Entities. In Proc. of the 32nd ACM/IEEE International Conference on Software En-
gineering (ICSE ’10), volume 2, pages 199–202, Cape Town, South Africa, may 2010. ACM.

[15] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos. Requirements-driven software
evolution. Computer Science - Research and Development, 28(4):311–329, nov 2013.

[16] N. A. Qureshi and A. Perini. Requirements Engineering for Adaptive Service Based Applications. In
Proc. of the 18th IEEE International Requirements Engineering Conference, pages 108–111, Sydney,
Australia, sep 2010. IEEE.

[17] M. Grüninger and M. Fox. Methodology for the Design and Evaluation of Ontologies. In IJCAI’95,
Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.

[18] X. Wang, N. Guarino, G. Guizzardi, and J. Mylopoulos. Towards an Ontology of Software: a Require-
ments Engineering Perspective. In P. Garbacz and O. Kutz, editors, Proc. of the 8th International Con-
ference on Formal Ontology in Information Systems, volume 267, pages 317–329, Rio de Janeiro, RJ,
Brasil, sep 2014. IOS Press.

[19] R. S. S. Guizzardi, F.-L. Li, A. Borgida, G. Guizzardi, J. Horkoff, and J. Mylopoulos. An Ontological
Interpretation of Non-Functional Requirements. In P. Garbacz and O. Kutz, editors, Proc. of the 8th
International Conference on Formal Ontology in Information Systems, volume 267, pages 344–357, Rio
de Janeiro, RJ, Brasil, sep 2014. IOS Press.

[20] G. Guizzardi, R. de Almeida Falbo, and R. S. Guizzardi. Grounding software domain ontologies in the
unified foundational ontology (ufo): The case of the ode software process ontology. In Proc. of the 11th
Iberoamerican Conference on Software Engineering (CIbSE), pages 127–140, 2008.

[21] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schneider. Dolce: a descriptive
ontology for linguistic and cognitive engineering. WonderWeb Project, Deliverable D17 v2, 1, 2003.

[22] G. Guizzardi, G. Wagner, J. P. A. Almeida, and R. S. S. Guizzardi. Towards ontological foundation for
conceptual modeling: The unified foundational ontology (ufo) story. Applied Ontology, 10(3–4):259–
271, 2015.

[23] A. B. Benevides, G. Guizzardi, B. F. B. Braga, and J. P. A. Almeida. Validating Modal Aspects of
OntoUML Conceptual Models Using Automatically Generated Visual World Structures. Journal of
Universal Computer Science, 16(20):2904–2933, 2010.

[24] G. Guizzardi, G. Wagner, R. Almeida Falbo, R. S. S. Guizzardi, and J. P. A. Almeida. Towards Ontolog-
ical Foundations for the Conceptual Modeling of Events. In Proc. of the 32th International Conference
on Conceptual Modeling, pages 327–341. Springer, 2013.

[25] N. Irmak. Software is an abstract artifact. Grazer Philosophische Studien, 86(1):55–72, 2013.
[26] V. E. S. Souza. Requirements-based Software System Adaptation. Phd thesis, University of Trento, Italy,

2012.
[27] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the Core Ontology and Problem in Requirements

Engineering. In Proc. of the 16th IEEE International Requirements Engineering Conference, pages
71–80. IEEE, 2008.

[28] J. C. Nardi and R. A. Falbo. Evolving a Software Requirements Ontology. In Proc. of the 34th Confer-
encia Latinoamericana de Informatica (CLEI 08), Santa Fe, Argentina, sep 2008.


