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Abstract. In order to increase the accuracy of conceptual models, graphical 

languages such as UML are often enriched with textual constraint languages 

such as the Object Constraint Language (OCL). This enables modelers to bene-

fit from the simplicity of diagrammatic languages while retaining the expres-

siveness required for producing accurate models. In this paper, we discuss how 

OCL is used to enrich a conceptual model assessment tool based on an ontolog-

ically well-founded profile of the Unified Modeling Language (UML) that as-

sumes multiple and dynamic classification (called OntoUML). In the approach, 

OCL expressions are transformed into Alloy statements enabling model valida-

tion and assertion verification with the Alloy Analyzer. The tool we have de-

veloped allows modelers with no Alloy expertise to express constraints in OCL 

enriching OntoUML models.  
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1 Introduction 

Conceptual modeling is “the activity of formally describing some aspects of the phys-

ical and social world around us for purposes of understanding and communication” 

[16]. A conceptual model, in this sense, is a means to represent what modelers per-

ceive in some portion of the physical and social world with purpose of supporting the 

understanding (learning), problems solving and communication, in other words, a 

means to represent the modeler’s conceptualization [11] of a domain of interest. 

For a number of years now, there has been a growing interest in the use of Founda-

tional Ontologies (i.e., ontological theories in the philosophical sense) for supporting 

the activity of Conceptual Modeling giving rise to an area known as Ontology-Driven 

Conceptual Modeling. In this setting, the OntoUML language has been designed to 

comply with the ontological distinctions and axiomatic theories put forth by a theoret-

ically well-grounded Foundational Ontology [11]. This language has been successful-

ly employed in a number of industrial projects in several different domains such as 

Petroleum and Gas, News Information Management, E-Government, Telecom, among 

others. 



OntoUML was designed to address a number of deficiencies in UML from a con-

ceptual modeling standpoint. OntoUML addresses a number of problems in UML 

regarding ontological expressivity, i.e., the ability of a language to make explicit on-

tological distinctions present in a domain [11]. These distinctions are important to 

ensure that the modeler may express as accurately as possible [10] a domain concep-

tualization, making conceptual models more useful to support the understanding, 

agreement and perhaps, the construction of information systems.  

Despite the advances in the quality of conceptual modeling languages, assessing 

whether a conceptual model indeed reflects the modeler’s intended conceptualization 

remains a challenging task. In order to support the validation of conceptual models in 

OntoUML, Benevides et al. [2] and Braga et al. [3] defined a translation from On-

toUML conceptual models to Alloy [12]. The idea is to use the Alloy Analyzer to 

automatically generate logically valid instances for the OntoUML model at hand. By 

confronting the user with a visualization of these possible model instances, we are 

able to identify a possible gap between the set of possible model instances (implied by 

the model) and the set of intended model instances (which the modeler intended to 

capture). In other words, in this approach, one can detect cases of instances which 

conform to the OntoUML model but which do not reflect the modeler’s intended con-

ceptualization (due to under-constraining) as well as cases of intended possible in-

stances which are not shown as valid ones (due to over-constraining). 

Up to this point, the validation of OntoUML models in this approach has been lim-

ited to the formulae implied from its diagrammatic notation. However, in complex 

domains, there are typically a number of domain constraints which cannot be directly 

expressed by the diagrammatic notation of the language, but which are of great im-

portance for capturing as accurately as possible the modeler’s intended domain con-

ceptualization. In order to address this issue, in this paper, we propose the use of OCL 

expressions as a mean to enhance the expressivity of OntoUML conceptual models 

with respect to the explicit representation of domain constraints. 

This paper extends the approaches of Benevides et al. [2] and Braga et al. [3] by 

defining a translation from OCL to Alloy in compliance with the existing transfor-

mation of OntoUML. The OCL subset considered is then determined by the expres-

sivity and significance to the OntoUML modeling language. One of the key differ-

ences of OntoUML (and as a consequence of our approach) is that it has a full support 

for dynamic and multiple classification. Although dynamic and multiple classification 

are in principle supported by UML class diagrams, most approaches that establish 

formal semantics and analysis/simulation for these diagrams do not address these 

features
1
. This renders these approaches less suitable to enable the expression of im-

portant conceptual structures that rely on dynamic classification (e.g., the classifica-

tion of persons into life phases: child, teenager, adult; the classification of persons 

into roles in particular contexts) as well as multiple classification (e.g., the classifica-

tion of persons according to orthogonal classification schemes such as: living-

deceased, male-female).   

                                                           
1 Probably, due to the strict correspondence that is often established (even if implicitly) be-

tween conceptual modeling languages and programming languages that lack such features. 



 

 

We define a fully-automated translation from OntoUML+OCL models and imple-

ment and incorporate into an OntoUML modeling environment. The tool we have 

developed allows modelers with no Alloy expertise to write constraints in OCL en-

riching OntoUML models. In addition to instantiating model instances for model 

simulation, the tool supports the formal verification of assertions written in OCL. Our 

overall objective is to support the assessment of conceptual models, retaining the 

simplicity of a diagrammatic language while coping with the expressiveness required 

to produce accurate conceptual models.  

This paper is organized as follows. Section 2 presents a running example based on 

a traffic accident ontology in OntoUML and OCL. Section 3 presents the existent 

transformation from OntoUML to Alloy. Section 4 and 5 describes and applies our 

OCL translation to validate the running example. Section 6 discusses related work and 

Section 7 presents some concluding remarks. 

2 A conceptual model in OntoUML 

This example was inspired by a governmental project that we conducted for a national 

regulatory agency for land transportation in Brazil. In this domain, travelers are per-

sons taking part of a travel in a vehicle, possibly becoming involved in traffic acci-

dents; traffic accidents involve victims, crashed vehicles and a roadway; and, acci-

dents may involve a number of fatal victims. A particular sort of accident called rear-

end collisions is also identified (accidents wherein a vehicle crashes into the vehicle 

in front of it). Fig. 1 depicts an OntoUML conceptual model for that domain. 

OntoUML extends UML by introducing metaclasses that correspond to ontological 

distinctions put forth by the Unified Foundational Ontology (UFO). For instance, a 

class stereotyped as a kind provides a principle of application and a principle of iden-

tity for its instances [11]. It represents a rigid concept, i.e., a class that applies neces-

sarily to its instances (e.g., a Person cannot cease to be a Person without ceasing to 

exist). A kind can be described in a taxonomic structure where its subtypes are also 

rigid types known as subkinds (e.g., Man and Woman). 

 

Fig. 1. OntoUML conceptual model of road traffic accidents 



A role, in turn, is an anti-rigid concept, applying contingently to its instances (e.g., 

a Person can cease to be a Traveller and still exist) and does not provide a principle of 

identity, instead, it inheres the identity from the unique kind it specializes. A role is 

also relational dependent, i.e., it defines contingent properties exhibited by an in-

stance of a kind in the scope of a relationship (e.g., John plays the role of Victim in an 

accident contingently and in relation to or, in the context of, that accident).  

A phase is an anti-rigid concept that it is defined by a partition of a kind and whose 

contingent instantiation condition is related to intrinsic changes of an instance of that 

kind (e.g. if Living and Deceased constitutes a Person’s phase partition then every 

Person x is either alive or deceased, but not both. Moreover, a Living Person is a Per-

son who has the intrinsic property of being alive) [11].  

A relator (e.g. entities with the power of connecting other entities) is a rigid con-

cept and existentially depends on the instances it connects through mediation relations 

(e.g., an Accident only exists if Crashed Vehicles, Victims and a Roadway also exist). 

From an ontological point of view, relators are the truthmakers of the so-called mate-

rial relations. For instance, it is the existence of a particular RoadTrafficAccident 

connecting Victim X, Crashed Vehicle Y and Roadway Z that makes true the relation 

has-been-victim-in-roadway(X,Z). In OntoUML, material relations such as this one 

are considered to be logico-linguistic construction reducible to an analysis of relators, 

relata and their tying mediation relations. Some UML features such as Bags only 

occur in an OntoUML model at this linguistic level, i.e., in the context of derived 

material relations. Other purely linguistic features of UML are dispensed altogether in 

OntoUML. These include the notion of interface but also the ordered UML meta-

attribute (and, consequently, the Ordered Sets or Sequences collections types). 

Fig. 2 presents a possible instantiation (simulation) of our model of traffic acci-

dents. It shows a state (current world) where a person (Object1) is classified as Wom-

an and Living and the other person (Object4) as Man and Living, characterizing an 

example of multiple classification in OntoUML. Both persons, the man and the wom-

an, play the role of travellers in a travel made by the vehicle Object5, crashed in an 

accident. The simulation shows some situations that may contradict the intended con-

ceptualization for this domain, e.g., that the accident has 4 fatal victims although only 

one non-fatal victim is identified (Object1) and that the man is a traveller of the vehi-

cle involved in the accident (Object5) but is not a victim of that accident.  

 

Fig. 2. Automatically generated instantiation without constraints 



 

 

Note that this simulation result was generated automatically by the Alloy Analyzer 

(using the existing approach derived from the work of Benevides et al. [2] and Braga 

et al. [3]), and thus, using that approach, we are unable to prevent the inadmissible 

situations from occurring. That will be addressed in our approach by adding domain 

constraints to the OntoUML model, which will be expressed in OCL and transformed 

into the Alloy language. 

OCL [18] is a (semi) formal [5, p.60] language adopted as a standard by the OMG 

to represent constraints on MOF-based models. It is declarative, textual and based on 

first-order logic. OCL is used for a variety of purposes such as to express class invari-

ants, attributes and association-end point derivations, query operations definitions and 

pre- and post-conditions over operations. The subset of OCL considered here includes 

both invariants and derivations. An invariant is a condition applied to a class in the 

model. The condition must be true for every class’ instance at any point in time, in 

OntoUML terms, at every world instance, whether past, current, counterfactual or 

future world [2]. A derivation, in turn, expresses how an association end-point or an 

attribute can be inferred from other elements of the model. As a structural conceptual 

modeling language, OntoUML does not target the representation of operations, thus, 

as a consequence, we do not support the definition of operations and pre- and post- 

conditions. It is important to emphasize that no change is required in OCL so that it 

can be used with OntoUML; a subset of OCL can be meaningfully employed to a 

lightweight extension of UML. 

Fig. 3 shows three OCL constraints for the traffic accident domain. The first invar-

iant states that every rear-end collision must involve exactly two crashed vehicles; the 

second constraint (a derivation) specifies that the attribute fatalvictims is derived from 

the number of deceased victims in an accident; and the third and last constraint (an 

invariant) states that (i) every traveler of a vehicle participating in an accident is a 

victim in that accident, and that (ii) every vehicle, in which there is a victim of an 

accident, is involved in that accident. 

1  context RearEndCollision inv: self.vehicles->size() = 2 

2 

3  context RoadTrafficAccident::fatalvictims: int 

4  derive: self.victims->select(p | p.oclIsKindOf(Deceased))->size() 

5  

6  context RoadTrafficAccident inv: self.vehicles->forAll(v |  

7  self.victims.oclAsType(Traveler)->includesAll(v.travel.travelers)) 

8  and self.victims->forAll(p |  

9  self.vehicles->includes(p.travel.vehicle.oclAsType(CrashedVehicle))) 

Fig. 3. OCL domain constrains for the road traffic accident conceptual model 

3 From OntoUML models to Alloy specifications 

The approach proposed by Benevides et al. [2] and Braga et al. [3] to support the 

validation of OntoUML conceptual models uses a lightweight formal method of vali-



dation by defining a (semantic preserving) transformation from OntoUML models to 

Alloy. The resulting Alloy specification is fed into the Alloy Analyzer tool to gener-

ate and visually confront the modeler with possible instances of the model. The set of 

atoms displayed represent instances of the classes of the OntoUML model and the set 

of relations between those atoms represent instances of the OntoUML relationships. 

Alloy [12] is a declarative and first order logic-based language to describe struc-

tures accompanied by a tool to explore and display them graphically. An Alloy speci-

fication defines the possible structures of atoms and relations. It is comprised mainly 

of: signatures with fields and constraints (facts, assertions and predicates). An Alloy 

signature introduces a set of atoms with relations between them declared as fields of 

signatures [12, p.35]. An Alloy fact is a constraint that must always be respected by 

the structure of atoms and relations. An Alloy assertion is a target for verification, 

i.e., a boolean expression that the Alloy Analyzer will try to invalidate by examining 

structures allowed by the specification [12, p.93, 119]. The Alloy Analyzer will either 

conclude that the assertion is invalid, showing a counterexample for it (a structure that 

invalidates it), or conclude that it holds for structures up to a certain size (the scope of 

verification). An Alloy predicate is a boolean expression that can be used in different 

contexts, e.g., within facts or within commands for verification and simulation.  

Fig. 4 shows part of the Alloy code generated by the translation of the OntoUML 

model of Fig. 1. In line 5, the Alloy signature Object represents existentially inde-

pendent entities (e.g. instances of kinds, roles, phases, subkinds). In line 6, existential-

ly dependent entities (objectified properties, e.g., relators) are represented by the sig-

nature Property. In line 7, the abstract signature World represents the states of objects 

and reified properties. This is required to support the notion of modality that underlies 

OntoUML and thereby model the dynamics of creation, classification, association and 

destruction of instances. In each World, Objects and Properties may exist, which is 

specified using the exists field (line 8). Worlds are classified into four sub-signatures: 

CurrentWorld, PastWorld, FutureWorld and CounterfactualWorld. These sub-

signatures are specified in a separated module imported as an Alloy library to the 

specification [2] (line 2). In line 9, the kind Person is transformed into a binary rela-

tion between the World and the object (instance of person) that exists in that World. 

The rigidity property of persons is represented by a predicate declaration within a fact 

statement, as showed in line 15. The rigidity predicate is part of a separated module 

(imported as a library in line 3), which is committed to specify several ontological 

properties of OntoUML. Similarly, in line 10, the role Victim is transformed into a 

binary relation between the World and the object existing in that World. In line 11, 

the relator RoadTrafficAccident is transformed into a binary relation between the 

World and the corresponding objectified property that exists in that World. All the 

classes in OntoUML follow this transformation to Alloy, i.e., they are Alloy binary 

relations from worlds to extensions, which allows us to capture dynamic classifica-

tion. Furthermore, in line 12, the attribute fatalvictims is represented as a ternary rela-

tion (a triple) between the World, the owner of the attribute and its type (in this case 

Int). In line 13, the mediation has is represented as a ternary relation between the 

World, the Accident, and the Victim. In addition, the existential dependency between 

the Accident and its Victims is represented by another imported ontological property 



 

 

(a predicate) enforcing the immutability of victims in that accident (line 16). Finally, 

in line 18 and 19, the association end-point victim is represented as an Alloy function 

which receives as parameters the traffic accident, from which the association end-

point is reached, and the world instance in which it exists, returning the set of victims 

related to that accident. 

1   … 

2   open world_structure[World] 

3   open ontological_properties[World] 

4   … 

5   sig Object {} 

6   sig Property {} 

7   abstract sig World { 

8       exists: set Object + Property, 

9       Person: set exists:>Object, 

10      Victim: set exists:>Object, 

11      RoadTrafficAccident: set exists:>Property, 

12      fatalvictims: set RoadTrafficAccident set -> one Int, 

13      has1: set RoadTrafficAccident one -> some Victim, 

14   … }{ … } 

15   fact { rigidity[Person,Object,exists] } 

16   fact { immutable_target[RoadTrafficAccident,has1] } 

17   fun victims[x: World.RoadTrafficAccident, w: World] : set World.Victim 

18   { x.(w.has) } 

19   … 

Fig. 4. Resulting Alloy specification from OntoUML 

4 From OCL constraints to Alloy constraints 

In this section, we define the translation of OCL constraints in Alloy. We assume the 

transformation of OntoUML to Alloy discussed in the previous section. We use the 

symbol [[ ]] to denote a function that receives OCL concrete syntax and returns Alloy 

textual code.  

4.1 Invariants and derivations 

OCL invariants and derivations are represented in Alloy as facts with formulae which 

hold in every possible World for all instances of the Context class, as shown in  

Table 1. The body of an invariant is directly transformed into the body of the corre-

sponding Alloy fact. Derivations in turn force the values of attributes and association 

ends to match the derivation expression. Note that the Alloy counterpart of OntoUML 

classes, attributes and associations are World fields, referred in the mappings by the 

expression w.[[Class]], w.[[attribute]] and w.[[association]], respectively. The asso-

ciation end-points are represented as functions which receive as parameters the source 



object from which the association end-point is reached and the world instance in 

which it exists. They are referred in the mappings using the Alloy function syntax: 

self.[[assocEnd]][w], where assocEnd represents a function name corresponding to 

an association end and self and w are function parameters. 

Table 1. Translation of OCL invariants and derivations 

OCL constraint Alloy statement 

context Class  

inv: OclExpression 

fact invariant1 { all w: World | all self: w.[[Class]] |  

[[OclExpression]] } 

context Class::attribute:Type  

derive: OclExpression 

fact derive1 { all w: World | all self: w.[[Class]] | 

self.(w.[[attribute]]) = [[OclExpression]] } 

context Class::assocEnd:Set(Type) 

derive: OclExpression 

fact derive2 { all w: World | all self: w.[[Class]] | 

self.[[assocEnd]][w] = [[OclExpression]] } 

4.2 Expressions 

OCL expressions are divided into: if-then-else expressions, let-in expressions, naviga-

tional expressions (using the “dot notation”) and operation call expressions. The for-

mer two can be directly represented in Alloy by equivalent expressions whilst the last 

one is not considered here since operations are not meaningful in OntoUML. Naviga-

tional expressions deserve special treatment as there are different mappings for attrib-

ute access and association end navigation. In Table 2, we define the mappings for 

OCL expressions. We use be to represent a boolean expression, expr to represent an 

OCL expression, battr to represent a boolean attribute, var to represent a variable. 

The dot notation is equivalent in both OCL and Alloy, thus the only difference in the 

attribute mappings stem from the fact that an OntoUML boolean attribute is repre-

sented as an Alloy subset, therefore, the OCL dot operation in this case is mapped to 

the Alloy operator in (the same mapping choice as taken in [6]). 

Table 2. Translation of OCL expressions 

OCL expression Alloy expression 

if be then be1 else be2 endif [[be]] implies [[be1]] else [[be2]] 

let var: Type = expr in be let var = [[expr]] | [[be]] 

expr.attribute [[expr]].(w.[[attribute]]) 

expr.assocEnd [[expr]].[[assocEnd]][w] 

expr.battr [[expr]] in (w.[[battr]]) 

4.3 Iterators 

Table 3 shows the mappings from OCL iterators into Alloy. The word col represents 

OCL expressions that result in collections and the letter v represents variables. 



 

 

Table 3. Translation of OCL iterators 

OCL iterator Alloy expression 

col->forAll(v1,..,vn | be) all v1,..,vn: [[col]] | [[be]] 

col->exists(v1,..,vn | be) some v1,..,vn: [[col]] | [[be]] 

col->select(v | be) { v: [[col]] | [[be]] } 

col->reject(v | be) { v: [[col]] | not [[be]] } 

col->one(v | be) #{ v: [[col]] | [[be]] } = 1 

col->collect(v | expr) univ.{ v: [[col]], res: [[expr]] | no none} 

col->isUnique(v | expr) all disj v, v’: [[col]] | [[expr]](v)!=[[expr]](v’)  

col->any(v | be) { v: [[expr]] | [[be]] }  

col->closure(v| expr) [[col]].^{v: univ, res: [[expr]] | no none} 

 

OCL iterators are represented in Alloy as quantified formulae and comprehension 

sets. The forAll and exists iterators are represented as Alloy formulae quantified uni-

versally (keyword all) and existentially (keyword some). The select and reject itera-

tors are represented as Alloy comprehension sets (denoted by curly brackets) whilst 

the one iterator is also represented as an comprehension set but using operators such 

as # (cardinality operator) and = (equality operator) to state that the resulting set must 

be equal to 1. The collect iterator is represented combining comprehension sets, the 

keyword univ, the dot notation and a logical true Alloy primitive value (expressed in 

terms of the keywords no none). The isUnique iterator is represented as an Alloy for-

mula universally quantified plus the disjointness keyword disj. The any iterator is 

represented by an Alloy comprehension set but with a restriction of usage: the model-

er must ensure that the boolean expression evaluates to true in exactly one element of 

the source collection (the same mapping as in [13]). Finally, the closure iterator is 

represented combining comprehension sets, the transitive closure operator (^) and the 

Alloy true primitive value, similar to the collect mapping previously presented. 

4.4 Sets 

Alloy supports all the OCL set operations since it is a set-based language. Therefore, 

the OCL set operations represented in Alloy are: size, isEmpty, notEmpty, includes, 

excludes, includesAll, excludesAll, union, intersection, including, excluding, differ-

ence, symmetricDifference, asSet, product, sum and flatten. We omit here these map-

pings since they are rather straight-forward given Alloy’s native support for sets.  

4.5 Primitive types 

Alloy natively supports only the integer and boolean primitive types. They are direct-

ly represented in Alloy as well as their operations. However, Alloy does not natively 

support the OCL xor boolean operator and the OCL integer operations max, min and 

abs. Their mappings to Alloy are shown in Table 4. . The supported OCL boolean 

operations are: and, or, implies, not and xor; whilst the supported OCL integer opera-

tions are the comparison operations (i.e., <, >, <=, >=) as well as some arithmetic 



ones (i.e., + (sum), - (subtraction), * (multiplication), div, floor, round, max, min and 

abs). Bit width for integers is by default 7 (and thus range by default from -63 to 64).  

Table 4. Translation of OCL primitive types 

OCL operation Alloy expression 

e1 xor e2 ([[e1]] || [[e2]]) && !([[e1]] &&[[ e2]]) 

e1.max(e2) int[[[e1]]] >= int[[[e2]]] => [[e1]] else [[e2]] 

e1.min(e2) int[[[e1]]] <= int[[[e2]]] => [[e1]] else [[e2]] 

e1.abs() Int[[[e1]]] < 0 => [[e1]].negate else [[e1]] 

4.6 Objects operations and meta-operations 

Table 5 depicts the object and meta-operations of OCL translated in Alloy where T is 

a type (i.e., a class) in the model. The oclIsTypeOf operation means that the object is 

of the type T but not a sub-type of T. The oclIsKindOf operation in turn checks the 

same condition but including the subtypes of T.  The latter is represented by the Alloy 

subset operator (in) whilst the former is represented by an expression combining the 

operators in, and, # (cardinality), & (intersection), + (union) and = (equality), verify-

ing if the object is contained in the set T but not in the union of all subtypes of T (re-

ferred by the Alloy expression [[subT1]]+…+ [[subTn]]). The oclAsType and allIn-

stances operations are directly represented by their source parameter since Alloy is a 

set-based language.  

Table 5. Translation of OCL object operations and meta-operations 

OCL operation Alloy expression 

obj.oclIsKindOf(T) [[obj]] in w.[[T]] 

obj.oclIsTypeOf(T) [[obj]] in w.[[T]] and # w.[[T]] & (w.[[SubT1]] +…+ w.[[SubTn]]) = 0 

obj.oclAsType(T) [[obj]] 

obj.oclIsUndefined() # [[obj]] = 0 

Class.allInstances() w.[[Class]] 

5 Revisiting the running example 

In this section, we revisit the running example, now enriched with domain constraints. 

We use the OCL transformation discussed in the previous sections and generate valid 

instances of the traffic accident conceptual model. We further exemplify the use of 

OCL invariants as assertions subject to verification. 

5.1 Simulation 

Fig. 5 depicts the code generated by applying our OCL transformation. The generated 

code is added into the specification resulting from the transformation of the On-

toUML model that which was partially presented in Fig. 4. All elaborated OCL do-



 

 

main constraints are transformed into Alloy facts and thus all instantiations of the 

OntoUML model will conform to these constraints. The final specification resulting 

from both OntoUML and OCL mappings is fed into the Alloy Analyzer to gener-

ate/check sample structures of the OntoUML+OCL model. 

 

context RearEndCollision inv: self.vehicles->size() = 2 

fact invariant1 { all w: World | all self: w.RearEndCollision |  

# self.vehicles[w] = 2 } 

context RoadTrafficAccident::fatalvictims: int 

derive: self.victims->select(p | p.oclIsKindOf(Deceased))->size() 

fact derive1 { all w: World | all self: w.RoadTrafficAccident | 

self.(w.fatalvictims) = # { p: self.victims[w] | p in w.Deceased } } 

context RoadTrafficAccident inv: self.vehicles->forAll(v |  

self.victims.oclAsType(Traveler)->includesAll(v.travel.travelers))  

and self.victims->forAll(p | 

self.vehicles->includes(p.travel.vehicle.oclAsType(CrashedVehicle)))  

fact invariant2 { all w: World | all self: w.RoadTrafficAccident |  

(all v: self.vehicles[w] | v.travel[w].travelers[w] in univ.{temp1:   

self.victims[w], res: temp1 | no none }) && (all p: self.victims[w] |  

p.travel1[w].vehicle[w] in self.vehicles[w]) } 

Fig. 5. Alloy code resulting from our OCL translation 

Fig. 6 depicts a possible instantiation of the traffic accident model enrich with its 

domain constraints. The figure depicts a current world (a point in time) where a road 

traffic accident (a rear end collision), between two crashed vehicles resulted in the 

death of both travelers of the vehicles, and where the two fatal victims were both male 

persons. All specified OCL constraints are respected (in every point in time, whether 

past, current or future world). Differently from the unconstrained model that was 

shown in Fig. 2, the derived number of fatal victims is correct, the traveler of the 

crashed vehicle is indeed a victim of that accident and the rear end collision involves 

two crashed vehicles as required in the definition of this type of accident.   

 

Fig. 6. Automatically generated instantiation with constraints 



5.2 Assertion Checking 

The same transformation used to generate facts corresponding to OCL invariants can 

be used to generate assertions which are subject to verification by the Alloy Analyzer. 

The analyzer will either conclude that the assertion is invalid, showing a counterex-

ample for it (an instance of the model that invalidates the assertion), or conclude that 

it holds for structures up to a certain size (the scope of verification). The approach to 

verification in Alloy is based on the “small scope hypothesis” which states that, if an 

assertion is invalid, then it probably has a small counterexample [12, p. 143]. This 

ensures tractability of assertion verification.  

Fig. 7 depicts an assertion written in OCL and its mapping to Alloy. The OCL as-

sertion states that, in a travel, not all travelers are deceased. This is transformed into 

an assertion plus a check command defining the default scope and the default Alloy 

bitwidth. Furthermore, in the check command, we also define the number of atoms of 

the signature World (particularly 1 to ensure a single World atom in the checking).  

 

context Travel inv: not self.travelers->forAll(t| t.oclIsKindOf(Deceased))        

assert invariant3 {all w: World | all self: w.Travel |  

! (all t: self.travelers[w] | t in w.Deceased) } 

check invariant3 for 10 but 1 World, 7 Int 

Fig. 7. OCL assertion and the mapping to Alloy 

Fig. 8 shows the counterexample found by executing the check command with the 

Analyzer, showing thus that the enriched OntoUML model does not guarantee the 

satisfaction of the assertion. The figure depicts a current world where all travelers of a 

travel made by a vehicle are actually deceased. The label $self means that this particu-

lar atom is descendant from the variable self in the OCL assertion, where self is an 

instance of Travel. If the modeler intended this assertion to hold (i.e., if he/she believe 

that the situation is inadmissible in the domain), the OCL expression in the assertion 

can be considered a fact (an invariant enriching the model), thus preventing this situa-

tion from occurring. 

 

Fig. 8. Counterexample found. Assertion does not hold. 



 

 

6 Related work 

There have been several approaches in the literature to the analysis and validation of 

UML models and OCL constraints e.g. HOL-OCL [4], USE [9], CD2Alloy [14], 

UML2Alloy [1]. In particular, a number of these approaches [1], [6], [13], [14], [15] 

have used Alloy as a lightweight formal method for validating models in UML/OCL. 

In [1], Anastasakis et al. present one of the first extensive approaches for automatic 

translation of UML+OCL models into Alloy for purposes of model verification and 

validation. Their tool is called UML2Alloy and although it considers both UML and 

OCL, it does not support several OCL operators and just a subset of UML is consid-

ered. Cunha et al. [6] extended the mappings of Anastasakis et al. to support, among 

others, UML qualified associations and dynamics of properties such as the UML 

read-only feature (mutability of properties). They defined a state local signature 

called Time in the Alloy resulting specification to correctly handle dynamics of prop-

erties and pre- and post- conditions. Kuhlmann et al. [13] defined a translation from 

UML and OCL to relational logic and a backwards translation from relational in-

stances to UML model instances (relational logic is the source for the Kodkod SAT-

based model instance finder used by Alloy). Massoni et al. [15] proposed a transfor-

mation of a small subset of UML (class diagrams with classes, attributes and associa-

tion) annotated with OCL invariants to Alloy. However, they specify the translation 

only in a systematic and manual way; they do not implement it. Finally, Maoz et al. 

[14] translated UML, particularly class diagrams, to Alloy and then from Alloy’s 

instances back to object diagrams, considering both multiple inheritance and interface 

implementation. They use a deeper embedding strategy as not all UML concepts are 

directly translated to a semantically equivalent Alloy construct (for instance, the mul-

tiple inheritance feature is transformed to a combination of facts, predicates and func-

tions in Alloy). In addition, they are able to support the analysis of class diagrams, for 

example, checking if one class diagram is a refinement of some other class diagram 

[14, p.2]. The translation is fully implemented in a prototype plugin in Eclipse called 

CD2Alloy, which can (optionally) hide the Alloy resulting specification from the 

modeler. This translation however does not consider OCL. Besides, the Alloy result-

ing specification is more difficult to read, less understandable and computationally 

more complex than other approaches. None of these approaches completely support 

dynamic and multiple classification, which is essential for ontology-driven conceptual 

modeling. In fact, besides dynamic and multiple classification, the meta-properties 

that characterize many of the ontological categories and relations in an ontologically 

well-founded language are modal in nature. As discussed in [11], the modal distinc-

tions among object types and part-whole relations are paramount from an ontological 

perspective and play a fundamental role in ontology engineering and semantic in-

teroperability efforts. These modal features (and all language constructs affected by 

them) require a special treatment in the mapping to Alloy [2] [3]. Our translation of 

OCL is in pace with all these features. 



7 Concluding remarks  

In this paper we have presented an approach to validate OCL-enhanced OntoUML 

models using a lightweight formal method that uses Alloy for model visual simulation 

and model checking. We have extended the previous work of Benevides et al. [2] and 

Braga et al. [3] by defining a translation from OCL constraints into Alloy statements 

in accordance with the existent transformation of OntoUML. This allows modelers 

with no Alloy expertise to write constraints in OCL enriching OntoUML models. This 

work contributes to facilitating the definition of high-quality conceptual models that, 

albeit grounded on sound ontological distinctions, lacked several domain constraints 

and did not cover precisely [10] the modeler’s intended conceptualization. The ap-

proach supports visual simulation of model instances that conform to the enriched 

OntoUML model as well as supports checking of assertions through model checking. 

The translation to Alloy discussed here is fully implemented and incorporated into 

the OntoUML Lightweight Editor (OLED
2
) developed in our research group. The 

Alloy code fragments presented in Fig. 4 and Fig. 5 are indeed part of the specifica-

tion as generated by OLED. OLED is an experimental tool for the OntoUML concep-

tual modeling language that provides instance simulation (via Alloy and its Analyzer) 

along with other features such as syntax verification, model editing, model verbaliza-

tion and model transformations (e.g., to languages such as OWL). OLED manipulates 

OntoUML models using an OntoUML Eclipse metamodel [7][17]. We have em-

ployed the Eclipse MDT OCL [8] plugin for OCL syntax verification, auto-complete, 

parsing and to implement the OCL mappings to Alloy using the visitor pattern. The 

infrastructure for OCL manipulation and binding to OntoUML is currently being used 

in order to implement a transformation of OCL to SWRL, building up on an On-

toUML to OWL transformation, and enabling the use of OCL constraints for 

(runtime) inference.  
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