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Abstract. Software Engineering (SE) is a wide domain, where ontologies are 

useful instruments for dealing with Knowledge Management (KM) related 

problems. When SE ontologies are built and used in isolation, some problems 

remain, in particular those related to knowledge integration. The goal of this 

paper is to provide an integrated solution for better dealing with KM-related 

problems in SE by means of a Software Engineering Ontology Network 

(SEON). SEON is designed with mechanisms for easing the development and 

integration of SE domain ontologies. The current version of SEON includes 

core ontologies for software and software processes, as well as domain ontolo-

gies for the main technical software engineering subdomains, namely require-

ments, design, coding and testing. We discuss the development of SEON and 

some of its envisioned applications related to KM. 

Keywords. Ontology Network · Ontology Engineering · Software Engineering 

· Ontology Integration · Knowledge Management 

1 Introduction 

Software process is a knowledge-intensive process involving many people working in 

different sub-processes and activities. Moreover, knowledge in Software Engineering 

(SE) is diverse and organizations have problems to capture, retrieve, and reuse it. An 

improved use of this knowledge is the basic motivation and driver for Knowledge 

Management (KM) in SE [1].  

Ontologies have been widely recognized as a key enabling technology for KM. 

They are used for establishing a common conceptualization of the domain of interest 

to support knowledge representation, integration, storage, search and communication 

[2]. However, some domains that are the target of KM initiatives are often large and 

complex. This is the case of SE. If we try to represent the whole domain as a single 

ontology, we will achieve a large and monolithic ontology that is hard to manipulate, 

use, and maintain [3]. On the other hand, representing each subdomain separately 

would be too costly, fragmented, and again hard to handle. 

mailto:monalessa%7d@inf.ufes.br


SE comprises several interrelated subdomains such as Requirements, Design, Cod-

ing, Testing, Project Management, and Configuration Management. In one hand, there 

are few works in the literature that aims at developing ontologies covering wide por-

tions of the SE domain, such as [4, 5, 6]. On the other hand, it is easy to find many 

specific ontologies modeling SE subdomains [7, 8, 9, 10, 11]. However, in general, 

these subdomain ontologies are weakly or even not interrelated, and they are often 

applied in isolation. In this context, it is important to notice that SE subdomains share 

concepts, ranging from general (e.g. Artifact, Process) to ones that are more specific 

(e.g. Functional Requirement, Test Case). This striking feature of the SE domain must 

be considered while representing it. For achieving consistent SE ontologies, concepts 

and relations should keep the same meaning in any related ontology. 

D'Aquin and Gangemi [12] point out a set of characteristics that are presented in 

“beautiful ontologies”, from which we detach the following ones: having a good do-

main coverage; being modular or embedded in a modular framework; being formally 

rigorous; capturing also non-taxonomic relations; and reusing foundational ontolo-

gies. Most of the existing SE ontologies do not exhibit such characteristics. We be-

lieve that an integrated ontological framework, built considering them, can improve 

ontology-based applications in SE, in particular those related to KM. In such integrat-

ed ontological framework, there must be ways for creating, integrating and evolving 

related ontologies. Thus, we advocate that these ontologies should be built incremen-

tally and in an integrated way, as a network. 

An Ontology Network (ON) is a collection of ontologies related together through a 

variety of relationships, such as alignment, modularization, and dependency. A net-

worked ontology, in turn, is an ontology included in such a network, sharing concepts 

and relations with other ontologies [3]. 

To truly enjoy the benefits of keeping the ontologies in a network, we need to take 

advantage of the existing resources available in the ON for gradually improving and 

extending it. Thus, an ON should have a robust base equipped with mechanisms to 

help its evolution. In our view, an ON should be organized in layers. Briefly, in the 

background, we need a foundational ontology
1
 to provide the general ground 

knowledge for classifying concepts and relations in the ON. In the center of the ON, 

core ontologies
2
 should be used to represent the general domain knowledge, being the 

basis for the subdomain networked ontologies. Ideally, these core ontologies should 

be organized as Ontology Pattern Languages (OPLs) [13] for easing reusing model 

fragments (ontology patterns) while developing subdomain networked ontologies. 

Finally, going to the borders, (sub) domain ontologies appear, describing the more 

specific knowledge. 

                                                           
1  Foundational ontologies span across many fields and model the very basic and general con-

cepts and relations that make up the world, such as object, event, parthood relation etc. [14]. 
2  Core ontologies provide a precise definition of structural knowledge in a specific field that 

spans across different application domains in this field. These ontologies are built based on 

foundational ontologies and provide a refinement to them by adding detailed concepts and 

relations in their specific field [15]. 



In this paper, we present SEON, a Software Engineering Ontology Network. 

SEON provides a well-grounded network of SE reference ontologies
3
, and mecha-

nisms to derive and incorporate new integrated subdomain ontologies into the net-

work. The main goals of this work are: to define a layered architecture for SEON that 

enables supporting network growing; to introduce SEON and its mechanisms to create 

and integrate SE subdomain ontologies; and to discuss the use of SEON for support-

ing KM in SE. Due to space limitations, only small portions of SEON are presented 

here. The current specification is available at nemo.inf.ufes.br/projects/seon, where a 

machine processable lightweight version implemented in OWL is also available. 

This paper is organized as follows. Section 2 discusses SE ontologies. Section 3 

presents SEON and how it builds up from foundational to domain ontologies. Section 

4 discusses how SEON can be used to support applications of KM in SE. Section 5 

discusses related works. Finally, Section 6 presents our final considerations. 

2 Developing Software Engineering Ontologies 

A variety of ontologies have been developed modeling the SE domain. According to 

Calero et al. [7], these ontologies can be classified as: Generic SE Ontologies, having 

the ambitious goal of modeling the complete SE body of knowledge; or Specific SE 

Ontologies, attempting to conceptualize only part (a subdomain) of this discipline. 

Concerning Generic SE Ontologies, Mendes and Abran [4] propose a SE ontology 

consisting of an almost literal transcription of the SWEBOK [16] text, with over 4000 

concepts. Sicilia and colleagues [5] propose an ontology structure to characterize 

artifacts and activities, also based on SWEBOK. Wongthongtham and colleagues [6] 

propose an ontology model for representing the SE knowledge, based on SWEBOK 

[16] and Sommerville’s Software Engineering book [17]. Considering the Specific SE 

Ontologies, a great number of ontologies is available, representing a variety of SE 

subdomains, such as Software (e.g. [18, 19]), Software Processes (e.g. [9, 10]), Soft-

ware Requirements (e.g. [20]), Software Testing (e.g. [8]), and Software Configura-

tion Management (e.g. [11]). For others, see [7]. 

Some of the specific domain ontologies are developed considering their integration 

with others [7]. Taking this to the extreme, the combination of ontologies of all SE 

subdomains would result in an ontology of the complete SE domain. Unfortunately, 

the reality is that this goal is extremely laborious, not only due to its size, but also due 

to the numerous problems related to ontology integration and merging [7], such as 

overlapping concepts, diverse foundational theories, and different representation and 

description levels, among others. In sum, SE comprises a set of highly interconnected 

subdomains. This interrelated nature affects any possible representation of the SE 

domain, and the situations in which it can be applied. Despite of the challenges in-

volved, an ontological representation covering a large extension of the SE domain 

remains a desired solution.  

                                                           
3  A reference ontology is constructed with the goal of making the best possible description of 

the domain in reality, representing a model of consensus within a community, regardless of 

its computational properties [18]. 
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In this context, the notion of Ontology Network (ON) [3] applies. The scenario for 

ONs is radically different from the relatively narrow contexts in which ontologies 

have been traditionally developed and applied [3]. For instance, the NeOn Methodol-

ogy Framework [3] provides guidance for engineering networked ontologies, making 

available detailed processes, guidelines and different scenarios for collaboratively 

building networked ontologies. For building SEON, we have applied some of the 

NeOn methodological guidelines, in particular those referring to ontology modulari-

zation and evaluation, and to the adoption of a pattern-based design approach. More-

over, we complement these valuable guidelines by defining an architecture for SEON 

that we believe applies for ONs in general. In the next section, we present the SEON 

architecture and some of the ontologies that comprise it. Besides, we discuss how to 

develop or integrate new SE subdomain ontologies to SEON. 

3 SEON: The Software Engineering Ontology Network 

SEON results from several efforts on building ontologies for the SE field. Although 

SEON itself is a new proposal, the studies and ontologies that our group has devel-

oped along the years were important contributions for defining SEON. Hence, SEON 

rises with three main premises: (i) being based on a well-founded grounding for on-

tology development; (ii) offering mechanisms to easy building and integrating new 

SE subdomain ontologies to the network; and (iii) promoting integration by keeping a 

consistent semantics for concepts and relations along the whole network. SEON ar-

chitecture is organized considering three ontology generality levels, as Fig. 1 shows. 

 

Fig. 1. SEON Architecture. 

Foundational layer: at the bottom of SEON, is the Unified Foundational Ontology 

(UFO), which is developed based on a number of theories from Formal Ontology, 

Philosophical Logics, Philosophy of Language, Linguistics and Cognitive Psycholo-

gy. UFO is divided in three parts: an ontology of endurants (objects) [21], an ontology 

of perdurants (events) [22], and an ontology of social entities [23]. UFO's ontological 

distinctions are used for classifying SEON concepts, e.g., as objects, actions, com-

mitments, agents, roles, goals and so on. UFO provides the necessary grounding for 

the concepts and relations of all networked ontologies. 

Core layer: in the center of SEON, there are two core ontologies: the Software 

Ontology (SwO) and the Software Process Ontology (SPO) [10]. SwO is a core on-

tology developed based on the work of Wang and colleagues [20], and captures that 

software products have a complex artifactual nature, being constituted by software 

artifacts (here called software items) of different nature, namely software systems, 

programs and code. SPO is a core ontology, also grounded in UFO, aiming at estab-



lishing a common conceptualization on software processes. SPO builds upon SwO, 

and its current version is organized as an Ontology Pattern Language (OPL)
4
 [13]. 

SPO scope is broader, embracing the following aspects of the software process do-

main: standard, project and performed processes and their activities, artifacts handled, 

resources used and procedures adopted by activities, team membership, and stake-

holders allocation and participation in activities. For dealing with aspects related to 

organizations (such as team membership), SPO builds upon a core ontology on enter-

prises [24], which we consider external to SEON. SPO has been developed for more 

than two decades, and used as basis to develop several ontologies for many SE sub-

domains (e.g., [8], [11], [25]). 

Domain-specific layer: over the foundational and core layers, SEON places the 

domain ontologies. Each networked ontology is grounded in SwO/SPO and also in 

UFO, and encompasses a SE subdomain (e.g., software requirements, design, config-

uration management, and measurement). Although not represented in Fig. 1, more 

specific subdomains ontologies can be developed based on other more general sub-

domain ontologies. For instance, an ontology on requirements at runtime [26] was 

developed based on the Reference Software Requirements Ontology.  

In a nutshell, the foundational ontology offers the ontological distinctions for the 

core and domain layers, while the core layer offers the SE core knowledge for build-

ing the domain networked ontologies. This way of grounding the ontologies in the 

network is helpful for engineering the networked ontologies, since it provides onto-

logical consistency and makes a number of modeling decisions easier. The SEON 

building mechanism also takes advantage of ontology patterns by representing its core 

layer in a pattern-oriented way. SPO is organized as an OPL, in order to become 

strongly modular, flexible and reusable. Thus, the ontology engineer can explore al-

ternative models in the design of specific ontologies for the various SE subdomains, 

select the ontology fragments relevant to the problem in hands and reuse them [13]. 

Fig. 2 shows a fragment of SPO with some of its patterns. This fragment deals with 

patterns for performed processes and activities; artifacts created, changed or used by 

those performed activities; and stakeholder participation. Colored blocks are used to 

delimit each pattern in this figure. During domain ontology development, the ontolo-

gy engineer selects useful patterns and extends their concepts and relations in the 

networked ontology (Fig. 4 shows the case for the Requirements Development Pro-

cess Ontology). In the cases where a domain element is not covered by the core on-

tologies (SwO/SPO), this domain-specific element should be grounded directly in the 

foundational ontology (UFO). 

The ontology fragments of Fig. 2 and the following are represented in OntoUML. 

OntoUML is a UML profile that enables making finer-grained modeling distinctions 

between different types of classes and relations according to the ontological distinc-

tions put forth by the Unified Foundational Ontology (UFO) [21]. 

                                                           
4  An OPL is a network of interconnected Domain-Related Ontology Patterns (DROPs) that 

provides holistic support for solving ontology development problems for a specific domain. 

Besides the DROPs, it contains a process guiding how to use and combine them in a specific 

order, and suggesting patterns for solving the modeling problems in that domain [14]. 



 
Fig. 2. A portion of SPO, fragmented in patterns. 

By reusing the OPL patterns from the core layer, the development of the domain on-

tologies is faster and the resulting models are more consistent and uniform [27]. The 

core ontologies, sustained by the foundational ontology, offer a standardized way for 

describing all the other elements in the network. Thus, since all the domain networked 

ontologies inherit the same core and foundational grounds, concepts and relations 

with the same classification have a common and identifiable background. This is a 

fundamental aspect for ontology integration. 

As networked ontologies are developed and added to SEON, we still need to work 

on integrating them. Although the domain-specific ontologies share the same concep-

tual basis, given by the foundational and core ontologies, they still need to be aligned 

with respect to their specific knowledge, making possible to merge networked ontolo-

gies in a meaningful way, by representing information in one ontology in terms of the 

entities in another [3].  

The SEON integration mechanism adopts some alignment guidelines for matching 

and integrating networked domain ontologies. First, ontologies should be compared 

looking for equivalent concepts. Since the domain ontologies are produced from the 

same basis (UFO and SwO/SPO), two concepts can only be considered equivalent if 

they have the same base type, restricting the search field and speeding up the integra-

tion process. Thus, for example, artifacts are compared only with artifacts, performed 

activities with performed activities, and so on. If concepts have a partial matching, 

this could mean that one concept is a specialization or a part of another.  

Two concepts from distinct ontologies can also have a relationship between them. 

In this case, it is worth analyzing if there is a relationship to be extended from the 

base ontologies or a new relationship should be included in the subdomain ontology. 

From this matching, we can determine the correlation level between the ontologies. 



Fig. 3 shows the current status of SEON. Each circle represents an ontology. The 

circles’ sizes vary according to the ontologies’ sizes in terms of number of concepts, 

(represented inside the circles in parenthesis). Lines denote links between integrated 

ontologies, and line thickness represents the coupling level between them in terms of 

number of relationships between concepts in different ontologies. Blue circles repre-

sent the core ontologies; green circles, domain ontologies already integrated to 

SEON; and gray circles are domain ontologies already developed using UFO and 

SPO, but not integrated to SEON yet. Due to the wideness and complexity of the SE 

domain, it requires a continuous and long-term effort. Thus, we expect SEON to con-

tinuously evolve, with ontologies being added and integrated incrementally. 

 
Fig. 3. SEON: The Network view. 

It is important to notice that, even adopting a layered architecture (see Fig. 1), SEON 

is a network. Like so, each new added node contributes for the whole network. When 

a new ontology is added, it should reuse existing elements. Other ontologies, in turn, 

may be adapted to keep consistency, in order to share the same semantics along the 

whole network. Even the core ontologies can evolve to adapt or incorporate new pat-

terns discovered when domain ontologies are created or integrated. 

Concerning the ontologies that comprise SEON, we should highlight that they have 

been developed or reengineered using SPO along the time, some of them before 

SEON conception. Among them, there are ontologies for the following SE subdo-

mains: Software Requirements, Design, Testing [8], Configuration Management [11], 

Documentation, and Software Measurement [25]. Currently, as Fig. 3 shows, five of 

them (those addressing the main technical SE subdomains) are integrated to SEON. 



The Reference Software Requirements Ontology (RSRO) is centered in the notion 

of requirement as a goal to be achieved, and addresses the distinction between func-

tional and non-functional requirements, and how requirements are documented in 

proper artifacts, among others. It is mainly based on SwO. 

The other four domain ontologies focus on describing the technical processes, con-

sidering its main assets, and extend SPO. The Requirements Development Process 

Ontology (RDPO), partially shown in Fig. 4, describes the requirements development 

process. The top of the figure shows the SPO concepts and relations (as presented in 

Fig. 2) that are reused from the selection of the suitable ontology patterns from SPO. 

Thus, RDPO concepts and relations (shown in Fig. 4 below the dotted line) are mostly 

specialized from SPO. Requirements Reviewer, Requirements Stakeholder and 

Requirements Engineer extend Stakeholder; Requirements Development Process 

extends Specific Performed Process, and is decomposed into five Composite Per-

formed Activities. These activities are responsible for producing Artifacts such as the 

Requirements Document, which depicts Conceptual Models and is composed of 

Documented Requirements. The concepts in gray below the line are imported from 

RSRO and integrated into RDPO. 

 
Fig. 1. The Requirements Development Process Ontology (RDPO), with SPO elements. 

The Design Process Ontology (DPO) focuses on the architectural and detailed design 

processes. Concepts and relations in DPO extend the same portion of SPO presented 

before. The main artifact produced during design is the Design Document. This on-

tology, as the next one, is not shown here due to space limitations. 



The Coding Process Ontology (CPO) deals with building the software code based 

on the requirements and design documents. As the other ontologies, it extends the 

same portion of SPO. The main CPO product is the Code Artifact. 

The Reference Ontology on Software Testing (ROoST) [8] addresses the software 

testing process. Fig. 5 shows a fragment of ROoST, focusing on the testing process 

and the used and produced artifacts. Although core ontology elements are not present-

ed in Fig. 5, ROoST elements are also specializations from SPO, gotten by reusing 

patterns [8]. Test Manager and Tester Stakeholders participate in Performed Activi-

ties of the Testing Process. Test Planning creates the Test Plan. The four activities 

Test Case Design, Test Coding, Test Execution and Test Result Analysis are per-

formed at the Unit, Integration and System Testing levels, producing testing process 

artifacts. For example, Test Case Design creates Test Cases, using Test Case Design 

Inputs, a role that can be played by Artifacts used as input for the test case design. 

 
Fig. 5. A fragment of ROoST [8]. 

Besides the ontologies for the technical SE subdomains already integrated to the net-

work, we expect SEON to continuously grow by adding other SE subdomains ontolo-

gies. The SEON integration mechanism has three different ways to incorporate new 

ontologies into the network, considering the origin of the ontology to be integrated. 

In a first situation, consider a new ontology that is created based on UFO and 

SwO/SPO, and also taking other existing networked ontologies into account. Besides 

the extensions made from the core ontologies, this ontology tends to use also the re-

lated concepts already defined in the other networked ontologies. This situation oc-

curs in RDPO (Fig. 4), which imports concepts from RSRO (the gray ones below the 

line). This is the best way for increasing SEON, since it reduces modeling and inte-

gration efforts, by reusing already defined elements. 

The second situation occurs when domain ontologies are developed based on UFO 

and SwO/SPO, however, independently of the other subdomain networked ontologies. 

In this situation, although the domain ontology to be integrated to the network shares 

the same basis of the SEON domain ontologies (UFO/SwO/SPO), some additional 

integration effort is still required, in order to adapt the common parts focusing on a 

shared representation. This happened when we integrated ROoST to SEON. ROoST 



was developed based on SPO and UFO, but disregarding the other domain ontologies 

already integrated to SEON. This way, while integrating ROoST, we had to align it 

with the other existing networked ontologies. Fig. 6 shows a fragment of the integrat-

ed model, encompassing elements from four domain networked ontologies: RSRO, 

DPO, CPO and ROoST. It shows the activities of coding and test case design, and 

related artifacts. Most of the concepts and relations shown (as the activities for coding 

and testing) are just imported from their original ontologies. However, some concepts 

required further decisions. This is the case of the inputs for the Test Case Design 

activity. The Test Case Design Input concept is a general role that can be played by 

different types of Artifacts able to be used as inputs for that activity. In this case, the 

suitable artifacts are the ones used for creating the code (Requirements Document, 

Design Document) and the Code itself, giving rise to three new concepts, specializa-

tions of these three artifacts playing the Test Case Design Input role. 

 
Fig. 2. An Integrated SEON Fragment. 

Finally, the third integration situation happens when external ontologies, developed 

without taking SwO, SPO or UFO as basis, need to be integrated to SEON. In this 

case, if we have access to modify the ontology, we need to perform an ontological 

analysis and reengineering before the integration. By this process, the ontology ele-

ments are analyzed and adapted to the UFO distinctions and SwO/SPO domain 

knowledge. The knowledge represented by the ontology is then preserved, but the 

representation is adjusted for a better integration into SEON. On the other hand, if the 

ontology cannot be modified, we have to make the necessary links and adaptations 

only in the SEON side. In this case, techniques for ontology alignment, as discussed 

in [3], apply. Currently, we do not have any external ontology integrated to SEON. 

4 SEON Envisioned Applications 

There are several ontology-based initiatives of applying KM in SE. Some of them 

adopt centralized KM solutions (e.g., KM systems with large centralized knowledge 

repositories), such as [28]; others focus on distributed KM solutions, such as the ones 

using Semantic Wikis [29]. In both cases, ontologies are used to support knowledge 

representation (e.g., by categorizing or annotating knowledge items), integration, 



search, and retrieval. However, in KM scenarios spanning different SE subdomains, 

we need to integrate several ontologies for these subdomains. These are the cases 

where the benefits of using SEON stand out. 

Since the begging of the 2000's, we have been working on ontology-based KM sys-

tems to support SE tasks. We started by developing an ontology-based KM infrastruc-

ture for a Software Engineering Environment (SEE) [28]. This infrastructure evolved, 

and more recently, we separate it from the SEE, transforming it in a SE Knowledge 

Management Portal (SE-KMP). SE-KMP provides general features for managing and 

assessing knowledge items (including lessons learned, and discussion packages), as 

well as yellow pages. SE-KMP was extended to manage knowledge related to soft-

ware testing, in a more specific KM Portal, called TKMP [30]. However, we per-

ceived that, to truly provide benefits for KM in SE, SE-KMP requires integrated on-

tologies for the several SE subdomains. In fact, this application motivated us to seek 

for an approach for developing integrated SE domain ontologies, leading to SEON. 

In another front of research, we have been working on semantic documentation in 

SE, by providing an Infrastructure for Managing (SE) Semantic Documents (IMSD) 

[31]. Semantic documents aim at combining documents and ontologies, and allowing 

users to access their knowledge in multiple ways. The ultimate goal of semantic doc-

uments is not merely to provide metadata for documents, but to integrate documenta-

tion and knowledge representation in a way that they use a common structure [32]. 

We started by annotating requirements documents, and we used a previous versions of 

the Reference Software Requirements Ontology (RSRO) for this purpose. However, 

this ontology is not enough to annotate other documents, such as design specifica-

tions, source code, and test cases. In particular, for providing information traceability 

among these artifacts, we need, besides RSRO, other ontologies for design, coding 

and testing. Moreover, these ontologies need to be integrated. We perceived this 

clearly when decided to handle in IMSD, besides Requirements Documents, Test 

Cases. We needed to integrate RSRO to ROoST [8] (the reference ontology on soft-

ware testing) [31]. With networked ontologies, as in SEON, this effort would not be 

required. In fact, this scenario of semantic documentation motivated us to start SEON 

with the set of networked domain ontologies shown in Fig. 3. 

Another related scenario for applying SEON is tool integration. Ontologies can be 

used for semantically integrating heterogeneous tools [11]. Considering different tools 

working with elements of the same subdomain, an ontology for this subdomain is 

enough for addressing most of the issues. We have experienced this situation in [11], 

when we used a Software Configuration Management Ontology for integrating a ver-

sion control system and a change management tool. However, for more complex con-

texts, involving several tools, supporting tasks in different SE subdomains, a single 

ontology is not enough. For instance, to include knowledge items (test cases) in 

TKMP, we had to import information from different software tools, namely: 

TestLink, a web-based test management system, and MantisBT, a bug tracking sys-

tem. To automate this task, we needed to integrate data from both tools. 

Addressing ontology integration case by case is an arduous and exhausting task. 

By integrating these ontologies in SEON, any new initiative that needs to commit to 

those ontologies could benefit from the efforts already done. 



5 Related Works 

Regarding the ontologies aiming at covering a large extension of the SE domain [4, 5, 

6], in general, they present many concepts usually based on acknowledged references 

such as SE books or reference models (e.g. [16, 17]). Comparing to SEON, the first 

notable difference is the source for building the ontologies. These Generic SE ontolo-

gies use to be based on a few number of sources, in some cases nearing to transcrip-

tions of the referenced source [4]. Contrariwise, each SEON ontology is built based 

on a set of references, often considering books and standards of the specific 

(sub)domain. Besides that, the knowledge from the base layers configures as one 

more source for building the networked ontologies. A second difference regards mod-

ularity, since the networked ontologies, even integrated, can be seen, and used, as 

separated models. Finally, the most important difference regards the mechanisms 

provided to build SEON incrementally, supported by the foundational and core layers 

and their patterns. In sum, SEON design considers important characteristics of “beau-

tiful ontologies”, as discussed in [12], such as: having a good domain coverage; con-

sidering international standards; being modular; being formally rigorous; capturing 

also non-taxonomic relations; and reusing foundational ontologies. 

Concerning SEON ontologies, due to space limitations, it is not possible to contrast 

all of them with others already published in the literature. Thus, here we decided to 

compare only SEON’s core ontologies (SwO and SPO). Regarding SwO, related work 

includes the software ontologies presented in [18] and [19]. The Core Software On-

tology (CSO) [18] detaches. Like SwO, CSO is rigorously formalized, grounded in a 

foundational ontology (DOLCE, while SwO is grounded in UFO), and was built fol-

lowing a pattern-based approach. Moreover, these two ontologies share concerns 

related to the polysemy of the concept of software, and in this sense they present simi-

lar distinctions. We should highlight that CSO has a broader scope than SwO, ad-

dressing concepts of object orientation, such as classes, interfaces and methods, as 

well as representing workflow information. These aspects are not covered by SwO, 

because we intend to address them in another networked ontology. The Software On-

tology presented in [19] is organized in several modules, addressing aspects related to 

software and relationships to software process, license, and versions, among others. In 

this sense, the proposed ontology is related not only to SwO, but also to other SEON’s 

ontologies, such as SPO. It is worthwhile to point out that the Software Ontology 

presented in [19] is not grounded in a foundational ontology. 

Regarding SPO, there are some ontologies on software processes published in the 

literature. Here, due to space limitations, we compare SPO only with the Ontology for 

Software Development Methodologies and Endeavors (OSDME) [9]. This choice 

justifies because OSDME is the basis for an international standard (ISO 24744). 

OSDME addresses aspects related to process, product and producers. SPO has similar 

coverage. However, SPO is organized as an Ontology Pattern Language to favor re-

use, and is grounded in a foundational ontology (UFO). As discussed in [33], the lack 

of truly ontological foundations leads to some inconsistencies in OSDME, which are 

solved in SPO, as discussed in [10]. This reinforces the importance of using a founda-

tional ontology as basis for grounding core and domain ontologies in SEON.  



Considering Ontology Networks, in [3], three case studies in the fishery and phar-

maceutical domains are presented. Three ONs were developed using NeOn methods 

and technologies. In general, these ONs are composed of ontologies (expressed in 

OWL) plus non-ontological resources (such as thesauri). Mappings are an important 

means to relate the networked ontologies. In two of the studies, the network resources 

were organized according to the ontologies' types and levels, considering general 

ontologies (e.g., upper level ontologies or ontologies for time and objects) as inde-

pendent of the focused domain, and ontologies as references for the domain and basis 

for providing concepts or relating more specific ontologies. Although the similarities 

regarding the generality levels, SEON states an architecture with well-defined layers, 

and it is based on ontological foundations and patterns, facilitating the building and 

integration of new domain ontologies. We should highlight that SEON’s architecture 

is aligned to the one adopted in the ONIONS Project [34] and further with the onto-

logical architecture proposed by Obrst [35]. 

6 Final Considerations 

Ontologies are a key enabling technology for KM in SE. However, knowledge in SE 

is diverse and interlinked. For dealing with richer KM scenarios, addressing several 

SE subdomains, we need integrated ontologies. An ontology network can provide 

such integrated solution. Thus, in this paper, we presented SEON, a Software Engi-

neering Ontology Network. SEON is designed seeking for: (i) taking advantage of 

well-founded ontologies (all its ontologies are ultimately grounded in UFO); (ii) 

providing ontology reusability and productivity, supported by core ontologies orga-

nized as Ontology Pattern Languages; and (iii) solving ontology integration problems 

by providing integration mechanisms. Diverse initiatives can benefit from the use of 

SEON, especially the ones where the focus is semantic interoperability and that in-

volve a number of related SE subdomains. In this paper, we have explored KM-

related scenarios, but SEON can also be used to address other scenarios that demands 

integrated SE ontologies. 

In its current version, SEON includes core ontologies for software and software 

processes, as well as domain ontologies for the main technical software engineering 

subdomains, namely requirements, design, coding and testing. Other SE domain on-

tologies should be developed and integrated to SEON to enlarge its coverage. SEON 

success criteria relate to how easy SEON grows by incorporating new ontologies, and 

how successful is to apply SEON to solve integration focused problems (such as 

standard harmonization and tool integration, besides KM). As ongoing work, we are 

working on incorporating to SEON already developed SE subdomain ontologies for 

software documentation, measurement, configuration management and project man-

agement. Regarding SEON applications, our research agenda includes: a Standard 

Harmonization Approach supported by SEON; efforts on using SEON-based annota-

tions in semantic documents, allowing integrating information scattered in multiple 

documents; and using SEON for semantic integration of SE tools, extending [11]. 
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