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Abstract
Questions regarding the identity and individuality of objects and of sortality of concepts or universals
are important questions often raised in the context of an upper ontology. In this paper we present
a novel characterization of these concepts based on a structural approach that can be applied in the
context of an upper ontology. It provides objective criteria for determining these concepts in function
of the structural properties of particulars and universals in structures that model an upper ontology
theory. This theory has important applications in the field of conceptual modeling and on inductive
reasoning about ontologies.
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1. Introduction

The identity and the identification of objects is a topic of interest in philosophy and in linguistics.
In the former, one can find debates regarding whether identity is relative or absolute, how
identity relates to time, or what is an identity criterion [1, 2]. In the later, the notions of identity
and identification play a crucial role: unless we can presume that individuals in the domain
of discourse are identifiable (and possess identity), it would be impossible to express, in a
meaningful way, beliefs or facts regarding specific things, and our communication would, at
best, be restricted to commonalities of classes of individuals or to general concepts.

For similar reasons, the concept of identity 1 is also relevant in the field of Information
Systems, since the efficacy of the interaction of an Information System and its users depends on
whether or not the user is capable of identifying the referents of the data that the Information
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System collects, stores, processes and presents. Therefore, the investigation of the conditions
that characterize the identification of the individuals in the domain is an important step in the
development of an Information System.

This concern is particular evident in the design of the databases of Information Systems. The
database designer usually has to specify, with the help of the documentation about the domain,
which fields in each table comprise the identification keys of the table , i.e. which properties or
relations determine the identity of the referents of each table row.

However, there are hypothetical and actual situations in which one might say that an object
does not possess a unique determinate identity. For the actual case, an example is the lack of
identity of boson particles that share the same state. For the hypothetical one, we can consider
the twin spheres thought experiment, proposed by Max Black [3], that describes a universe that
contains only two stationary spheres of the same material and size. In this example, it is not
possible to determine the identity of any of the spheres, either by describing their properties or
by specifying an algorithm to determine which one is which. Bosons and symmetric spheres, in
these cases, are said to lack identity but still possess individuality, or, using Lowe’s terms [4],
are quasi-objects.

If we consider the way we perceive or represent real objects, we might say that even though
the real objects might have a determinable identity, the representations or abstractions though
which we perceive them might not: it might be irrelevant to a mechanical engineer whether or
not each steel ball in a bearing is identifiable, but only how many of them are there. Another
example could be a processed food factory, in whose viewpoint the identity of each raw item,
e.g. fish, vegetable, egg, is irrelevant. In these cases, even though it might not be necessary for a
user of a supporting information system to identify an individual referent, it might nevertheless
be necessary to determine their count. Thus, the concept of individuality is also relevant in the
development of information systems.

In other situations, the same itens, be they cattle, eggs, etc., might have to be tracked
individually, at least until a certain phase of the production process. In these cases the
representations of these individuals would need to have a determinate identity.

In the process of the development of an information system, the information regarding the
identity and individuality of the objects of the domain is usually recorded in the document
that describes the domain, e.g. in a conceptual model or in an ontology, and is commonly
linked to one or more concepts, e.g. how to identify vehicles or books. Such concepts, and
any specializations thereof, are said to be sortal concepts [5], or concepts that carry or supply
a principle of identity for its instances. The distinction between sortal a non-sortal concepts
plays an important role in ontology engineering methodologies such as OntoClean [6], the
UFO upper ontology [7] and in the OntoUML conceptual modeling language, based on UFO,
that contains syntactical rules that depend on the assessment of the sortality of the concepts
represented in its diagrams.

In the UFO ontology original presentation [7] there is a stated assumption that the particulars
in the domain possess both identity and individuality. The notion of sortality is characterized
in UFO by distinguishing the domain of instantiation of sortal types and non-sortal types. This
approach, described in [8], considers as a sortal those types that are instantiated by individual
concepts, where an individual concept is represented by an intensional function that maps each
possible world to an individual in that world. On the other hand, a non-sortal type is instantiated



directly by possible world individuals. In this sense, we can say in the resulting models consider
the distinction between sortals and non-sortals to be unalizable, i.e. a type is a sortal (or a
non-sortal) because it is implictly indicated as so in the model. While this characterization
allows us to consider the implications of having the distinction between sortals and non-sortals,
i.e. sortals are associated with individual concepts, which can be considered to be representations
of the identity of objects, they provide no means for questioning why a certain type is or is not a
sortal. In other words, the model provides no means to falsify a statement regarding the sortality
of a type, unless it does it in a trivial way, e.g. by saying that a type 𝑇 is a sortal just because
the model explictly says “𝑇 is a sortal”. However, if facts regarding sortality are meaningful
and informative, i.e. they are synthetic truths, whose determination is grounded in meaningful
patterns in reality, then it would be interesting to provide a formal characterization of sortality
that allows such analysis to be made, and that is the goal of the formalization proposed in this
paper. In our proposed formalization, the sortality of a type is an emergent property, i.e. it is
grounded in the structure of the world and in the principle of application of a type.

Another approach is described in [9], in which a sortal is characterized as a type that
specializes a kind, i.e. a rigid type that provides an identity criterion to its instances. However,
similarly to the approach described in [8], the characterization does not provide an explanation
as to how a type provides (or not) an identity criterion. The characterization proposed in
this paper aims to provide a clear and falsifiable criteria for evaluating whether or not a type
is a sortal based on the properties of the particulars in the domain and in the property that
characterizes all types, their principle of application.

This paper presents a formal characterization of the concepts mentioned in the title: individuality,
identity and sortality. The intuition on which the formalization is based is an idealized game,
a thought experiment proposed in section 2 through which we defend a desiderata for the
formalization of these concepts. The formalization, described in section 3, is based on a simplified
theory of substantials, moments and universals derived from the UFO ontology. In section 4,
we briefly discuss possible pratical implications of this theory. Section 5 then presents final
considerations of the paper.

We would like to thank the reviewers for the relevant suggestions and corrections.

2. The Identification Game

Consider the following game, called identification game, played cooperatively by two players,
which we shall call Alice and Bob. In the first phase of the game, Alice is placed in the midst of
a large, round and symmetrical room, in which there can be found various objects of diverse
sizes, shapes and colors, placed arbitrary in the room’s floor. Alice then proceeds by choosing
one of this objects and writing down, in a notepad, a description or an instruction that can
be used to identify the chosen object. These notes can contain, for example, the color of the
chosen object, its distance to the center of the room, the relative distance to other objects in its
surrounding, etc. After taking these notes, Alice is removed from the room and Bob is placed
on the room, in a arbitrary position. With Alice’s notes in hand, Bob has to identify correctly
which object Alice has chosen before.

Note that Alice’s chosen object might be exactly similar to another object in the room.



Furthermore, it might be positioned symmetrically with regards to another similar object. The
questions we can present to this thought experiment are these: Is it possible to describe any
object in the room with absolute certainty? Is there an objective way to determine which objects
can or cannot be identified, irrespective of the strategy used when writing the notes?

Let’s consider a hypothetical case based on Max Black’s twin spheres: suppose the room
contains just two spheres which are completely stationary, are placed in symmetrical positions
with respect to the center of the room, and that are perfectly similar. In this case, no matter
which sphere Alice chooses and what Alice writes down in the notepad, Bob will have at most a
50% chance of guessing the object correctly. Note that, in this case, Alice can ground an assertion
that none of the spheres are identifiable by pointing out the symmetry of the configuration,
without even considering whether or not which strategy should be used in taking the notes.

On the other hand, if we break the symmetry of the configuration by adding some other
element, such as a distinct size or color for each sphere or a single extra object in any place but
the center of the room, then both spheres would be identifiable. In this case Alice could ground
the assertion that a sphere is identifiable just by pointing out the lack of symmetry in the room,
even before she decides what shall be described in the notes or which language and strategy
shall be used to write them down.

Therefore, the existence of a description that determines the identity of an object is unnecessary
to ground its identifiability or non-identifiability. On the other hand, the intrinsic properties of
an object are insufficient to determine whether or not it is identifiable. Instead, it is necessary to
consider the whole structure, i.e. identity should be considered a structural property. This notion
of identity can be characterized formally through an analysis of the various homomorphisms of
the structure that represents the world configuration, e.g. that represent the room in the game.

2.1. Individuality

While its conceivable that a configuration with symmetrical objects described in the identification
game could exist in reality, the same cannot be done with objects that lack also individuality,
since if there were two distinct objects in reality that lacked individuality, then we would not
be able to perceive them as distinct at all. However, if we consider the abstract representations
of reality, this distinction becomes pertinent.

For example, suppose there is a representation of a configuration that contains two pieces
of information: (1) there is a sphere, let’s call it A, with a diameter of 10 meters; (2) there is a
sphere, let’s all it B, with a diameter of 10m. Now let’s consider the following question: How
many spheres are there in that universe? Are the descriptions (of A and B) describing the same
sphere? Or are they describing distinct spheres? In case the problem is not just whether or not
one of the spheres are identifiable. We cannot prove they are distinct, in the first place. In this
case we say that the representations of the particulars contained in the representation of the
configuration lack individuality.

Similarly to the notion of identity, we can determine the individuality (or lack thereof) by
examining the homomorphisms of the representing structure, as we shall describe formally in
the next section.



2.2. Sortality

In the OntoClean methodology [10], the concept of a sortal (substantial) universal is described
as being a universal that provides a principle of identity for its instances. The evidence that a
universal is a sortal is the existence of a binary identity predicate 𝑃 (𝑥, 𝑦) that satisfies Leibniz’s
Principle of the Identity of the Indiscernibles, i.e. 𝑃 (𝑥, 𝑦) holds if and only if 𝑥 and 𝑦 have the
same properties.

This definition suffers from a few issues: (1) it reduces a fundamental ontological notion,
sortality, to the existence of an element (a predicate) which could be considered dependent
upon the existence of a human being and of some language understood by human beings;
(2) providing a predicate as an evidence implies also the arbitrary choices of language and
of the expression of the predicate in that language, that cannot be explained in terms of the
configuration itself; and (3) the existence of the binary predicate of distinguishability does not
guarantee the identifiability of the instances, but only their distinguishability.

However, we can avoid this issue by considering the relation between sortality and identity
from a different perspective: instead of characterizing sortals as universals that provide (or carry
or supply) identity for its instances, we characterize non-sortals as universals that preclude the
identification of its instances. The idea here is to consider universals (or concepts) as cognitive
tools that remove details of its instances, through an abstraction process.

In other words, it is not that a sortal provides identity and a non-sortal doesn’t, but that a
non-sortal abstracts so much detail of its instances that, when used as “filters”, they make it
impossible to identify some of its instances.

As an example, consider again a configuration with two spheres, A and B, where A and B
are physically apart, have the same diameter and have distinct colors. In this case, we might
say that the spheres A and B instantiate the Solid Object, Spherical Object, and Colored
Object. Each of the universals induce an abstraction on the configuration: as solid objects, only
their distance from each other is relevant; as spherical objects, the distance and diameter are
relevant; and as colored objects, only the distance and color are relevant. If we trim down the
configuration according to the abstraction represented by each of these universals, we shall
arrive in three distinct configurations. However only the abstraction given by the Colored
Object universal keeps the spheres identifiable. The other two universals are too abstract and
produce representations in which the spheres lack identity. Thus, a sortal, in the sense proposed
here, is a universal whose instances are still identifiable even after its abstraction process.

3. Formal Characterization

A structural characterization of the notions of identity, individuality and sortality require a
suitable notion of “structure” and of transformations that preserve this structure (homomorphisms).
We call such as structure a particular structure, in the sense that its purpose is the representation
of the particulars in the domain, its properties and relationships, and any other elements that
are required to represent them. The particular structure we present here is a simplified version
of the UFO model structure:

Definition 1. A particular structure system is a is a tuple P = (𝒫𝒮, 𝒲−, (▷−), Φ−,−) where



• 𝒫𝒮 is a non-empty set of particular structures;
• 𝒲− :: 𝒫𝒮 ↦→ 𝑆𝑒𝑡 is a function that associates particular structures to possible world

configurations, i.e. to sets of sets of particulars;
• 𝒫− is the function that associates a particular structure to its set of particulars, i.e.
𝒫Γ =

⋃︀
𝒲Γ;

• (▷−) ⊆ 𝑆𝑒𝑡 × 𝒫𝒮 × 𝑆𝑒𝑡 is a ternary relation denoting an inherence relation, where
𝑥1 ▷Γ 𝑥2 denotes “in the particular structure Γ, the moment 𝑥1 inheres in the endurant
𝑥2”.

• Φ−,− denotes a family of functions, or morphisms, between particulars of particular
structures in 𝒫𝒮 , that determine the correspondence between endurant representations
in different structures contained in 𝒫𝒮 , i.e. for some particular structures Γ1 and Γ2 of
𝒫𝒮 , ΦΓ1,Γ2 is a set of functions from the set of particulars of Γ1 to those of Γ2.

From these elements, we can define the following:

• the set of moments of a particular structure Γ ∈ 𝒫𝒮 , written asℳΓ, where

ℳΓ ≡ {𝑥 ∈ 𝒫Γ| ∃𝑦. 𝑥 ▷Γ 𝑦} ; (1)

• the set of substantials of a particular structure Γ ∈ 𝒫𝒮 , written as 𝒮Γ, where

𝒮Γ = 𝒫Γ −ℳΓ; (2)

• the existential dependency relation, where 𝑒𝑑Γ(𝑥, 𝑦) denotes the statement that 𝑥 and 𝑦
are particulars of Γ and that 𝑥 is existentially dependent upon 𝑦 in Γ, i.e.

𝑒𝑑Γ(𝑥, 𝑦) ≡ ∀𝑤 ∈ 𝒲−.𝑥 ∈ 𝑤 −→ 𝑦 ∈ 𝑤; (3)

• the correspondence relation between worlds of two particular structures: given Γ1,Γ2 ∈
𝒫𝒮 , 𝜙 ∈ ΦΓ1,Γ2 , 𝑤1 ∈ 𝒲Γ1 and 𝑤2 ∈ 𝒲Γ2 , we say that 𝑤1 (from Γ1) corresponds to 𝑤2

(from Γ2) through the morphism 𝜙, written as 𝑤1 ⇔Γ1,Γ2,𝜙 𝑤2 and defined formally as:

𝑤1 ⇔Γ1,Γ2,𝜙 𝑤2 ≡ ∀𝑥 ∈ 𝒫Γ1 . 𝑥 ∈ 𝑤1 ←→ 𝜙(𝑥) ∈ 𝑤2. (4)

Additionally, the elements of a particular structure system must satisfy the following conditions:

• for any particular structure, its set of particulars must be finite;
• inherence implies existential dependency, i.e. for any particular structure Γ ∈ 𝒫𝒮 and

any particulars 𝑥, 𝑦 ∈ 𝒫Γ,
𝑥 ▷Γ 𝑦 −→ 𝑒𝑑Γ(𝑥, 𝑦); (5)

• inherence is functional on the set of moments, i.e. for any particular structure Γ ∈ 𝒫𝒮
and any particulars 𝑥, 𝑦, 𝑧 ∈ 𝒫Γ,

𝑥 ▷ 𝑦 ∧ 𝑥 ▷ 𝑧 −→ 𝑦 = 𝑧 (6)



• for any particular structures Γ1,Γ2 ∈ 𝒫𝒮 and any morphism 𝜙 ∈ ΦΓ1,Γ2 , 𝜙 must satisfy
the following constraints:

morphisms reflect inherence:
∀𝑥, 𝑦 ∈ 𝒫Γ1 . 𝜙(𝑥) ▷Γ2 𝜙(𝑦)←→ 𝑥 ▷Γ1 𝑦 (7)

morphisms do not change substantial into moments:
∀𝑥 ∈ 𝒫Γ1 .∀𝑦 ∈ 𝒫Γ2 . 𝜙(𝑥) ▷Γ2 𝑦 −→ ∃𝑧 ∈ 𝒫Γ1 . 𝑦 = 𝜙(𝑧) ∧ 𝑥 ▷Γ1 𝑧 (8)

every world in the the source structure has at least one corresponding world
in the target structure, and vice-versa:
∀𝑤1 ∈ 𝒲Γ1 . ∃𝑤2 ∈ 𝒲Γ2 . 𝑤1 ⇔𝜙,Γ1,Γ2 𝑤2 (9)

∀𝑤2 ∈ 𝒲Γ2 . ∃𝑤1 ∈ 𝒲Γ1 . 𝑤1 ⇔𝜙,Γ1,Γ2 𝑤2 (10)

These constraints ensure that the meaning of the inherence relation is preserved among
structures (constraints 7 and 8) and that existential dependency is preserved (consequence
of constraints 9 and 10).

• for any Γ ∈ 𝒫𝒮 , the identity function on 𝒫Γ is on Φ, i.e., 𝑖𝑑𝒫Γ
∈ ΦΓ,Γ;

• for any Γ1,Γ2,Γ3 ∈ 𝒫𝒮 and any morphisms 𝜙12 ∈ ΦΓ1,Γ2 and 𝜙23 ∈ ΦΓ2,Γ3 , their
composition is on Φ, i.e. 𝜙23 ∘ 𝜙12 ∈ ΦΓ1,Γ2 ;

Morphisms can be classified according to their functional properties. A morphism 𝜙 ∈ ΦΓ1,Γ2

is:

• injective if it is an injection on 𝒫Γ1 ;
• surjective if it is surjective onto 𝒫Γ2 ;
• bijective, or an isomorphism, if its both injective and surjective, or, equivalently, if it is

invertible;

– the set of isomorphisms between Γ1 and Γ2 is denoted by Φ≃
Γ1,Γ2

;
– if there is an isomorphism between Γ1 and Γ2, Γ2 is said to be isomorphic to Γ1 (and

vice-versa);

• an endomorphism, if Γ1 = Γ2;
• a permutation if its both an endomorphism and an isomorphism.

Note that since the set of particulars of any particular structure is finite, every injective
morphism between isomorphic particular structures is also an isomorphism. In particular,
injective endomorphisms are permutations.

Finally, particular structure systems must satisfy the condition that for any particular structure
Γ, there must be an infinite number of isomorphic particular structures in 𝒫𝒮 .

Structural Properties

Using the notion of a particular structure and of its morphisms, we define two structural
properties of particulars in a structure: non-collapsibility, which captures the distinguishability
of a particular, and non-permutability, which characterizes the asymmetry of a particular
with respect to the other objects in the configuration. They are defined as follows:



Definition 2. A particular 𝑥 in a particular structure Γ is said to be non-collapsible in Γ if and
only if, for every endomorphism 𝜙 on Γ, the following holds:

∀𝑦 ∈ 𝒫.𝜙(𝑥) = 𝜙(𝑦)←→ 𝑥 = 𝑦. (11)

A non-collapsible particular is said to be a particular that possesses individuality in the
structure.

Definition 3. A particular 𝑥 in a particular structure Γ is said to be non-permutable in Γ if and
only if, for every endomorphism 𝜙 on Γ, 𝜙(𝑥) = 𝑥 and, for every 𝑦 ∈ 𝒫 , 𝜙(𝑦) = 𝑥 implies that
𝑦 = 𝑥.

We can also use the set of morphisms to define a notion of identifiability that captures the
idea that the identification of a particular does not depend on the particular labels assigned to
them:

Definition 4. Let 𝒫𝒮 denote the set of particular structures, P =
⋃︀
{𝒫Γ |Γ ∈ 𝒫𝒮} denote the

set of all particulars, Γ denote some particular structure and 𝑥 denote a particular of Γ. We call
a predicate 𝑃 :: 𝒫𝒮 ×P ↦→ 𝑏𝑜𝑜𝑙 an isomorphically invariant identifying predicate of 𝑥 in Γ if
and only if, for any isomorphism 𝜙 from Γ to some other particular structure Γ*, 𝑃 “guesses”
correctly what is the image of 𝑥 under 𝜙, i.e.

IdPred(𝑃,Γ, 𝑥) ≡ ∀Γ′ ∈ 𝒫𝒮. ∀𝜙 ∈ Φ≃
Γ,Γ′ . 𝑃 (Γ′, 𝑥)←→

(∀𝑦 ∈ 𝒫Γ′ .∀𝑧 ∈ 𝒫Γ. 𝑦 = 𝜙(𝑥)←→ 𝑧 = 𝑥) . (12)

In other words, assuming that Γ is an admissible particular structure (Γ ∈ 𝒫𝒮) and that 𝑥 is a
particular of Γ, 𝑃 correctly guesses the particular that corresponds to 𝑥 in any other particular
structure in 𝒫𝒮 , irrespective of which correpondence morphism is being considered, i.e. 𝑃
correctly captures the identity of 𝑥.

This characterization of a predicate that describes the identity of a particular differs from
the approach that relies on Leibniz principle of Identity of Indiscernibles because it does not
rely on a quantification over predicates. Instead it defines such a predicate as being one that is
able to pick the exact element that represents that particular in the each possible representation
of the structure of reality. This approach avoids the possibility of considering trivial and non-
informative predicates as identity predicates, since if we simply use logical identity to define an
identity predicate in a trivial way, the resulting predicate would not be invariant with respect to
the morphisms that stand for possible changes in the representation form. We can then define the
notion of an identifiable particular by means of the existence of a suitable identifying predicate,
i.e. of a predicate that can identify the particular irrespective of the specific labeling used in the
representation:

Definition 5. An identifiable particular of a particular structure Γ is a particular of Γ for which
there is at least one identifying predicate, i.e.

𝒫 𝑖𝑑
Γ ≡ {𝑥 ∈ 𝒫Γ | ∃𝑃. IdPred(𝑃,Γ, 𝑥)} .



The notions of permutability and identifiability are linked by the following theorem:

Theorem 1. For any particular structure Γ and any particular 𝑥 of Γ, the following statements
are equivalent:

1. 𝑥 is an identifiable (non-identifiable) particular of Γ;
2. 𝑥 is non-permutable (permutable) in Γ.

Proof. Identifiability implies non-permutability because the identity predicate can only identify
a particular 𝑥’s mapping from a particular structure Γ into an isomorphic structure Γ* through
some unknown morphism if all morphisms from Γ to Γ* agree with respect to the image of 𝑥.
On the other direction, non-permutability implies identifiability because since the mapping of
𝑥 is the same for all morphisms, it is sufficient to identify the mapping using any morphism, e.g.
the isomorphism itself.

This theorem clarifies the intuition, presented in the discussion regarding the identification
game, that the identifiability of a particular can be determined structurally (non-permutability),
without considering the existence of a suitable predicate. It suffices to demonstrate the existence
of a non-identical permutation of a particular to prove its non-identifiability.

3.1. Sortality

To characterize sortality, we need first to characterize the notions of instantiation, which here
includes an aspect of invariance modulo isomorphisms, and of trimming, i.e. of the abstraction
process of a universal over the elements of the representation of a configuration:

Definition 6. Let 𝑃 :: 𝒫𝒮×W×P ↦→ 𝑏𝑜𝑜𝑙 be a ternary predicate over the set of all particular
structures, the set of all possible worlds and the set of all particulars. We call 𝑃 an instantiation
predicate if and only if the particulars it applies to are invariant under isomorphisms of the
underlying particular structure and correspondence between possible worlds, i.e. for any
particular structures Γ1 and Γ2 with an isomorphism 𝜙 between Γ1 and Γ2, for any possible
worlds 𝑤 and for any particular 𝑥, the following holds:

𝑃 (Γ1, 𝑤, 𝑥) −→ 𝑤 ∈ 𝒲Γ1 ∧ 𝑥 ∈ 𝑤 (13)

𝑃 (Γ1, 𝑤, 𝑥)←→ ∀𝑤′ ∈ 𝒲Γ2 . 𝑤 ⇔ 𝑤′ −→ 𝑃
(︀
Γ2, 𝑤

′, 𝜙(𝑥)
)︀

(14)

Similarly to the concept of an isomorphically invariant identification predicate, this notion of
instantiation predicate also captures the idea that the conditions that rule the applicability of a
universal should not depend on the specific labeling (or representation) of the particulars. With
this notion of instantiation, we define a representation of a configuration and of the instantiation
relation between the particulars in the configuration and a set of universals:

Definition 7. An instantiation system is a tuple

ℐ = (P,𝒰𝑠,𝒰𝑚, {iof𝑢}) ,

where P = (𝒫𝒮, 𝒲−, (▷−), Φ−,−) is a particular structure system, 𝒰𝑠 is called the set of
substantial universals of 𝒞, 𝒰𝑚 is called the set of moment universals of 𝒞, {iof𝑢} is a family of



instantiation predicates, indexed by substantial and moment universals, i.e. 𝑢 ∈ 𝒰𝑠 ∪ 𝒰𝑚. An
instantiation system must satisfy the following conditions: for any universal 𝑢 ∈ 𝒰𝑠 ∪ 𝒰𝑚, any
particular structure Γ, any possible world 𝑤 ∈ 𝒲Γ and any particular 𝑥 ∈ 𝒫Γ:

substantial universals are only instantiated by substantials:
𝑢 ∈ 𝒰𝑠 ∧ iof𝑢(Γ, 𝑤, 𝑥) −→ 𝑥 ∈ 𝒮Γ (15)

moment universals are only instantiated by moments:
𝑢 ∈ 𝒰ℳ ∧ iof𝑢(Γ, 𝑤, 𝑥) −→ 𝑥 ∈ℳΓ (16)

Furthermore, we require that a moment instantiation has to be rigid, i.e. all moment universals
considered here are rigid universals, or universals that are necessarily instantiated by their
instances in all possible worlds in which these instances exist:

∀𝑢 ∈ 𝒰𝑚.∀𝑚.∀𝑤1, 𝑤2 ∈ 𝒲Γ. iof𝑢(Γ, 𝑤1,𝑚) ∧𝑚 ∈ 𝑤2 −→ iof𝑢(Γ, 𝑤2,𝑚). (17)

The relationship between the substantial universals, that represent abstractions of the objects
in the configuration, and the moment universals, which represent the properties of the objects,
is given by the characterization relation:

Definition 8. Given a particular structure Γ, a substantial universal 𝑢𝑠 ∈ 𝒰𝑠 and a moment
universal 𝑢𝑚 ∈ 𝒰𝑚, we say that 𝑢𝑚 characterizes 𝑢𝑠 in Γ if, and only if, for all possible worlds
𝑤 ∈ 𝒲Γ and for all substantials 𝑠 ∈ 𝒮Γ, if iof𝑢𝑠(Γ, 𝑤, 𝑠) then there exists a moment 𝑚 ∈ℳΓ

such that 𝑚 ▷Γ 𝑥, 𝑚 ∈ 𝑤 and iof𝑢𝑚(Γ, 𝑤,𝑚). We call CharΓ (𝑢𝑠) the set of characterizing
universals of 𝑢𝑠 according to Γ, i.e.

CharΓ (𝑢𝑠) = {𝑢𝑚 | ∀𝑤, 𝑥. iof𝑢𝑠 (Γ, 𝑤, 𝑥) −→ ∃𝑦. 𝑦 ▷Γ 𝑥 ∧ iof𝑢𝑚 (Γ, 𝑦, 𝑤)} (18)

We can then use the characterization relation to identify the moments that specify an object
beyond what is abstracted way by an universal, i.e. the moments that provide further details on
a particular, with respect to a universal:

Definition 9. Given a particular structure Γ and a substantial universal 𝑢𝑠 ∈ 𝒰𝑠, we call the set
of detailing moments of 𝑢𝑠 in Γ, written as ∆𝑢𝑠,Γ, the set of all moments that inhere in instances
of 𝑢𝑠 but do not instantiate a moment universal that characterizes 𝑢𝑠, i.e.

∆𝑢𝑠,Γ =

{︃
𝑚 | ∃𝑥,𝑤.𝑚 ▷Γ 𝑥 ∧ iof𝑢𝑠 (Γ, 𝑤, 𝑥)∧(︀

∀𝑢𝑚 ∈ Char (𝑢𝑠) .∀𝑤′.¬iofum
(︀
Γ,w′,m

)︀)︀}︃ . (19)

We can then define the trimming operation, which captures the abstraction process of a
universal, as the removal of the detailing moments of a universal:

Definition 10. Given a particular structure Γ, a substantial universal 𝑢𝑠 ∈ 𝒰𝑠 and a particular
structure Γ*, we say that Γ* is Γ trimmed by 𝑢𝑠, written as Γ* = Γ ↓ 𝑢𝑠, if and only if:



• the set of worlds of Γ* consists on the worlds of Γ with 𝑢𝑠’s detailing moments removed,
i.e.

𝒲Γ* = {𝑤 −∆𝑢𝑠,Γ |𝑤 ∈ 𝒲Γ} ; (20)

• inherence is restricted to moments that are not detailing moments of 𝑢𝑠. i.e.

𝑥 ▷Γ* 𝑦 ←→ 𝑥 ▷Γ 𝑦 ∧ 𝑥 /∈ ∆𝑢𝑠,Γ. (21)

Before we present the definition of sortality, we just add some a few restrictions on the particular
structure:

Definition 11. We call a particular structure complete with respect to an instantiation system
if and only if the following conditions are met:

• every particular in Γ is non-collapsible;
• every universal has at least one instance in Γ, i.e.

∀𝑢 ∈ 𝒰𝑠 ∪ 𝒰𝑚. ∃𝑥,𝑤. iof𝑢(Γ, 𝑤, 𝑥); (22)

• the characterizing set of every substantial universal is unique, i.e.

∀𝑢1 ∈ 𝒰𝑠.∀𝑢2 ∈ 𝒰𝑆 .CharΓ (𝑢1) = CharΓ (𝑢2) −→ 𝑢1 = 𝑢2; (23)

• characterizing sets determine the instantiation relation on substantials, i.e.

∀𝑢𝑠 ∈ 𝒰𝑠.∀𝑤 ∈ 𝒲Γ.∀𝑥 ∈ 𝒫Γ.iof𝑢𝑠 (Γ, 𝑤, 𝑥)←→
(∀𝑢𝑚 ∈ CharΓ (𝑢𝑠) .∃𝑦. 𝑦 ▷Γ 𝑥 ∧ iof𝑢𝑚 (Γ, 𝑤, 𝑦)) ; (24)

– every moment universal characterizes at least one substantial universal, i.e.

∀𝑢𝑚 ∈ 𝒰𝑚.∃𝑢𝑠 ∈ 𝒰𝑠. 𝑢𝑚 ∈ CharΓ (𝑢𝑠) ; (25)

– it has all trimmings, i.e. for any substantial universal 𝑢𝑠 ∈ 𝒰𝑠, (Γ ↓ 𝑢𝑠) ∈ 𝒫𝒮 and
the identity function on particulars of (Γ ↓ 𝑢𝑠) is a morphism from (Γ ↓ 𝑢𝑠) to Γ.

Now we can present the formal definition of sortality of a universal, relative to an instantiation
relation and a complete partial structure:

Definition 12. Given a complete particular structure Γ and a substantial universal 𝑢𝑠 ∈ 𝒰𝑠,
we call 𝑢𝑠 a sortal (with respect to Γ) if and only if all instances of 𝑢𝑠 in Γ are identifiable in the
particular structure obtained by trimming Γ by 𝑢𝑠, i.e.

Sortal (𝑢𝑠)←→
(︁
∀𝑥,𝑤. iofus (Γ,w, x) −→ x ∈ 𝒫 id

(Γ↓us)

)︁
. (26)

The properties of the proposed characterization of sortality are described by the following
lemmas and by the 2:

Lemma 1. All endomorphisms in a complete particular structure are permutations in that structure.



Proof. Since the particular structure is non-collapsible, every endomorphism must be injective
and, since the set of particulars is finite, the endomorphism must also be bijective and, as such,
a permutation.

Lemma 2. For any complete particular structureΓ, any substantial universal𝑢𝑠, and any permutation
𝜙 on Γ, the restriction of 𝜙 to 𝒫(Γ↓𝑢𝑠) is a permutation on Γ ↓ 𝑢𝑠.

Proof. The trimming operation removes all moments that do not instantiate certain moment
universals (that do not characterize 𝑢𝑠) and that inhere in some substantial that instantiate 𝑢𝑠.
Since instantiation is invariant under isomorphisms and permutations, the image of ∆𝑢𝑠,Γ under
is going to be ∆𝑢𝑠,Γ itself. Consequently, since 𝜙 is a permutation, the image of 𝒫Γ −∆𝑢𝑠,Γ is
𝒫Γ−∆𝑢𝑠,Γ itself. Thus, the restriction of 𝜙 on the set of particulars of Γ ↓ 𝑢𝑠, i.e. on𝒫Γ−∆𝑢𝑠,Γ,
is a permutation on (Γ ↓ 𝑢𝑠).

Lemma 3. Non-identifiable substantials are kept under trimming of a complete partial structure,
i.e. for any complete particular structure Γ, any substantial 𝑥 ∈ 𝒫Γ and any substantial universal
𝑢𝑠:

𝑥 ∈ 𝒫 𝑖𝑑
Γ −→ 𝑥 /∈ 𝒫 𝑖𝑑

(Γ↓𝑢𝑠)
. (27)

Proof. By 1, since non-identifiability is equivalent to permutability, 𝑥 is also non-permutable
in Γ. Thus, there is must be an endomorphism 𝜙 on Γ such that either (1) 𝜙(𝑥) ̸= 𝑥 or (2)
there is a particular 𝑦 in Γ such that 𝑦 ̸= 𝑥 and 𝜙(𝑦) = 𝑥. By 1, 𝜙 is a permutation on Γ and, .
trimmed by 𝑈 , i.e. 𝜙 ∈ 𝑃𝑒𝑟𝑚(Γ ↓ 𝑈). Of course, since 𝜙 is a (Γ ↓ 𝑈)-permutation, it is also a
(Γ ↓ 𝑈)-endomorphism.

To show that 𝑥 is permutable in (Γ ↓ 𝑈) as well, consider the cases (a) and (b): in case (a), since
the trimming operation only removes moments, 𝑥 is a also a substantial in (Γ ↓ 𝑈), and since 𝜙
is a (Γ ↓ 𝑈)-endomorphism and 𝜙(𝑥) ̸= 𝑥, then is also permutable in (Γ ↓ 𝑈); in case (b), we
have that 𝑦 is a substantial in Γ, since particular structure morphisms preserve substantials and,
thus, that 𝑦 is also in (Γ ↓ 𝑈) and, since 𝜙(𝑦) = 𝑥, 𝑦 ̸= 𝑥 and 𝜙 is a (Γ ↓ 𝑈)-endomorphism,
we have that 𝑥 is permutable in (Γ ↓ 𝑈).

Lemma 4. If a particular is identifiable in a complete particular structure Γ trimmed by 𝑈 , then
it is also identifiable in Γ, i.e.

𝒫 𝑖𝑑
(Γ↓𝑢) ⊆ 𝒫

𝑖𝑑
Γ .

Proof. This is is just the contrapositive of 3.

Theorem 2. Particulars that instantiate a sortal in a complete particular structure are identifiable
in that structure.

Proof. Directly from 4 and Definition 12.



4. Some Practical Implications

The falsifiability of the assertions constructed using the concepts and relations provided by an
upper ontology is an important factor in the application of the later in the practice of conceptual
modeling. Unless the upper ontology provides a clear and precise method for determining the
truthfulness of an assertion such as "X is a part of Y", or "U is a rigid universal" or, in the case
discussed in this paper, "U is a sortal", the use of this concepts shall introduce an undesirable
element of subjectivity in the ontology or conceptual model. In the specific case of UFO, the
lack of a definition for the notion of sortality, in contrast with other concepts provided by UFO,
is a gap that has implications in the validation of OntoUML models.

However, our proposed characterization leads naturally to a clear falsifiability criterion for
the notion of sortality (and of identity and individuality): to prove that a substantial universal is
not a sortal, one first constructs the trimmed version of the intended model, and then presents
a morphism that permutates one of the instances of the universal in the trimmed model.

5. Conclusion

In this paper, we presented a novel characterization of the notions of identity, individuality and
sortality in the context of the Unified Foundational Ontology (UFO). We presented an informal
discussion regarding these concepts and pointed out the issues regarding a characterization
that relies on the existence (or definability) of suitable predicates. As an alternative, we propose
a characterization that is determined solely by the properties of the configuration of objects
itself, without requiring the consideration of the existence of a predicate, nor it carries a hidden
variable representing the choice of a language and of an expression for the predicate. We also
presented a formal characterization of these concepts and demonstrated: (1) the equivalence
between the structural and the tradition approaches for characterizing identity; (2) the properties
of the formal characterization of sortality. We also described how a falsifiability criterion for
sortality can be derived from the proposed definition, filling an important gap present in the
original UFO theory and enabling the objective validation of OntoUML models.

The structural approach towards identity described in this paper extends the one proposed
in [11] with the characterization of the notion of individuality. This approach is similar to the
one used to characterize grades of discernibility in fragments of first-order logic presented in
[12]. The notions of particular with individuality and of a particular of identity presented in
this paper correspond, respectively, to the notions of a two-distinguishable particular and a
one-distinguishable particular presented in that work.
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