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Abstract. Validating and debugging conceptual models is a very time-

consuming task. Though separate software tools for model validation and

machine learning are available, their integration for an automated sup-

port of the debugging-validation process still needs to be explored. The

synergy between model validation for finding intended/unintended con-

ceptual models instances and machine learning for suggesting repairs

promises to be a fruitful relationship. This paper provides a preliminary

description of a framework for an adequate automatic support to engi-

neers and domain experts in the proper design of a conceptual model.

By means of a running example, the analysis will focus on two main

aspects: i) the process by which formal, tool-supported methods can be

e↵ectively used to generate negative and positive examples, given an in-

put conceptual model; ii) the key role of a learning system in uncovering

error-prone structures and suggesting conceptual modeling repairs.
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1 Introduction

The complexity of building conceptual models is a widely recognized research
issue. Works like [9] and [7] underline the limitations of human cognitive ca-
pabilities in managing the huge and di�cult activities involved in conceptual
modeling. This is the main reason why, over the years, multiple solutions aimed
at supporting conceptual model design have been provided by di↵erent com-
munities. Most of these solutions can be categorized as complexity management

engineering tools, and they o↵er semi-automated or fully-automated support
facilities for model design, validation, or verification [8].

To adequately support the engineering of complex conceptual models, besides
these tools, we have seen, in the last decade, an increasing interest in the use
of ontology-driven conceptual modeling languages [16]. These languages mainly
seek to o↵er a reference layer for conceptual modeling construction, validation,
and code generation. In this spirit, the recent work presented in [14] describes
a novel validation strategy using visual model finding [10], that can be used for
eliciting anti-patterns in conceptual models. The empirically-elicited research
output in [14] o↵ers a concrete example of how error-prone modeling decisions
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can be uncovered and made explicit, thus o↵ering a methodology to diagnosis
and repair of conceptual models.

In approaches such as [14], however, anti-pattern detection as well as the
construction of rectification plans is done manually, i.e., the authors have man-
ually validated dozens of models, manually detected these emerging error-prone
structures, and have manually proposed e↵ective rectification plans. As shown
therein, with this process, they have managed to propose a catalog containing
dozens of anti-patterns. Manually conducting this process, however, is a di�cult
and time-consuming task, which, as consequence, limits the number of models
that can be analyzed and, hence, the number of structures that can be discovered.
To address this limitation, we are interested in identifying how, by using model

finding and machine learning (ML), the design activities of this approach can be
supported. In other words, we want to reduce the e↵ort to uncover error-prone
structures in conceptual models and identify repairs suggestion, by automating
these tasks as much as possible.

Though separate software tools for model finding and machine learning are
available, their integration for automating the debugging-validation process still
needs to be explored. Inspired by the work of Alrajeh and colleagues [2, 3], who
proposed an approach to automatically diagnose and repair temporal logic soft-
ware specifications based on the integration of model checking and machine

learning, we seek to develop an approach for conceptual modeling, which in
turn, leverages on model finding

1 and machine learning techniques.

The contributions of this paper are three-fold. Firstly, we propose a frame-
work to implement the aforementioned synergy between model finding and ma-
chine learning for conceptual modeling diagnosis and repair. Secondly, we con-
tribute to the identification of how formal, tool-supported methods can be e↵ec-
tively used to generate a data set of negative and positive examples of instances
for a given conceptual model. We do this by carrying out an empirical simulation
over a simple example conceptual model. In particular, we adopt the Alloy An-

alyzer [10] to generate multiple simulations of the input conceptual model and
we propose a series of steps to encode information about intended/unintended
models. Thirdly, once the data set of negative and positive examples has been
elicited, we show how this data can be given as input to a learning system, which
can be used to automatically uncover error-prone structures and suggest repairs
to the modeler.

The remainder of this paper is organized as follows. In section 2, we briefly
introduce our running example. Section 3 introduces the framework, by describ-
ing the main steps, agents, and components involved. Section 4 shows how to
go from model finding, through annotation, to example set generation. Section
5 describes the role of a learning system in identifying error-prone structures
and suggesting repairs. Finally, section 6 presents some final considerations and
describes future work.

1
For a detailed analysis of model checking and model finding see [10].
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2 Conceptual Modeling: Learning by Feedback

We take here the general methodological practice employed in natural sciences
[5] of starting with simple models to explore a fuller extent of the ideas at hand
before making progress to complex ones. In that spirit, although the ultimate
goal of this research program is to develop a framework target at ontology-driven
conceptual modeling languages (in particular, OntoUML [7]), we start here with
standard UML and with the toy model depicted in Figure 1 below.

Fig. 1: A toy example in UML.

Now suppose that we can run simulations (or configurations) of the given
example model with at most 2 instances per configuration2. The list of possible
configurations of this model is depicted in Figure 2, in which solid arrows mean
direct instantiation and dashed arrows indirect instantiation.

By looking at these possible outputs, the modeler may identify some unin-

tended configurations, namely instances that she does not want her model to
allow. Now suppose that by looking at these outputs, the modeler can anno-
tate what are the intended/unintended configurations. From these annotated
configurations, what can we learn as the most general rules? Looking at the
super-simple model above the modeler may want to avoid all the cases in which
‘Person’ has direct instances (e.g, ‘c’ and ‘e’ in Figure 2) and where an instance
is both a ‘Man’ and a ‘Woman’ (e.g, ‘i’ and ‘m’ in Figure 2). If this is the case,
the simple rule to be inferred can be informally expressed as “Every person is

either a man or a woman and no person is both a man and a woman”. To repair
the input conceptual model, a knowledge engineer would simply have to add a
constraint that forbids these two generic configurations represented in Figure
3. In UML, this could be achieved with a generalization set that is complete
(isCovering = true) and disjoint (isDisjoint = true).

From this example, we make two main observations. Firstly, consider a much
more complex model than the one in Figure 1. The activity of debugging the
model by checking all the intended/unintended configurations is very time con-
suming and it may not be easy for the modeler to understand where the errors
come from, how to repair the model, and what rules need to be added (if any).

2
From now on we use the terms “simulation run” and “configuration” interchangeably,

where a simulation run is the result of an interpretation function satisfying the
conceptual model. In other words: if we take the UML diagram as a M1-model (in

the MDA-sense), a configuration is a M0-model that could instantiate that M1-

model; if we take the UML diagram as a logical specification, then a configuration

is a logical model of that specification. Finding these valid configurations given a

specification is the classical task performed by a model finder.
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Fig. 2: List of simulations for the model of Figure 1.

Fig. 3: Simulations of the model in Figure 1 allowing for unintended instances.

Secondly, consider a scenario where several people simulate the same model and
people diverge on what they assign as intended and unintended configurations.
We can then o↵er to the modelers possible options giving them an indication of
how often people chose each of the options. This is about repairing a particular
model by learning from a collective judgment (in this case, a type of meaning

negotiation activity).

In summary, from the marriage between model validation, for finding faults,
and machine learning, for suggesting repairs, a fruitful synergy emerges, which
can support knowledge engineers in understanding how to design and refine
rigorous models.
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3 From Model Validation to Repairs Suggestion

The framework we envision should be able to produce, from a given conceptual
model, a set of rules that forbid the occurrence of configurations marked as
unintended by knowledge engineers. The key idea here is to combine and exploit
model validation and learning technologies in order to: i) automatically generate
a set of configurations of the input conceptual model and identify unexpected
outputs; ii) carry out diagnosis and repair tasks by learning from the identified
errors and suggesting rules to adjust the model accordingly.

Fig. 4: Automated support for conceptual modeling diagnosis and repair: the
proposed framework.

This framework comprises four steps explained in the sequel (see Figure 4),
which can be executed iteratively:

Step 1. Validation. This step consists in automatically generating possible con-
figurations from an input conceptual model and asserting whether these should
indeed be allowed by it. If no unintended configurations are identified, the pro-
cess terminates, otherwise it proceeds to step 2. The generational part of this
step requires feeding the input model to a model finder.3 The assertional part
requires one or more knowledge engineers to decide on its validity. Considering
the example in Figure 2, an unintended configuration could be represented by
‘i’, where an instance is both ‘Man’ and ‘Woman’). If unintended models are
found, the process continues to the next step.

Step 2. Elicitation. At this point, the model configurations generated by the
model finder and annotated by knowledge engineers do not specify why they are
intended or unintended. In an unintended configuration, indeed, we may have
both allowed and forbidden instances (i.e. particular individuals that instantiate
a class in the model). For example, in Figure 2, configuration ‘f’, the instance
‘6’ is forbidden, while ‘7’ is allowed. Step 2 allows the modelers to mark which
instances represent negative or positive examples. Once negative and positive
examples are produced, they are ready to be given as input, along with the
structure of the original conceptual model, to the learning system.
3
This step may require a previous conversion step, from the language used to design

the conceptual model (e.g. UML, OntoUML) to the model finder specifications as

in, e.g., [4]
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Step 3. Learning. Having identified the negative and positive examples that make
the configurations unintended or intended, a learning system software carries
out the diagnosis process automatically. The goal of this step is to identify the
structures of the model that are “error-prone” [14]. The output of the learning
process, considering the super-simple model introduced above, can be exactly
the negation of the two configurations represented in Figure 3. This, of course,
depends on the information collected with the modeler annotation.

Step 4. Selection. The learning system may produce multiple examples of “error-
prone” structures for the same model. For the repair task, a selection step for
deciding among the possible repairs options is required. This selection step is
always application dependent (i.e., it depends on the final purpose of the concep-
tual model) and requires inputs from the knowledge engineer. Once the selection
is made, the update of the original input conceptual model can be addressed.
Considering the two examples in Figure 3, if both of them are selected, the sug-
gested repairs would be a negation of direct instantiation of ‘Person’ and the
disjointness between ‘Woman’ and ‘Man’.

The presented combination of model finding and (logic-based) learning is in-
tended to support an iterative process for evolving and repairing conceptual
models by adding constraints that prevent unintended configurations. The iter-
ative aspect of the process is relevant because there is no guarantee that a single
application of the four steps will ensure the correctness of the model. Thus, it
should be repeated until no unintended configurations can be found.

4 Highlighting Possibly Erroneous Decisions

Let us now consider model validation more formally. In the proposed framework,
following the strategy in [14], the input conceptual model is translated into Alloy
[10], a logic language based on set theory, which o↵ers a powerful model analysis
service that, given a context, generates possible instances for a given specification
(it can also allow model checking and counterexamples generation). For example,
once the conceptual model of Figure 1 is converted into an Alloy specification,
multiple configurations of the model (for two instances) can be produced. Figure
5 below presents the full list of possible configurations, covering also the example
diagrams provided in Figure 2.4 Notice that “this/...” refers to a class, and the
values within curly brackets refer to its generated instances. So if this/Person
contains Person3 and this/Woman contains Person3, it means the individual
Person3 is a ‘Person’ and a ‘Woman’ at the same time.

At this point, as a first task, the modeler should annotate those configurations
that are intended or unintended. Following the super-simple model example the
annotation can be represented as from Figure 6 below, where the red cross marks
the unintended simulation.

4
Notice that Alloy produces ‘0’ and ‘1’ instances only, we numbered the instances

considering the full list of possible configurations.
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# 'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through
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Table 1: Embedding knowledge engineers input into neg/pos examples matrix.

Alloy, annotated as intended/unintended, given AM . E+/� being a data set col-
lecting negative and positive examples. The output of fb is an Alloy model
associated to a list of intended/unintended simulations. The output of fa is an
example set that can be given as input to the learning system.

As a final remark, fa can be seen as a semi-automatic process. If the con-
version steps (e.g., from the conceptual model to the Alloy specifications, or the
generation of E+/�) can be easily automatized, some manual work from the
modelers, which need to provide feedback within the loop, is still required.

5 Uncovering Error-Prone Structures

The output of the phase described in the previous sections should be as repre-
sented by Table 1. In order to generate the above matrix we adopted a stan-
dard propositionalization process [12], where: i) we converted the conceptual
model and the related instances (e.g., ‘#1’, ‘#2’, ‘#3’, etc.) into a logical knowl-
edge base specification (KB) (i.e., the combination of the so-called TBOX and
ABOX); ii) we gave the reference KB as input of a script to generate a matrix
of patterns; iii) we extended the matrix with the information about positive
and negative examples (see the ‘label’ attribute). From this input, there may
be multiple ways to set-up the learning step and automatically extract repairs
suggestions. For instances, the learning system can be used to implement an As-

sociation Rule Mining (ARM) [1] approach, or to implement relational learning
based on Inductive Logic Programming (ILP)[13].

//Rule1
if { ?x <#type> <#Man> } = false and { ?x <#type> <#Woman> } = false then false
//Rule2
if { ?x <#type> <#Man> } = false and { ?x <#type> <#Woman> } = true then true
//Rule3
if { ?x <#type> <#Man> } = true and { ?x <#type> <#Woman> } = false then true
//Rule4
if { ?x <#type> <#Man> } = true and { ?x <#type> <#Woman> } = true then false

Fig. 7: Rules extracted from the annotation of the output presented in Fig. 5.

In this paper, we adopted a standard approach. We derived the rules by using
a simple Decision Tree model, where the attributes for splitting are selected
according to the gain ratio criterion [11], and we run subgroups discovery to
induce an exhaustive rule set plus a list of insights to better explain the results.
Notice that the role of ML statistical techniques to extract rules and insights
from the modelers’ feedback becomes more useful as the complexity of the model
increases and the number of feedback increases. For instance, having multiple
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(and possibly inconsistent) feedback for the same simulation, the labels for each
instance may have multiple values encoding weights, instead of binary values,
such as ‘0’ and ‘1’, like in the example of Figure 1.

‘Rule 1’ and ‘Rule 4’, in Fig. 7, represent the rules accounting for the unin-
tended configurations, namely: i) when instances of ‘Person’ are neither instances
of ‘Man’ nor ‘Woman’ (‘1’); ii) when instances of ‘Person’ are both ‘Woman’ and
‘Man’ (‘4’). The following formulas represent a First Order Logic (FOL) formal-
ization of the derived ‘negative’ rules.

9xPerson(x) ^ ¬(Woman(x) _Man(x)) (4)

9xPerson(x) ^ (Woman(x) ^Man(x)) (5)

A further analysis can be run by checking the results provided by the sub-
group discovery implementation, as from Table 2 below, where we grouped the
most ‘precise’ rules.

Table 2: Extracted rules: some additional insights.

Besides collecting information about the Size (i.e., how many instances are
involved), the Length (i.e., how many predicates are involved) and the Coverage
(i.e., how many instances covered over the total instances), a ranking of the
rules can be provided in terms of, for instance, Precision and Lift. The Precision
value explains the ratio of di↵erent values (‘Pos’ and ‘Neg’, for a certain rule)
for the same instance (in the example we have precision ‘1’, meaning that values
are only ‘Pos’ or ‘Neg’). The Lift value measures the value of a certain rule
considering the ratio of premises and consequences in the given data set (see
[15] for further details). Given the above derived ‘negative’ rules, the repairs
that can be selected by the modelers would be quite straightforward. The input
conceptual model (assuming here a FOL formalization of that model) can be
then constrained as follows:

M = {8xWoman(x) ! Person(x), 8xMan(x) ! Person(x)} (6)

MR = {M, 8xPerson(x) ! (Woman(x) _ Man(x)), 8xMan(x) ! ¬Woman(x)} (7)

Where M represents the original conceptual model and MR represents the
new repaired (i.e., constrained) version of the conceptual model.

6 Conclusion and Perspectives

This paper presents preliminary results towards a framework for diagnosing and
repairing faulty structures in conceptual models. In particular, our objective is
to combine, on one hand, the model finding techniques for generating positive
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(intended) and negative (unintended) model configurations and, on the other
hand, use this curated base of positive/negative examples for feeding a learning

process. Our overall research program, aims at addressing the full ontological se-
mantics of the OntoUML. In that sense, it will leverage on the existing OntoUML
support for model validation via visual simulation in Alloy [4, 14]. A further ob-
jective is learning from the configurations structures that are recurrent in several
OntoUML models (i.e., anti-patterns) as well as reusable cross-model rules that
could rectify them. Addressing these objectives for a particular model with a
subset of the semantics of that language is a first step in that direction.

References
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