
How Software Changes the World:
The Role of Assumptions

Xiaowei Wang and John Mylopoulos
Department of Information Engineering and Computer Science

University of Trento, Italy

Nicola Guarino
ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

Giancarlo Guizzardi
Ontology and Conceptual Modeling Research Group

Federal University of Espírito Santo, Brazil
ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

Abstract—The requirements for most software systems -- the
intended states-of-affairs these systems are supposed to bring
about -- concern their operational environment, often a socio-
physical world. But software systems usually don’t have any
direct means to change that environment in order to bring about
the intended states-of-affairs. In what sense then can we say that
such systems fulfill their requirements? The main purpose of this
paper is to account for this paradox. We do so by proposing a
preliminary Ontology of Assumptions. This ontology aims to
characterize and make explicit a number of notions that are used
implicitly in software engineering practice to establish that a
system specification S fulfills its requirements R given a set of
assumptions A. Our proposal is illustrated with an example
concerning a meeting scheduler.

Keywords—software requirements; software specifications;
domain assumptions

I. INTRODUCTION

Consider a software system that schedules meetings upon
request. Its ultimate requirement is not only to produce some
information, consisting of a schedule that satisfies some given
constraints, but also to bring about a change in the social world
where the software operates, and ensure that the proper actions
necessary for meeting organization (such as invitations to
participants and room allocation) are effectively undertaken in
terms of software outputs. The actual effectiveness of such a
software system will be evaluated on the basis of its impact on
the social environment, i.e., does it schedule meetings, or not?
However, a software system consisting of software and various
user interfaces (let’s call it “pure software system”) by its very
nature, can only change the states of the machine within which
it operates.

There seems to be a paradox here. The requirements for
most software systems, the intended states-of-affairs these
systems are supposed to bring about, concern their operational
environment, usually a socio-physical one. But these systems
can only affect machine states, not the socio-physical ones. We
call this the world-on-machine paradox. It is important to
emphasize that we are talking about pure software systems that
interact with users through interfaces, yet they have no means
to change the physical and/or social world within which they

operate. In other words, this kind of system only consist of
software and user interfaces, and doesn’t include robotic or
other components that can manipulate their socio-physical
operational environment. In what sense then can we say that
such systems fulfill their requirements?

The main purpose of this paper is to account for the world-
on-machine paradox. We do so by proposing an ontology of
assumptions that are implicitly used in software engineering
practice to establish that a system specification S fulfills its
requirements R given a set of assumptions A. Adopting the
formula of requirements problem initially proposed by Jackson
and Zave [1], our task is to characterize the nature of the
assumptions used and needed to establish that

 A,S |= R (1)

given that the requirements are about world phenomena
(e.g., meetings, participants, timetables, rooms, and etc.),
while the specification is about machine phenomena (database
tables, tuples) and manipulations thereof.

Several researchers (e.g., Lewis [2], Abdullah and et al. [3],
Brown [4], Tun and et al. [5]) have emphasized the importance
of assumptions, and have proposed techniques for capturing
them. Our proposal goes further in the sense that it identifies
new kinds of assumptions (notably, world and machine
dependence ones) that have not been previously accounted for.
The specific contributions of this paper are three-fold:

1) Proposes a preliminary ontology of assumptions,
consisting of four kinds of assumptions. Two of them are based
on literature work, including world assumptions and machine
assumptions. Two new kinds of assumptions are proposed
additionally, including world dependence and machine
dependence assumptions. We claim that these four kinds of
assumptions together define a solution to the paradox
mentioned earlier, and elaborate on the important role they play
in linking world and machine states;

2) Clarifies the concept of ‘assumption’, identifying two
possible interpretations that are both important for software
engineering, namely assumptions-used and assumptions-

needed; on the basis of this distinction, the paper provides an
update to Jackson and Zave’s original formulation of the
requirements problem;

3) Discusses how our results can be employed
methodologically, suggesting how software developers should
systematically and explicitly manage all four kinds of
assumptions proposed here. We suggest that these assumptions
should be explicitly identified and systematically guaranteed to
hold throughout the useful lifetime of their software systems.

The rest of the paper is structured as follows. In section 2,
we introduce our research baseline, consisting of the Jackson
and Zave’s formulation of the requirements problem [1], as
well as the situation calculus, originally proposed by McCarthy
[6], which we use to model assumptions, specifications and
requirements. In section 3, we analyze the link between the
world and a software-driven machine by defining a clear
boundary between them, classifying and representing
concerned phenomena according to this boundary. In section 4,
we propose a preliminary ontology of assumptions, illustrating
the four kinds of assumptions that enable the link between
world and machine. Also, in this section, we explain our
interpretation of the role of assumptions in the formula ‘A, S ⊨
R’, and we argue for the importance of making a precise
interpretation of such assumptions explicit. In section 5, we
make use of the situation calculus to model a meeting
scheduler example that elaborates on the role of assumptions in
establishing the link between world and machine states. Finally,
section 6 discusses related work, while section 7 concludes and
discusses future research questions.

II. BASELINE

Requirements, Assumptions, and Specifications

The requirements problem was formulated as ‘A, S ⊨ R’1 by
Jackson and Zave in 1995, where R, S and A refer respectively
to requirements, specification, and assumptions. The problem
itself consists of finding an S for given R and A, such that ‘A, S ⊨ R’. In other words, the satisfaction of the requirements is
entailed by the specification together with the assumptions.

Later on, Jackson and Zave reinterpreted the formula, and
especially emphasized the role of assumptions in ensuring the
satisfaction of the formula [7]. They pointed out that the gap
between requirements and specification had long been
recognized, and also, it had long been recognized that domain
assumptions about the environment should play an important
role in requirements engineering. However, they did not fully
elaborate neither on the nature and purpose of assumptions, nor
on how assumptions should be identified and modelled.

After diving into the four dark corners of requirements
engineering [7], Jackson and Zave proposed that it was the
domain assumptions that bridge this aforementioned gap
between requirements and specification. In particular, they
defended the thesis that requirements can always be satisfied
by a specification with the help of suitable domain assumptions.
In other words, whatever is missing to establish the entailment
of requirements from specification should be captured in terms

1 This formula was initially ‘S, E ⊢ R’, but here it is amended, on the
basis of subsequent work.

of assumptions. We concur in this paper with this view.
However, we take a further step to explain in details what kinds
of assumptions are used and needed to ensure the satisfaction
of the formula, as well as the role of these assumptions in
linking world and machine states.

The Situation Calculus

We choose the situation calculus as our representation
language for requirements, assumptions and specifications. The
situation calculus is a logic formalism proposed by McCarthy
[6] in 1963 to represent and reason about dynamic domains. It
is chosen here because it is a well-known language, used in
artificial intelligence to capture state changes. This makes it
quite suitable for demonstrating links between world and
machine state changes. We highlight however that the situation
calculus is used here for illustration purposes, and we don’t
expect that it will be used by software engineers who need to
capture assumptions for their system.

A situation s constitutes a complete state of affairs at some
instant of time. In other words, it is a snapshot of the world
described in terms of properties, fluents, that hold or don’t hold.
A fluent (e.g., meeting_scheduledW(Mtg, Sn)) is usually
represented by a predicate (e.g., meeting_scheduledW) having
zero or more arguments, and a situation (e.g., Sn) as its final
argument.

An action (a) causes a transition from one situation to
another, and causes changes to the truth value of fluents.
Similarly to function in software engineering, an action may
have a pre-condition described by precondition axioms and a
post-condition described by effect axioms. The former indicate
the situations where the action can be executed; the later
indicates the changes in truth values of fluents after the
execution of the action.

The new situation achieved by executing an action (a) in a
certain situation (s) is denoted by ‘do(a, s)’. Fig. 1 shows what
happens when an action is executed in a certain situation,
resulting in a new situation. In this example, in the initial
situation S0, the value of the fluent meeting_scheduledW(Mtg) is
False. By executing the action schedule(Mtg) in that situation,
a new situation is achieved denoted by do(schedule(Mtg), S0).
In this new situation, the value of the fluent
meeting_scheduledW(Mtg) becomes True, and this can be
represented as meeting_scheduledW(Mtg, do(schedule(Mtg),
S0)).

III. FROM MACHINES TO WORLDS

As argued in our previous work [8], [9], a software program
possesses a peculiar characteristic when compared with other
kinds of information artifacts (e.g. recipes or laws): it plays the
role of a bridge between the symbols in a machine and the
phenomena in its outside world. More specifically, while other

Fig. 1: An example of a situation transition

kinds of information artifacts directly refer to the objects in the
world (so that executing a recipe or a law implies a
manipulation of objects in the world), software programs refer
to variables and states in a machine, whose manipulation inside
the machine affects the outside world in an indirect way.

When a software program is embedded in a machine to
control its external behaviors, we have a software-driven
machine. The ultimate purpose of a software-driven machine
program is to constrain the phenomena of its external
environment. The machine monitors and controls the
environment by means of transducers bridging symbolic data
and physical properties of the environment (hereafter
‘software-driven machine’, or simply ‘machine’ when the
meaning is clear in context).

In the case of a stand-alone personal computer (PC) such
transducers just concern the human-computer interface and the
standard I/O devices; for mobile systems they may also include
position and acceleration sensors, while in the case of
embedded systems they take the form of ad-hoc physical
sensors and actuators. So, in the general case, a software
system’s ultimate purpose is achieved by running a program
that produces certain effects inside a computer, which drives a
physical machine, which in turn produces physical effects on
its external environment.

However, we may also wonder whether software-driven
machines can affect their social environment. Indeed, as we
have seen in the case of the meeting scheduler example, in
many cases the ultimate purpose of software is to produce such
changes in the social world. But how is this possible, given that
the machine has no direct means to manipulate or otherwise
affect the social world? This is the paradox we introduced at
the beginning of this paper.

To address this question, let us first consider a different
scenario that plays out in the social world, and is affected by
artifacts other than software-driven machines. In modern
monetary systems, certain kinds of colored, marked paper is
used as money in business transactions. As we all know, giving
a piece of such paper to a person has important social effects
concerning your and his/her net worth [10]. This happens
because we share the same assumption about the ownership of
such pieces of paper, and the net worth of social actors.

The count-as relationship was proposed by John Searle to
link what he terms a brute physical fact (e.g., presenting a bill)
with what he terms an institutional fact (e.g., having the right
to obtain a good in exchange of the bill). In another example,
two hands joined in a handshake count as an institutional
relationship (e.g., an agreement being created in a given social
context). We would say therefore that the agreement depends
on the handshake [11] under the assumption that handshakes
count as agreements.

Moving now to software-driven machines, we note that the
monetary system has evolved with the advent of computers:
data in a bank’s database counts as money too! In other words,
our business world is actually controlled by software-driven
bank machines, which literally have the power to change the
world, thanks to count-as assumptions [10].

Going back to the meeting scheduler, we have another case
where machine-based facts count-as institutional facts, since a
meeting record marked as scheduled in the computer counts-as
the collective belief of meeting participants that the meeting is
actually scheduled, with corresponding commitments by all
concerned.

Starting with the formula ‘A, S ⊨ R’, Jackson et al. have
proposed in a series of papers ([12], [7], [13], [14]) to pay
attention to the boundary between world and machine, drawing
a clear distinction between the social environment where the
ultimate effects of a software system are expected, and the
machine where the system operates. Lamsweerde recognizes
their work in a paper entitled ‘from worlds to machines’ [15],
which elaborates on how a specification concerning the
behaviors of a machine could be derived from a set of
requirements concerning its external world. In this paper we
take a complementary perspective, focusing on how software-
driven machines can affect the world. In other words, given a
specification and a set of requirements, we explain in what
sense the requirements can be entailed from the specification.

As shown in Fig. 2, according to Jackson and Zave, in a
software engineering scenario, the phenomena of interest could
be classified into three categories according to their
controllability and visibility, namely: world phenomena, which
can only be seen and controlled by the world; interface
phenomena, which can be seen both by the world and the
machine, and can be controlled either by the world or the
machine; and machine phenomena, which can only be seen and
controlled by the machine.

In [8] and [9], we proposed the term ‘internal specification’
to refer to a specification that only constrains the phenomena
happening inside the machine; we distinguish it from the
‘external specification’ (originally called ‘specification’ in the
work of Jackson et al.), which constrains the phenomena
happening at the interface.

To capture the relationships between the phenomena in
these different layers, we firstly capture and represent these
concerned phenomena in a preparatory step. Hence, in the
remainder of this section, we elaborate on how a formalism
such as situation calculus could be used to represent these
requirements, as well as the external specification and the
internal specification in the sense put forth by the
aforementioned classification of different kinds of phenomena.

 Fig. 2: Cutting the boundary between World and Machine

Requirements (R)

We interpret a requirement as a set of (conditional) states of
affairs that are intended by stakeholders. Based on the
introduction of situation calculus stated in the baseline, we can
represent a set of states of affairs as a set of situations. In an
intended situation, the concerned world fluents have the
specific values intended by the stakeholders. If the requirement
has a conditional nature, a situation transition will be specified.
For example, a requirement may be ‘a meeting shall be
scheduled after a meeting initiator intends to schedule one’,
meaning that if we start in a situation where a meeting has been
intended by an initiator, some actions will get us to a situation
where the intended meeting is scheduled. Following this view,
we can represent this requirement in a situation calculus
formula as follows:

()
()

()
()

0 : { ,

 _ , ,

 [()

 , , '

' ,]}

W

W

R a Poss a s

meeting intended initiator meeting s

Poss a meeting_scheduls meeting s

s a s

ed

do

∃ ↔

∧ →

∧ =

This formula means that there exists an action a such that,
starting from an initial situation s where a meeting is intended
by an initiator, action a can bring about a new situation where
the meeting is scheduled. The action a here in the formula
refers to an action variable in a second order logic. Also, note
that we use subscripts w (world), i (interface), and m (machine)
to distinguish among the fluents concerning the different kinds
of phenomena discussed in Fig. 2.

In a software engineering process, such an action could be
understood as an alias of a function, and this decision is
adopted by many software engineering standards, such as
IEEE-STD-830-1993. Hence a set of functions defined in the
specifications becomes a solution to a requirements problem.
As previously stated, according to the world-machine
distinction, we classify specifications into external
specifications and internal specifications respectively, and here
we introduce each of them as follows2:

External Specification (Sext)

An external specification contains a set of actions Sext = {aI1,
aI2, …, aIn}, which are supposed to occur at the interface in
order to satisfy the requirements. If the specification is
implemented correctly, executing an interface action will bring
about a intended situation transition, resulting in changes of the
interface fluents, and that (by the very definition of interface)
will be visible both from the machine and the outside world.

Besides that, it is important to highlight that, an action in
Sext may be applied several times to get the stakeholders to an
intended situation, and here the detailed executing order of this
series of actions is ignored. For example, for a meeting
scheduling system, if Sext includes an interface action ‘receive
timetable from a participant’, this action will have to be applied
many times to get the timetables from all the participants for a

2 Note that actions mentioned here are actually at the type/class level,
while action instances represent action executions.

meeting, so that the stakeholders can reach the situation where
all timetables have been collected.

Internal Specification (Sint)

An internal specification contains a set of machine actions
Sint = {aM1, aM2, …, aMn}, concerning machine phenomena.
Executing a machine action will bring about a situation
transition, resulting in machine fluent changes. Although the
user of a software system may not be 3 interested in
implementation details, software engineers certainly are, and
they need to provide machine actions supplementing interface
actions. Together, external and internal specifications, provide
a complete solution to a given set of requirements. As with
external specifications, actions in an internal specification are
introduced without any details about their behavior, i.e.,
execution order.

IV. A PRELIMINARY ONTOLOGY OF ASSUMPTIONS

A key objective of this paper is to identify and characterize
different kinds of assumptions, notably the newly proposed
kinds of dependence assumptions. We explain the key role of
these assumptions in determining the relationship between the
social world and a software-driven machine, thereby
addressing the paradox mentioned earlier. Besides that, we
introduce the interpretations of the term ‘assumption’ adopted
in the software engineering community as ‘assumption-needed’
and ‘assumption-used’ in our ontology of assumptions. As
demonstrated in the end of the section, these interpretations are
corroborated by literature in the legal domain. We emphasize
that this ontology is a partial attempt in systematizing the
related notions. In a future paper, we expect to elaborate on the
detailed ontological nature of these assumptions, in particular,
in aspects dealing with the mental states/attitudes.

A Classification of Assumptions

As shown in Fig. 3, four kinds of assumptions are included
in our proposal: world assumptions (WA), machine
assumptions (MA), world dependence assumptions (WDA), and
machine dependence assumptions (MDA). We introduce each
of them in the sequel.

A world assumption is an assumption about world
phenomena, not visible by the machine. Such assumptions
constrain the environment of the software-driven machine. For
example, for a meeting scheduling system, we may assume that

3 Put more precisely, almost surely …

Fig. 3: An extension of the work in cutting the boundary between worlds and machines

there are rooms available for all requested meetings. Such an
assumption means that our solution does not work when no
room is available for some meeting requests (e.g., during a
busy period with many meeting requests).

A machine assumption is an assumption about a machine’s
internal phenomena, i.e., those that are only visible to the
machine. For instance, an action that records a meeting by
adding it to a table requires the assumption that there is always
space available on the table for all recorded meetings. Such
assumptions often simply ensure the availability of
computational resources within the machine. For another
example, we need to assume that there is power for the
machine to run, meaning that if this assumption fails, meeting
scheduling may not work.

Since world and machine assumptions are either about the
world (e.g., the assumption of enough rooms for the meetings)
or about the machine (e.g., the assumption of the power supply
for the machine) independently, they are not sufficient to
describe the causal connection between machine and world
states, and can’t answer the question in the very title of this
paper: how can the machine change the world? To answer this
question we need to focus on the interface between world and
machine and consider another two kinds of assumptions: world
dependence assumptions and machine dependence assumptions.

These two additional kinds of assumptions are proposed
specifically to constrain the relationship between world and
machine phenomena. For example, the value reported by a
sensor is within 2 degrees of room temperature. Here, machine
phenomena depend on world ones. Conversely, the action
undertaken by an actuator depends on the value of a machine
variable. Here, world phenomena come about/caused by
machine ones.

A machine dependence assumption states that an external
world phenomenon depends on some machine phenomena. For
instance, we may assume that a certain meeting has been
scheduled in the world once an entry has been added to the
meetings table with particulars for the meeting, a room is
reserved for a certain meeting at a certain time (and therefore it
will not be used for any other purpose at that time).

In contrast, a world dependence assumption states that a
machine phenomenon depends on some world phenomena. For
example, we may assume that whenever a certain room appears
to be free on the machine, it is because the room is actually free
in the external world. Similarly, we can assume that whenever
a meeting appears to be requested in the machine, it is because
somebody actually intended to schedule such meeting. In other
words, a world dependence assumption is an assumption about
the correspondence between states of the machine and the
phenomena in the world these states are supposed to represent.
The closed world assumption of Raymond Reiter [16]
constitutes an early example of a world dependence assumption.

In the case of a machine dependence assumption, the
depending phenomenon in the world could be physical or
social. When it is physical, it means that there is a path of
physical interactions connecting an observed phenomenon in
the external world with machine phenomena. This is the
common scenario in cyber-physical systems, which interact

with the external world by means of actuators and sensors.
However, our primary interest here is with social phenomena
depending on machine ones. In the following, we shall explore
the nature of this dependence, thereby accounting for the
world-on-machine paradox.

The Causal Chain Enabled by these Assumptions

Four kinds of assumptions were proposed in the preceding
subsection. We now explain the key role played by these
assumptions in linking the world and machine states. In
particular, we introduce a causal chain enabled by these
assumptions: some triggering phenomenon occurs in the
outside world (a meeting request), it propagates through the
interface, and reaches the symbolic states inside the machine
(get timetables, select a timeslot); then the chain returns to the
outside world by crossing back through the interface
(participants are informed, meeting has been officially
scheduled). Once again, we rely on the meeting scheduling
example to explain the causal role of these assumptions.

An instance of a whole meeting scheduling process starts
from the initial state S0 in which a meeting initiator intends to
schedule a meeting, which could be represented as a world
fluent meeting_intendedW(Initiator, Mtg, S0). From this state,
the initiator instigates action aI0 provided by the interface to
enter the meeting information through the interface, and this is
represented by the action’s pre-condition that PRE: WDA0:
meeting_intendedW(Initiator, Mtg, S0), and post-condition POS:
meeting_information_enteredI(Mtg, do(aI0, S0)), and this step
can be summarized as a situation transition enabled by the
interface action aI0 formalized as follows:

(): ,I0a Enter_Meeting_Information initiator meeting

()
()

: : ,

 _ , ,

0 I0

W

PRE WDA Poss a s

meeting intended initiator meeting s

↔

()
() ()

[_

:

, ']

,

'

I0

I0

Imeeting_information entPOS Poss a s

meeting s s do ,

ed

a s

er→

∧ =

The world dependence assumption WDA0, asserted in the
pre-condition of the interface action aI0, is meant to capture the
relation between a state of the machine (representing the
possibility of the execution of action aI0) and a state of the
world (the mental attitude, i.e., the intention of a given human
agent). Without this assumption, there is no means to constrain
the execution of the action aI0 according to a state of the human
mind (represented here by meeting_intendedW(initiator,
meeting, s)). In other words, the situation transition from s to s’
enabled by the action aI0 won’t work without WDA0 being
somehow ensured. This transition can be visualized by the
single direction arrow between S0 and S1 in Fig. 4.

When the meeting information is entered, the machine can
sense this change in meeting_information_enteredI(meeting),
and then execute the machine function aM0 to receive the
information from the interface, insert a corresponding meeting
record into the database, resulting in the change in the machine
fluent meeting_record_insertedM(meeting). The action aM0 can
be formalized as follows:

M0

1 M0

I

M0

M

M0

a : Insert_Meeting_Record(meeting)

PRE : WDA : Poss(a , s)

meeting_information_entered (meeting,s)

POS : Poss(a , s)

[meeting_record_inserted (meeting, s')

s' = do(a , s)]

↔

→

∧

The action aM0’s pre-condition follows aI0’s post-condition,
and this ensures the continuity of the situation transitions from
S0 to S1 and then to S2. No surprise that another world
dependence assumption WDA1 is made, and asserted into the
pre-condition of the action aM0. This assumption indicates that
the execution of the action depends on the physical framework
provided by the interface. In other words, when this
assumption is fulfilled, the machine could sense the interface
fluent and then execute the corresponding action aM0.

Till now, the route of the changes in fluents has travelled
from the world to the machine through the interface. Now, it is
time to consider how it can travel back. To achieve that, we
need to reach the interface first, and another interface action aI1
is introduced. By sensing the value of the machine fluent
meeting_record_insertedM (meeting) through the machine
dependence assumption MDA0, the action aI1 will be executed
resulting in a change at the interface fluent
meeting_request_shownI(message) indicating the message of
‘meeting is successfully requested’ is shown on the screen. As
before, the action aI1 can be represented as follows, yet note
that a machine assumption MA0 is also inserted here to ensure
the power supply for the whole process of the situation
transitions.

I1

0 I1

M

a : Show_Meeting_Request(meeting)

PRE : MDA : Poss(a , s)

 meeting_record_inserted (meeting,s)

↔

I1POS : Poss(a , s) →

I

I1

 [meeting_request_shown (meeting, s')

 s' = do(a , s)]∧

0 MMA : power_supply (Machine)

Now, we reach the interface successfully, and there is only
one step left to travel back to the outside world. To fill this gap,
we make two additional assumptions: 1) MDA1 indicates that
as soon as the message is shown on the screen at the interface,
we assume that the stakeholders all will agree with that the
meeting is requested; 2) WA0 constrains the system that it is
designed for people who are not visually impaired.

1 I

W

MDA : meeting_requested_message_shown (message, s)

 meeting_requested (meeting, s)↔

0 : _ ()WWA can see people

A brief demonstration of the role of assumptions in the
software engineering process is presented in this section. As
one can see, fluents change through situation transitions (e.g.,
following the sequence of S0, S1, S2, and S3). The chain travels
from the world, crosses the interface, reaches the inside
machine, then returns to the world crossing the interface again.
This causal chain is only possible thanks to the assumptions
introduced in this paper that link world and machine
phenomena together.

Interpretations of the Concept of Assumption4

‘Assumption’ is a severely overloaded term used in many
communities (e.g., research, industry, and etc.) as well as in our
daily lives. The interpretations of this term diverge
significantly in different contexts: in the sequel, we present a
few examples of these possible interpretations (relying on the
language use of the term) [17]:

Conclusion: e.g., Tom said: “my assumption is that you are
going out, since you are wearing your cap.” The conclusion of
‘going out’ is derived from the current situation ‘wearing your
cap’.

Less-than-fully established proposition, in an accusation
sense: e.g., Mike answered: “that is only your assumption, you
don’t know it.” Mike replied that it might look like he’s going
out, yet that was only Tom’s guess and as such it is not
guaranteed to hold.

Adopted in order to deceive, fictitious, pretended: e.g.,
“although bad things happened, please assume that they didn’t
ever happen.” The term assumption is interpreted as a kind of
‘self-deception’ here that ‘you can deceive yourself that
nothing bad happened’.

The examples aforementioned are only a small part of a full
possible list. However, considering the importance of the role
played by assumptions in software engineering process, it is
necessary for stakeholders to achieve an agreement on the
interpretation of this term. Fortunately, a clarification of this

4 The interpretations of assumptions mentioned in this subsection are
orthogonal with the preceding four kinds of assumptions.

 Fig. 4: The causal chain underlying software engineering enabled by assumptions

term was proposed by Ennis in 1982, providing clear guidance
in interpreting this term according to its use in practice [17].
More precisely, he classified assumptions into two main kinds,
namely ‘assumptions-used’ and ‘assumptions-needed’.
Assumptions-used are propositions that a person uses a priori
while constructing a new argument. Scientific theories are
examples of such assumptions, adopted by scientists as the
foundational components of a theory (e.g., the law of gravity).
On the other side, assumptions-needed are propositions that are
needed a posteriori to support a previous conclusion. In this
sense, they circumscribe the contexts within which the
conclusions are reasonable.

In what follows, we adopt this distinction between
assumptions-used (AU) and assumptions-needed (AN). We use
the distinction to elaborate on the aforementioned Jackson and
Zave’s formulation of the requirements problem. In particular,
given a set of requirements R and a set of assumptions-used AU,
one needs to find a specification S and a set of assumptions-
needed AN such that AU, AN, S ⊨ R. To present a simple
example, suppose one is given a requirement R: ‘Fly to the
moon’ and AU: ‘laws of gravity’. An engineer then needs to
find a specification for a spacecraft S that will fulfill R
provided that the following assumption holds, AN: ‘spacecraft
carries enough fuel’.

The choice of interpreting assumptions as assumptions-
used or assumptions-needed has strong practical implications
that can be illustrated by legal disputes between product
providers and users. If a product malfunctions because of an
assumption-used, the malfunction is the problem of the
designers, as they assumed things that (sometimes) don’t hold.
If on the other hand, the malfunction is the result of a failed
assumption-needed, the problem rests with the users as they
used the product outside its intended domain. As software is
usually also an instance of such kind of products, provided by
software engineers, and used by the software users, this
distinction can also be used to illuminate disputes between
software users and software engineers. For instance, with a
different terminology, Twerski and his colleagues stress the
key difference between design defect and failure-to-warn
situations [18].

For a concrete example, on 4th June 1996, a flight of the
Ariane 5 rocket ended in a crash, caused by the value of a
particular variable exceeding its assumed limit. As reported in
a post mortem study[19], the engineers underestimated possible
environmental conditions, and ‘… was not analyzed or fully
understood which values this particular variable might assume’.

In contrast, in the case that an assumption is interpreted as
an assumption-needed, the assumption is adopted as a design
component that describes the context in which the design
solution works. This interpretation choice grants the
assumptions-needed the ability to delimit the scope of the
solution. This possibility is of substantial practical usefulness
for the software engineers facing time and resource limitations.
For example, an intended user assumption falls exactly into
this sense of interpretation: there is a group of target users
assumed by the engineers, and it is only for that target group
that the software is expected to work [20]. From a legal point
of view, as long as the proper disclaimers to the target users are

made in a clear manner, the engineers of the software are
covered in their legal responsibilities. That is to say that they
are not liable for the effects of the software to the users outside
the assumed target group.

According to the legal issues above, we can derive the
importance of making clear these two types of assumptions in a
software design. Without such a distinction, we don’t know
how to assign responsibility when some undesired consequence
is brought about by the system’s operations. In summary, a
mature software engineering process should make explicit
assumptions that underlie a design, just like requirements and
functionalities are made explicit by specifications. In that
respect, we argue that assumptions support specifications in
satisfying requirements.

Capturing Assumptions Explicitly

Lewis stated that ‘assumptions are made concerning how
the software will be used, …, what environment it will operate
in’, as well as ‘the incompatibilities between the assumptions
and the assumed operation environment will cause failures’ [2].

Based on this observation, Lewis proposes an Assumption
Management System (AMS) to manage assumptions extracted
from source code. This system is supported by the functions of
storing the extracted assumptions in a repository, querying the
repository, and making managerial decisions based on the
assumptions recorded in the repository.

The syntax structure of an assumption assertion is adopted
here from Lewis’ work as shown in Fig. 5. Simply speaking,
what Lewis did is to record assumptions as comments in source
code, and the assumptions are encoded in a XML-style
hierarchy. As shown in Fig. 5, and following the usual XML
convention, the pair of ‘/* … */’ indicates the comment area,
the pair of labels ‘<assumption>’ indicates the assumption area,
the pair of labels ‘<type>’ indicates the type of the assumption,
and the pair of labels ‘<description>’ indicates the natural
language description of the assumption.

The idea is that assumptions are captured and recorded by
software engineers while they are writing source code. When
the source code is ready for operation, a XML parser can be
used to extract its assumptions and store them into a repository
in a structured way for future queries. This is useful for sharing
assumptions with all members in a software project, thereby
reducing chances of misunderstanding, and ensuring
consistency of the whole system.

Although, as stated by Lewis, recording and parsing of
assumptions as contents of comments in source code has been

 Fig. 5: Syntax structure in Lewis’ assumption management system

proved very useful in the coding process in a software
engineering project, this is too late a stage for uncovering
possible inconsistencies in the project. This is summarized by
Lewis herself that ‘to address interoperability requirements, the
use of assumptions management would have to be moved to
other activities and artifacts of software development, such as
requirements analysis, architecture, and design’.

The problem pointed out by Lewis is essential to software
engineering projects, as evidence suggests that errors in
requirements, such as misinterpreting or neglecting some
implicit assumptions, are much more expensive to fix at a later
stage than in the early stages of a software project [21]. What
we advocate here is that assumptions be captured and analyzed

in the requirements engineering stage of the process, rather
than later on, downstream.

Instead of dealing with source code, we capture and record
assumptions in the process of deriving the requirement
specification. In this stage, requirements are decomposed or
refined into specifications including an external specification
and an internal specification. Moreover, we provide here a
more refined categorization of assumptions that should be
discovered by software engineers in the requirements
engineering stage. Furthermore, and more importantly, we
illustrate the key role that such assumptions play in linking
world and machine phenomena. To illustrate these points, in
the following section, we present an example of a meeting

 Fig. 6: A goal model of a meeting scheduler system

scheduler system that demonstrates how software engineers
can capture and represent these different kinds of assumptions
in a requirements engineering process.

V. THE MEETING SCHEDULER EXAMPLE

As mentioned in the preceding section, instead of dealing
with assumptions in the source code, we emphasize the
importance of capturing assumptions in the requirements
engineering stage, to detect errors as early as possible.

Specifically, the requirements engineering process can be
further divided into two phases as stated by Yu [22], namely,
an early phase and a late one. In the early phase, software
engineers collect requirements from stakeholders. Usually, in
this phase, social activities (e.g., such as interviews, surveys,
and etc.) are used to gather informal and vague requirements,
trying to determine whether a software system should be
developed. The output of this phase is typically a document in
natural language that summarizes relevant information.

In the late phase, the initial requirements gathered in the
early-phase are used as input, and further analysis is carried out
to check their feasibility and consistency. A goal model [22]
can be adopted in this phase, where requirements are
represented as goals that can be decomposed into sub-goals and
then into tasks. These tasks are operational at the interface
between the world and the machine, and we regard these tasks
as the interface actions belonging to an external specification.

Usually, the decomposition process of a goal model stops
here, and one of the main reasons is that the researchers and
engineers want to avoid the so-called ‘Implementation Bias’ (as
discussed, for instance, by Jackson et al. [7]). The general idea
is that implementation details have no place during
requirements engineering.

We agree that it is important to make clear the boundary
between world and machine. However, it is also essential to
indicate explicitly the link across the boundary, or we will fall
into the world-on-machine paradox. As software can only
directly manipulate the virtual variables in a machine, the sense
in which the result of this manipulation affects the outside
world is neglected by the view of avoiding implementation bias.

As discussed, to address the paradox we need to explicitly
capture links between world and machine. As the reader can
see in Fig. 6, a simple meeting scheduler system is adopted as
our example, and its requirements are represented by a goal
model. Being different from the literature work [22], in the
notation used in this model, we capture not only requirements
and interface actions that are part of the external specification,
but also the internal specification with machine actions.
Moreover, the four different kinds of assumptions are explicitly
represented in the model in order to link the world and the
machine together.

We choose the meeting scheduler system as our example in
this paper, because it is a well-known exemplar in the
Requirements Engineering literature [22], [23], [24]; and on the
other hand, it is a relatively simple scenario, that most readers
are familiar with.

Requirements (R): As mentioned in section 3, our single
requirement is that ‘a meeting shall be scheduled once a
meeting initiator intends to schedule one’. This requirement is
labeled as R0 in the goal model. The situation calculus
formalization of R0 has already been shown in section 3, hence,
we do not repeat it here. We treat the other expressions in the
same way, only the newly proposed ones will be encoded into
situation calculus in this section.

The requirement R0 is refined into two alternative sub-goals
through ‘OR decomposition’ links: 1) the meeting initiator can
do it manually, asking a secretary to arrange a meeting as
indicated by the interface action aI2. This choice of solution
needs a world assumption WA3 to ensure the reliability of the
secretary who should arrange everything else for the meeting
initiator; 2) however, the secretary might be overloaded, such
that she/he cannot be relied to do this work quickly and
correctly. If this is the case, the second choice of adopting a
meeting scheduler system might be preferable.

The scenario of using this system is briefly summarized as
follows: when a meeting initiator wants to schedule a meeting,
she will make a request to the system. For every request, the
meeting initiator enters the meeting information into the system
through the interface, including a list of intended participants,
the title of the meeting, and etc. To schedule the meeting, the
system needs to collect timetables from all participants, choose
a time slot, and then assign a meeting room for the meeting.
Finally, the system also must inform all the participants in the
provided list.

External Specification (Sext): according to the scenario
aforementioned, the sub-goal ‘G1: Schedule by machine’ could
be refined further into four sub-goals, including ‘G1-1: Request
a meeting’, ‘G1-2: Collect timetables and choose a time slot’,
‘G1-3: Find a suitable room’, ‘G1-4: Notify participants’. To
simplify the work of the initiator as much as possible, it is ideal
to design such a solution that the only work the initiator would
need to do is to make a meeting request to the system with the
necessary meeting information. By receiving that request, the
system would do everything else for the initiator.

In this case, it seems that the newly proposed system is a
complete replacement of the secretary for scheduling meetings.
The system provides two interface actions aI0 and aI1 to
implement the sub-goal G1-1. Through these actions, the
initiator can submit a meeting request to the system and get a
request confirmation message from the system. To ensure the
fulfillment of this sub-goal through executing these two
interface actions, four assumptions are included in the model:
WA0, WDA0, MDA0 and MDA1.

All these elements mentioned here (aI0, aI1, WA0, WDA0,
MDA0 and MDA1) have already been translated into situation
calculus expressions in the example that explains the chaining
mechanism formed by such actions and assumptions as shown
in Fig. 4. Here we only show how they could be asserted in a
goal model, and the corresponding translations to situation
calculus expressions are not repeated. As another contribution,
in the sequel, we explain further how the sub-goals (e.g., G1-2,
G1-3, and G1-4) in the goal model could be decomposed into
machine actions (e.g., aM1, aM2, and aM3) with the help of
different kinds of assumptions.

Internal Specification (Sint): the internal specification of
the meeting scheduler system contains several machine actions,
including aM0, aM1, aM2, and aM3. The first one has already been
explained in section 4, and, as previously mentioned, we here
analyze the last three of them.

_ _ _ _ _

 _ _

M1

M1

M

M1

M

M1

a : Collect Timetables and Fill Time Slot(meeting)

PRE : Poss(a , s)

meeting_record_inserted (meeting, s)

POS : Poss(a ,s)

[meeting_time slot filled (meeting, s')

s' = do(a , s)]

↔

→

∧

_ _2 WWDA : use system calendar (participant)

Firstly, the sub-goal G1-2 is implemented by the machine
action aM1. Whenever there is a meeting record inserted into the
database, this action aM1 will be executed as indicated by its
precondition. By executing this action, all the participants’
timetables will be automatically collected, and as a calculating
result, a suitable time slot will be filled into the meeting record
(as indicated in this action’s post-condition).

However, this action only works in the situations where all
the participants use the system calendars, so we introduce an
assumption WDA2 to constrain the operational situations of this
system. This assumption presupposes some interactions
between the participants and the machine. In particular, it
assumes that the operation of the machine depends on some
world phenomena, hence we treat it as a world dependence
assumption as indicated in the corresponding situation calculus
expression.

_ _

 _ _

 _

M2

M2

M

M2

M

a : Assign Meeting Room(meeting)

PRE : Poss(a , s)

meeting_time slot filled (meeting, s)

POS : Poss(a ,s)

[meeting_room filled (meeting, s')

↔

→

 M2s' = do(a , s)]∧

_1 WWA : enough room (meeting)

Then, the sub-goal G1-3 is implemented by the machine
action aM2. The post-condition of aM1 is used as the pre-
condition of aM2 such that whenever the time slot of a meeting
record is provided, the action aM2 is executed. By executing aM2,
a new situation will be reached, in which a room number is
assigned to the meeting record as shown in its post-condition.

As mentioned several times in this paper, to simplify the
work of engineers in this modeling case, the system only deals
with the situations in which there are enough rooms, and it will
not work properly in a context in which this is not the case.
Thus, a world assumption WA1 is introduced such that for
every meeting that needs to be scheduled, it is assumed that
there are always rooms available.

_

 _ _

 _

M3

M3

M

M

M

a : Notify Particiapnts(meeting)

PRE : Poss(a , s)

meeting_record_inserted (meeting, s)

meeting_time slot filled (meeting, s)

meeting_room filled (meeting, s)

POS : Poss(a

↔

∧
∧

 _ _

M3

M

M3

,s)

[notification messages sent (meeting, s')

s' = do(a , s)]

→

∧

_ _2 M

W

MDA : notification messages sent (meeting, s)

 meeting_scheduled (meeting, s)↔

Finally, the sub-goal G1-4 is implemented by the machine
action aM3. Whenever the meeting record is inserted, filled with
a time slot and a room number, the action aM3 is executed as
indicated by its pre-condition. By executing it, the meeting
schedule notification message is sent to all the participants as
shown in its post-condition.

However, sending messages is not the same as confirming
the meeting with the participants, i.e., the interface action by
itself is not directly equivalent to the social action of creating a
meeting schedule (a social object) involving all those
participants. Once more this gap is filled by a machine
dependence assumption MDA2, which links the message
sending and the schedule confirming. In other words, according
to this assumption, the solution is simplified, and whenever the
messages are sent, we assume the participants will receive
them, confirm them, and at the same time the meeting is also
scheduled. Or put it in yet different terms, the message sending
counts as a schedule being confirmed in this context.

In summary, through the meeting scheduler example, we
have demonstrated how the analysis of assumptions can be
introduced in a requirement engineering process instead of only
in the code writing process. Additionally, four different kinds
of assumptions are represented in a goal model, linking the
world and the machine together. In this model, we also show
how these assumptions can be formally represented.

VI. RELATED WORK

In [15], Lamsweerde also recognizes Jackson’s work, and
treats both the assumptions-used (hypothesis) and assumptions-
needed (expectations) as two kinds of assumptions that should
be addressed in a software engineering process. In that paper,
even a similar extension of Jackson and Zave’s original
formula is provided: {Specification, Assumption, Domain
Property} ⊨Requirement. However, in that paper, the author
focuses only on analyzing world assumptions and machine
assumptions. Here, instead, we propose two additional kinds of
dependence assumptions which, as we have shown, are
essential for explaining how software can affect the social
world.

Another work that systematically analyzed the role of
assumptions in requirements engineering is the work of Jureta
reported in [25]. The author, however, neither distinguishes

between assumptions-used and the assumptions-needed, nor
provides a classification of assumptions into different kinds as
we do in this paper. His work instead focuses on matching
requirements engineering related concepts to different kinds of
mental states. For instance: an assumption is matched to a
believed proposition; a requirement is matched to a desired
proposition; and a task is matched to an intended proposition.
As we previously mentioned, we intend to address such a
detailed ontological analysis of the nature of assumptions as
well as of their relations to cognitive and social agents in a
companion paper.

As stated in section 4, Lewis [2] proposes an Assumption
Management System to help practitioners to record, query, and
validate assumptions. However her work only deals with
assumptions in source code (implementation phase). In contrast,
we here advocate that assumptions should be elicited,
represented, analyzed in the requirements engineering phase of
this process. This allows software engineers to catch errors
involving mistaken assumptions as early as possible in the
process. Moreover, differently from Lewis’ work, we propose
here a finer-grained classification of assumptions and elaborate
on their key role in linking the world and machine states.

VII. CONCLUSION AND FUTURE WORK

The contributions of this paper are three-fold: 1) we
propose a preliminary ontology of assumptions including four
kinds of assumptions. Based on this classification, we elaborate
on the role of these assumptions in explaining how social facts
can be affected by the manipulation of symbolic structures in a
machine; 2) we clarify the concept of ‘assumption’ adopted in
software engineering literature, and emphasize the importance
of clarifying the interpretation of the assumptions as either
assumptions-used, or as assumptions-needed; 3) as a
methodological contribution and, by employing a meeting
scheduler example, we demonstrate how assumptions can be
explicitly and systematically elicited and represented as a part
of the requirements engineering process. As this example
demonstrates, requirements engineering, in particular, and
software engineering in general can benefit from an awareness
of the four kinds of assumptions.

Assumptions are of fundamental importance to software
engineering. Therefore, we advocate further research in order
to develop a clearer understanding of what assumptions are.
Accordingly, on the theoretical side, we intend to publish a
dedicated paper exploring the ontological nature of
assumptions as well as systematizing the nature of the relations
to other elements of our software ontology [8], [9]. On the
practical side, the work proposed here opens up the possibility
of developing a next generation of assumption management
systems that covers important software artifacts, including
requirements, architectures and more. In these systems, the
management of assumptions could be integrated with the
requirements engineering process. As a consequence, errors
involving assumptions could be identified and addressed
earlier and more effectively. Moreover, these systems could
also support decision-making activities by software
stakeholders, from owners to developers, to end users.

ACKNOWLEDGMENTS

Support for this work was provided by the ERC advanced
grant 267856 for the project entitled “Lucretius: Foundations
for Software Evolution” (http://www.lucretius.eu), as well as
the “Science Without Borders” project on “Ontological
Foundations of Service Systems” funded by the Brazilian
government.

REFERENCES

[1] M. Jackson and P. Zave, “Deriving specifications from requirements:

an example,” in Proceedings of the 17th international conference on

Software engineering, 1995, pp. 15–24.

[2] G. Lewis, T. Mahatham, and L. Wrage, “Assumptions Management in

Software Development,” Pittsburgh, PA, 2004.

[3] M. A. Al Mamun and J. Hansson, “Review and Challenges of

Assumptions in Software Development,” in Second Analytic Virtual

Integration of Cyber-Physical Systems Workshop (AVICPS), 2011.

[4] D. Brown, “Assumptions in Design and Design Rationale,” in DCC’06

Workshop on Design Rationale: Problems and Progress, 2006.

[5] T. Tun, R. Lutz, B. Nakayama, Y. Yu, D. Mathur, and B. Nuseibeh,

“The role of environmental assumptions in failures of DNA nano

systems,” in Proceedings of Workshop on Complex Faults and Failures

in Large Software Systems (COUFLESS 2015) co-located with ICSE

2015, 2015.

[6] J. McCarthy and S. U. C. S. D. A. I. Laboratory, Situations, actions,

and causal laws. Comtex Scientific, 1963.

[7] P. Zave and M. Jackson, “Four dark corners of requirements

engineering,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, pp. 1–

30, 1997.

[8] X. Wang, N. Guarino, G. Guizzardi, and J. Mylopoulos, “Towards an

Ontology of Software: a Requirements Engineering Perspective,” in 8th

International Conference on Formal Ontology in Information Systems,

2014, pp. 317–329.

[9] X. Wang, N. Guarino, G. Guizzardi, and J. Mylopoulos, “Software as a

Social Artifact: A Management and Evolution Perspective,” in 33rd

International Conference on Conceptual Modeling, 2014, vol. 8824,

pp. 321–334.

[10] J. Ryan-Collins and T. Greenham, “Where does money come from.”

[11] D. Franken, A. Karakus, and J. G. M. Michel, John R. Searle: Thinking

About the Real World. De Gruyter, 2010.

[12] M. Jackson, “The World and the Machine,” in Proceedings of the 17th

International Conference on Software Engineering, 1995, pp. 283–292.

[13] C. A. Gunter, M. Jackson, and P. Zave, “A reference model for

requirements and specifications,” Software, IEEE, vol. 17, pp. 37–43,

2000.

[14] M. Jackson, “Specialising in Software Engineering,” in Software

Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, 2007,

pp. 3–10.

[15] A. Van Lamsweerde, “From Worlds to Machines,” in A Tribute to

Michael Jackson, Lulu Press, 2009.

[16] R. Reiter, “Logic and Data Bases,” H. Gallaire and J. Minker, Eds.

Boston, MA: Springer US, 1978, pp. 55–76.

[17] R. Ennis, “Identifying implicit assumptions,” Synthese, vol. 51, no. 1,

pp. 61–86, 1982.

[18] A. D. Twerski, A. S. Weinstein, W. A. Donaher, and H. R. Piehler,

“Use and Abuse of Warnings in Products Liability-Design Defect

Litigation Comes of Age,” Cornell L. Rev., vol. 61, p. 495, 1975.

[19] J.-L. Lions, “Flight 501 failure,” Rep. by Inq. Board, 1996.

[20] M. Schultz, W. Conshohocken, C. Hill, L. Vegas, L. Angeles, S. Diego,

and S. Francisco, “Defenses in a Product Liability Claim,” 2002.

[21] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a

roadmap,” in Proceedings of the Conference on The Future of Software

Engineering, 2000, pp. 35–46.

[22] E. S. K. Yu, “Towards Modeling and Reasoning Support for Early-

Phase Requirements Engineering,” in Proceedings of the 3rd IEEE

International Symposium on Requirements Engineering, 1997, p. 226–.

[23] V. E. Silva Souza, “Requirements-based Software System Adaptation,”

University of Trento, 2012.

[24] A. van Lamsweerde, R. Darimont, and P. Massonet, “Goal-directed

elaboration of requirements for a meeting scheduler: problems and

lessons learnt,” in Requirements Engineering, 1995., Proceedings of the

Second IEEE International Symposium on, 1995, pp. 194–203.

[25] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “A core ontology for

requirements,” Appl. Ontol., vol. 4, no. 3, pp. 169–244, Jan. 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

