
Ontological Anti-Patterns in Taxonomic Structures

Tiago Prince Sales1,2 and Giancarlo Guizzardi1

1Conceptual and Cognitive Modelling Research Group (CORE),
Free University of Bozen-Bolzano, Bolzano, Italy

2ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

{tiago.princesales,giancarlo.guizzardi}@unibz.it

Abstract. Over the years, there is a growing interest in employing theories from
philosophical ontology, cognitive science, and linguistics to devise theoretical,
methodological and computational tools for conceptual modeling, knowledge
representation, and ontology engineering. In this paper, we discuss one par-
ticular kind of such tools, namely, ontological anti-patterns. Ontological anti-
patterns are error-problem modeling structures that can create a deviation be-
tween the possible and the intended interpretations of an ontology. The contri-
butions of this paper are three-fold. Firstly, we propose three empirically elicited
ontological anti-patterns related to the modeling of taxonomic structures. Sec-
ondly, we advance a series of rectification plans that can be used to eliminate
the occurrence of these anti-patterns in domain ontologies. Finally, we present
a software tool that supports the automated detection, analysis, and elimination
of these anti-patterns.

1. Introduction

In recent years, there has been an increasing interest in the application of ontologies in
conceptual modeling, knowledge representation and domain engineering. This includes
the use of foundational ontologies to improve the theory and practice of these disciplines
[Guizzardi 2014]. In these scenarios, foundational ontologies play a key role in improving
the conceptual quality of models by supporting communication, problem-solving, mean-
ing negotiation and, chiefly, semantic interoperability in its various manifestations (e.g.,
semantic data integration [Padilha et al. 2012]).

Given the increasing complexity and criticality of domains in which ontologies are
being developed (e.g., finances, life sciences, public safety, convergence networks), there
is an urging need for developing a new generation of complexity management tools for
engineering these artifacts [Guizzardi 2014]. These include a number of methodological
and computational tools that are grounded on sound theoretical foundations. In particular,
as defended in [Guizzardi 2014], we should advance in conceptual modeling, in general,
and in ontology engineering, in particular, a well-tested body of knowledge in terms of
ontology patterns, ontology pattern languages and ontological anti-patterns. This article
focuses on the latter.

An anti-pattern is a recurrent error-prone modeling decision [Koenig 1995]. In
this paper, we are interested in one specific sort of anti-pattern, namely one character-
ized by model structures that, albeit producing syntactically valid conceptual models, are
prone to result in unintended domain representations. In other words, we are interested in



configurations that, when used in a model, will typically cause the set of valid (possible)
instances of that model to differ from the set of instances representing the intended state
of affairs in that domain [Guizzardi 2005]. Such a difference occurs either because the
model allows some unintended instances or because it forbids some intended ones. We
name these configurations ontological anti-patterns.

In this article, we focus on the study of ontological anti-patterns in a particular
modeling language named OntoUML [Guizzardi 2005]. OntoUML is a language whose
meta-model was designed to comply with the ontological distinctions and axiomatization
of a theoretically well-grounded foundational ontology named UFO (Unified Founda-
tional Ontology) [Guizzardi 2005]. UFO is an axiomatic formal theory based on theo-
ries from formal ontology in philosophy, philosophical logic, cognitive psychology, and
linguistics. OntoUML has been successfully employed in several industrial projects in
different domains, such as petroleum and gas, digital journalism, complex digital media
management, off-shore software engineering, telecommunications, retail product recom-
mendation, and government [Guizzardi et al. 2015]. A recent study shows that UFO is
the second-most used foundational ontology in conceptual modeling and the one with the
fastest adoption rate. The same study also showed that OntoUML is among the most used
languages in ontology-driven conceptual modeling [Verdonck and Gailly 2016].

This article complements our earlier work on ontological anti-patterns, in the
sense that it puts forth additional error-prone modeling structures. Previously, we
focused on anti-patterns that emerged from the modeling of: (i) material relations
[Sales and Guizzardi 2015]; (ii) roles [Sales and Guizzardi 2016]; and part-whole rela-
tions [Sales and Guizzardi 2017]. Now we focus on anti-patterns that emerge from the
modeling of taxonomic structures.

The contributions of this paper are three-fold. Firstly, we contribute to the iden-
tification of three new ontological anti-patterns for conceptual modeling, in general, and
for OntoUML, in particular. Secondly, after precisely characterizing these anti-patterns,
we propose a set of refactoring plans that can be used to eliminate the possible unintended
consequences induced by the presence of each of these anti-patterns. Finally, we present
an extension for the Menthor Editor, an open-source OntoUML model-based editor that:
(i) automatically detects anti-patterns in a model; (ii) supports users in exploring whether
the presence of an anti-pattern indeed characterizes a modeling error; (iii) automatically
executes refactoring plans to rectify the model.

The remainder of this article is organized as follows. In Section 2, we briefly
elaborate on the modeling language OntoUML and some of its underlying ontological
categories, with a particular focus on the modeling of taxonomic structures. In Section
3, we present the anti-pattern elicitation method and the model benchmark used in this
research. In Section 4, we present the newly elicited ontological anti-patterns, including
their potential unintended consequences and respective rectification solutions. Section
5 elaborates on the extensions implemented in the OntoUML editor taking into account
these anti-patterns. Lastly, Section 6 presents some final considerations.

2. Background: A Brief introduction to UFO and OntoUML
OntoUML is a language whose meta-model was designed to comply with the ontological
distinctions and axiomatization of a theoretically well-grounded foundational ontology



named UFO (Unified Foundational Ontology) [Guizzardi 2005]. In the remainder of this
section, we briefly explain a subset of UFO’s ontological distinctions that are relevant for
the anti-patterns discussed in this paper, as well as how these distinctions are reflected in
OntoUML’s modeling primitives.

Take a domain in reality restricted to endurants [Guizzardi 2005] (as opposed to
events or occurrents). Central to this domain we will have a number of object Kinds, i.e.,
the genuine fundamental types of objects that exist in this domain. The term “kind” is
meant here in a strong technical sense, i.e., by a kind, we mean a type capturing essential
properties of the things it classifies. In other words, the objects classified by that kind
could not possibly exist without being of that specific kind.

Kinds tessellate the possible space of objects in that domain, i.e., all objects be-
long necessarily to exactly one kind. However, we can have other static subdivisions
(or subtypes) of a kind. These are naturally termed Subkinds. As an example, the kind
‘Person’ can be specialized in the subkinds ‘Man’ and ‘Woman’.

Object kinds and subkinds represent essential properties of objects (they are also
termed rigid types [Guizzardi 2005]). We have, however, types that represent contingent
or accidental properties of objects (termed anti-rigid types [Guizzardi 2005]). These in-
clude Phases and Roles. The difference between the contingent properties represented
by a phase and a role is the following: phases represent properties that are intrinsic to
entities; roles, in contrast, represent properties that entities have in a relational context,
i.e., contingent relational properties.

Phases, but also typically subkinds, appear in OntoUML models forming (disjoint
and complete, i.e., exhaustive) generalization sets (partitions) following a dividing princi-
ple. For example, we can have the following phase partitions: the one including ‘Living
Person’ and ‘Deceased Person’ (as phases of ‘Person’ and according to a ‘life status’ di-
viding principle). Since they are exclusively composed of phases, these are all dynamic
partitions [Guizzardi 2005]. To use a previously mentioned example, we can also have a
(static) subkind partition formed by the subkinds ‘Man’ and ‘Woman’, dividing ‘Person’
according to ‘gender’.

Kinds, Subkinds, Phases, and Roles are categories of object Sortals. In the philo-
sophical literature, a sortal is a type that provides a uniform principle of identity, persis-
tence, and individuation for its instances [Guizzardi 2005]. To put it simply, a sortal is
either a kind (e.g., ‘Person’) or a specialization of a kind (e.g., ‘Husband’, ‘Teenager’,
‘Woman’), i.e., it is either a type representing the essence of what things are or a sub-
classification applied to the entities that “have that same type of essence”.

In contrast with sortals, types that represent properties shared by entities of mul-
tiple kinds are termed Non-Sortals. In UFO, we have three other types of non-sortals,
namely Categories, Mixins, and RoleMixins. Categories represent necessary properties
that are shared by entities of multiple kinds (e.g., the category ‘Physical Object’ represent
properties of all kinds of entities that have masses, spatial extensions, etc.). In contrast,
mixins represent shared properties that are necessary to some of its instances but acciden-
tal to others, and thus, are deemed semi-rigid types. For example, suppose we have the
mixin ‘Physical Object’ capturing properties (e.g., having a ‘Weight’) that are necessary
to ‘Cars’, while being accidental to instances of ‘Person’ (people are only physical ob-



jects when they instantiate the phase ‘Living Person’). Finally, RoleMixins are role-like
types that can be played by entities of multiple kinds. An example is the role ‘Customer’
(which can be played by both people and organizations). Categories and mixins are, in
contrast to rolemixins, considered as Relationally Independent Non-Sortals.

3. Methods and Materials

The anti-patterns presented in this paper were identified through an empirical and qual-
itative method. First, we assembled a repository of ontologies to validate. Then,
for each ontology, we selected relevant fragments to inspect. For each fragment,
we searched for potential issues using an approach called Visual Model Simulation
[Sales and Guizzardi 2015]. This approach consists in (i) converting OntoUML mod-
els into Alloy [Jackson 2012] specifications; and (ii) generating possible model instances
and contrasting these instances with the set of intended instances1 of the model. Upon the
identification of a mismatch, we would register it as a potential issue and identify in the
model which structures (i.e., combination of language constructs) caused it. To decide
whether the identified structure was indeed problematic, we would interact with the mod-
elers who created it (if they were available) or inspect the documentation accompanying
the model. Upon the confirmation of a modeling problem, we would propose a possible
solution to rectify the model and register it as a problem-solution pair. With the recently
rectified model, we would then continue with the simulation. This iteration would be re-
peated until no more problems could be identified in the fragment at hand. The analysis of
a model would stop whenever we had inspected all of its relevant fragments. Lastly, after
inspecting each model, we would revisit the identified problem-solution pairs in order to
generalize them into anti-patterns and refactoring plans.

We systematically carried out this process for 54 ontologies2 developed in differ-
ent types of context: (i) 11 were developed in a pure research environment, such as O3
[Pereira and Almeida 2014], an ontology about organizational structures; (ii) 7 were de-
veloped in collaboration with private or public organizations, e.g., the MGIC Ontology
[Bastos et al. 2011], a model developed for a Brazilian regulatory agency; (iii) 32 were
designed as course assignments in post-graduate ontology engineering courses; and (iv) 4
were developed in other contexts.

These ontologies were created for a variety of purposes: (i) 10 were de-
signed to be reference models of consensus for particular domains (e.g., UFO-S
[Nardi et al. 2013] for the service domain); (ii) 10 were developed to assess the appro-
priateness of existing domain representations, such as database schemas, modeling lan-
guages, and standards (e.g., an ontology developed to assess the ITU-T recommenda-
tion G. 805 [Barcelos et al. 2011]); (iii) 8 were designed to support the development of
knowledge-based applications; (iv) 6 to support semantic interoperability (e.g., OntoBio
[Albuquerque et al. 2015], an ontology of the biodiversity domain); (v) 2 for enterprise
modeling; (vi) and 26 for other or non-declared purposes.

Moreover, these ontologies were created by modelers with varying levels of ex-

1The set of intended instances correspond to those that represent intended state of affairs
[Guizzardi 2005] according the creators of the models.

2For a complete description of the ontologies analyzed in this study, please refer to
[Sales and Guizzardi 2015].



pertise in OntoUML: 22 were developed by beginners, whilst 32 were developed by expe-
rienced modelers. Finally, regarding the number of participants involved in the ontology
construction, 35 models were developed individually, 15 were the product of a collabora-
tion between 2-4 people, and 4 of them involved 7-10 people.

4. Ontological Antipatterns

4.1. Non-Sortal with a Uniform Identity Principle (NSIden)

The anti-pattern named Non-Sortal with a Uniform Identity Principle (NSIden) is defined
by a non-sortal type that can only be instantiated by individuals that adhere to a single
identity principle. Structurally, it corresponds to a type, hereafter NonSortal, stereotyped
as «mixin», «category» or «roleMixin», whose direct subtypes, hereafter Sortali, are sor-
tal types that share a common identity provider, hereafter IdProvider. This implies that
every Sortali is stereotyped as «subkind», «role», «phase», «kind», «collective» or «quan-
tity» and that IdProvider is stereotyped as a «kind», «collective» or «quantity».

We say that the set of Sortali shares an identity provider if: (i) every Sortali
is stereotyped as «subkind», «role» or «phase» and directly or indirectly specialize Id-
Provider; or (ii) exactly one Sortali is stereotyped as «kind», «collective» or «quantity»
and the remainder directly or indirectly specialize it. In fact, in this second case, the
IdProvider is also one of classes playing the role of Sortali.

To unveil whether a NSIden occurrence is indeed a modeling error, one should
first assess if NonSortal really is a type that can classify instances of different kinds,
i.e., that obey multiple identity principles. If that is not the case, the model is wrong and
NonSortal should actually be represented as a sortal. That can be achieved by (i) replacing
the stereotype of NonSortal with «subkind», «role» or «phase» and (ii) making NonSortal
specialize IdProvider. This solution is depicted as refactoring plan 1 in Table 1.

Conversely, if NonSortal can indeed classify individuals of different kinds, one
should analyze if it is true that IdProvider is the kind that supplies the identity principle
for every Sortali. If that is not the case, the model can be rectified by adjusting the kinds
accordingly. This second solution is depicted as refactoring plan 2 in Table 1.

If it is the case that NonSortal can classify individuals of different kinds and that
every Sortali inherits their identity principle from the appropriate kind, it means that the
model under analysis is incomplete. In other words, NonSortal can be instantiated by
a type of individual that is not currently accounted for. If ontological completeness is a
desired quality for the model at hand, we recommended adding the missing specializations
of NonSortal as depicted by the refactoring plan 3 in Table 1.

To illustrate the NSIden anti-pattern, let us discuss an example found in a reference
model developed for the Brazilian ground transportation agency [Bastos et al. 2011]. A
fragment of this ontology, related to the domain of highway concessions, is shown in the
left side of Figure 1. It depicts two types of organizations, namely Concessionaire and
PublicOrganization. The former represents private companies that are created exclusively
to administrate federal highways, whilst the latter accounts for organizations owned and
managed by the government, such as regulatory agencies and public foundations. Our
main focus here is on the MaintenanceContractor, a role played by organizations respon-
sible for (part of) the maintenance of a highway. According to Brazilian law, only public



Table 1. Summary of the NSIden anti-pattern.

Name (Acronym) Description
Non-Sortal with a Uniform
Identity Principle (NSIden)

A non-sortal class specialized only by sortal types that obey a single
identity principle, i.e. specialize a common identity provider class.

Pattern Roles
Mult. Name Allowed Metaclasses

1 NonSortal «mixin», «category», «roleMixin»
1..* Sortali «subkind», «role», «phase», «kind», «collective», «quantity»
1..* IdProvider «kind», «collective», «quantity»

Generic Example

Refactoring Plans
1. From non-sortal to sortal: change the stereotype of NonSortal to either «subkind», «role» or
«phase» and make it specialize IdProvider.

2. Identity adjustment: change the identity provider of at least one Sortali to another «kind»,
«quantity» or «collective» (IdProvider2).

3. Find the missing sortal: add a type, Sortal3, that does not directly or indirectly specialize
IdProvider as a direct subtype of NonSortal.

organizations and concessionaires may have such a responsibility, hence, the two “sub-
roles” PublicContractor and ConcessionaireContractor.

This fragment exemplifies the NSIden anti-pattern because MaintenanceContrac-
tor is represented as a «roleMixin» and all its subtypes, namely PublicContractor and



ConcessionaireContractor are of the kind Organization. As such, it identifies an onto-
logical mistake because, since only specific types of organizations can be contractors, the
MaintenanceContractor role is a sortal type. The rectification of this fragment, which
follows the NSIden’s refactoring plan 1, is depicted in the right side of Figure 1. The
affected class has a grey background and the new generalization has bolder lines.

Figure 1. Adapted fragment from the MGIC Ontology exemplifying NSIden.

4.2. Mixin with Uniform Rigidity (MixRig)
The Mixin with Uniform Rigidity (MixRig) anti-pattern warns modelers about a potential
mischaracterization of a type as semi-rigid. It does so by highlighting a «mixin» class,
hereafter Mixin, whose direct subtypes, hereafter Typei, are either all rigid or all anti-rigid.

To judge whether a MixRig occurrence is indeed a modeling mistake, one should
start by revisiting the alleged semi-rigid type. Is it actually the case that it characterizes
some of its instances essentially and others accidentally? If the answer is no, this type
is not semi-rigid, and the model should be rectified according to the refactoring plan 1
described in Table 2. Simply put, if every Typei is rigid, the rectification consists in
changing Mixin’s stereotype to «category». If every Typei is anti-rigid, the new stereotype
should be «roleMixin».

Contrarily, if Mixin is indeed a semi-rigid type, the issue may lie on some Typei.
One of them may have been modeled using a metaclass that embeds the wrong rigiditiy
meta-property. For instance, «subkind» was used instead of «role». In this case, the solu-
tion consists in identifying which Typei has the wrong stereotype and fixing it accordingly.
This solution is listed as refactoring plan 2 in. If every Typei was correctly modeled, it
means that the model lacks at least one subtype of Mixin with a rigidity property that dif-
fers from those of Typei. The solution then, if ontological completeness is desired, would
be to add the missing type, as described in the refactoring plan 3.

We illustrate the MixRig anti-pattern with another taxonomic fragment extracted
from ontology discussed in [Bastos et al. 2011], but now in the sub-domain of railway
concession. Depicted in the left-side of Figure 2, it focuses on two types of assets that can
be railway system components, namely Terminal and RailwayLot. A Terminal is a type
of Building where trains stop for passengers to board and disembark, whilst a RailwayLot
is a delimited piece of land that composes a railway system, such as the areas alongside
train tracks.

This example characterizes a MixRig anti-pattern because RailwayAsset is repre-
sented as a «mixin» and its direct subtypes, Terminal and RailwayLot, are both subkinds,
i.e., rigid types. Interacting with the authors of this model, we discovered that it is es-
sential for a Terminal to be a part of some railway infrastructure, but accidental for a



Table 2. Summary of the MixRig anti-pattern.

Name (Acronym) Description
Mixin with Uniform
Rigidity (MixRig))

A «mixin» class specialized by classes with the same rigidity meta-property,
i.e. either all rigid or all anti-rigid.

Pattern Roles
Mult. Name Allowed Metaclasses

1 Mixin «mixin»
1..* Typei All class stereotypes except «mixin»

Generic Example

Refactoring Plans
1. Not semi-rigid: change the stereotype of Mixin either to a «category», if every Typei is rigid, or
to a «roleMixin», if every Typei is anti-rigid.

2. Rigidity adjustment: change the stereotype of at least one Typei (but not all of them) such that
the new stereotype embeds a rigidity meta-property different from the remainder Typei.

3. Find the missing subtype: specialize Mixin with a type (Type3) that has a rigidity meta-property
different from every other Typei.

Lot. Thus, RailwayAsset was properly characterized as a semi-rigid type, but RailwayLot
was mistakenly represented as «subkind», for it should have been a «role» played by a
Lot when composing a Railway infrastructure (as described in refactoring plan 2). The
rectified fragment is depicted on the right side of Figure 2.



Figure 2. Adapted fragment from the MGIC Ontology exemplifying MixRig.

4.3. Generalization Set with a Mixed Rigidity

The Generalization Set With Mixed Rigidity (GSRig) anti-pattern aims to identify the use
of multiple dividing principles within a single generalization set. Structurally, it consists
in a generalization set, hereafter GS, that satisfies two conditions: (i) its common super-
type, hereafter RigidSupertype, is rigid; and (ii) it groups at least one generalization whose
subtype is rigid, hereafter Rigidi, and at least one whose subtype is anti-rigid, hereafter
AntiRigidi.

As discussed in Section 2, a dividing principle identifies the “dimension” consid-
ered for creating a subtype. For instance, the dimension used to differentiate the classes
Child, Adult and Elder is the age of a Person. We uncovered throughout our analysis that
when multiple dimensions were used to define subtypes within the same generalization
set, it was likely that the model misrepresented its domain of interest.

Note that a GSRig occurrence will cause a logical contradiction if it contains ex-
actly one AntiRigidi and the GS is set as disjoint and complete. The contradiction arises
from the combination of: (i) the rigidity constraints of the subtypes; (ii) the disjointness
constraint of the set, which forbids instances of the rigid subtypes to simultaneously in-
stantiate the anti-rigid type; and (iii) the completeness constraint of the set, which requires
that every instance of the general type instantiate one of the subtypes. In this case, the
only way for an individual to instantiate the anti-rigid subtype at hand would be by doing
so since its creation. However, by definition of an anti-rigid type, it is necessary that such
an individual possibly ceases to instantiate that type. This is, however, not possible in this
case due to the rigidity of the complementary subtypes in that complete generalization
set. In summary, this configuration forces the anti-rigid type at hand to “behave” as if it
were rigid.

To determine whether a GSRig occurrence characterizes a modeling error, one
should start by double checking the rigidity of each subtype and fixing it if necessary. If
after this step all subtypes are either rigid or anti-rigid, the model has been rectified. Oth-
erwise, one should revisit the common supertype’s intended semantics to assess whether
it should have been characterized as a «mixin», a metaclass that exactly captures com-
mon properties shared by rigid and anti-rigid subtypes. This analysis and rectification
alternatives are listed as refactoring plan 1 in Table 3.

In case all types are characterized by the appropriate stereotypes, we recommend
one to think about the dividing principle used to create each subtype. If more than one was
used, one should revisit the constraints defined by GS (e.g., that the subtypes are disjoint).
If they were not accurate, the models could commonly be rectified by either: (i) splitting
the GS in two, one for the rigid subtypes and another for the anti-rigid ones (refactoring
plan 2); or (ii) adding a rigid type as a sibling of the other rigid subtypes and making all



Table 3. Summary of the GSRig anti-pattern.

Name (Acronym) Description
Generalization Set with
Mixed Rigidity (GSRig))

A generalization set aggregating rigid and anti-rigid classes into a com-
mon rigid super-type.

Pattern Roles
Mult. Name Allowed Metaclasses

1 GS GeneralizationSet
1 RigidSupertype «kind», «collective», «quantity», «subkind», «category»

1..* Rigidi «kind», «collective», «quantity», «subkind», «category»
1..* AntiRigidi «role», «phase», «roleMixin»

Generic Example

Refactoring Plans
1. Rigidity adjustment: change the stereotype of every AntiRigidi to make them rigid, change the
stereotype of every Rigidi to make them anti-rigid, or make RigidSupertype a «mixin»

2. Orthogonal generalization set: add a generalization set (GS2) to group the generalizations of
anti-rigid subtypes.

3. Add a rigid subtype: add a rigid subtype (NewRigid) that specializes RigidParent and is a direct
supertype of every AntiRigidi in the generalization set.



Figure 3. Adapted fragment from the MPOG Ontology exemplifying GSRig.

anti-rigid subtypes in the generalization set specialize it (refactoring plan 3).

We exemplify GSRig by means of a fragment of a conceptual model about or-
ganizational structures published by the Brazilian Ministry of Planning, Budgeting and
Management [Ministério do Planejamento, Orçamento e Gestão 2011]. As shown in the
left side of Figure 3, this fragment defines the concept of PublicEntity, a public organi-
zation autonomously managed and with its own independent budget. Such an entity may
be of one of two types, namely a StateOwnedCompany or a Public Administrative Entity
(P.AdministrativeEntity). The former refers to companies that are partially or completely
owned by the state (e.g., Petrobras, Bank of Brazil), while the latter refers to other public
organizations, such as regulatory agencies and public foundations.

The generalization set with PublicEntity as its supertype characterizes this GSRig
occurrence. It aggregates the generalizations coming from StateOwnedCompany, an anti-
rigid type, and P.AdministrativeEntity, a rigid type. From the domain description, we
can easily conclude that being a PublicEntity is an essential property for some organiza-
tions. For instance, it is not possible (and arguably it will never be) for the Ministry of
Science and Technology to be privately owned. We can just as easily find examples of
organizations that are only contingently public entities, such as a public company that was
privatized. Thus, the issue lies in the representation of PublicEntity as a category, while
in reality, it is a mixin. The rectification of this fragment, following refactoring plan 1,
can be seen on the right side of Figure 3.

5. Tool Support
To help modelers validate their ontologies using the anti-patterns presented in this
paper, we implemented an anti-pattern management feature in Menthor Editor3

[Moreira et al. 2016], an open-source ontology-driven conceptual modeling environment.
Following the strategy adopted in [Sales and Guizzardi 2015], the anti-pattern feature in-
cludes (i) automatic anti-pattern detection; (ii) anti-pattern analysis using a wizard-based
strategy; and (iii) automatic model rectification based on the refactoring plans previously
presented.

6. Final Considerations
In this paper, we extended our work on ontological anti-patterns, proposing three new
error-prone structures in combination with pre-defined rectification solutions. In partic-

3
https://github.com/MenthorTools/menthor-editor

https://github.com/MenthorTools/menthor-editor


ular, the anti-patterns we describe in this paper (NSIden, MixRig and GSRig) regard the
formalization of taxonomic structures, the “backbone” of every ontology. Therefore, the
identification of these anti-patterns, their associated rectification plans, and the tool pre-
sented here contribute to the theory and practice of ontology engineering.

In companion publications, we presented anti-patterns (with their respective recti-
fication plans) identified in the modeling of material relations [Sales and Guizzardi 2015],
roles [Sales and Guizzardi 2016] and part-whole relations [Sales and Guizzardi 2017].
So, the three anti-patterns related to the modeling of taxonomic structures presented in
this paper come to add to this body of knowledge. In future investigations, we plan to ex-
pand this catalog to account for anti-patterns involving other types of entities, in particular
phases, qualities and formal relations.

In terms of frequency of occurrence across the analyzed repository, these three
anti-patterns occurred in a frequency much lower than some of the other anti-patterns
present in our catalog. For example, NSIden and GSRig appeared in 13,51% of the models
in which they could possibly occur, i.e., in which the necessary modeling elements were
present. MixRig appeared in only one of the models that it could possibly occur (7 in
total). However, we found out that 100% of its occurrences were actually modeling errors.
This is important because, in these cases, one can actually derive syntactic rules to be
encoded in the metamodel of the language such that the occurrence of these anti-patterns
would be proscribed in OntoUML models.

Since anti-patterns signal deviations between intended and valid model instances,
and since the former only exist in the mind of domain experts, anti-pattern discovery
is a human-centric activity. Hence, the anti-patterns currently making our catalog were
discovered in a heavily manual process. To overcome this methodological limitation,
we intend to study strategies to automate anti-pattern discovery as much as possible.
For instance, we would like to provide mechanisms that could automatically learn anti-
patterns through the identification of correlations between (a) structures in the unintended
model instances, (b) structures in the conceptual models that cause them, and (c) solu-
tions provided by the conceptual modelers over (b) in order to rectify unintended situ-
ations identified in (a). In that respect, a possibly promising path for research, in the
spirit of [Alrajeh et al. 2015], is to combine inductive logic learning mechanisms with the
counter-example generation capability of our Alloy-based model simulation environment.

References
Albuquerque et al. (2015). OntoBio: A biodiversity domain ontology for Amazonian

biological collected objects. In 48th Hawaii Int. Conf. on System Sciences, pages
3770–3779. IEEE.

Alrajeh, D., Kramer, J., Russo, A., and Uchitel, S. (2015). Automated support for diag-
nosis and repair. Communications of the ACM, 58(2):65–72.

Barcelos et al. (2011). Ontological evaluation of the ITU-T recommendation G. 805. In
18th Int. Conf. on Telecommunications, pages 232–237. IEEE.

Bastos et al. (2011). Building up a model for management information and knowledge:
the case-study for a brazilian regulatory agency. In 2nd International Workshop on
Software Knowledge, pages 3–11.



Guizzardi, G. (2005). Ontological foundations for structural conceptual models. CTIT,
Centre for Telematics and Information Technology.

Guizzardi, G. (2014). Ontological patterns, anti-patterns and pattern languages for next-
generation conceptual modeling. In International Conference on Conceptual Model-
ing, pages 13–27. Springer.

Guizzardi et al. (2015). Towards ontological foundations for conceptual modeling: the
Unified Foundational Ontology (UFO) story. Applied ontology, 10(3-4):259–271.

Jackson, D. (2012). Software Abstractions: logic, language, and analysis. MIT press.

Koenig, A. (1995). Patterns and antipatterns. Journal of Object-Oriented Programming,
8(1):46–48.

Ministério do Planejamento, Orçamento e Gestão (2011). Esboço de modelagem con-
ceitual para estruturas organizacionais governamentais brasileiras e o SIORG.

Moreira et al. (2016). Menthor editor: An ontology-driven conceptual modeling platform.
In 2nd Joint Ontology Workshops, volume 1660. CEUR-WS.org.

Nardi et al. (2013). Towards a commitment-based reference ontology for services. In
17th Int. Enterprise Distributed Object Computing Conference, pages 175–184. IEEE.

Padilha et al. (2012). Ontology alignment for semantic data integration through founda-
tional ontologies. In 31st Int. Conf. on Conceptual Modeling, pages 172–181. Springer.

Pereira, D. C. and Almeida, J. P. A. (2014). Representing organizational structures in an
enterprise architecture language. In 6th Workshop on Formal Ontologies meet Industry,
volume 1333, pages 7–15. CEUR-WS.org.

Sales, T. P. and Guizzardi, G. (2015). Ontological anti-patterns: empirically uncovered
error-prone structures in ontology-driven conceptual models. Data & Knowledge En-
gineering, 99:72–104.

Sales, T. P. and Guizzardi, G. (2016). Anti-patterns in ontology-driven conceptual model-
ing: the case of role modeling in OntoUML. In Hitzler, P., Gangemi, A., Janowicz, K.,
Krisnadhi, A., and Presutti, V., editors, Ontology Engineering with Ontology Design
Patterns: Foundations and Applications, volume 25, pages 161–187. IOS Press.

Sales, T. P. and Guizzardi, G. (2017). "Is it a fleet or a collection of ships?": Ontological
anti-patterns in the modeling of part-whole relations. In 21st European Conference on
Advances in Databases and Information Systems (ADBIS), pages 28–41. Springer.

Verdonck, M. and Gailly, F. (2016). Insights on the use and application of ontology
and conceptual modeling languages in ontology-driven conceptual modeling. In 35th
International Conference on Conceptual Modeling (ER), pages 83–97. Springer.

View publication statsView publication stats


	Introduction
	Background: A Brief introduction to UFO and OntoUML
	Methods and Materials
	Ontological Antipatterns
	Non-Sortal with a Uniform Identity Principle (NSIden)
	Mixin with Uniform Rigidity (MixRig)
	Generalization Set with a Mixed Rigidity

	Tool Support
	Final Considerations

