Chapter 7

Ontology Pattern Languages

Ricardo Falbo

Ontology and Conceptual Modeling Research Group (NEMO), Com-
puter Science Department, Federal University of Espirito Santo, Vitéria,
Brazil

Monalessa Barcellos

Ontology and Conceptual Modeling Research Group (NEMO), Com-
puter Science Department, Federal University of Espirito Santo, Vitéria,
Brazil

Fabiano Ruy

Ontology and Conceptual Modeling Research Group (NEMO), Com-
puter Science Department, Federal University of Espirito Santo, Vitéria;
Informatics Department, Federal Institute of Espirito Santo, Campus
Serra, Serra, Brazil

Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO), Com-
puter Science Department, Federal University of Espirito Santo, Vitéria,
Brazil

Renata Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO), Com-
puter Science Department, Federal University of Espirito Santo, Vitdria,
Brazil

Ontology design patterns are a promising approach for Ontology Engineering. In
this chapter, we introduce the notion of Ontology Pattern Language (OPL) as
a way to organize domain-related ontology patterns. This chapter is organized
as follows: Section 7.1 presents the motivation for organizing Domain-Related

Ontology Patterns (DROPs) as OPLs. Section 7.2 discusses what an OPL is, and
how OPLs are represented, showing an example of an OPL for the software process
domain, based on ISO Standards (ISP-OPL). Section 7.3 discusses how to build
OPLs from core ontologies, taking ISP-OPL as an example. Section 7.4 discusses
how an OPL can be used for building a domain ontology. An example applying
ISP-OPL for building a domain ontology about the Stakeholder Requirements
Definition Process is presented. Section 7.5 presents an overview of existing OPLs.
Finally, Section 7.6 presents our final remarks.

7.1. Motivation

An Ontology Pattern (OP) describes a particular recurring modeling problem
that arises in specific ontology development contexts and presents a well-proven
solution for the problem. Using OPs is an emerging approach that favors the
reuse of encoded experiences and good practices. Different kinds of OPs support
ontology engineers on distinct phases of the ontology development process [7].
For instance, a Domain-related Ontology Pattern (DROP) is a kind of Content
Ontology Design Pattern that captures a reusable fragment extracted from a
reference domain ontology, which may assist in building the conceptual model
of a new domain ontology. A Logical Ontology Design Pattern, or an Ontology
Coding Pattern', in turn, supports ontology implementation, aiming at solving
problems related to reasoning or related to shortcomings in the expressivity of a
specific logical formalism.

This chapter focuses on the conceptual modeling phase of Ontology Engi-
neering, thus dealing with DROPs. To emphasize this point, it is important that
the reader understands that in this chapter, in an analogy to Software Engi-
neering (SE), we take an analysis point of view, in which we build a model of
the world, without any implementation concerns (e.g. tractability or efficiency).
Typically, this conceptual model will be later refined and, finally, become an on-
tology schema after some adaptations required by a specific ontology modeling
language/formalism.

As pointed out by Alexander and colleagues in their pioneering work [1],
each pattern can exist only to the extent that it is supported by other patterns.
According to Schmidt et al. [25], in the community of Software Engineering
patterns, the trend is towards defining pattern languages, rather than stand-alone
patterns. The term “pattern language” in SE refers to a network of interrelated
patterns that defines a process for systematically solving coarse-grained software
development problems [5] [3]. This approach can also be taken into account in
Ontology Engineering, giving rise to Ontology Pattern Languages (OPLs).

Although many DROPs in the literature refer to other patterns, and explore
relations such as subsumption and composition, most of these references fail to
give more complete guidelines on how the patterns can be combined to form
solutions to larger problems. Context and problem descriptions are usually stated
as general as possible, so that each pattern can be applied in a wide variety
of situations. In addition, solution descriptions tend to focus on applying the

1 Also referred as Idioms.

patterns in isolation, and do not properly address issues that arise when multiple
patterns are applied in overlapping ways, such as the order in which they can
be applied. This approach is insufficient for complex real-world situations, since
the features introduced by applying one DROP may be required by the next. A
larger context is therefore needed to describe larger problems that can be solved
by combining patterns, and to address issues that arise when DROPs are used in
combination [6].

It is important to highlight that Ontology Engineering is a complex task. It
is of course important to take into consideration the need for speedy and easy
development, and this is indeed another reason for motivating reuse in this area.
However, an ontology engineer should also be aware that when building a sound
ontology, dealing with some complezity is unavoidable. This is because an ontol-
ogy is expected to be comprehensive and coherent, not leaving behind important
concepts and relations, but also not including unnecessary ones. Otherwise, one
might be just overestimating the power of the so-called ontology, in terms of
semantic expressivity and interoperability. Taking this into account, we believe
that using OPs and OPLs is paramount to help dealing with the aforementioned
complexity. And we hope to convince the reader of this important point, by
presenting some definitions and examples in the next sections of this chapter.

7.2. What an OPL is and how it is represented

An Ontology Pattern Language (OPL) is a network of interconnected DROPs
that provides holistic support for solving ontology development problems for a
specific domain. An OPL contains a set of interconnected DROPs, plus a mod-
eling workflow guiding on how to use and combine them in a specific order, and
suggesting patterns for solving some modeling problems in that domain [6].

The notion of OPL provides a stronger sense of connection between DROPs,
expressing different types of relationships among them [6]. For instance, to be
applied, a pattern may require the previous application of other patterns (depen-
dency); a larger pattern can be composed of smaller ones; or several patterns may
solve the same problem in different ways (variant patterns). Those relationships
impose constraints in the order in which patterns can be applied. Thus, an OPL
provides explicit guidance on how to reuse and integrate related patterns into a
concrete conceptual model of a new domain ontology. In this sense, an OPL is
more than a catalogue of patterns. It includes, besides the patterns themselves,
a rich description of their relationships, and a process guiding the order to apply
them according to the problems to be modeled. OPLs encourage the application
of one pattern at a time, following the order prescribed by paths chosen through-
out the language. Consequently, by enabling the selective use of DROPs in a
flexible way, an OPL releases the ontology engineer from the need to know up-
front the whole set of concepts and relations addressed by the OPL. In this way,
an OPL also aids managing complexity.

UML activity diagrams can be used for representing OPL process models,
since they provide the main constructs for representing process models in general.
Figure 7.1 shows an extension of a fragment of the UML meta-model for activity
diagrams (version 2.5 [20]) that is adequate for representing OPLs. Modeling

elements shown in grey are those extending the UML meta-model. Figure 7.2
shows the graphical notation for the modeling elements used to represent OPLs.

- subgroup
ActivityGroup o *

<« conects ?0 " 0.1
0 1 | target -incoming | 0.7 0.7 0.1
ActivityNode ActivityEdge PatternActionGroup |0..*

- subgroup
11 source - outgoing |0 'L‘ 1
| | ‘ ControlFlow VariantPatternActionGroup
ExecutableNode ControlNode
Zf \ \ |
Action InitialNode ForkNode JoinNode
lﬁ Lﬁ MergeNode DecisionNode
PatternAction EntryPoint

2

Figure 7.1. An extension of the UML meta-model for representing OPLs.

In this extended version of Activity Diagrams, a Pattern Action is an action
in which a pattern is applied. Pattern Actions are represented as filled round-
cornered rectangles. The name of the pattern is used to indicate the pattern to
be applied. Pattern actions can be grouped in Pattern Action Groups. A Pattern
Action Group is used to organize an OPL, aggregating pattern actions and other
pattern action groups related to a more specific subject or sub-domain. Pattern
Action Groups are represented as hollow round-cornered rectangles with wider
borders. A special type of Pattern Action Group is the Variant Pattern Action
Group, which aggregates variant pattern actions. Variant patterns groups aggre-
gate patterns solving the same problem but in different and mutually exclusive
ways. Thus, from a Variant Pattern Action Group only one of the patterns can be
selected and applied. Variant Pattern Action Groups are represented as hollow
round-cornered rectangles with wider dashed borders.

Control Flows represent the admissible sequences in which patterns in the
language can be applied. A control flow is represented by an arrowed line con-
necting either: two pattern actions; a pattern action and a (variant) pattern
action group; two (variant) pattern action groups. It is important to point out
that, in an OPL, control flows indicate admissible paths along the OPL, i.e., they
do not represent mandatory paths to be followed. The ontology engineer may
decide to stop applying the patterns at any time. However, if he/she wants to
proceed, the paths given by the control flows must be respected. When the ap-
plication of a pattern requires applying the next one, the control flow linking the

Modeling Element Notation

Pattern Action

Control Flow _ >

p—

. 1

Pattern Action Group Qﬁl 1
- - -

Variant Pattern Action Group

" ----- -
Entry Point .
Decision Node %’%’?
Merge Node BOH

Fork Node %I<
Join Node H%

Figure 7.2. Graphical notation for representing OPLs.

two corresponding pattern actions is stereotyped as <<mandatory>>.

Besides the main modeling elements for representing pattern actions, groups
of pattern actions and control flows between them, in order to allow representing
more complex flows than sequential ones, control nodes are used. For representing
OPLs, the following control nodes are used: entry point, decision and merge
nodes, and fork and join nodes.

Entry Points indicate the patterns in the language that can be used without
requiring the previous application of other patterns. There may be multiple entry
points in an OPL, indicating different ways of using the OPL. When using an OPL,
the ontology engineer must choose the entry point that better fits the requirements
for the domain ontology being developed. Different from Initial Nodes in UML
Activity Diagrams, in an OPL only one entry point is to be selected by the
ontology engineer. Entry points (as UML initial nodes) are represented by solid
circles.

As in the UML meta-model [20], a Decision Node is a control node that selects
among alternative outgoing flows, while a Merge Node is a control node that

brings together multiple flows without synchronization. The notation for both
Merge Nodes and Decision Nodes is a diamond-shaped symbol. The difference
between them is that a Merge Node must have two or more incoming flows and
a single outgoing flow, while a Decision Node must have a single incoming flow
and multiple outgoing flows.

A Fork Node is a control node that splits a flow into multiple concurrent
flows. A Fork Node has exactly one incoming control flow, though it may have
multiple outgoing control flows. As discussed above for control flows, these out-
going flows may optionally be followed by the ontology engineer depending on the
requirements for the ontology being developed. In other words, a fork node only
indicates that the outgoing flows are admissible, but not that they are necessarily
mandatory. If some of the outgoing flow is mandatory, the corresponding control
flow must be stereotyped with <<mandatory>>. A Join Node is a control node
that synchronizes multiple flows. A Join Node shall have exactly one outgoing
control flow but may have multiple incoming flows. The notation for both Fork
Nodes and Join Nodes is a thick line segment.

Figure 7.3 shows the process model of the ISO-based Software Process OPL
(ISP-OPL) [22]. The purpose of ISP-OPL is to establish a common conceptual-
ization about the software process domain, considering ISO Standards devoted
to this subject, such as ISO/IEC 24744 [15], ISO/IEC 12207 [16] and ISO/IEC
15504 [14]. The main intended use for ISP-OPL is supporting ISO-Standard har-
monization efforts. As Figure 7.3 shows, ISP-OPL is organized in three main
groups of patterns: Work Units (WUs), Work Products (WPs) and Human Re-
sources (HRs). ISP-OPL has three entry points. The ontology engineer should
choose one of them, depending on the scope of the specific software process on-
tology being developed. The ontology engineer should choose EP1, when the
requirements for the new ontology include the definition and planning of work
units; he/she should choose EP2, if the scope of the ontology considers only the
execution of work units (performed WUs); EP3 is to be chosen if the ontology
engineer aims to model only the structure of work products.

Through entry point EP1, in order to model the structure of WUs, the ontol-
ogy engineer needs to apply one (or both) of the following patterns: WU Com-
position and WU Dependence. These patterns are used to represent work units
defined in an endeavor, without planning a time frame for them. The WU Com-
position pattern represents the mereological decomposition of work units, thus,
specializing Work Unit into Process, Composite Task and Simple Task. The WU
Dependence pattern deals with the dependence between work units. The Project
Process Definition pattern captures the link between a Process and the Project
for which it is defined. The WU Scheduling pattern is used to represent the time
frame of a scheduled WU, defining its planned start and end dates.

After doing that, the ontology engineer can focus on modeling performed work
units, i.e., work units already executed. Performed WUs, as past events, have
actual start and end dates. The tracking of performed work units against defined
work units is treated by the Performed WU Tracking pattern, which relates a
Scheduled Work Unit to a Performed Work Unit caused by the former. The
group encompassing the patterns Performed WU Composition and Performed
WU Dependence is analogous to the group containing WU Composition and WU

(“Work Units

(" Human Resources

EP1

wu
Dependence

Role
Planning

1 | Stakeholder
j! Allocation

WU
Scheduling J

wu
Composition

)

Performed
WU Tracking

Project
Process

HR
Employment

|

Allocation

I

1

1

I
Stakeholder |1
1
Simplified I
- !

Team

1
1
Definition 1| Membership :
I Organizational
Performed WU Tegm 1 {itiRolcH)
EP2 Dependence Definition §I :
I Project I | Team 1
Process Project Team I'| Membership |
Composition Performing Definition 1 L Simplified 1
‘ | Jepe—— -
-
7 %
Work Products N/ e e -
TT ’ 1 —— -
1 1 Team Role 1
] I 1| Participation i
1| wp 1
- [E) (Fo) . .
. Composition : Reniicipaion 1 : Producer 1
1 Participation |1
Document 1 M] 1
“) F——)
- == \ J
Figure 7.3. ISP-OPL process model.
Dependence. Additionally, the Project in the context of which a Process was

performed can be modeled with the Project Process Performing pattern.

If the requirements for the ontology involve only performed work units, the
entry point is EP2, allowing using, in this group, only the patterns Performed
WU Composition, Performed WU Dependence and Project Process Performing.

After modeling aspects related to Work Units, the ontology engineer can ad-
dress human resource related problems by applying the patterns of the Human
Resource group. Some patterns of this group are adapted from patterns of the
Enterprise OPL (E-OPL) [9] (see Section 7.5.1), such as Human Resource Em-
ployment, Organizational Team Definition and Project Team Definition.

The Human Resource Employment pattern establishes the employment rela-
tion between an Organization and a Person, which assumes the Human Resource
role. The Stakeholder Definition pattern defines the concept of Stakeholder (some-
one involved in a Project). The Organizational Team Definition and Project Team
Definition patterns are used to define organizational and project teams, respec-
tively. The Role Planning pattern models the roles responsible for performing
a defined work unit, while the Team Role Definition pattern can be applied to
represent the roles a team can play.

In order to represent the membership relation between a team and its mem-
bers (Persons), the ontology engineer can choose one of the alternative patterns
Team Membership Simplified and Team Membership with Role. Then, one of these
two alternative patterns can be used to represent the allocation of stakeholders
to a scheduled work unit: Stakeholder Allocation and Stakeholder Allocation Sim-

plified. Finally, for dealing with the participation of stakeholders in performed
work units, the ontology engineer can choose between the alternative patterns
Producer Participation and Producer Participation Simplified.

The last group of patterns constituting ISP-OPL is the group related to Work
Products (WPs). This group can be reached from the patterns related to Per-
formed WU, but also through the entry point EP3. This group is to be chosen
when the ontology engineer wants to represent only the structure of work prod-
ucts. The WP Composition pattern allows modeling the mereological structure
of work products. WP Nature is related to types of work products (such as Doc-
ument, Model and Information Item). Once the WP Nature pattern has been
applied, the Document Depiction pattern can be used to model the fact that
documents depict other work products.

Once the patterns for work unit execution have already been applied (either
through EP1 or EP2), beyond the work product structure, the ontology engi-
neer can also model work products handling. In this case, the WP Participation
pattern sets the participation of work products in performed work units. In this
pattern, the Work Product Participation is modeled as a concept with special-
izations for creation, change and usage participation. Alternatively, these three
types of participations can be modeled only by means of a relation using the
patterns WP Creation, WP Change and WP Use.

In addition to the process model, an OPL comprises the patterns themselves.
The OPL specification includes the following items for each pattern:

e Name: the name of the pattern.
e Intent: describes the pattern purpose.
e Rationale: describes the rationale underlying the pattern.

e Competency Questions: describes the competency questions that the
pattern aims to answer.

e Conceptual Model: depicts the conceptual model representing the pat-
tern elements.

e Axiomatization: presents complementary formal axioms related to the
diagrammatic form of the conceptual model. Those axioms typically cap-
ture constraints and other aspects of the pattern that cannot be directly
represented by the diagrammatic form of the conceptual model.

e Complementary Patterns: list other ontology patterns that are related
to the pattern being presented, but that are not part of the OPL to which
the pattern being described belongs.

As an example, Table 7.1 shows the specification of the Performed Work Unit
Composition pattern [22].

It is important to highlight that the term “pattern language” was borrowed
from Software Engineering, where patterns have been studied and applied for a
long time. Thus, we are not actually talking about a language properly speaking.
In “pattern language”, the use of the term “language” is, in fact, a misnomer,
given that a pattern language does not typically define per se a grammar with
an explicit associated mapping to a semantic domain. Moreover, although an

Performed WU Composition

Name: Performed Work Unit Composition (PWUC)

Intent: To represent the composition of performed work units in terms of other performed work
units.

Rationale: Performed Work Units can be composed of other performed work units. From a
mereological point of view, a performed work unit is simple, or composed of two or more parts.
At the basic level, there are Performed Simple Tasks that can compose other performed work
units, but which are not decomposable. Performed Composite Tasks, in turn, are composed of
other performed tasks (composite or simple performed tasks). At the higher level, Performed
Processes are also composed of performed tasks, but do not compose any other performed work
unit.

Competency Questions:

e Concerning their mereological structure, what are the possible types of performed work
units?
e How is a performed work unit composed of other performed work units?

Conceptual Model

<<event>>
2."| Performed Work Unit

startDate
endDate

mereological structure
{disjoint, complete}

0.1 [

<<event>>
Performed Composite Work Unit

{disjoi mtﬁomp\ete}

<<event>> <<gvent>> <<event>>
Performed Process Performed Composite Task Performed Simple Task

Axiomatization (partial)

Al: Vw: -—partOf(w,w)
No individual (and, hence, no Performed Work Unit) can be part of itself.

A2: Vp: PerformedProcess(p) — —Jw PerformedWorkUnit(w) A partOf(p,w)
A Performed Process cannot be part of any Performed Work Unit.

A3: Vwl,w2: (Event(wl) A Event(w2) A part0f(w2,wl)) — (startDate(w2) >
startDate(wl)) A (endDate(w2) < endDate(wl))
A Performed Work Unit that is part of another Performed Work Unit should occur
within the time interval of the latter.

Table 7.1. The Specification of the Performed WU Composition Pattern.

OPL provides a process describing how to use the patterns to address problems
related to a specific domain, an OPL is not a method for building ontologies.
Instead, it only deals with reuse in ontology development, and its guidance can
be followed by ontology engineers using whatever ontology development method
that considers ontology reuse as one of its activities [6].

7.3. Building OPLs from Core Ontologies

For building an OPL for some domain, we need to have a set of interconnected
patterns for this domain. A good option to get these patterns is to extract them
from ontologies developed for this domain, in particular core ontologies. A core
ontology provides a precise definition of the structural knowledge in a specific field
that spans across several application domains in that field. Core ontologies are
conceived mainly aiming at reuse, and thus, a pattern-oriented design approach is
appropriate for organizing them. By following a pattern-oriented design approach,
core ontologies become more modular and extensible [24]. Moreover, by providing
a network of patterns and rules on how they can be combined, an OPL improves
the potential for reuse of a core ontology, by enabling the selective use of parts
of the core ontology in a flexible way. This is very important due to pragmatic
reasons, since ontology engineers developing specific ontologies for that domain
might want to focus on selected aspects of the domain, disregarding others.

With a core ontology in hands, DROPs can be extracted from it through
a fragmentation process. To illustrate the extraction of DROPs from core on-
tologies, consider the case of ISP-OPL. The patterns of ISP-OPL were extracted
from a software process core ontology resulting from the ontological analysis of the
ISO/IEC 24744 metamodel [15] (Software Engineering Metamodel for Develop-
ment Methodologies - SEMDM) performed in [21], plus the application of some
patterns of the Enterprise OPL (E-OPL) [9]. Figure 7.4 shows the conceptual
model of the part of this core ontology dealing with Work Units. This conceptual
model is fragmented in the patterns discussed in Section 7.2.

I Performed WU Tracking
WU Dependence WU Scheduling Performed WU Dependence
<depe"d5 on 0..* depends on
m / Performed WU
<<mode>> ! <<event>> Composition

Scheduled Work Unit | (0.1 caused by 0.*| | Performed Work Unit |q

WGTK{UGiE plannedsStartDate startDate

JAN plannedEndDate 2. *|] endDate

Composition
mereological structure mereological structure
disjoint, complete} {disjoint, complste}
0.1 [
<<event>>
Performed Composite Work Unit

disjoint| complete]
I

<<event>> <<event>>
Performed Process Performed Composite Task
0.

0.1

<<mode>>
Composite Work Unit

{disjoint, pomplete}

Project Process

<<mode>> Performing

Process

<<mode>>
Composite Task

<<mode>>
Simple Task

<<event>>
Performed Simple Task

1.

J

defined for P> 1| <<kind>> ‘1 <Derformedm
Project ‘

Project Process Definition

Figure 7.4. Patterns of the Work Unit Group.

DROP complexity can vary greatly depending on the domain fragment being
represented. Sometimes a DROP contains only two related concepts. This is the
case of the patterns WU Dependence, WU Scheduling, Project Process Defini-
tion, Performed WU Tracking, Performed WU Dependence and Project Process
Performing. This fine-grained fragmentation is useful to prevent the ontology
engineer from discarding parts of a pattern. In other situations, a DROP can

contain a complex combination of concepts and relations, such as in the case of
WU Composition and Performed WU Composition. The WU Composition pat-
tern represents the mereological decomposition of Composite Work Units into
other Work Units. Composite Work Units are composed of at least two Work
Units, and, according to the ISO Standards, they can be of two types: Processes
or Composite Tasks. Work Units that are not composed by other Work Units are
said to be Simple Tasks.

An important aspect to highlight is that, as pointed out by Scherp et al.
[24], a core ontology should be precise. This is achieved by grounding the core
ontology in a foundational ontology. Concepts and relations defined in a core
ontology should be aligned to the basic categories of a foundational ontology [24].
By doing that, core ontologies incorporate a solid and semantically precise basis.

The ISO-based software process core ontology illustrated here is based on the
Unified Foundational Ontology (UFQO) [12] [13]. In fact, as previously mentioned,
it is the outcome of an ontological analysis of the ISO/TEC 24744 meta-model
[15] in terms of UFO. As a consequence, the resulting patterns extracted from
this well-founded ontology are themselves well-founded.

7.4. Using OPLs for building Domain Ontologies

In this section, we discuss how to build a domain ontology using an OPL, illus-
trating this by an example applying ISP-OPL for building a reference ontology
for the Requirements Engineering (RE) process.

Before using an OPL, the ontology engineer needs to study the OPL process
model and its patterns, so that he/she can better decide which entry point is the
most suitable for the particular project at hand. Then, he/she has to apply the
patterns following the admissible paths through the OPL until there are no more
applicable patterns.

The RE Process Ontology presented here was derived from ISP-OPL accord-
ing to the information extracted from selected ISO SC7 standards [22], namely:
ISO/IEC 15288:2008 - System life cycle processes [17], ISO/IEC 12207:2008 -
Software life cycle processes [16], and ISO/IEC/IEEE 29148:2011 - Requirements
Engineering [18]. These standards define three requirements-related processes:
Stakeholder Requirements Definition, System Requirements Analysis, and Soft-
ware Requirements Analysis. In this chapter we present only the sub-ontology
addressing the first process: Stakeholder Requirements Definition (Section 6.4.1
in ISO 12207 and ISO 15288, and Section 6.2 in ISO 29148).

We are interested in describing the execution of requirements processes, in-
cluding the participations of human resources and work products, as it can be
typically found in the case of organizations adopting these standards in their
projects. Thus, we started using ISP-OPL by the entry point EP2. Figure 7.5
shows the chosen patterns and paths of the ISP-OPL process that we have fol-
lowed for developing this ontology.

Figure 7.6 presents the Stakeholder Requirements Definition Process sub-
ontology. On the top, the concepts with colored background are the ones defined
as part of the ISP-OPL patterns. On the bottom, the concepts with white back-
ground are the specific ones from the RE Process Ontology. Relations in the RE

4 ™
Wark Units Human Resources

Performed WU Stakeholder
EP2 Dependence “ | Definition
Performed WU
Process
Composition
Performing
\ J
—
Work Products P - _——e ey

1 WP Creation | | [POGIEED
| 1 | Participation
LI : \Q;ilclpatloﬂ :
|Composmon I 1 I | Producer
;l Document 1 I
WP Nature Depiction] 1 1
~

I WP Change l Participation
Figure 7.5. ISP-OPL Patterns used and Paths followed (adapted from [22]).

Praoject

Simplified

Process Ontology are specializations of the homonymous relations in the OPL.
Cardinalities are omitted for the sake of legibility.

The Stakeholder Requirements Definition process is decomposed into activ-
ities, which, in turn, are decomposed into tasks. Thus, we started with the
Performed WU Composition pattern, modeling the decomposition of performed
work units. The Stakeholder Requirements Definition Process is a subtype
of Performed Process. This specialized process is composed of five work units:
Stakeholder Identification, Requirements Identification, Requirements
FEvaluation, Requirements Agreement and Requirements Recording. The
first and fourth work units are Performed Simple Tasks, and the others are
Performed Composite Tasks, which are themselves decomposed into simple
tasks as shown in Figure 7.6.

Another pattern considered useful here is Performed WU Dependence, which
defines dependencies between work units. Although the selected standards do not
explicitly set dependencies between tasks, some of them can easily be inferred from
the nature of work units and work products handled, as well as by considering the
RE literature. Accordingly, we applied the Performed WU Dependence pattern
to establish dependencies between the work units as shown in Figure 7.6. Still
regarding work units, the last pattern applied was Project Process Performing,
establishing the connection between the Performed Process and the Project
wherein it is performed.

Once work units have been addressed, we could address human resources re-
lated problems. Due to the general nature of the standards, few information is
given about human resources participating in work units. Thus, we have modeled
only the stakeholder definition and its relation to work units. The first pattern
applied was Stakeholder Definition, in order to establish the types of stakeholders
to be considered. We considered only two types of stakeholders: System An-
alyst, and Requirements Stakeholder. Both of which are types of Person
Stakeholder involved in a Project. Aiming at representing the participation

of stakeholders in work units, the Producer Participation Simplified pattern was
used, specializing Stakeholders as Producers who participate in Performed
Work Units.

The other path of ISP-OPL we followed is through the use of the work prod-
ucts patterns. Once there are different types of work products, it is useful to
distinguish between them by applying the WP Nature pattern. Two subtypes
of Work Product were considered: Information Item and Document. In
the context of the Stakeholder Requirements Definition Process, we identified
the following subtypes of Information Item: Requirement (specialized into
Stakeholder Requirement), Stakeholder List, Stakeholder Agreement,
and Traceability Record. Moreover, two sub-types of Document were con-
sidered: Requirements FEvaluation Doc, and Stakeholder Requirements
Specification. The Stakeholder Requirements Specification is the main re-
sult of this process and aggregates the Stakeholder List and the set of Stake-
holder Requirements. Thus, using the WP Composition pattern, we establish
Stakeholder Requirements Specification as a Composite Work Product,
composed of Stakeholder Requirements and Stakeholder List (both of which
are types of Simple Work Product). Additionally, by applying the Document
Depiction pattern, we represented a Stakeholder Requirements Specifica-
tion, which (as a document) represents the Stakeholder Requirements.

Finally, by using the patterns WP Creation, WP Use and WP Change, we
established the relations of creation, usage and change between the work units of
the Stakeholder Requirements Definition Process and their corresponding
work products.

It is important to point out that reuse is not limited to the conceptual mod-
els, as discussed above. As Table 7.1 shows, the patterns’ specification includes
also competency questions (CQs) and axioms. Typically, these elements are also
reused when a pattern in the OPL is selected. Once a DROP is chosen, its con-
cepts and relations become part of the domain ontology (as Figure 7.6 shows),
where they can be further extended. For CQs, a very similar approach holds:
once a DROP is chosen, its CQs can be extended for the domain ontology. For
example, the Performed WU Composition pattern (see Table 7.1) has the fol-
lowing CQs: (i) Concerning their mereological structure, what are the possible
types of performed work units?; and (ii) How is a performed work unit composed
of other performed work units? When this pattern was applied to the Software
RE process, the following (extended) specific CQs were created: (i) What are the
possible types of performed work units in the RE process?; and (ii) How is the RE
process decomposed? This reuse helps with the definition of CQs, improving the
productivity of the Ontology Engineering process [23]. The same applies to the
case of reusing general axioms.

7.5. Existing OPLs

The use of OPLs is a recent initiative. There are still only few works defining
OPLs, among them the following: Software Process OPL (SP-OPL) [6], ISO-
based Software Process OPL (ISP-OPL) [22], Enterprise OPL (E-OPL) [9], Mea-~
surement OPL (M-OPL) [2], and Service OPL (S-OPL) [8]. ISP-OPL was pre-

0.+ Mdependson g «

<<event>>
<<kind>> o - cemgiarios
T 1.*| Performed Work Unit material>> _creates B
2 << uses B>

7AN startDate

7] endDate (o <<material>> _changes P> oo
<<role>>
Person

*| <<rolemixin>>
JANIAY

<<tfaterial>>
is i @sa in

mereological structure
{disjoint. complete}

depicts B>

<<category>> [2.*
0] Work Product

N ZNmereological structure

0.1 [

<<event>> nature {disioint, complete}
<<rolemiin>> 0% <<material>> Pariormad Contasre Wark un {disjoint)
Producer participates in [o] |
i gisioint,Jcomplete <<kind>> <<kind>> <<kind>> <<kind>>
ion Item || Document || Software Item Model
<<kind>> |1 | <performedin 0.} <<event>> <<event>> <<event>> 4
Project Performed Process || Performed Composite Task || Performed Simple Task ategor
Simple Work Product
= <<category>>
Stakeholder Requirements Definition Process
| : | [Feauremen Composte Wonkproduct
7y
creates B> List
System Analyst | Rricipates in [P depends *n » uses B> —— 1
| uses B
Requirements creates B> |
Requirements, pertcipatss i I b -
— | Al
L Define Constraints ~ 94pents or}
A
A Jtepends bn
depengs on A ‘
Jdepends pn
Specify Critical Qualities [/¢PeNds o1
uses P
Y Requirements Evaluation | creates P> | Requirements Evaluation Doc
depends $n uses B>
I'_“ : Rareemert | b - | stakeholder Agreement
participates in B> | [2
I Resolve Problems —changes]
A
deperids o Feedback Requirements
Establish Correction
A A
I - Recoraing | uses depicts
’ creates P> [
L

Record

depends on B> =
creates B> Traceability Record

Maintain Traceability

Figure 7.6. The Stakeholder Requirements Definition Process sub-ontology [22].

sented in the previous section. SP-OPL is related to the same domain (software
processes), but it is more general than ISP-OPL since it is not devoted to ISO
Standards. Thus, in this section, we briefly present the other three OPLs. Further
information on these OPLs can be found at http://nemo.inf.ufes.br/0PL.

7.5.1. Enterprise OPL

The Enterprise Ontology Pattern Language (E-OPL) [9] aims at providing pat-
terns for enterprise ontology modeling. It is composed of 22 patterns addressing
five aspects common to several enterprises:

e Organization Arrangement (4 patterns): includes patterns related to
how multi-organizations are organized in terms of other organizations (Multi-
Organization Arrangement pattern), how a complex organization is struc-
tured in terms of organizational units (Complex Organization Arrangement
pattern), as well as how complex organizational units are structured in
terms of other organizational units (Complex Organizational Unit Arrange-
ment pattern). Finally, if organizations to be modeled are simple (not
composed of other organizations or organizational units) or addressing or-
ganizations’ structure is out of the scope of the domain ontology being
developed, then there is the Simple Organization Arrangement pattern;

http://nemo.inf.ufes.br/OPL

e Team Definition (3 patterns): deals with defining teams for projects
(Project Team Definition pattern), organizations (Organizational Team
Definition pattern) and organizational units (Organizational Unit Team
Definition pattern);

e Institutional Roles (4 patterns): addresses the representation of roles
and positions to be played by enterprise employees. This group contains
the following patterns: the Organizational Positions pattern deals with
positions defined in an organization; the Organizational Roles pattern ad-
dresses roles defined in an organization; the Organizational Unit Roles and
Team Roles patterns concern informal roles defined by an organizational
unit or a team, respectively;

e Institutional Goals (3 patterns): deals with institutional agents’ goals,
and there are three patterns available: Organizational Goals, Organiza-
tional Unit Goals, and Team Goals patterns;

e Human Resource Management (8 patterns): treats the following hu-
man resource relations in an enterprise: employment, allotment to an orga-
nizational unit, team allocation, and position occupation. For each one of
these relations, two variant patterns are defined, one explicitly including a
concept reifying the material relation (a relator), and another disregarding
the relator and considering only the material relation.

Figure 7.7 shows the E-OPL process model. As this figure shows, E-OPL has
two entry points. The ontology engineer should choose one of them, depending
on the scope of the specific enterprise ontology being developed. When the re-
quirements for the new enterprise ontology being developed include only problems
related to the definition of project teams, the starting point is EP2. Otherwise,
the starting point is EP1. In this case (EP1), first the ontology engineer should
address problems related to how an organization is structured. One of the three
following patterns has to be selected: Simple Organization Arrangement pat-
tern, Complex Organizational Unit Arrangement pattern or Multi-Organization
Arrangement pattern.

Simple Organization Arrangement pattern should be selected as the first pat-
tern if the ontology engineer needs to represent only very simple standalone or-
ganizations, which are neither composed of other organizations nor composed of
organizational units. The Complexr Organization Arrangement pattern should
be selected as the first pattern if the ontology engineer needs to represent only
complex standalone organizations, which are not composed of other organizations,
but which are composed of organizational units. When the Complex Organization
Arrangement pattern is selected, the Complex Organizational Unit Arrangement
pattern can be used in the sequel, if there is a need to represent complex orga-
nizational units, which are composed of other organizational units. Finally, the
Multi-Organization Arrangement pattern should be selected as the first pattern if
the ontology engineer needs to represent organizations that are composed of other
organizations. When the Multi-Organization Arrangement pattern is used, the
ontology engineer can also use the Simple Organization Arrangement and Com-
plex Organization Arrangement patterns to address the organizational structure
of the standalone organizations that compose a multi-organization.

Human Resource
Management

1

i
Institutional Roles 1 { Occupation

1

~| Organizational J Position
Occupation
Positions 1

1 | Relation
- —-——
Errre (G) SEEEEEE
oo > enptmen)

/LRO\ES—J Employment
Organization Arrangement

1
1
1
) Organizational | 1 Organization
Unit Roles 1 Membership
Simple Organization 0
Arrangement ||l ¢ ! N || | mmm————
Team Roles

Team Definition

EP1

Multi-Organization
Arrangement

EP2
._ il Project Team '
Definition I
Compl ! Team
e Organizational +
Membershi
e Team Definition | — 1 STOSED ,
arangement (| K 0\ 0000 | ——— J} /| | = ===
——————— -~
|
\ Definition Allotment

Organizational
Unit
Membership
Institutional Goals | Sep———— /

l Team Goals
Organizational Goals
QOrganizational Unit Geals

|

Complex
Organizational Unit
Arrangement

Figure 7.7. E-OPL Process Model (adapted from [9]).

Once problems related to the organization arrangement are addressed, the
ontology engineer can treat problems related to the definition of organizational
teams, goals and roles, and some problems related to human resource manage-
ment.

Concerning team definition, three types of teams are considered: organiza-
tional teams, organizational unit teams and project teams. The Project Team
Definition pattern deals with teams that are defined with the specific purpose of
performing a project. For this reason, this pattern does not require the problems
related to organizational arrangement to be addressed prior to its use. For this
reason, it takes EP2 to be its entry-point in E-OPL. The Organizational Team
Definition and the Organizational Unit Team Definition patterns deal respec-
tively with organizational and organizational unit teams.

Regarding goals, in a general view, in E-OPL, Institutional Agents (a gener-
alization for Organizations, Organizational Units and Teams) may define Insti-
tutional Goals, and three patterns are available: Organizational Goals, Organiza-
tional Unit Goals, and Team Goals.

Concerning roles, Institutional Agents (Organizations, Organizational Units
and Teams) may define Institutional Roles. Like the TOVE Ontology [10], E-OPL
considers two main types of Institutional Roles: Positions and Human Resource
Roles. A Position represents some formal position in the organization, such as
“president” | “sales manager”, etc. A Human Resource Role defines a prototypical

function of a person in the scope of an Institutional Agent, such as “engineer” or
“system analyst”. Moreover, E-OPL distinguishes between formal and informal
roles. Formal Human Resource Roles are those recognized by the whole organi-
zation and its environment (partners and society in general). Informal Human
Resource Roles are those recognized only in the scope of the corresponding insti-
tutional agent. Team Roles and Organizational Unit Roles are types of informal
roles, recognized, respectively, by a Team and by an Organizational Unit. Organi-
zational Roles can be formal or informal. Formal Organizational Roles are those
considered when employments are created. Each employment is made for a spe-
cific formal role. On the other hand, a particular person, in the same employment,
can assume several informal roles.

In order to deal with institutional roles, four patterns were defined. The Orga-
nizational Positions pattern deals with positions defined in an organization. The
Organizational Roles pattern addresses both formal and informal roles defined in
an organization. The Organizational Unit Roles pattern and Team Roles pattern
address informal roles defined by an organizational unit or a team, respectively.

Finally, problems related to human resource management can be addressed.
In E-OPL there are eight patterns treating four material relations that involve
human resources, namely: employment, allotment, team allocation, and occupa-
tion.

According to UFO, material relations are relations that have material struc-
ture on their own. The relata of a material relation are mediated by individuals
that are called relators. Relators are complex objectified relational properties
[12] [11]. From a pragmatic point of view, depending on the requirements of the
enterprise ontology being developed, the ontology engineer may be interested in
showing only the material relation instead of showing the whole model, including
also the relator and the mediation relations. Thus, each one of these material
relations is addressed by two patterns: one explicitly including a concept rep-
resenting the relator (Position Occupation, Employment, Team Allocation and
Allotment patterns), and another disregarding the relator and considering only
the material relation (Position Occupation Relation, Organization Membership,
Team Membership and Organizational Unit Membership patterns, respectively).
The patterns considering the relators are more complete. They allow capturing
information about the relator (for instance, start date and end date of a position
occupation, employment, team allocation, or allotment). However, if for a given
context, such information is considered irrelevant, then the ontology engineer can
choose simpler patterns, which disregard the respective relators, capturing only
the fact that human resources are members of organizations, organizational units,
and teams, or that they are capable holding positions.

For details regarding E-OPL and its patterns, see [9].

7.5.2. Service OPL

The Service Ontology Pattern Language (S-OPL) [8] aims at providing a network
of interconnected ontology modeling patterns covering the core conceptualization
of services. S-OPL builds on UFO-S, a commitment-based core ontology for
services [19]. The S-OPL patterns support modeling types of customers and

providers, as well as the main service life-cycle phases, namely: service offering,
service negotiation/agreement, and service delivery. S-OPL is composed of 48
patterns, grouped in 4 groups, namely:

e Service Offering (4 patterns): includes patterns to deal with service of-
fering (SOffering pattern), description of a service offering (SODescrition
pattern) as well as commitments and claims of the provider (SOCommit-
ments and SOClaims patterns);

e Service Negotiation and Agreement (9 patterns): includes patterns
that deal with service negotiation and agreement (SNegotiation, SAgreee-
ment, SNegAgree and SOfferAgree patterns), description of a service agree-
ment (SADescrition pattern) as well as commitments and claims of both
the hired provider and the service customer (HPCommitments, HPClaims,
SCCommitments and SCClaims patterns);

e Service Delivery (7 patterns): includes patterns to deal with the ser-
vice delivery (SDelivery pattern), the actions performed by both the hired
provider and the service customer to deliver the service (HPActions, SCAc-
tions and Interactions patterns), as well as the motivation to perform these
actions (HPActionMotivation, SCActionMotivation and InteractionMotiva-
tion patterns);

e Service Provider and Customer (28 patterns): deals with defining
the types of agents (Person, Organization or Organizational Unit) that
can act as Service Provider, Target Customer, Hired Provider and Service
Customer.

Figure 7.8 shows the S-OPL process model. As this figure shows, S-OPL
has two entry points (EP1 and EP2). The ontology engineer should choose one
of them depending on the scope of the specific domain service ontology being
developed. When the requirements for the ontology include describing the service
offering, then the starting point is EP1. Otherwise, the starting point is EP2.

In the case EP1 is chosen, the ontology engineer should use first the SOf-
fering pattern for modeling the service offering itself. Next, he/she must follow
the mandatory path: the one that leads to the Service Provider and Customer
group, which addresses the issue of modeling which types of providers and target
customers are involved in the offering.

Providers and target customers can be people, organizations or organiza-
tional units. Therefore, the ontology engineer must select one of the patterns
of the Provider sub-group, and one of the patterns of the Target Customer sub-
group. These variant patterns are important, because depending on the nature of
the service being modeled, only certain types of customers and providers are ad-
missible. For instance, the passport issuing service is offered only to people. The
car rental service, in turn, is offered to people, organizational units, and organi-
zations. Thus, each pattern in the Service Provider and Customer group offers a
different option for the ontology engineer to precisely decide what kinds of entities
can play the roles of provider and customer in the service domain being modeled.
For instance, in the Target Customer sub-group of variant patterns, P-TCustomer
should be used when only people can play this role. O-TCustomer should be used

EP1 , e @)
Senvice Offering (Senice Negotiation and Ag;ei'"im_ e A (Service Delivery A
[agreerfent s out { Agreement |
SOffering of the spope] D H mandatoryb> SDelivery

1
[both negotiation and 1
agreement are in the scope] | SNeghgree -\nterat\ons
[l
SOCommitments

[negotiation is SOfferAgree
out of scope] '
SODescription SADescription

((Heactons ([scactions)

HPActionMotivation
SCActionMotivation

|
I
I
]

<<mpntiatory>>

HPCommitments

[——
|
- (]__, [—]
HPClaims SCClaims SCCommitments InteractionMotivation
N Cercone J (sccere) J)
<<mandatory>y <fmandatory>>
<<mandatory>> <<mandatory>>
|

Senvice Provider and Customer Ab \lL h

——

Target Customer \I [Hired Provider

:[P-Provider][0-OU-Provider] [P-TCustomer] [O—OU—TCUStOmer]: :[P-HProvider][O-OU-HProvider] P-Customer] [0-OU-Customer]

(i
(o-customer) (Pro-cusomer) |
(

!
O-TCustomer][P-O-TCustomer]I |[O-HProvider][P-O-HProvider]

(
[OU—TCus(omer] [P—OU—TCuslomer] : : [OU-HProvider][P_OU-HProvider] OU-Customer] [P-OU-Customer] :

I 1
P-O-OU-TCustomer] | P-0-OU-HProvider P-O-OU-Customer 1
\ v Ny \ -

:[OU-Provider][P-OU-Provider]

|\ P-0-OU-Provider

Figure 7.8. S-OPL Process Model (adapted from [8]).

when only organizations can play this role. OU-TCustomer should be used when
exclusively organizational units can play this role. O-OU-TCustomer should be
used when both organizations and organizational units can play this role. P-O-
TClustomer should be used when both persons and organizations can play this
role. P-OU-TCustomer should be used when both persons and organizational
units can play this role. Finally, P-O-OU-TCustomer should be used when any
of these kinds of entities can play this role.

Besides mandatorily modeling the types of providers and target customers,
the ontology engineer can follow the several paths coming out of the fork node.
Thus, he/she can use the patterns SOClaims and SOCommitments, in the cases
in which he/she is interested in modeling offering claims and commitments, re-
spectively. In addition, the ontology engineer can also choose the SODescription
pattern, in case he/she is interested in describing the offering by means of a service
offering description.

Once the service offering is modeled, the ontology engineer is able to address
problems related to service negotiation and agreement. However, service offering
may be out of the scope of the ontology. In this case, EP2 should be the entry
point in the S-OPL process.

If the ontology engineer has already modeled the service offering, he/she
must decide first whether he/she needs to represent service negotiation and/or
service agreement. If he/she wants to model only the service negotiation, without
modeling the agreement that could result from it (i.e., the agreement is out of
scope), he/she should use the SNegotiation pattern. If he/she needs to model
both the negotiation and the agreement, then he/she should use the SNegAgree
pattern. Finally, if negotiation is out of the ontology scope, then he/she should
use the SOfferAgree pattern, which represents an agreement in conformance to
an offering.

If EP2 is the entry point in the process, the first pattern to be used is SAgree-

ment. In the sequel, the ontology engineer must select one of the patterns of the
Hired Provider sub-group and one of the patterns of the Service Customer sub-
group, in order to model the possible types of hired provider and service customer,
respectively. The patterns in the Hired Provider and Service Provider sub-groups
are analogous to the ones in the Provider and Target Customer sub-groups re-
spectively. Note that defining the types of hired providers and service customers
is necessary only if the chosen entry point is EP2, since in cases in which the
entry point in the process is EP1, the types of providers and target customers
would already have been modeled at that point.

Once the agreement is modeled, the following patterns can be optionally used:
HPCommitments and HPClaims, depending whether the ontology engineer is in-
terested in modeling the hired provider commitments and claims, respectively;
SCCommitments and SCClaims, depending on whether he/she is interested in
modeling service customer commitments and claims, respectively; and SA Descrip-
tion, in case he/she is interested in describing the service agreement by means of
a description.

After modeling the agreement, the ontology engineer can model the service
delivery. In this group, the first pattern to be used is SDelivery. In the sequel,
if he/she wants to model the actions involved in a delivery, the following pat-
terns must be applied: HPActions, for modeling actions performed by the hired
provider; SCActions, for modeling actions performed by the service customer;
and Interactions, for modeling actions performed by both the hired provider and
service customer, in conjunction. After that, he/she can model the relationships
between the actions and the commitments that motivate them. This can be done
by using the following patterns: HPActionMotivation, SCActionMotivation and
InteractionMotivation. Since these patterns establish links between commitments
and actions, they require the patterns related to the former to be used prior to
the patterns related to the latter.

For details regarding S-OPL and its patterns, see [8].

7.5.3. Measurement OPL

The Measurement Ontology Pattern Language (M-OPL) [2] aims at providing
a network of ontology modeling patterns addressing the core conceptualization
about measurement. It is composed of 19 patterns, organized in 6 groups, namely:

e Measurable Entities (2 patterns): includes patterns related to the en-
tities and their properties that can be measured. There are two pat-
terns: Measurable Entity, which deals with entities that can be measured,
their types and their measurable properties; and Measurable Element Type,
which is related to the types of measurable properties;

e Measures (2 patterns): includes patterns to deal with defining measures
(Measure) and classifying them according to their dependence on others
measures (Measure Type);

e Measurement Units & Scales (3 patterns): concerns the scales associ-
ated to measures and the measurement units used to partition scales. This
group includes three patterns: Measure Scale Type, which addresses types

of scales; Measure Unit, dealing with measurement units; and Measure
Scale, which is related to measures’ scales;

¢ Measurement Procedures (5 patterns): addresses procedures needed

to collect data for measures. Includes five patterns: Measurement Pro-
cedure deals with the data collection procedure; Measurement Procedure
Type concerns types of measurement procedures; Measurement Procedure
for Base Measure, which addresses measurement procedures established to
base measures; Measurement Procedure for Derived Measure, which regards
measurement procedures established to derived measures; and Measure-
ment Formula, which deals with formulas used to obtain data for derived
measures;

e Measurement Planning (5 patterns): treats the goals that drive mea-

surement as well as the measures used to verify the achievement of goals.
This group includes five patterns, namely: Measurement Goal, which deals
with measurement goals and information needs to be satisfied by measure-
ment; Measurement Goal Type, which is related to measurement goal de-
composition; Measurement Planning Item, which addresses the basic plan-
ning for measurement, including the measurement goal to be monitored,
the information need to be met and the measure to be used; Measure-
ment Planning Item Procedure, which models measurement planning items
adding the measurement procedure to be used; and Indicator, which is
about identifying measures that act as indicators to goal monitoring;

e Measurement & Analysis (2 patterns): includes patterns related to the

topics of data collection (Measurement) and data analysis (Measurement
Analysis).

Figure 7.9 shows the M-OPL process model. As this figure shows, M-OPL

has only one entry point: EP1.

EP1

Measurable Measure
Entity

Measurable Entities Measures (Measurement Procedures)
Measurement Procedure
Measurement Formula

Measurement
Procedure for

Derived Measure

IMeasurable
Element Type

Measure Type

rMeaSuremenl Units & Scales

L
L '
Measurement Measurement Procedure
Procedure Type for Base Measure
N J
7

Measurement Planning A
Measurement Goal
Type Measurement
Planning Item
Measurement Goal

Measurement Planning Indicator
Item Procedure

\ J

Measure Scale
Type

Measure Unit J

Measure Scale

i

Measurement &

Measurement " . L Analysis
Analysis leasuremen <

Figure 7.9. M-OPL Process Model (adapted from [2].

The first pattern to be used by the ontology engineer is Measurable Entity,
which models entities that can be measured, their types and properties (i.e., mea-
surable elements). After using this pattern, two patterns are applicable: Mea-
surable Element Type, to distinguish direct from indirect measurable elements,
and Measures, to model measures and relate them to measurable elements and
measurable entity types. After the Measure pattern, it is possible to apply the
Measure Type pattern, in order to model the distinction between base and derived
measures. However, as show in Figure 7.9, Measure Type can only be used after
applying the Measurable Element Type, since the measure type is defined based
on the type of the measurable element qualified by the measure.

From the Measure pattern, there are still three possible paths to follow. The
first one goes to the Measurement Units € Scales group. In this group, if types of
scales (e.g., interval, ordinal and rational) are relevant to the specific measurement
domain ontology being developed, the ontology engineer must use the Measure
Scale Type pattern. If the ontology engineer wants to address measurement units,
he/she should use the Measure Unit pattern. If measures’ scales are relevant to
the ontology being developed, the Measure Scale pattern is to be used.

The second path from the Measure pattern goes to the Measurement Pro-
cedures group. Measurement Procedure should be used to model the procedures
that guide data collection for measures. If the ontology engineer needs to address
different types of measurement procedures, depending on the type of measures,
he/she should use the Measurement Procedure Type. In this case, besides Mea-
sure, Measure Type should also be used in advance. Measurement procedures for
base measures and derived measures are addressed respectively by Measurement
Procedure for Base Measure and Measurement Procedure for Derived Measure.
To model measurement procedures for derived measures, the engineer must first
use the Measurement Formula pattern, which addresses measurement formulas
used to calculate derived measures.

The third path from the Measure pattern goes to the Measurement Planning
group. The ontology engineer should use the Measurement Goal Type pattern
only if representing the decomposition of measurement goal is relevant. In order
to address measurement goals and the information needs derived from them, the
ontology engineer should use the Measurement Goal pattern. Then, if the on-
tology engineer wants to model measurement planning, addressing measurement
goals, information needs and their relation with measures, he/she needs to use
the Measurement Planning Item pattern. If it is relevant to indicate the mea-
surement procedure in the measurement planning, then, he/she should also use
Measurement Planning Item Procedure. It is important to notice that, in this
case, as shown in Figure 7.9, the Measurement Procedure pattern must be used in
advance. If the ontology engineer needs to model the relationship between mea-
surement goals and the measures used to indicate their achievement, the Indicator
pattern is to be used.

Finally, once the measurement planning is addressed, it is possible to model
issues related to data collection and analysis. For dealing with data collection
aspects, the ontology engineer should use the Measurement pattern. The Mea-
surement Analysis pattern, in turn, should be used for the ontology engineer to
model aspects related to data analysis.

For details regarding M-OPL and its patterns, see [2].

7.6. Final Remarks

This book deals with a range of themes related to ODPs, such as methodolo-
gies to use ontology patterns, ontology coding patterns, axiomatization of ODPs,
among others. It is important to highlight that although the word “language”
in Ontology Pattern Language (OPL) may be misleading, the work presented in
this chapter actually concerns the support for domain ontology development. In
this sense, OPLs provide guidelines for the development of the conceptual model
of the ontology. Such conceptual model may eventually be implemented using a
knowledge representation language, such as OWL, RDF(S), F-Logic, or others,
a theme which falls outside the scope this chapter. In any case, the conceptual
model representing the ontology has a value in itself, i.e., not only as an essen-
tial reference model for ontology implementation, but also supporting important
tasks such as meaning negotiation and interoperability.

Summarizing the content of this chapter, we here discussed the notion of
Ontology Pattern Languages (OPLs). Moreover, we exemplified how an ontology
may be built with the support of an OPL. Finally, we presented existing OPLs on
the domains of Software Process, Enterprises, Services and Measurement. The use
of OPLs can guide the ontology engineer on selecting specific ontology patterns,
depending on the problem being modeled. This may lead to gains in productivity,
as well as to improvement in the quality of the resulting ontologies.

The pattern languages presented in this chapter must be seen as work in
progress. In fact, OPLs in general should be expected to evolve as a result of new
experiences gained throughout their application.

To summarize, an OPL provides concrete guidance, taking into consideration
the following questions: (i) What are the main problems to be solved in the tar-
geted domain? (ii) In which order should these problems be addressed? (iii) What
alternatives are there to solve such problem? (iv) How should the dependencies
among the problems be addressed? (v) How to solve each individual problem
effectively, also considering the other problems related to it? In an OPL, the
responses to these questions come as a network of ontology patterns that can be
combined to create a domain ontology, and a process that guides the consistent
application of such ontology patterns.

Completeness and maturity are paramount qualities of a good OPL. More-
over, we claim that OPLs must present some characteristics generally pointed as
being present in “beautiful ontologies” [4]: satisfy relevant requirements, have a
good coverage of the targeted domain, be often easily applicable in some context,
be structurally well designed (either formally or according to desirable patterns),
and their domains should introduce constraints that lead to modeling solutions
that are non-trivial.

Bibliography

[1]

[10]

[11]

[12]

[13]

C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: towns,
buildings, construction, volume 2. Oxford University Press, 1977.

M. Barcellos, R. Falbo, and V. Frauches. Towards a measurement ontology
pattern language. In ONTO.COM/ODISE FOIS, 2014.

F. Buschmann, K. Henney, and D. Schimdt. Pattern-oriented Software Ar-
chitecture: On Patterns and Pattern Language, volume 5. John Wiley &
sons, 2007.

M. d’Aquin and A. Gangemi. Is there beauty in ontologies? Applied Ontol-
ogy, 6(3):165-175, 2011.

P. Deutsch. Models and patterns. Software Factories: Assembling Applica-
tions with Patterns, Models, Frameworks, and Tools, 2004.

R. Falbo, M. Barcellos, J. C. Nardi, and G. Guizzardi. Organizing ontol-
ogy design patterns as ontology pattern languages. In The Semantic Web:
Semantics and Big Data, pages 61-75. Springer, 2013.

R. Falbo, G. Guizzardi, A. Gangemi, and V. Presutti. Ontology patterns:
clarifying concepts and terminology. In Proceedings of the 4th International
Conference on Ontology and Semantic Web Patterns-Volume 1188, pages
14-26. CEUR-WS.org, 2013.

R. Falbo, G. K. Quirino, J. C. Nardi, M. Barcellos, G. Guizzardi, N. Guarino,
A. Longo, and B. Livieri. An ontology pattern language for service modeling.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing.
ACM, 2016.

R. Falbo, F. Ruy, G. Guizzardi, M. Barcellos, and J. P. Almeida. Towards
an enterprise ontology pattern language. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 323-330. ACM, 2014.

M. S. Fox, M. Barbuceanu, M. Grunninger, and J. Lin. An organization
ontology for enterprise modelling, 1997.

N. Guarino and G. Guizzardi. We need to discuss the relationship: Revisit-
ing relationships as modeling constructs. In Advanced Information Systems
Engineering, pages 279-294. Springer, 2015.

G. Guizzardi. Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

G. Guizzardi, R. Falbo, and R. Guizzardi. Grounding software domain on-
tologies in the unified foundational ontology (UFO): The case of the ode
software process ontology. In CIbSE, pages 127-140, 2008.

ISO/IEC. ISO/IEC 15504. Information Technology - Process Assessment.
Part 1: Concepts and Vocabulary, 2004.

ISO/IEC. ISO/IEC 24744. Software Engineering - Metamodel for Develop-
ment Methodologies, 2007.

ISO/IEC. ISO/IEC 12207. Systems and Software Engineering - Software
Life Cycle Processes, 2008.

ISO/IEC. ISO/IEC 15288. Systems and Software Engineering - System Life
Cycle Processes, 2008.

ISO/IEC/IEEE. ISO/IEC/IEEE 29148. Systems and software engineering -
Life cycle processes - Requirements engineering, 2008.

[19]

J. C. Nardi, R. Falbo, J. P. Almeida, G. Guizzardi, L. F. Pires, M. J. van Sin-
deren, N. Guarino, and C. Fonseca. A commitment-based reference ontology
for services. Information systems, 54:263-288, 2015.

Object Management Group (OMG). Unified modeling language (UML), ver-
sion 2.5.

F. Ruy, R. Falbo, M. Barcellos, and G. Guizzardi. An ontological analysis
of the ISO/IEC 24744 metamodel. In Proceedings of the 8th International
Conference on Formal Ontology in Information Systems (FOIS’14), pages
330-343, 2014.

F. Ruy, R. Falbo, M. Barcellos, G. Guizzardi, and G. Quirino. An ISO-based
software process ontology pattern language and its application for harmoniz-
ing standards. ACM SIGAPP Applied Computing Review, 15(2):27-40, 2015.
F. Ruy, C. Reginato, V. Santos, R. Falbo, and G. Guizzardi. Ontology engi-
neering by combining ontology patterns. In Proceeding of the 34th Interna-
tional Conference on Conceptual Modeling (ER’15), pages 173-186. Springer,
2015.

A. Scherp, C. Saathoff, T. Franz, and S. Staab. Designing core ontologies.
Applied Ontology, 6(3):177-221, 2011.

D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, and J. Wiley. Pattern-
oriented Software Architecture: Patterns for Concurrent and Networked Ob-
jects, Volume 2. Wiley, 2000.

