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Abstract. In recent years, there has a growing interest in the use of Ontological-

ly Well-Founded Conceptual Modeling languages to support the domain analy-

sis phase in Information Systems Engineering. OntoUML is an example of a 

conceptual modeling language whose metamodel has been designed to comply 

with the ontological distinctions and axiomatic theories put forth by a theoreti-

cally well-grounded Foundational Ontology. However, despite its growing 

adoption, OntoUML has been deemed to pose a significant complexity to no-

vice modelers. This paper presents a number of theoretical and methodological 

contributions aimed at assisting these modelers. Firstly, the paper explores a 

number of design patterns which are derived from the ontological foundations 

of this language. Secondly, these patterns are then used to derive a number of 

model construction rule sets. The chained execution of these rule sets assists the 

modeler in the instantiation of these patterns, i.e., in the use of OntoUML as 

pattern-language. Thirdly, the article demonstrates how these rule sets can be 

materialized as a set of methodological guidelines which can be directly imple-

mented in a tool support in the form of an automated dialogue with the novice 

modeler. 

1  Introduction  

In recent years, there has been a growing interest in the use of Ontologically Well-

Founded Conceptual Modeling languages to support the domain analysis phase in In-

formation Systems Engineering. OntoUML is an example of a conceptual modeling 

language whose metamodel has been designed to comply with the ontological distinc-

tions and axiomatic theories put forth by a theoretically well-grounded Foundational 

Ontology [1]. This language has been successfully employed in a number of projects 

in several different domains, ranging from Petroleum and Gas [2] to Bioinformatics 

[3]. Moreover, the ontological distinctions underlying this language has been experi-

menting increasing adoption [4,5]. However, despite its growing popularity, On-

toUML has been deemed to pose a significant complexity to novice modelers.  

In order to assist these novice modelers, a number of efforts have been undertaken 

[6,7]. In particular, [6] proposes an automated model-checking editor that takes ad-

vantage of a well-behaved set of ontological constraints that govern the metamodel of 



this language. The editor constrains the users to only produce models which are con-

sistent with these ontological constraints, i.e., if a user attempts to produce a model 

which does not adhere to these rules, the editor can automatically interfere in the 

process, identifying and explaining the model violation.  

This editor, however, works in a reactive manner: in principle, the user can build 

any model using the primitives of the language; if the user attempts to build an onto-

logically inconsistent model, the editor prompts a proper action. In this paper, we pur-

sue a different direction on providing tool support, i.e., we attempt to explore an in-

ductive strategy in the construction of OntoUML models. As we illustrate in this 

paper, the ontological constraints underlying the language restrict its primitives to be 

combined in specific manners. To put it in a different way, in contrast with ontologi-

cally neutral languages such as UML, EER or OWL, OntoUML is a Pattern Lan-

guage. When a model is built in OntoUML, the language induces the user to construct 

the resulting models via the combination of existing ontologically motivated design 

patterns. These patterns constitute modeling primitives of a higher granularity when 

compared to usual primitives of conceptual modeling such as Class, Association, Spe-

cialization, among others. Moreover, these higher-granularity modeling elements can 

only be combined to each other in a restricted set of ways. Thus, in each modeling 

step, the design space is reduced. The hypothesis of this work is that this strategy re-

duces the complexity of the modeling process for the novice modeler. 

This paper, thus, presents a number of theoretical and methodological contribu-

tions aimed at assisting these novice modelers. In section 2, we briefly present the on-

tological foundations underlying a fragment of OntoUML. In section 3, we explore a 

number of design patterns which emerge from the ontological constraints underlying 

this language. After that, these patterns are used to derive a number of model con-

struction rule sets. Furthermore, we illustrate how the chained execution of these rules 

assists the modeler in the instantiation of these patterns. Finally, we demonstrate how 

these rule sets can be materialized as a set of methodological guidelines which can be 

directly implemented in a tool support in the form of an automated dialogue with the 

novice modeler. Section 4 presents a brief discussion on how these ideas have been 

implemented in a Model-based OntoUML editor. To conclude the paper, section 5 

elaborates on final considerations and directions for future work. 

2  Background: OntoUML and its Underlying Ontology 

OntoUML has been proposed as an extension of UML that incorporates in the UML 

2.0 original metamodel a number of ontological distinctions and axioms put forth by 

the Unified Foundation Ontology (UFO) [1]. In this work, we focus our discussion on 

a small fragment of this metamodel. This fragment discusses an extension of the 

Class meta-construct in UML to capture a number of ontological distinctions among 

the Object Types categories proposed in UFO. In fact, for the sake of space, we limit 

our discussion here to an even more focused fragment of the theory, namely, those 

categories of Object Types which extend the ontological notion of Sortal types [1]. 

The choice for this specific fragment for this particular paper is justified by the fact 

that this fragment comprises the ontological notions which are believed to be the more 

recurrent in the practice of conceptual modeling for information systems [4,5].  Be-

sides incorporating modeling primitives that represent these ontological distinctions, 



the extended OntoUML metamodel includes a number of logical constraints that go-

vern how these primitives can be combined to form consistent conceptual models. In 

what follows, we briefly elaborate on the aforementioned distinctions and their related 

constraints for the fragment discussed in this article. For a fuller discussion and for-

mal characterization of the language, the reader is referred to [1]. 

We start by making a basic distinction between categories of Object Types consi-

dering a formal meta-property named Rigidity [1]. In short, a type T is rigid iff for 

every instance x of that type, x is necessarily an instance of that type. In contrast, a 

type T’ is anti-rigid iff for every instance y of T’, there is always a possible world in 

which y is not instance of T’. In other words, it is possible for every instance y of T’ 

to cease to be so without ceasing to exist (without losing its identity) [1]. A stereotyp-

ical example of this distinction can be found by contrasting the rigid type Person with 

the anti-rigid type Student. 

Rigid types can be related in a chain of taxonomic relations. For instance, the rigid 

types Man and Person are related such that the former is a specialization of the latter. 

The type in the root of a chain of specializations among rigid types is termed a Kind 

(e.g., Person) and the remaining rigid types in this chain are named Subkinds (e.g., 

Man, Woman). As formally demonstrated in [1], we have the following constraints 

involving Kinds and Subkinds: (i) every object in a conceptual model must be an in-

stance of exactly one Kind; (ii) as consequence, we have that for every object type T 

in OntoUML, T is either a Kind or it is the specialization of exactly one ultimate 

Kind; Subkinds of a Kind K typically appear in a construction named Subkind Parti-

tion. (iii) A Subkind Partition 〈SK1...SKn〉 defines an actual partition of type K , i.e., 

(iii.a) in every situation, every instance of SKi is an instance of K; Moreover, (iii.b) in 

every situation, every instance of K is an instance of exactly one SKi. In UML, and 

consequently also in OntoUML, partitions are represented by a disjoint and complete 

Generalization Set (see figure 1.a and 1.c).  

Among the anti-rigid Sortal types, we have again two subcatetories: Phases and 

Roles. In both cases, we have cases of dynamic classification, i.e., the instances can 

move in and out of the extension of these types without any effect on their identity. 

However, while in the case of Phase these changes occur due to a change in the intrin-

sic properties of these instances, in the cases of Role, they occur due to a change in 

their relational properties. We contrast the types Child, Adolescent, Adult as phases of 

a Person with the Roles Student, Husband or Wife. In the former case, it is a change 

in the intrinsic property age of Person which causes an instance to move in and out of 

the extension of these phases. In contrast, a Student is a role that a Person plays when 

related to an Education Institution and it is the establishment (or termination) of this 

relation that alters the instantiation relation between an instance of Person and the 

type Student. Analogously, a Husband is a role played by a Person when married to (a 

Person playing the role of) Wife. Thus, besides being Anti-rigid, Role possesses 

another meta-property (absent in Phases) named Relational Dependence [1]. As a 

consequence, we have that the following constraints must apply to Roles: every Role 

in an OntoUML conceptual model must be connected to an association representing 

this relational dependence condition. Moreover, the association end connected to the 

depended type (e.g., Education Institution for the case of Student, Wife for the case of 

Husband) in this relation must have a minimum cardinality ≥ 1 [1].  



Furthermore, as discussed in [1], Phases always occur in a so-called Phase Parti-

tion of a type T. For this reason, mutatis mutandis, constraints identical to (iii.a and 

iii.b) defined for Subkind Partitions are also defined for the case of Phase Partitions. 

However, for the case of Phase Partitions, we have an additional constraint: for every 

instance of type T and for every phase Pi in a Phase Partition specializing T, there is a 

possible world w in which x is not an instance of Pi. This implies that, in w, x is an 

instance of another Phase Pj in the same partition.   

  Finally, as formally proved in [1], rigid types cannot specialize anti-rigid types. 

3. Ontological Design Patterns and Inductive Process Models 

In this section, we present a number of Design Patterns which are derived from the 

ontological constraints underlying OntoUML as presented in the previous section. In 

other words, we limit ourselves here to the patterns which are related to the ontologi-

cal constraints involving the three primitives previously discussed: Phases, Roles and 

Subkind. These patterns are depicted in figure 1 below. 

 

 
Fig.1. Design Patterns emergent from the Ontological Constraints underlying OntoUML: (a) 
the Phase Pattern; (b-c) the Subkind Patterns, and (d) the Role Modeling Design Pattern.  

As a second objective of this section, we elaborate on a number of process models 

(representing inductive rule sets for model construction) which can be directly derived 

from these patterns. The hypothesis considered and illustrated here is the following: in 

each step of the modeling activity (i.e., each execution step of these process models), 

the solution space which characterizes the possible choices of modeling primitives to 

be adopted is reduced. This strategy, in turn, reduces the cognitive load of the modeler 

and, consequently, the complexity of model building using this language. Finally, this 

section demonstrates how these process models can be materialized through an inter-

active dialogue between the modeler and an automated tool running these rule sets. 

This idea is presented here via a running example and, in the following subsections, 

we will exemplify how the modeler may gradually build the ontology model of figure 

5. For that, the design tool executes these process models and engages in dialogues 

with the user, guiding the development of the model from 5(1) to 5(11)  

 

3.1 The Phase Design Pattern 

Phases are always manifested as part of a Phase Partition (PP). In a PP, there is 

always one unique root common supertype which is necessarily a Sortal S. This 

pattern is depicted in figure 1.a above. By analyzing that pattern, we can describe a 

modeling rule set RP which is to be executed every time a Phase P is instantiated in 

the model (an OntoUML class is stereotyped as phase). The rule set RP is represented 



in the form of an UML activity diagram in figure 2 below. In the sequel, we 

exemplify the execution of this rule. In figure 2, the activities in grey represent the 

ones fired in this illustrative execution.  

Example Execution: Let us suppose that the first type included by the user in the 

model is Child and that this type is stereotyped as 〈〈Phase〉〉. Thus, the rule set RP 

(Child) is executed following the steps described in figure 2. Since there is no other 

modeling element in the model, a Phase Partition is created (step 1). Notice that, at 

this point, the following dialogue can be established with the user so that the 

supertype S of Child can be created (step 2) as well as the remaining subtypes of S 

complementary to Child (step 3). Each underlined term in the following dialogues can 

be automatically inferred in the execution of RP:    

 

1. Modeling Tool: Child is a phase for what kind of type?  

2. User: Person 

3. Modeling Tool: What should be the other phases of Person which are 

complementary to Child?  

4. User: Teenager and Adult 

 

 
Fig.2. Activity Diagram representing the Inductive Rule Set RP associated to the formation of 
an instance of the Phase Design pattern 



At this point, the process execution is at the decision element circumscribed by the 

dashed oval. Once more, a dialogue with the user can be used here to determine 

whether Person is a kind (in which case the process reaches a final state) or not (in 

which case a subsequent rule is fired in a recursive manner).  

 

1. Modeling Tool: Does exist another type which is a subtype of Person?  

2. User: No 

 

Thus, since in this example, Person must be kind, this execution of RP (Child) reaches 

a final state. In figure 5, we illustrate the user’s model after his choice of stereotyping 

Child as a Phase (figure 5.1) and the resulting design pattern which is configured by 

the execution of RP(Child) (figure 5.2). 

3.2 The Subkind Design Pattern 

Subkinds can be manifested in two different manners: (i) as a specialization of a type 

S; (ii) as a part of a generalization set which has as a common superclass a type S. 

These two patterns are illustrated in figure 1.b and 1.c, respectively.  The inductive 

formation rule set associated with the stereotype subkind is captured in figure 3. In the 

sequel, we exemplify the execution of this rule set. 

Example Execution: Let us suppose that the next type included in the model is 

the type School which (in this example) is stereotyped as a subkind. The rule set 

RSK(School) is then fired. The following dialogue can be used to discover whether 

School is a subkind of a type S already existent in the model. Since in this case, the 

answer is negative, the dialogue proceeds such that the proper supertype of School 

can be created (Step 1). Furthermore, after connecting Organization as a supertype of 

School, the tool dialogue attempts to uncover whether there are additional subkinds of 

Organization complementary to School forming a generalization set (DP1):  

1. Modeling Tool: Is School a subkind of Person1?  

2. User: No 

3. Modeling Tool: Of which type is School a subkind then?  

4. User: Organization 

5. Modeling Tool: Is there another subkind of Organization complementary to 

School?  

6. User: No 

 

Finally, notice that in parallel (DP2), the tool attempts to discover whether 

Organization is itself a kind or a subkind (in which case the rule set RSK 

(Organization)) should be recursively fired). Since, in this example, the former case 

obtains, then this execution of rule RSK terminates. In fig. 5, we illustrate the user’s 

model after his choice of stereotyping School as a subkind (fig. 5.3) and the resulting 

design pattern which is configured by the execution or RSK(School) (fig. 5.4). 

                                                           
1If multiple kinds and subkinds already exist in a given model presenting themselves as alternatives for the 
supertype S, then the modeling tool’s interface should present the user with such alternatives accordingly. 



We can offer a second example execution which supposes that the next element 

included in the model of figure 5.5 is a type Woman, also stereotyped as subkind. The 

rule RSK(Woman) is then fired and the step 1 of figure 4 is executed: 

1. Modeling Tool: Is Woman a subkind of Person or Organization?  

2. User: Person 

In this case, the process goes straight to Step 2 and then once more to the decision 

point DP1. Since there is no other subkind of Person already in this model, the 

dialogue with the user is verbalized in the following manner: 

1. Modeling Tool: Is there another subkind of Person complementary to 

Woman?  

2. User: Man 

We then have the execution of steps 3-5 in figure 3, resulting in the model of figure 

5.6. Activities which are executed only in this second example execution of RSK, are 

depicted in dark grey in figure 3. 

 
Fig.3. Activity Diagram representing the Inductive Rule Set RP associated to the formation of 
instances of the Subkind Design patterns 

3.3 The Role Design Pattern 

Roles represent (possibly successive) specializations of a Kind by using a relational 

specialization condition. Figure 4 captures the modeling rules that induces the 



creation of the role design pattern depicted in figure 1.d. In the sequel, we present the 

dialogue the tool may engage with the reader, following this rule set.  

Example Execution: Let us suppose that the next type included in the model of 

figure 5.7 is the type Student which (in this example) is stereotyped as a role. The rule 

RR(Student) is then fired. The following dialogue can be used to discover whether 

Student is a subkind of a type S already existent in the model. Since in this case the 

answer is affirmative for Person, the dialogue proceeds to discover whether Student is 

a direct subtype of Person or of one of its subtypes (Child, Adolescent, Adult, Man, 

Woman). Since Student is a direct subtype of Person, step 1 in figure 4 is executed. 

Moreover, in decision point DP 1, a dialogue is established to discover if the type 

Student is relationally dependent of is already present in the model (line 5 in the 

dialogue below). Afterwards, in decision point 2 (DP2), since there is no relation 

connected to student, the tool enquires the user regarding the relation R representing 

the relational specialization condition for Student (line 7). After that, the studies in 

relation is created (step 2) and its cardinality constraints are assessed (step 3, see also 

lines 9-16 below). Finally, the studies in relation is connected to both Student and 

School. With the execution of RR(Student) we then obtain the model of figure 5.8. 

1. Modeling Tool: Is Student a subtype of Person or Organization?  

2. User: Person 

3. Modeling Tool: Is it a direct subtype of Person?  

4. User: Yes 

5. Modeling Tool: In relation to which type of entity does a Person plays the 

role of Student? School, Organization, Child, Adolescent, Adult, Man or 

Woman?    

6. User: School 

7. Modeling Tool: How would you name this relation between Student and 

School?  

8. User: studies in 

9. Modeling Tool: A Student is related to a minimum of how many different 

School(s) via the studies in relation?  

10. User: 1 
11. Modeling Tool: Is there a maximum?  
12. User: No 
13. Modeling Tool: A School is related to a minimum of how many different 

Student(s) via the studies in relation?  

14. User: Zero 
15. Modeling Tool: Is there a maximum?  
16. User: No 

Once more, we can offer a second example execution for the Role design pattern and 

its associated rule. This example supposes the next element included in the model of 

figure 5.9 to be the type Husband also stereotyped as Role. The rule RR(Husband) is 

then fired and step 1 is executed. However, this time, as a subsequent step of decision 

point DP 1, step 5 of the process is executed instead (activity marked in dark grey in 

figure 5). This is due to the fact that (following lines 7 and 8 below), the type T to 

which Husband should be connected is absent in the model.  

1. Modeling Tool: Is Husband a subtype of Person or Organization?  



2. User: Person 

3. Modeling Tool: Is it a direct subtype of Person?  

4. User: No 

5. Modeling Tool: Is Husband a direct subtype of Man, Woman, Child, 

Teenager, or Adult?  

6. User: Man 

7. Modeling Tool: In relation to which type of entity does a Person plays the 

role of Husband? School, Organization, Child, Adolescent, Adult, Man or 

Student?    

8. User: None of these. The correct type is Wife 

After this, steps 2-4 of figure 4 are executed and the relation married to between 

Husband and Wife is properly instantiated. The dialogue corresponding to these steps 

is omitted below for the sake of space economy. Finally, the recursive execution of 

rule RR(Wife) is triggered (DP 3). This time the following steps of the process in 

figure 4 are executed: (i) Step 1 – in which the specialization between Wife and 

Woman is created; (ii) DP 1 – at this point since type T already exists (Husband), 

execution goes straight to DP 2; (ii) DP 2 - at this point since relation R already exists 

(married to), step 4 is executed and the process terminates. As a result, the final 

model of figure 5.10 is obtained. 

 

 
Fig.4. Activity Diagram representing the Inductive Rule RR associated to the formation of an 
instance of the Role Design pattern in OntoUML 
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Fig.5. Valid OntoUML model inductively constructed via the chained execution of Rule Sets   

4 Tool Support  

This work applies some design patterns and its associated rule sets to create an inter-

active dialogue with the modeler to support model development in a kind of Model-

Based Web Wizard for novice modelers. The architecture of this editor has been con-

ceived to follow a Model Driven Approach. In particular, we have adopted the OMG 

MOF (Meta-Object Facility) metamodeling architecture with an explicit representa-

tion of the OntoUML metamodel. The rule sets presented here are implemented in a 

business logic layer which explicitly manipulates this metamodel. The interactive di-

alog with the modeler (which occurs via the execution of these rule sets) is imple-

mented using a graphical interface as illustrated in figure 6 below. 



 
Fig.6. Screeshots for the Web Implementation of an OntoUML editor using Design Patterns 
and Inductive Rule Sets   

5 Final Considerations and Future Work  

The work presented in this paper lies in the identification of Ontological Design Pat-

terns underlying the OntoUML language. In [8], three major categories of Design Pat-

terns for Ontology-Driven Conceptual Modeling are discussed, namely, Modeling 

Patterns, Analysis Patterns and Transformation Patterns. Design Patterns which are 

most frequently found in the Ontology Engineering literature fall in the third category. 

An example is the catalog of patterns proposed in [9] which aims at helping the user 

in codifying common modeling structures in the Semantic Web languages. Analysis 

Patterns in the sense mentioned in [8] differs from the most frequent use of the term 

in Conceptual Modeling [10]. While the latter refers to conceptual structures which 

are recurrent in different domain models, the former refers to patterns derived from 

ontological theories which can be use to analyze properties of conceptual models. The 

Analysis Patterns in the sense of [10] would actually be akin to the ones explored in 

this article, which fall in the category of Modeling Patterns [8]. However, while the 

former captures domain-level recurrent conceptual structures, the latter represents 

domain-independent modeling solutions originated from ontological theories.        

In future works, the theoretical contributions presented here shall be expanded by 

exploring a complete set of patterns which contemplate the complete set of modeling 

primitives of OntoUML. Moreover, we intend to conduct some empirical research in-

itiatives to verify the hypothesis underlying this article, namely: (i) that the inductive 

methodological strategy pursued here in fact contributes to diminish the complexity of 

the process of ontology-driven conceptual modeling; (ii) that it positively contributes 

to increase the quality of the resulting models when produced by novice modelers. 

Our research agenda for the future also includes the investigation of how the tool 

can be augmented in terms of providing extra cognitive support [11] for conceptual 

model development using OntoUML. This includes issues related to the scalability of 



the models using the present tool. Suppose, for instance, that the model under devel-

opment already has a hundred kinds. It would be quite cumbersome if the tool offered 

all of them as options to generalize a new role being created (see subsection 3.3). It is 

wise to consider, for instance, techniques for modularizing the model, so that the tool 

could reduce this set of possible kinds. Other visualization and navigation techniques 

could also be applied to provide further cognitive support on model creation [12].   

The idea is also to advance with this work to enable the reuse of knowledge that 

was previously only tacit in the mind of the user when conceiving a model. In other 

words, we intend to provide support to capture the design rationale behind the devel-

opment of a conceptual model in order to reuse these previous insights as hints for 

upcoming modelers, who can build new models on the basis of such knowledge. Par-

ticularly related to knowledge reuse, we could explore some intelligent support (e.g., 

recommendation techniques) to enable search within the tool knowledge base (i.e. 

previously designed models) as well as in external sources (e.g. other conceptual 

model repositories or even other types of general knowledge sources), seeking to find 

new contributions to model particular domains. Regarding the use of external sources, 

formal ontology excerpts could be adopted as fragments of a new conceptual model, 

based on similarity of concepts and concept patterns. And besides, the use of results 

extracted from unstructured content could be applied as input to suggest specific 

terms applied in connection to the concepts which are already part of the model under 

development.  
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