
Design Patterns and Inductive Modeling Rules to

Support the Construction of Ontologically Well-Founded

Conceptual Models in OntoUML

Giancarlo Guizzardi, Alex Pinheiro das Graças, Renata S.S. Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO)

Computer Science Department,

Federal University of Espírito Santo (UFES), Brazil

{gguizzardi,agracas,rguizzardi}@inf.ufes.br

Abstract. In recent years, there has a growing interest in the use of Ontological-

ly Well-Founded Conceptual Modeling languages to support the domain analy-

sis phase in Information Systems Engineering. OntoUML is an example of a

conceptual modeling language whose metamodel has been designed to comply

with the ontological distinctions and axiomatic theories put forth by a theoreti-

cally well-grounded Foundational Ontology. However, despite its growing

adoption, OntoUML has been deemed to pose a significant complexity to no-

vice modelers. This paper presents a number of theoretical and methodological

contributions aimed at assisting these modelers. Firstly, the paper explores a

number of design patterns which are derived from the ontological foundations

of this language. Secondly, these patterns are then used to derive a number of

model construction rule sets. The chained execution of these rule sets assists the

modeler in the instantiation of these patterns, i.e., in the use of OntoUML as

pattern-language. Thirdly, the article demonstrates how these rule sets can be

materialized as a set of methodological guidelines which can be directly imple-

mented in a tool support in the form of an automated dialogue with the novice

modeler.

1 Introduction

In recent years, there has been a growing interest in the use of Ontologically Well-

Founded Conceptual Modeling languages to support the domain analysis phase in In-

formation Systems Engineering. OntoUML is an example of a conceptual modeling

language whose metamodel has been designed to comply with the ontological distinc-

tions and axiomatic theories put forth by a theoretically well-grounded Foundational

Ontology [1]. This language has been successfully employed in a number of projects

in several different domains, ranging from Petroleum and Gas [2] to Bioinformatics

[3]. Moreover, the ontological distinctions underlying this language has been experi-

menting increasing adoption [4,5]. However, despite its growing popularity, On-

toUML has been deemed to pose a significant complexity to novice modelers.

In order to assist these novice modelers, a number of efforts have been undertaken

[6,7]. In particular, [6] proposes an automated model-checking editor that takes ad-

vantage of a well-behaved set of ontological constraints that govern the metamodel of

this language. The editor constrains the users to only produce models which are con-

sistent with these ontological constraints, i.e., if a user attempts to produce a model

which does not adhere to these rules, the editor can automatically interfere in the

process, identifying and explaining the model violation.

This editor, however, works in a reactive manner: in principle, the user can build

any model using the primitives of the language; if the user attempts to build an onto-

logically inconsistent model, the editor prompts a proper action. In this paper, we pur-

sue a different direction on providing tool support, i.e., we attempt to explore an in-

ductive strategy in the construction of OntoUML models. As we illustrate in this

paper, the ontological constraints underlying the language restrict its primitives to be

combined in specific manners. To put it in a different way, in contrast with ontologi-

cally neutral languages such as UML, EER or OWL, OntoUML is a Pattern Lan-

guage. When a model is built in OntoUML, the language induces the user to construct

the resulting models via the combination of existing ontologically motivated design

patterns. These patterns constitute modeling primitives of a higher granularity when

compared to usual primitives of conceptual modeling such as Class, Association, Spe-

cialization, among others. Moreover, these higher-granularity modeling elements can

only be combined to each other in a restricted set of ways. Thus, in each modeling

step, the design space is reduced. The hypothesis of this work is that this strategy re-

duces the complexity of the modeling process for the novice modeler.

This paper, thus, presents a number of theoretical and methodological contribu-

tions aimed at assisting these novice modelers. In section 2, we briefly present the on-

tological foundations underlying a fragment of OntoUML. In section 3, we explore a

number of design patterns which emerge from the ontological constraints underlying

this language. After that, these patterns are used to derive a number of model con-

struction rule sets. Furthermore, we illustrate how the chained execution of these rules

assists the modeler in the instantiation of these patterns. Finally, we demonstrate how

these rule sets can be materialized as a set of methodological guidelines which can be

directly implemented in a tool support in the form of an automated dialogue with the

novice modeler. Section 4 presents a brief discussion on how these ideas have been

implemented in a Model-based OntoUML editor. To conclude the paper, section 5

elaborates on final considerations and directions for future work.

2 Background: OntoUML and its Underlying Ontology

OntoUML has been proposed as an extension of UML that incorporates in the UML

2.0 original metamodel a number of ontological distinctions and axioms put forth by

the Unified Foundation Ontology (UFO) [1]. In this work, we focus our discussion on

a small fragment of this metamodel. This fragment discusses an extension of the

Class meta-construct in UML to capture a number of ontological distinctions among

the Object Types categories proposed in UFO. In fact, for the sake of space, we limit

our discussion here to an even more focused fragment of the theory, namely, those

categories of Object Types which extend the ontological notion of Sortal types [1].

The choice for this specific fragment for this particular paper is justified by the fact

that this fragment comprises the ontological notions which are believed to be the more

recurrent in the practice of conceptual modeling for information systems [4,5]. Be-

sides incorporating modeling primitives that represent these ontological distinctions,

the extended OntoUML metamodel includes a number of logical constraints that go-

vern how these primitives can be combined to form consistent conceptual models. In

what follows, we briefly elaborate on the aforementioned distinctions and their related

constraints for the fragment discussed in this article. For a fuller discussion and for-

mal characterization of the language, the reader is referred to [1].

We start by making a basic distinction between categories of Object Types consi-

dering a formal meta-property named Rigidity [1]. In short, a type T is rigid iff for

every instance x of that type, x is necessarily an instance of that type. In contrast, a

type T’ is anti-rigid iff for every instance y of T’, there is always a possible world in

which y is not instance of T’. In other words, it is possible for every instance y of T’

to cease to be so without ceasing to exist (without losing its identity) [1]. A stereotyp-

ical example of this distinction can be found by contrasting the rigid type Person with

the anti-rigid type Student.

Rigid types can be related in a chain of taxonomic relations. For instance, the rigid

types Man and Person are related such that the former is a specialization of the latter.

The type in the root of a chain of specializations among rigid types is termed a Kind

(e.g., Person) and the remaining rigid types in this chain are named Subkinds (e.g.,

Man, Woman). As formally demonstrated in [1], we have the following constraints

involving Kinds and Subkinds: (i) every object in a conceptual model must be an in-

stance of exactly one Kind; (ii) as consequence, we have that for every object type T

in OntoUML, T is either a Kind or it is the specialization of exactly one ultimate

Kind; Subkinds of a Kind K typically appear in a construction named Subkind Parti-

tion. (iii) A Subkind Partition 〈SK1...SKn〉 defines an actual partition of type K , i.e.,

(iii.a) in every situation, every instance of SKi is an instance of K; Moreover, (iii.b) in

every situation, every instance of K is an instance of exactly one SKi. In UML, and

consequently also in OntoUML, partitions are represented by a disjoint and complete

Generalization Set (see figure 1.a and 1.c).

Among the anti-rigid Sortal types, we have again two subcatetories: Phases and

Roles. In both cases, we have cases of dynamic classification, i.e., the instances can

move in and out of the extension of these types without any effect on their identity.

However, while in the case of Phase these changes occur due to a change in the intrin-

sic properties of these instances, in the cases of Role, they occur due to a change in

their relational properties. We contrast the types Child, Adolescent, Adult as phases of

a Person with the Roles Student, Husband or Wife. In the former case, it is a change

in the intrinsic property age of Person which causes an instance to move in and out of

the extension of these phases. In contrast, a Student is a role that a Person plays when

related to an Education Institution and it is the establishment (or termination) of this

relation that alters the instantiation relation between an instance of Person and the

type Student. Analogously, a Husband is a role played by a Person when married to (a

Person playing the role of) Wife. Thus, besides being Anti-rigid, Role possesses

another meta-property (absent in Phases) named Relational Dependence [1]. As a

consequence, we have that the following constraints must apply to Roles: every Role

in an OntoUML conceptual model must be connected to an association representing

this relational dependence condition. Moreover, the association end connected to the

depended type (e.g., Education Institution for the case of Student, Wife for the case of

Husband) in this relation must have a minimum cardinality ≥ 1 [1].

Furthermore, as discussed in [1], Phases always occur in a so-called Phase Parti-

tion of a type T. For this reason, mutatis mutandis, constraints identical to (iii.a and

iii.b) defined for Subkind Partitions are also defined for the case of Phase Partitions.

However, for the case of Phase Partitions, we have an additional constraint: for every

instance of type T and for every phase Pi in a Phase Partition specializing T, there is a

possible world w in which x is not an instance of Pi. This implies that, in w, x is an

instance of another Phase Pj in the same partition.

 Finally, as formally proved in [1], rigid types cannot specialize anti-rigid types.

3. Ontological Design Patterns and Inductive Process Models

In this section, we present a number of Design Patterns which are derived from the

ontological constraints underlying OntoUML as presented in the previous section. In

other words, we limit ourselves here to the patterns which are related to the ontologi-

cal constraints involving the three primitives previously discussed: Phases, Roles and

Subkind. These patterns are depicted in figure 1 below.

Fig.1. Design Patterns emergent from the Ontological Constraints underlying OntoUML: (a)
the Phase Pattern; (b-c) the Subkind Patterns, and (d) the Role Modeling Design Pattern.

As a second objective of this section, we elaborate on a number of process models

(representing inductive rule sets for model construction) which can be directly derived

from these patterns. The hypothesis considered and illustrated here is the following: in

each step of the modeling activity (i.e., each execution step of these process models),

the solution space which characterizes the possible choices of modeling primitives to

be adopted is reduced. This strategy, in turn, reduces the cognitive load of the modeler

and, consequently, the complexity of model building using this language. Finally, this

section demonstrates how these process models can be materialized through an inter-

active dialogue between the modeler and an automated tool running these rule sets.

This idea is presented here via a running example and, in the following subsections,

we will exemplify how the modeler may gradually build the ontology model of figure

5. For that, the design tool executes these process models and engages in dialogues

with the user, guiding the development of the model from 5(1) to 5(11)

3.1 The Phase Design Pattern

Phases are always manifested as part of a Phase Partition (PP). In a PP, there is

always one unique root common supertype which is necessarily a Sortal S. This

pattern is depicted in figure 1.a above. By analyzing that pattern, we can describe a

modeling rule set RP which is to be executed every time a Phase P is instantiated in

the model (an OntoUML class is stereotyped as phase). The rule set RP is represented

in the form of an UML activity diagram in figure 2 below. In the sequel, we

exemplify the execution of this rule. In figure 2, the activities in grey represent the

ones fired in this illustrative execution.

Example Execution: Let us suppose that the first type included by the user in the

model is Child and that this type is stereotyped as 〈〈Phase〉〉. Thus, the rule set RP

(Child) is executed following the steps described in figure 2. Since there is no other

modeling element in the model, a Phase Partition is created (step 1). Notice that, at

this point, the following dialogue can be established with the user so that the

supertype S of Child can be created (step 2) as well as the remaining subtypes of S

complementary to Child (step 3). Each underlined term in the following dialogues can

be automatically inferred in the execution of RP:

1. Modeling Tool: Child is a phase for what kind of type?

2. User: Person

3. Modeling Tool: What should be the other phases of Person which are

complementary to Child?

4. User: Teenager and Adult

Fig.2. Activity Diagram representing the Inductive Rule Set RP associated to the formation of
an instance of the Phase Design pattern

At this point, the process execution is at the decision element circumscribed by the

dashed oval. Once more, a dialogue with the user can be used here to determine

whether Person is a kind (in which case the process reaches a final state) or not (in

which case a subsequent rule is fired in a recursive manner).

1. Modeling Tool: Does exist another type which is a subtype of Person?

2. User: No

Thus, since in this example, Person must be kind, this execution of RP (Child) reaches

a final state. In figure 5, we illustrate the user’s model after his choice of stereotyping

Child as a Phase (figure 5.1) and the resulting design pattern which is configured by

the execution of RP(Child) (figure 5.2).

3.2 The Subkind Design Pattern

Subkinds can be manifested in two different manners: (i) as a specialization of a type

S; (ii) as a part of a generalization set which has as a common superclass a type S.

These two patterns are illustrated in figure 1.b and 1.c, respectively. The inductive

formation rule set associated with the stereotype subkind is captured in figure 3. In the

sequel, we exemplify the execution of this rule set.

Example Execution: Let us suppose that the next type included in the model is

the type School which (in this example) is stereotyped as a subkind. The rule set

RSK(School) is then fired. The following dialogue can be used to discover whether

School is a subkind of a type S already existent in the model. Since in this case, the

answer is negative, the dialogue proceeds such that the proper supertype of School

can be created (Step 1). Furthermore, after connecting Organization as a supertype of

School, the tool dialogue attempts to uncover whether there are additional subkinds of

Organization complementary to School forming a generalization set (DP1):

1. Modeling Tool: Is School a subkind of Person1?

2. User: No

3. Modeling Tool: Of which type is School a subkind then?

4. User: Organization

5. Modeling Tool: Is there another subkind of Organization complementary to

School?

6. User: No

Finally, notice that in parallel (DP2), the tool attempts to discover whether

Organization is itself a kind or a subkind (in which case the rule set RSK

(Organization)) should be recursively fired). Since, in this example, the former case

obtains, then this execution of rule RSK terminates. In fig. 5, we illustrate the user’s

model after his choice of stereotyping School as a subkind (fig. 5.3) and the resulting

design pattern which is configured by the execution or RSK(School) (fig. 5.4).

1If multiple kinds and subkinds already exist in a given model presenting themselves as alternatives for the
supertype S, then the modeling tool’s interface should present the user with such alternatives accordingly.

We can offer a second example execution which supposes that the next element

included in the model of figure 5.5 is a type Woman, also stereotyped as subkind. The

rule RSK(Woman) is then fired and the step 1 of figure 4 is executed:

1. Modeling Tool: Is Woman a subkind of Person or Organization?

2. User: Person

In this case, the process goes straight to Step 2 and then once more to the decision

point DP1. Since there is no other subkind of Person already in this model, the

dialogue with the user is verbalized in the following manner:

1. Modeling Tool: Is there another subkind of Person complementary to

Woman?

2. User: Man

We then have the execution of steps 3-5 in figure 3, resulting in the model of figure

5.6. Activities which are executed only in this second example execution of RSK, are

depicted in dark grey in figure 3.

Fig.3. Activity Diagram representing the Inductive Rule Set RP associated to the formation of
instances of the Subkind Design patterns

3.3 The Role Design Pattern

Roles represent (possibly successive) specializations of a Kind by using a relational

specialization condition. Figure 4 captures the modeling rules that induces the

creation of the role design pattern depicted in figure 1.d. In the sequel, we present the

dialogue the tool may engage with the reader, following this rule set.

Example Execution: Let us suppose that the next type included in the model of

figure 5.7 is the type Student which (in this example) is stereotyped as a role. The rule

RR(Student) is then fired. The following dialogue can be used to discover whether

Student is a subkind of a type S already existent in the model. Since in this case the

answer is affirmative for Person, the dialogue proceeds to discover whether Student is

a direct subtype of Person or of one of its subtypes (Child, Adolescent, Adult, Man,

Woman). Since Student is a direct subtype of Person, step 1 in figure 4 is executed.

Moreover, in decision point DP 1, a dialogue is established to discover if the type

Student is relationally dependent of is already present in the model (line 5 in the

dialogue below). Afterwards, in decision point 2 (DP2), since there is no relation

connected to student, the tool enquires the user regarding the relation R representing

the relational specialization condition for Student (line 7). After that, the studies in

relation is created (step 2) and its cardinality constraints are assessed (step 3, see also

lines 9-16 below). Finally, the studies in relation is connected to both Student and

School. With the execution of RR(Student) we then obtain the model of figure 5.8.

1. Modeling Tool: Is Student a subtype of Person or Organization?

2. User: Person

3. Modeling Tool: Is it a direct subtype of Person?

4. User: Yes

5. Modeling Tool: In relation to which type of entity does a Person plays the

role of Student? School, Organization, Child, Adolescent, Adult, Man or

Woman?

6. User: School

7. Modeling Tool: How would you name this relation between Student and

School?

8. User: studies in

9. Modeling Tool: A Student is related to a minimum of how many different

School(s) via the studies in relation?

10. User: 1
11. Modeling Tool: Is there a maximum?
12. User: No
13. Modeling Tool: A School is related to a minimum of how many different

Student(s) via the studies in relation?

14. User: Zero
15. Modeling Tool: Is there a maximum?
16. User: No

Once more, we can offer a second example execution for the Role design pattern and

its associated rule. This example supposes the next element included in the model of

figure 5.9 to be the type Husband also stereotyped as Role. The rule RR(Husband) is

then fired and step 1 is executed. However, this time, as a subsequent step of decision

point DP 1, step 5 of the process is executed instead (activity marked in dark grey in

figure 5). This is due to the fact that (following lines 7 and 8 below), the type T to

which Husband should be connected is absent in the model.

1. Modeling Tool: Is Husband a subtype of Person or Organization?

2. User: Person

3. Modeling Tool: Is it a direct subtype of Person?

4. User: No

5. Modeling Tool: Is Husband a direct subtype of Man, Woman, Child,

Teenager, or Adult?

6. User: Man

7. Modeling Tool: In relation to which type of entity does a Person plays the

role of Husband? School, Organization, Child, Adolescent, Adult, Man or

Student?

8. User: None of these. The correct type is Wife

After this, steps 2-4 of figure 4 are executed and the relation married to between

Husband and Wife is properly instantiated. The dialogue corresponding to these steps

is omitted below for the sake of space economy. Finally, the recursive execution of

rule RR(Wife) is triggered (DP 3). This time the following steps of the process in

figure 4 are executed: (i) Step 1 – in which the specialization between Wife and

Woman is created; (ii) DP 1 – at this point since type T already exists (Husband),

execution goes straight to DP 2; (ii) DP 2 - at this point since relation R already exists

(married to), step 4 is executed and the process terminates. As a result, the final

model of figure 5.10 is obtained.

Fig.4. Activity Diagram representing the Inductive Rule RR associated to the formation of an
instance of the Role Design pattern in OntoUML

«phase»

Child

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«kind»

Organization

(1) (2) (3)

(4)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«kind»

Organization

(5)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager
«subkind»

School

«kind»

Organization

(6)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«kind»

Organization

(7)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«role»

Student

studies in

*

1..*

«subkind»

Woman

«kind»

Organization

(8)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«role»

Student

studies in
*

1..*

«subkind»

Woman

«subkind»

Man{disjoint,complete}

«kind»

Organization

«role»

Wife

married to

1

1
«role»

Husband

(10)

«kind»

Person

«phase»

Adult

«phase»

Child

{disjoint,complete}

«phase»

Teenager

«subkind»

School

«role»

Student

studies in

*

1..*

«subkind»

Woman

«subkind»

Man

{disjoint,complete}

«kind»

Organization

(9)

«subkind»

Woman

«subkind»

Woman

{disjoint,complete}

«subkind»

Man

«subkind»

Woman

{disjoint,complete}

«subkind»

Man

«role»

Student

«subkind»

Man

{disjoint,complete}

«role»

Husband

Fig.5. Valid OntoUML model inductively constructed via the chained execution of Rule Sets

4 Tool Support

This work applies some design patterns and its associated rule sets to create an inter-

active dialogue with the modeler to support model development in a kind of Model-

Based Web Wizard for novice modelers. The architecture of this editor has been con-

ceived to follow a Model Driven Approach. In particular, we have adopted the OMG

MOF (Meta-Object Facility) metamodeling architecture with an explicit representa-

tion of the OntoUML metamodel. The rule sets presented here are implemented in a

business logic layer which explicitly manipulates this metamodel. The interactive di-

alog with the modeler (which occurs via the execution of these rule sets) is imple-

mented using a graphical interface as illustrated in figure 6 below.

Fig.6. Screeshots for the Web Implementation of an OntoUML editor using Design Patterns
and Inductive Rule Sets

5 Final Considerations and Future Work

The work presented in this paper lies in the identification of Ontological Design Pat-

terns underlying the OntoUML language. In [8], three major categories of Design Pat-

terns for Ontology-Driven Conceptual Modeling are discussed, namely, Modeling

Patterns, Analysis Patterns and Transformation Patterns. Design Patterns which are

most frequently found in the Ontology Engineering literature fall in the third category.

An example is the catalog of patterns proposed in [9] which aims at helping the user

in codifying common modeling structures in the Semantic Web languages. Analysis

Patterns in the sense mentioned in [8] differs from the most frequent use of the term

in Conceptual Modeling [10]. While the latter refers to conceptual structures which

are recurrent in different domain models, the former refers to patterns derived from

ontological theories which can be use to analyze properties of conceptual models. The

Analysis Patterns in the sense of [10] would actually be akin to the ones explored in

this article, which fall in the category of Modeling Patterns [8]. However, while the

former captures domain-level recurrent conceptual structures, the latter represents

domain-independent modeling solutions originated from ontological theories.

In future works, the theoretical contributions presented here shall be expanded by

exploring a complete set of patterns which contemplate the complete set of modeling

primitives of OntoUML. Moreover, we intend to conduct some empirical research in-

itiatives to verify the hypothesis underlying this article, namely: (i) that the inductive

methodological strategy pursued here in fact contributes to diminish the complexity of

the process of ontology-driven conceptual modeling; (ii) that it positively contributes

to increase the quality of the resulting models when produced by novice modelers.

Our research agenda for the future also includes the investigation of how the tool

can be augmented in terms of providing extra cognitive support [11] for conceptual

model development using OntoUML. This includes issues related to the scalability of

the models using the present tool. Suppose, for instance, that the model under devel-

opment already has a hundred kinds. It would be quite cumbersome if the tool offered

all of them as options to generalize a new role being created (see subsection 3.3). It is

wise to consider, for instance, techniques for modularizing the model, so that the tool

could reduce this set of possible kinds. Other visualization and navigation techniques

could also be applied to provide further cognitive support on model creation [12].

The idea is also to advance with this work to enable the reuse of knowledge that

was previously only tacit in the mind of the user when conceiving a model. In other

words, we intend to provide support to capture the design rationale behind the devel-

opment of a conceptual model in order to reuse these previous insights as hints for

upcoming modelers, who can build new models on the basis of such knowledge. Par-

ticularly related to knowledge reuse, we could explore some intelligent support (e.g.,

recommendation techniques) to enable search within the tool knowledge base (i.e.

previously designed models) as well as in external sources (e.g. other conceptual

model repositories or even other types of general knowledge sources), seeking to find

new contributions to model particular domains. Regarding the use of external sources,

formal ontology excerpts could be adopted as fragments of a new conceptual model,

based on similarity of concepts and concept patterns. And besides, the use of results

extracted from unstructured content could be applied as input to suggest specific

terms applied in connection to the concepts which are already part of the model under

development.

Acknowledgments. This research has been partially supported by FAPES (Grant

#45444080/09) and CNPq (Grant #481906/2009-6 and Productivity Grant #309382/2008).

References

1. Guizzardi, G. Ontological Foundations for Structural Conceptual Models, Universal Press,

Holanda, 2005. ISBN 1381-3617.

2. Guizzardi, G.; Lopes, M.; Baião, F.; Falbo, R. On the importance of truly

ontological representation languages, IJISMD, 2010. ISSN: 1947-8186.

3. Gonçalves, B. ; Guizzardi, G. ; Pereira Filho, J. G. . Using an ECG reference ontology for

semantic interoperability of ECG data. Journal of Biomedical Informatics, v. 43, 2010.

4. Bauman, B. T., Prying Apart Semantics and Implementation: Generating XML Schemata

directly from ontologically sound conceptual models, Balisage Markup Conf., 2009.

5. Halpin, T., Morgan, T., Information Modeling and Relational Dababases, Morgan

Kaufman, 2008. ISBN 1558606726

6. Benevides, A.B.; Guizzardi, G. A Model-Based Tool for Conceptual Modeling and

Domain Ontology Engineering in OntoUML, LNBPI, Vol. 24, 2009. ISSN 1865-1356.

7. Castro, L. et al., A Linguistic Approach to Conceptual Modeling with Semantic Types and

OntoUML, Proceedings of the IEEE 5th VORTE/MOST 2010, Vitoria, Brazil, 2010.

8. Guizzardi, G., Theoretical Foundations and Engineering Tools for Building Ontologies as

Reference Conceptual Models, Semantic Web Journal, 1:1, IOS Press, 2010.

9. Ontology Design Patterns, online: http://ontologydesignpatterns.org/wiki/Main_Page.

10. Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996.

11. Walenstein, A.. Cognitive support in software engineering tools: A distributed cognition
framework. PhD thesis, Simon Fraser University, Vancouver, BC, 2002.

12. Ernst, N.A.; Storey, M.; Allen, P. Cognitive support for ontology modeling. International
Journal of Human-Computer Studies, 62:5 (May 2005), ISSN: 1071-5819. pp. 553-577.

