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Abstract
Formal knowledge representation struggles to represent the dynamic changes within complex events in a cognitively plau-
sible way. Image schemas, on the other hand, are spatiotemporal relationships used in cognitive science as building blocks 
to conceptualise objects and events on a high level of abstraction. In this paper, we explore this modelling gap by looking 
at how image schemas can capture the skeletal information of events and describe segmentation cuts essential for concep-
tualising dynamic changes. The main contribution of the paper is the introduction of a more systematic approach for the 
combination of image schemas with one another in order to capture the conceptual representation of complex concepts and 
events. To reach this goal we use the image schema logic ISL, and, based on foundational research in cognitive linguistics 
and developmental psychology, we motivate three different methods for the formal combination of image schemas: merge, 
collection, and structured combination. These methods are then used for formal event segmentation where the changes in 
image-schematic state generate the points of separation into individual scenes. The paper concludes with a demonstration 
of our methodology and an ontological analysis of the classic commonsense reasoning problem of ‘cracking an egg.’

Keywords Image schemas · Knowledge representation · Commonsense reasoning · Event structure · Ontology design 
patterns · Egg cracking problem

1 Introduction

Formally capturing the nature of complex concepts and 
events, and the dynamic transformations they bring about 
in the world, is a difficult problem. In comparison, what 
formal knowledge representation struggles with, humans 

perform without much thought or effort. Based on experi-
ences, humans have an understanding of concepts and events 
(simple and complex), and can reason about outcomes, make 
predictions, reason backwards from an observation, and 
adapt their conceptualisation to changes even in unfamiliar 
scenarios. If there is a mismatch between a conceptualisa-
tion and an observed situation, humans can easily modify 
conceptualisations and re-represent the observed situation. 
This flexibility in mentally representing and updating infor-
mation is not as straightforward for formal knowledge rep-
resentation, aimed at automated reasoning. Previously, rep-
resentations of the cognitive perception of real world scenes 
were sometimes based on formal frameworks used in naïve 
physics [29], such as situation calculus or causal logic. In 
addition, classic commonsense reasoning problems such as 
cracking an egg [45, 51] were then often described with 
long and complex axiomatisations that offer little in terms of 
cognitive adequacy or conceptual clarity. More importantly, 
they do not match the level of abstraction on which humans 
seem to reason. While such methods were quite influen-
tial within knowledge representation and computational 
logic, research in cognitive science has recently gained 
new insights and more embodied theories of cognition have 
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found their computational matches in statistics and machine 
learning techniques. One suggestion on how repeated human 
experience is cognitively structured is through generalised, 
mental structures. One example of those structures are 
image schemas [35, 44]. Image schemas are learned from 
early sensorimotor experiences, and can be found in natural 
language and in analogical reasoning. They are studied in 
cognitive linguistics (e.g. [28]), developmental psychology 
(e.g. [47]) and formal knowledge representation (e.g. [33]). 
Image schemas are often described as spatiotemporal rela-
tionships, such as Containment1 and SourCe_Path_Goal 
(SPG). A concept like ‘journey’ can be conceptualised with 
SPG and an object like ‘cup’ with the affordance for Con-
tainment. We argue that, by using the formal representation 
of such conceptual primitives in different combinations, it is 
possible to approach a more cognitively plausible represen-
tation of events. Initially, this formal representation needs 
to be bootstrapped for the most simple image schemas, for 
which we employ the tailor-made spatiotemporal logic for 
image schemas ISL, introduced in [32]. Formalisations of 
more complex image schemas are derived from those for 
simpler ones, and complex events are described as a tempo-
ral sequence of scenes carrying significantly distinct image-
schematic information.

The approach as just described requires handcrafted for-
malisations and analysis of the event structure, and there-
fore does not scale well to fit applications in, e.g., cognitive 
robotics. However, it is possible to augment the handcrafted 
logical representation of image schemas with machine learn-
ing approaches detecting the satisfaction of image schematic 
states (see e.g. [27] for early work in this direction). Such 
a hybrid approach is therefore still based on the same fun-
damental principles of cognitively inspired modelling of 
events using image schemas, whilst avoiding both, hand-
crafted modelling of temporal event structure as well as 
logical modelling of causation and physics (instead relying 
on simulations). However, an additional problem needs to 
be tackled. For more complex and dynamic concepts one 
image schema alone usually cannot fully capture the image-
schematic skeleton underlying a conceptualisation. Instead, 
the image schemas need to be grouped and combined with 
one another. Image schema combinations, sometimes 
called profiles, are commonly mentioned in the literature 
(see e.g. [55]), yet to our knowledge there exists no system-
atic method for describing these combinations. In order to 
contribute to this research agenda, this paper addresses the 
problem of image schema combinations and illustrates how 
their formal representation can be used as modelling pat-
terns (in the sense of the Foundational Ontology Patterns 

introduced in [16]) for the representation of dynamic con-
cepts and events.

2  The Foundations of Meaning

Conceptual meaning has been suggested to be associated 
with uses and purposes of objects and events, rather than 
with their perceivable attributes and visual patterns [48, 61]. 
For instance, while a cup might be visually identified by the 
spatially occupied combination of a hollow cylinder with a 
handle, as defined through theories such as recognition-by-
parts [7], it is only the affordance to contain e.g. liquid that 
makes it in fact a cup.

Unlike for objects, there are no ‘borders’ in the passing 
of time. One event often floats seamlessly into another with-
out pauses, beginnings or ends. Despite this, events are also 
often distinguished by their spatial dimension. The human 
mind also has an ability to take dynamic perceptions and, 
based on certain cognitive principles grounded in spatiotem-
porality, identify when a new event takes place [40, 67]. This 
ability emerges already at an early stage as children learn to 
distinguish between different events and to make ‘concep-
tual cuts’ in the stream of perception (e.g. [2]). These ‘event 
pieces,’ which may be temporal, spatial, or material, can, in 
different combinations, represent increasingly complex and 
large-scale situations.

For instance, an event like going to the library can be 
described as ‘a person moving towards a library-building’ 
together with an understanding of the core participants 
therein (such as Person, Library, Road). At the same time, 
we associate a library and going there, to a full range of 
additional conceptual information such as ‘lending and 
returning,’ ‘book collection,’ ‘knowledge,’ ‘public place,’ 
etc.; namely, information that in itself is not perceptual but 
based on particular experience through the affordances that 
these particular concepts realise.

Research in cognitive linguistics also demonstrates these 
tendencies: there exists a range of different theories trying to 
explain how information is broken into smaller conceptual 
structures. Additionally to image schemas, semantic primes 
[66], and conceptual primitives [63] have been introduced 
as possible such frameworks. Such approaches typically do 
not claim a monopoly on the right choice of particular con-
ceptual primitive, but focus on some particular explanatory 
goals. Therefore, our bias to the realm of image schemas is 
not intended to be exclusive but to be seen as a starting step 
in our study.

Image schemas represent abstract generalisations of 
events usually learned from sensorimotor processes [35, 
44]. They correspond to conceptual gestalts, meaning that 

1 Following convention, image schemas are written in uppercase let-
ters.
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each part is essential to capture the image schema,2 and are 
commonly described as capturing sensorimotor patterns of 
relationships and their transformations. An important aspect 
is that image schemas exist in both static forms (e.g. link, 
Containment and Center_PeriPhery) and in dynamic, tem-
porally-dependent forms (e.g. linked_Path, GoinG_in and 
revolvinG_movement) [9]. For simplicity and in terms of 
priority, many formal studies of image schemas have focused 
on capturing the static aspects of image schemas (e.g. [5]). 
However, in order to represent events and more dynamic 
concepts, also the temporal and transformational dimension 
of the image schemas require attention. Some work has been 
done to model the dynamic aspects of image schemas but 
they are often limited to a particular schema or situation that 
cannot be easily generalised (e.g. [21, 31]).

While image schemas such as SCalinG or CyCle implicitly 
contain a temporally-dependent transformation, most often 
more than a single image schema is required when model-
ling complex concepts and events. In relation to image-sche-
matic structures, Dodge and Lakoff [14] argue that (linguis-
tic) “complexity and diversity can be explained in terms of 
combinations of simple universal primitives.” The principle 
that image schemas can be combined with one another is 
a fundamental aspect of how they construct meaning both 
in natural language and in the conceptualisation of objects 
and events.

For this purpose, image schemas have been suggested 
to be gathered into ‘profiles’ which represent the full spati-
otemporal skeleton for the conceptualisation of a particular 
concept [55]. For instance, [22] provides a plethora of image 
schema profiles for the word stand based on different lin-
guistic contexts. Describing the image schema profile of the 
event going to the supermarket, one can use a collection of 
the following image schemas: SPG —as I am going to the 
supermarket; Containment —as myself and the groceries are 
inside the building, Part_Whole and ColleCtion —as there 
are plenty of pieces in the supermarket and I collect them, 
tranSfer —as I am obtaining objects from the supermarket 
and ‘transfer’ them to my own ‘person,’ etc. We will see this 
basic idea further analysed and at work below.

3  Formally Representing Image Schemas 
Using ISL: The Image Schema Logic

Image schemas are abstract patterns that become detectable 
only due to their prevalence in natural language and cogni-
tion in general. Therefore, much like with all spatiotemporal 
formalisation problems, it is not trivial to formally represent 
them in a satisfactory way [3, 20]. The landscape of logical 

formalisms, including spatiotemporal logics, is currently 
unified by the research on universal logic [23, 42], which 
aims to give abstract and general definitions for the notion 
of ‘logic’ [54] and ‘logical translation’ [53], and to produce 
logic-agnostic meta-results and semantic foundations for 
meta-languages such as DOL [52].

One problem for formalising image schemas is that the 
cognitive-driven investigations of how humans perceive and 
experience time cannot easily be mapped to existing tempo-
ral logic approaches [8, 13, 56]. These limitations to the use 
of off-the-shelf calculi also extend to the spatial domain. 
A well known formalism, which has been extensively used 
for the representation and handling of qualitative spatial 
knowledge is the Region Connection Calculus (RCC) [10]. 
Unfortunately, cognitive studies have supported the claim 
that humans do not typically make, or accept, some of the 
distinctions inherent to the RCC calculus [36]. Despite 
this potential cognitive mismatch, some research on image 
schema formalisation still uses RCC (see for instance [5, 
21]) since it does provide a direct and easy to understand 
formal representation of space and associated notions such 
as ‘overlap’ and ‘contact.’

3.1  ISL: The Image Schema Logic

While image schemas are often discussed without an 
immediate formal correspondence, there exists a number of 
attempts to capture them formally (e.g. [5, 19, 39]). The 
formal language ISL [32]3 is intended to capture the basic 
spatiotemporal interactions which are relevant for image 
schemas. Briefly, ISL is an expressive multi-modal logic 
building on RCC [58], Ligozat’s Cardinal Directions (CD) 
[46], Qualitative Trajectory Calculus (QTC) [65], with 3D 
Euclidean space assumed for the spatial domain, and Linear 
Temporal Logic over the reals (RTL). The work on formalis-
ing individual image schemas and their dynamic transforma-
tions in ISL was initiated, for instance, in [31] and expanded 
to include agency in [43] through the addition of see-to-it-
that (STIT) logic [4].

At its core, ISL follows a popular temporalisation strategy 
(studied in further detail in [18]), where temporal structures 
are the primary model-theoretic objects (e.g., a linear order 
to represent the passage of time), but at each moment of time 
we allow complex propositions that employ a secondary 
semantics. The atoms in ISL are then topological assertions 
about regions in space using RCC8, the relative movement 
of objects w.r.t. each other using QTC, and relative orienta-
tion, using CD. The purpose of quantification is to separate 

2 For instance, consider a container without an inside.
3 ISL was further developed under the name ���FOL by the addition 
of a First-Order concept language in [30].
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different sortal objects, while otherwise the syntax of the 
language follows a standard multi-modal logic paradigm.

We briefly sketch the sublogics that build ISL and how 
they are combined. We refer the reader to [30, 32, 43] for 
more detailed accounts of the theoretical aspects of this lan-
guage and the sublogics that compose it.

The spatial dimension—topology of regions Follow-
ing, amongst others [5, 21], RCC is used to represent basic 
topological spatial relationships for image schemas. We in 
particular use the RCC8 relations [58] since a mere mereo-
logical description would not suffice for modelling image 
schemas. Indeed, it is important to distinguish, for example, 
whether two objects touch each other (EC) or not (DC).

The spatial dimension—cardinal directions In general, 
directions may be absolute or relative. Usually, left and right 
are considered relative directions [62], which however are 
conceptually and computationally much more complicated 
than (absolute) cardinal directions [46] like North or West. 
Basic ISL assumes a naïve egocentric view (that is, with a 
fixed observer), from which directions like left/right, front/
behind and above/below can be recognised as cardinal. 
This leads to six binary predicates on objects: Left , Right , 
FrontOf  , Behind , Above and Below . Note that these relations 
are unions of base relations in a three-dimensional cardinal 
direction calculus as in [46], and the latter can be recovered 
from these relations by taking suitable intersections and 
complements.

The movement dimension To take the dynamic aspects 
of image schemas into account, the Qualitative Trajectory 
Calculus (QTC) [65] is used to represent object relation-
ships in terms of movement. This results in nine different 
relations. In its variant QTCB1D , the trajectories of objects 
are described in relation to one another. We simplify the cal-
culus by considering only the following three possibilities:

1. if object O1 moves towards O2 ’s position, this is repre-
sented as O1 ⇝ O2;

2. if O1 moves away from O2 ’s position, this is represented 
as O1 ↩ O2 ; and

3. O1 being at rest with respect to O2 ’s position is expressed 
as O1 |◦ O2.

This approach for writing the relative movement of two 
objects is intuitive and expressive enough to justify its use 
as a representation language. With QTC, we can speak about 
relative movement for a given time point. What is missing is 
the ability to speak about temporal changes.

The temporal dimension We use the simple linear tempo-
ral logic RTL over the reals [38, 50, 59] with future and past 
operators. The syntax of this logic is defined by the grammar

𝜑 ∶ ∶= p ∣ ⊤ ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 𝜑 � 𝜑 ∣ 𝜑 � 𝜑,

where � � � reads as “ � holds, until � ” and � � � reads 
as “ � holds, since �.”4 As it is standard in temporal logic, 
we can define additional temporal operators based on these 
two; for example, operators:

• �� (at some time in the future, � ) is defined by ⊤ � 𝜑,
• �� (at some time in the past, � ) is defined as ⊤ � 𝜑,
• �� (at all times in the future, � ) is defined as ¬�¬�,
• �� (at all times in the past, � ) is defined as ¬�¬�.

ISL is constructed by combining all these languages in a 
controlled manner as described next.

3.2  Syntax and Semantics of ISL

The syntax of ISL is defined over the combined languages 
of RCC8, QTCB1D , cardinal direction (CD), first-order logic 
and linear temporal logic over the reals (RTL), with the 3D 
Euclidean space assumed as the interpretation for the spatial 
domain. Note that we need to interpret the temporal con-
structors over real-time in order to handle QTC relations, 
whose semantics implicitly assume continuous time. Modi-
fying components of ISL therefore requires a careful control 
of the global semantics.

Formally, sentences of ISL are first-order RTL temporal 
formulas constructed over (ground) atomic formulas taken 
from the union of RCC8 statements, 3D cardinal directions, 
and QTCB1D , which we briefly introduced before, together 
with a standard first-order application of predicates. We 
sketch the ISL logic as originally presented in [30] (slightly 
different from the presentation in [32]), assuming a basic 
acquaintance of the semantics of the component logics, and 
focusing on the semantics for the integrated logic.

ISL considers three sorts of objects, each of them inter-
preted as certain (further constrained) subsets of ℝ3 . These 
sorts are objects, regions, and paths. Intuitively, objects 
occupy arbitrary subsets of ℝ3 , and they denote and occupy 
different regions at different times. Rigid and non-rigid 
regions over time can be introduced, but here we only con-
sider quantification over objects that denote rigid regions5 
in order to stay in a first-order quantificational paradigm. 
More precisely, the objects that we quantify over can be 
seen as abstract objects, but formal models for the ISL lan-
guage include an extension function that associates with any 
such object the region it occupies in ℝ3 , an approach which 

4 As shown in [50], past time operators can be added to a logic with 
only future modalities without causing trouble regarding decidability 
and complexity.
5 Rigid elements are those that do not change their extension through 
time.
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follows the semantic paradigm of counterpart theory [37] 
and E-connections [41].

Finally, a path is interpreted as a continuous function 
from the unit interval [0, 1] into ℝ3 , allowing the definition 
of the source and the goal of a movement along a path as the 
values of 0 and 1, respectively. In this version of ISL, these 
values are 0-dimensional 1-point subsets of ℝ3 . Extensions 
of extended objects may be normalised to denote regular 
closed subsets of the topology of ℝ3 in accordance with the 
typical usage of RCC8.6

For a fixed set X of object, region, and path variables and 
each sort s we define the set of terms Ts(X) of sort s. For 
example, if t is a term of type ‘path,’ then source(t) is of type 
‘region,’ etc. (see [30] for a full definition). Given this, the 
set of atomic formulas are defined as:

• t = u for t, u ∈ Ts(X),
• p(t1,… , tn) for p ∶ w ∈ Pr ∪ Pf and ti ∈ Tsi(X)

 for i = 1,… n,
• DC(t, u), EC(t, u), OV(t, u), EQ(t, u), TPP(t, u), TPPi(t, u), 

NTPP(t, u), NTPPi(t, u), for terms t, u ∈ Tregion(X) ∪ Tpath(X),
• Left(t, u) , Right(t, u) , FrontOf (t, u) , Behind(t, u) , Above(t, u) , 

Below(t, u) , for terms t, u ∈ Tregion(X) ∪ Tpath(X),
• t ⇝ u , t ↩ u , t |◦ u , for terms t ∈ Tobject , and u ∈ Tregion(X).

Finally, ISL formulas are first-order RTL formulas built over 
these atomic formulas in the usual way. Moreover, satisfac-
tion of complex formulas is inherited from RTL: � holds in 
M, denoted M ⊧ 𝜑 , if for all time points t ∈ ℝ and all valu-
ations � ∶ X → M , we have that M, 𝜈, t ⊧ 𝜑.7

In the following, we present a few examples of well-
formed sentences that can be written in ISL. Note, how-
ever, that only one of them is generally valid (i.e. true in all 
models), while the others can be considered true in more 
specific scenarios where the geometry of objects and pos-
sible movements are further restricted in the description of 
the semantics. Alternatively, ISL theories can be used to 
prescribe admissible spatiotemporal models.

• FrontOf (a, b) ∧ �¬FrontOf (a, b) ⟶ �(a ⇝ b ∨ a

↩ b ∨ b ⇝ a ∨ b ↩ a) ‘If a is in front of b, but ceases to 
be so in the future, then sometime in the future, either a 
or b must move with respect to the other object’s original 
position;’

• Above(a, b) ∧�a |◦ b ⟶ �Above(a, b) ‘If a is above b 
and never moves relative to b, it will be always above 
b.’ This sentence is not valid: consider e.g. that a circles 
around b with constant distance. However, it holds if for 
example a and b always stay on the same line (that is, 
their relative movement is 1D only);

• DC(a, b) ∧�a ↩ b ⟶ �DC(a, b) ‘If a is disconnected 
from b, and always moves away from it, it will always 
stay disconnected from b.’ It can be seen that this formula 
is, in fact, a validity.

4  Three Types of Image Schema 
Combinations

Formalising image schemas using ISL makes it possible to 
represent the individual image schemas. Additionally, by 
taking their spatial, and temporal, primitives (such as Path, 
objeCt, outSide and inSide [49]) into account, similar image 
schemas can be grouped together into ‘families’ represented 
as graphs of theories with increasing complexity [33]. The 
latter provides a means to investigate the merged combina-
tions of image schemas by looking at the intersection of two 
different image schema families (i.e. ‘Going in ’ would lie at 
the intersection of SourCe_Path_Goal and Containment). 
The collection of formalised image schemas and their spatial 
components can be seen as a repository of cognitively-based 
ontology design patterns [16] that can be used when build-
ing conceptualisations of concepts and events. In the next 
section, we illustrate this phenomenon by generating image 
schema profiles for Egg Cracking.

We argue that image schema combinations come in (at 
least) three fundamentally different flavours. The basic intui-
tion behind these combination approaches is illustrated in 
Fig. 1. To briefly summarise the three approaches, assume 
a ‘small’ finite set of atomic image schemas � is given, 
namely those that are cognitively learned first and cannot 
be further decomposed.

Firstly, the merge operation takes a number of those 
image schemas and merges them (non commutatively) into 
newly created primitive concepts. These primitives are not 
yet logically analysed, but carry strong cognitive semantics. 
This process can be iterated to create ever more complex 

(a) Merge (b) Collection (c) Structured

Fig. 1  Three different ways image schemas can be combined with 
each other

6 Usually, RCC8 is restricted to regular closed sets. However, for the 
current purposes it should cover images of paths and source and tar-
get points of paths as well, and these are not regular closed.
7 Note that, in order to keep the semantics simpler and within first-
order logic, only quantification over rigid objects are allowed.
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primitives, as happens in the cognitive development of 
children. We provide examples for this procedure below. 
Therefore, the merge operation multiplies the set of avail-
able image schema primitives.

Secondly, the collection operation technically corre-
sponds to the formation of an unsorted multiset of atomic 
and merged image schemas used to describe scenes or 
objects in a complex scenario, again discussed further below.

Thirdly, structured covers the case where, on the one 
hand, merged image schemas receive a formal semantics, 
and on the other hand, the temporal interaction that is absent 
in the ‘collection’ scenario is formally made explicit using 
temporal logic.

4.1  Merges: Atomic Combinations Turn 
into Complex Image Schemas

Image schemas can be both static and dynamic, meaning 
that it is possible to add a temporal dimension to many static 
image schemas; consider for instance the difference between 
Contained_Inside and Going_in. However, image schemas 
are spatiotemporal and it is possible to add or remove spatial 
primitives as well. Building from the hierarchy from [49], 
where spatial primitives are separated from image schemas 
and image schemas separated from conceptual integrations,8 
Hedblom et al. [33] present the idea that image schemas can 
be formally organised into families of logical theories, struc-
tured hierarchically reflecting increasing complexity by the 
addition (or removal) of conceptual primitives. This paves 
the way to address complex image schemas that involve 
spatial (and temporal) primitives originating from different 
image schema families. When image schemas are sorted into 
such graphs, there are intersections where different schema 
families overlap. For instance, even though Going_in is 
often conceptualised as an atomic image schema in its own 
right, it is arguably better analysed as a SPG that results in 
an instance of Containment (see [31] for a deeper analysis). 
This in fact gives a good example for the non-commutative 
nature of the ‘merge’ operation, that we here denote by ⨇. 
Given the primitives s, c ∈ � (for SPG and containment), we 
obtain the merges s ⨇ c and c ⨇ s creating two new primi-
tives that take the sum of the arguments of the component 
image schemas, but where the first corresponds to Going_in 
and the latter to Going_out.

Likewise, the more advanced image schema revolvinG_
movement is part of the SPG family, yet it can be argued 
that it inherits the revolving pattern from the image schema 
CyCle and the spatial proportions of Center_PeriPhery.

This line of combining image schemas to build new ones 
can be interpreted as a particular instance of the theory of 
conceptual blending, introduced in [17]. The theory pro-
poses that all novel ideas are a result of blending already 
existing information by re-combining the given information 
selectively (see [15] for a formal computational treatment, 
and [11, 12] for general overviews). Given that blending 
is a fundamental principle of generation, one of the most 
basic forms of combining image schemas is, therefore, to 
selectively blend properties of different image schemas 
into new ones. For instance, the established image schema 
linked_Path can be reconstructed as a combination of prop-
erties from both SPG and link. This merge can be used 
in the real world in relation to concrete concepts such as 
trucks with trailers, or in more abstract scenarios such as 
marriage which often is conceptualised as two people walk-
ing together through life [47].

We present merge here as first combination technique 
because it operates initially on primitive, and not further 
de-composable image schemas (and which are typically 
acquired first also in development), such as containment. 
It then creates via successive blending the general pool of 
(complex) image schemas that can be further used in collec-
tion, discussed next, and in structured.

4.2  Collections: Classic Image Schema Profiles

The second form of image schematic combination, here 
called collection, is where image schemas co-exist to 
describe a concept, distinct from their own properties. For 
instance, the concept transportation actualises the image 
schemas SPG and SuPPort (or Containment) [39], but the 
image schemas themselves are not merged, they are sim-
ply grouped together to capture the conceptualisation of the 
concept; that is, they each provide relevant properties for 
the overall schema. Experiments have been performed to 
demonstrate this phenomenon of using image schemas to 
describe the essence of objects, for instance, [24] and Chap-
ter 7 in [30]. In [55], these profiles are specifically described 
to be without any particular structure or order. Instead, they 
are thought to correspond to the gathered experience a 
person has with a particular concept. For instance, when 
presented with a familiar scenario, e.g., going to the super-
market or borrowing a book at the library, we have a mental 
generalisation based on all previous (explicit and implicit) 
experiences with that particular scenario and have a mental 
space for that concept that we use to verbalise our thoughts 
when conversing and interacting with other people. In the 
more generic, often-experienced situations, human concep-
tualisations can be argued to be greatly overlapping across 
people. For instance, despite strong cultural differences, it is 
likely that all humans share the same, or essentially indistin-
guishable, conceptualisation of the concepts of being hungry 

8 Conceptual integrations are described as image schemas with the 
addition of a non-spatial element such as force.
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and going to sleep as they are fundamentally embodied in 
their nature. For events such as going to war or preparing 
Turducken9 which many of us never experience first hand, 
our conceptualisations are based on the accounts of others. 
This is one of the strengths of the human mind. Namely, 
that a person who never cooked Turducken can still create 
an image schema profile to capture the process of preparing 
the dish. One such conceptualisation could consist of: going 
in —as the chicken goes into the duck, and the duck goes 
into the turkey; Containment —as the animals remain inside 
‘each other;’ iteration —as this process is repeated three 
times; and SCale —as the chicken, the duck, and the turkey 
are treated in their respective sizes. Naturally, an expert chef 
frequently preparing the dish might understand that there 
is more at work. This form of combining image schemas 
behaves like collections as they are without any internal 
structure and temporal or hierarchical order.

4.3  Structured: Sequential Image Schema 
Combinations

A metaphorical example for a sequential combination is the 
idiom to hit a wall. In many contexts, this does not mean to 
physically crash into a wall but instead implies some form 
of mental or physical breakdown, often preceded by long-
term stress or exhausting efforts. The idiom captures the 
image schema of bloCkaGe. It is clear that bloCkaGe is not 
an atomic image schema but rather a sequential combina-
tion of several ones (see [6, 32] for in-depth analyses). It 
would not be inaccurate to describe bloCkaGe as a merge of 
other image schemas, as it is built on primitives from several 
image schema families (among other SPG and ContaCt) but 
it is more useful to acknowledge the sequential dimension 
of the image schema; basically, the presence of a cause-and-
effect relationship. Breaking bloCkaGe down, there are at 
least two objeCts, a SPG, and at least one time-point when 
the two objects are in ContaCt, which results in the hindered 
movement of the object in motion.

These structured sequences are one way in which the con-
ceptualisation of particular scenes and events can be for-
mally described. Ontologically speaking, events are mani-
festations of certain dispositions (capabilities, capacities, 
affordances, and forces) that map the world from situation 
to situation [26]. A situation, in turn, is a part of reality that 
can be understood as a whole (e.g., being married to Mary, 
sitting on a bench, being inside a duck that is itself inside a 
turkey). According to [1], a scene involves a (temporal) suc-
cession of situations and events involving the objects in the 
scene. In other words, a scene can be seen as a container for 

situations. The boundaries of these containers are typically 
defined by a spatiotemporal region, i.e., a scene happens in 
a continuous interval of time and in a convex region of space 
[25]. Moreover, they are then objects of a unitary perception 
act. In other words, the main characteristic of a scene is that 
“it is a whole, from a perceptual point of view” [25], without 
committing to “specific unity conditions for specifying these 
wholes.” Finally, as discussed in [1], complex events can be 
seen as decomposed in a number of more elementary scenes, 
each of which can be understood as a whole.10

The structured sequences of image schemas that we pro-
pose here to model events, in a sense, resemble Schankian 
scripts [60], but with the crucial difference that each scene 
in the sequence is defined by a potentially different image-
schematic structure. This is an important distinction as the 
image schemas are inherently meaningful and would as such 
be the core meaning of a particular present situation. There-
fore, one could assume that a particular event segment (i.e., 
a scene) remains the same as long as there is no alteration in 
the image-schematic structure. In other words, we propose 
here that image-schematic structures give rise to ‘specific 
unity conditions’ for individuating scenes. This is properly 
demonstrated in the egg cracking events presented in Sect. 5.

For the remainder of this article, we concentrate on for-
malising this particular mode of image-schema combina-
tions (structured sequential combinations). An important 
aspect to note here is that, whilst structured image schema 
profiles may have a clearly determined outcome, in many 
natural scenarios the outcomes of ongoing and future events 
are uncertain. This means that also the conceptualisation 
needs to represent the different possible outcomes of such 
uncertainty. In the scenario of bloCkaGe, for instance, in 
which one object moves to collide with a second object, 
there are several different outcomes (e.g. CauSed_movement 
or bounCeS). This means that structured image schema com-
binations may also be branching over points of uncertainty.

5  Studies in Egg Cracking with Image 
Schemas

One of the prototypical knowledge representation problems, 
‘cracking an egg,’ is—as an event—rather simple to concep-
tualise yet very complex to formalise. Previous formalisa-
tions of the problem [45, 51] result in lengthy descriptions 
where individual axioms aim to capture all the necessary 
requirements for the scenario, with a particular difficulty in 

9 A dish prepared through the iterative stuffing of a chicken into a 
duck, and the duck into a turkey.

10 In the theory proposed in [25], events can also be ‘carved out’ of 
complex scenes by selecting a particular focus (e.g., a particular dis-
position). We, however, leave this aspect out of the present discus-
sion.
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formally separating high-level schematic conceptualisation 
from the formalisation of low-level, physics-based infor-
mation related to affordances. When taking the embodied 
point of view which motivates our modelling based on image 
schemas, such low-level modelling is largely abstracted 
away. Instead, e.g. the verification of the affordance of an 
object to contain a liquid is taken care of by embodied inter-
action in the case of humans, and by experiment in physics 
simulations in the case of AI (see below for an outlook to 
future work in this regard). Following the reasoning in this 
paper, it is possible to use image schema profiles, or more 
structured image schema combinations, as a way to represent 
conceptual information. We look at two different scenarios.

5.1  Dropping an Egg

Infants do not have enough experience with the object ‘egg’ 
to immediately understand that when dropped, eggs fall and 
as they hit the ground they (usually) break. This knowledge 
is learned through repeated experience. While temporally 
dependent scenarios happen in more or less a sequence with-
out defined borders, the event can be divided into conceptu-
ally distinct steps based on changes in the image-schematic 
structure, as depicted in Fig. 2.

One important hypothesis is that, for each step, a con-
ceptually different scene of undefined temporal length 
takes place. This translates into there being a change in the 
image-schematic state. The scenario can be described with 

a sequential image schema combination based on the fol-
lowing scenes.

1. The egg is SuPPorted by a hand.11

2. The egg is no longer SuPPorted. In most natural cases 
there is still ContaCt between the hand and the egg at 
this stage. In a human conceptualisation, this event takes 
place more or less simultaneously as the consecutive 
scene in which ...

3. ...the egg falls from the SourCe (hand), to the Goal, 
where falling is a merge between SPG and vertiCality 
as the gestalt properties of each image schema rely on 
one another.

4. The egg is bloCked by the ground, stopping its SourCe_
Path_Goal.

5. This final scene produces an image-schematic trans-
formation of a SPlittinG in which we observe that 
WHOLE(egg) → PARTs(egg),12 and the egg remains 
SuPPorted by the ground.13

As defended in [68], ontology modelling patterns should be 
construed as generic modelling structures that reflect onto-
logical micro-theories. As such, they constitute a mecha-
nism for theory inclusion such that there is a set of generic 
axioms associated with the pattern structure. Whenever the 
pattern is reused, so are the corresponding axiomatisations. 

(a) Scene 1: The
egg is supported by
a hand.

(b) Scene 2: The
egg is no longer sup-
ported (dropped).

(c) Scene 3: The egg
falls to the ground.

(d) Scene 4: The egg
hits the ground.

(e) Scene 5: The egg
breaks.

Fig. 2  Event segmentation of dropping an egg. Boxes around scenes denote non-temporally extended scenes which mark essential transitions in 
image-schematic structure

∀E:Obj,H,G:Rgn.Support(H,E) U (¬Contact(H,E) ∧On Path To(E,G) U Blocked(E,G)) ∧
G (Blocked(E,G) ∧H¬Blocked(E,G) ∧POn Path To(E,G) → Splitting(E) ∧GSupport(G,E)) ∧
G(Support(H,E) → Contact(H,E))

Fig. 3  Formalisation of dropping an egg

12 In ISL DC means DisConnected (based on RCC8) and � , is taken 
from RTL and denotes ‘Until.’ Thus, the image schema SPlittinG can 
be formalised as: ∀X, x1, x2 ∶ Object (SPLITTING(x) → WHOLE(X)

Part(x1,X) ∧ Part(x2,X) � ¬WHOLE(X) ∧ DC(x1, x2)
)
.

13 This is due to the bloCkaGe relation from the previous scene, 
only now, the force is removed resulting in the SuPPort (see [32] for 
details on their respective formalisations).

11 It is possible to substitute SuPPort for Containment if the egg is 
‘grabbed.’ This would alter the properties of the agent’s involvement 
in the ‘drop.’
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Primitive patterns can be combined to form larger patterns 
that consistently preserve this mechanism [16, 68]. This gen-
eral idea of ontology pattern also underlies the axiomatisa-
tion of image schemas in [33] and the use of the Distributed 
Ontology Language (DOL) that supports exactly this kind 
of theory inclusion, amongst many other structuring features 
[52].

The idea of modular design pattern is also reflected in 
the construction of ISL, where each image schema can be 
formalised as a modelling pattern, a micro-theory, which can 
be referenced and reused in different situations and contexts 
for entirely different kinds of objects via a generic import 
interface (as the case of SPlittinG before). A large selection 
of these image schema patterns appears in [30]. We limit 
our formalisation to capture the patterns of the top-level of 
the event structure, and only report on a few specific image 
schema micro-theories.

Even when using specifically RCC8 to model image 
schemas like ContaCt and SuPPort (and in fact other spa-
tial frameworks could be substituted instead), the most 

appropriate definition depends on the kinds of objects we 
consider, and the chosen granularity of observation, amongst 
other factors. For instance, we may identify contact with 
external connection when an idealised geometric representa-
tion of objects can be assumed.

However, a much more liberal interpretation of contact is 
obtained when we identify contact with the absence of dis-
connectedness, as in:

Several intermediate options are obviously available as 
well.14

In ISL the entire event of dropping an egg could be for-
malised as in Fig. 3, where E, H, and G stand for Egg, Hand, 
and Ground, respectively. Note that the figure has two onto-
logically quite distinct kinds of scenes. Namely, whilst (a), 
(c), and (e) describe temporally extended scenes, (b) and (d) 
describe idealised moments that mark the transition between 
the respective frames. Importantly, the image schema pro-
files of all scenes are distinct [in particular (d) has different 
image schemas related to force compared to (a) as it follows 
vertical movement].

∀O1,O2∶Object (CONTACT(O1,O2) ↔ EC(O1,O2)).

∀O1,O2∶Object (CONTACT(O1,O2) ↔ ¬DC(O1,O2)).

(a) Scene 1: The
egg and bowl are
separated.

(b) Scene 2: The
egg moves towards
the bowl’s border.

(c) Scene 3: The
egg hits the bowl’s
border.

(d) Scene 4: The
egg cracks.

(e) Scene 5: The
egg moves to the
top of the bowl.

(f) Scene 6: The
egg separates into
parts.

(g) Scene 7: The
egg′ leaves the
shell by beginning
to fall.

(h) Scene 8: The
egg′ falls.

(i) Scene 9: The
egg′ enters the
bowl.

(j) Scene 10: The
egg′ is inside the
bowl.

Fig. 4  Event segmentation of cracking an egg into a bowl. Boxes denote the same distinction as previously

14 Similarly, we may choose to define SuPPort as ∀O1,O2∶Object

(SUPPORT(O1,O2) ↔ EC(O1,O2) ∧ Above(O1,O2) ∧ Forces(O1,O2)) , 
etc.

∀E,E′, B:Object,H, S:Region.Contained Inside(H,E) ∧Whole(E) ∧ Part(S,E) ∧ Part(E′, E) ∧ Contained Inside(E′, S) ∧
F(On Path To(E,B) U (Blockage(Egg,Bowl) ∧ FSplitting(Egg))) ∧
G(Splitting(E) →

(G¬Whole(E) ∧ going Out(S,E′) ∧On Path To(E′, B) U going In(E′, B))) ∧
G(going In(E′, B) → FContained Inside(E′, B))

Fig. 5  Formalisation of cracking an egg in a bowl
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The axiom given specifies the following: the first line 
encodes the global event structure, namely that the hand pro-
vides support to the egg, until it is no longer in contact with 
it, at which point it will be on its way towards the ground. 
This scene will last until the egg will be blocked by the 
ground, at an unknown point in the future. The remaining 
axiomatisation encodes some of the essential properties that 
need to hold for this particular outcome, and that are part of 
the commonsensical understanding of ‘dropping.’ Namely, 
the second line says that if at any point in the future the egg 
is blocked by the ground, but it was never blocked before 
but instead was at some point in the past moving towards 
the ground, then it will now break, and it will be then sup-
ported forever by the ground. Finally, the last line encodes 
that the hand gives support to the egg only if it is in contact 
with the egg.

5.2  Cracking an Egg into a Bowl

In most scenarios where there is an intention to crack the 
egg, this is done by gathering the contents in a bowl. Such 
an event can be divided into ten conceptually distinct spati-
otemporal scenes, as depicted in Fig. 4. Note that, as above, 
the schematicity of the description implies that the more 
detailed axiomatisations (or indeed other ways of grounding 
the truth of those predicates) is left to the refinement of the 
schema. For example, when saying that an egg can be seen 
as a whole with ‘parts,’ ‘inside,’ and ‘content,’ it is at this 
level of description left open what the exact definition of 
whole as mereological sum of its parts is.

 1. Scene one presupposes two objeCts: an egg and a 
bowl. The bowl is a Container and represents the 
egg’s Goal location. Additionally, the egg needs to be 
described as a Whole with two Parts: the shell (Con-
tainer) and an egg′15 (Contained). This is a conceptual 
merge between Containment and Part_Whole.16

 2. Scene two extends scene one with a SPG as the egg is 
moving from its original position towards the edge of 
the bowl.

 3. As the egg hits the border of the bowl, the movement is 
bloCked. This means that instead of the previous SPG 
image schema, the image-schematic relationship is that 
of bloCkaGe. As the egg hits the edge of the bowl, it 

is intended to crack. However, conceptually this is a 
different event component that may or may not take 
place, depending on the characteristics of the impact 
between the bowl and the egg. Then ...

 4. ...the egg cracks: breaking from a Whole into its Parts: 
the shell and the egg ′ . This is an image-schematic 
transformation of Part_Whole. While this event may 
be perceived to happen simultaneously as the third 
scene, it is conceptually different because the prop-
erties of the egg suddenly are altered. Likewise, if 
insufficient force is applied there is no guarantee that 
the egg cracks or if excessive force is applied the egg′ 
pours out all over the bowl’s edge (considerations on 
force are addressed in Sect. 5.3).

 5. Still Contained in the cracked shell, the egg′ moves 
towards the bowl’s opening. This scene functions as 
a collection (neither is dependent on the other) and 
captures both Containment and SPG.

 6. Removing the Containment schema of the egg, by 
SPlittinG the shell from the egg′ through the exist-
ence of their Part_Whole relationship.

 7. As a merge, the egg ′ goes out from the shell and 
begins to fall towards the bowl’s inSide.

 8. The egg′ continues to fall towards the bowl’s inside.
 9. Still moving, the egg′ falls into the bowl: the merge 

between Going_in and the pre-existing merge of fall-
ing based on SPG and vertiCality.

 10. Finally, the scenario ends with static Containment in 
which the egg′ rests inside the bowl.

A formalisation appears in Fig. 5, where E,E′,B,H , and S 
stand for Egg, Egg′ , Bowl, Hand, and Shell, respectively. 
The detailed semantics of this can be recovered as in the 
previous example.

5.3  The Problem of Force in Egg Cracking

One of the limitations of the egg cracking scenarios pre-
sented is that they both represent the ideal ‘successful’ 
scenario. For an egg falling to the ground, the most natu-
ral outcome is that it will hit the ground and break. In an 
unsuccessful scenario, the egg might not actually break. 
This could be the result of an unusually hard shell, a ‘soft 
landing’ on a carpet or that it has been dropped from a low 
height. All of this comes down to one physical component, 
that of force.

Image schemas have several force relations built into 
them. For instance, SuPPort relies on the notion that enough 
force keeps the object in place, and bloCkaGe captures the 
counterforce equivalent (or stronger) present in the move-
ment. In [49], the authors describe the concept of force as 
an embodied, conceptual add-on to image schemas. When 

15 While in natural language both the whole egg and its content is 
referred to as an egg, we need to formally distinguish them. Thus, we 
refer to the whole egg as egg and the content as egg′.
16 For eggs, it is rather straightforward that the part that we use is on 
the inside of the shell. However, consider an apple or other objects 
in which the ‘border’ is (most often) used as well. In these cases it is 
not appropriate to speak of a merge between Containment and Part_
Whole in the same sense.
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modelling a given scenario, propositional add-ons such as 
the hardness of the shell or the ground, the height of the drop 
or the force by which the egg hits the bowl can be attached 
to the image-schematic skeleton of the individual scenario to 
provide a more detailed description. A cognitively inspired 
approach to detect whether ‘enough’ aspects describing a 
certain scenario or concept are accumulated in a concrete 
modelling was introduced in [57].

However, as already hinted at in the introduction, image-
schema-level formalisations are not intended to cover the 
low-level physics of a scenario. Rather, the force dynamic 
events that can be detected in, e.g., the physics simulations 
of robotics environments can trigger image-schematic primi-
tives without a logical analysis of causation and force [27]. 
Therefore, the actual outcome of an open-ended formalisa-
tion of an everyday scenario such as ‘cracking an egg’ can 
only be determined if the precise force acting on the egg is 
known, and this can be read off the virtual enactment of the 
egg hitting the bowl in a simulation with precise physics.

6  Discussion and Conclusions

This paper studies how image schema combinations can be 
structured and formally approached to model the conceptu-
alisation of dynamic concepts and events. In particular, event 
segmentation into ontologically and cognitively meaningful 
scenes can be based on changes in image-schematic state and 
modelled as a structured combination of component scenes. 
To this end, we introduce three different categories for the 
combination of image schemas: merge, collection and struc-
tured. The first captures the proliferation of image-schematic 
primitives, the second the collection of those primitives into 
new wholes, and the third the temporal arrangement of col-
lections. While these forms of combinations capture some of 
the most apparent combinations of image schemas, they are 
by no means intended to be exhaustive. Other combinations, 
or even combinations of these combinations, which were 
not considered in this paper, may be worthwhile to study in 
future work. The image schemas within these profiles were 
then formalised using ISL, a logical language especially 
developed to deal with the spatiotemporal dimensions of 
image schemas.

Arguably, looking at commonsense reasoning problems 
such as egg cracking may look a bit isolated in terms of 
their potential impact on artificial intelligence. However, 
the idea of using cognitively-inspired building blocks that 
can together represent and model increasingly large-scale 
situations and problems is of wide relevance. As the notion 
of image schemas stems from the sensorimotor processes 
and is closely connected to cognitive linguistics, their for-
mal integration into robotics systems and natural language 
processing systems provides clear directions for future 

work. Indeed, the next step on this research agenda is to 
connect our approach to cognitive robotics environments 
as for instance described in [64]. Here, symbols may be 
grounded in actual environments, and symbolic twin-worlds 
and knowledge bases, together with physics simulations, can 
provide precise tests for preconditions of actions and events 
whose detail, for instance, in the level of force present, 
escapes the image-schematic modelling level.
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