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Abstract. This paper presents a Model-Based graphical editor for supporting 
the creation of conceptual models and domain ontologies in a philosophically 
and cognitively well-founded modeling language named OntoUML. The Editor 
is designed in a way that, on one hand, it shields the user from the complexity 

of the ontological principles underlying this language. On the other hand, it 
reinforces these principles in the produced models by providing a mechanism 
for automatic formal constraint verification. 
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1 Introduction 

Throughout the last years, ontologies have increasingly been applied in Computer 

Science. They have been a topic of research in Artificial Intelligence (AI) since the 

late seventies and more recently, in Software Engineering (SE). On the one hand, in 

the former, ontologies have been used as a knowledge representation technique to 

convey domain terminologies (e.g., Description Logic T-Boxes) to be particularized 

as facts (e.g., Description Logic A-Boxes) for serving to reasoning purposes. In the 

latter, on the other hand, ontologies have been mainly recognized as comprising a 

technique for developing enhanced domain-specific conceptual models. 

There are two common trends in the use of ontologies in these two areas: (i) firstly, 
ontologies are always regarded as an explicit representation of a shared 

conceptualization, i.e., a concrete artifact representing a model of consensus within a 

community and a universe of discourse. Moreover, in this sense of a reference model, 

an ontology is primarily aimed at supporting semantic interoperability in its various 

forms (e.g., model integration, service interoperability, knowledge harmonization); 

(ii) secondly, the discussion regarding representation mechanisms for the construction 

of domain ontologies is, in both cases, centered on computational issues, not truly 

ontological ones. On one side, the AI community values representation languages 

which prime for computational tractability [1]. On the other side, the SE community 

is mostly concerned with committing to the use of standardized languages such as the 

Unified Modeling Language (UML) [2], and with producing ontology representations 
that facilitates the mapping to specific implementation environments (e.g., Object-

Oriented Frameworks [3]). Now, an important aspect to be highlighted is the 



 

incongruence between (i) and (ii). As shown, for instance in Guizzardi [4], in order 

for an ontology to be able to adequately support (i), it should be constructed using an 

approach that explicitly takes into account a dimension which is neglected in (ii), 

namely, the use of foundational concepts that take truly ontological issues seriously. 

In pace with Degen et al. [5], we argue that “every domain-specific ontology must 

use as framework some upper-level ontology”. This claim for an upper-level (or 

foundational) ontology underlying a domain-specific ontology is based on the need 

for fundamental ontological structures, such as theory of parts, theory of wholes, 

types and instantiation, identity, dependence, unity, etc, in order to properly represent 

reality. From an ontology representation language perspective, this principle 

advocates that, in order for a modeling language to meet the requirements of 

expressiveness, clarity and truthfulness in representing the subject domain at hand, it 
must be an ontologically well-founded language in a strong ontological sense, i.e., it 

must be a language whose modeling primitives are derived from a proper 

foundational ontology [6], [7]. 

An example of a general conceptual modeling and ontology representation 

language that has been designed following these principles is the version of UML 

proposed in [8]. This language (later termed OntoUML) has been constructed in a 

manner that its metamodel reflects the ontological distinctions prescribed by UFO 

(Unified Foundational Ontology). Moreover, formal constraints have been 

incorporated in this language’s metamodel in order to incorporate the formal 

axiomatization in UFO. Therefore a UML model that is ontologically misconceived 

taking UFO into account is syntactically invalid when written in OntoUML. 
Although this approach has been able to provide mechanisms for addressing a 

number of classical conceptual modeling problems [9], and the language has been 

successfully employed in application domains [10], [11], there was still no tool 

support for building and validating conceptual models and domain ontologies 

constructed using OntoUML. The main contribution of this paper is thus to present a 

Model-Based OntoUML Graphical Editor with support for automatic model checking 

in face of ontological constraints. The  binaries and source code files for the editor are 

available at http://code.google.com/p/ontouml. 

A snapshot of the main section of the editor is shown in Fig. 1 below. As one can 

see, there is a tool bar on the right side, where the user can drag and drop model 

elements on the left panel. 

The remainder of this paper is structured as follows. Section 2 presents models that 
illustrates main concepts of UFO, represented using OntoUML, and validated on the 

Fig. 1. Snapshot of the editor. 



 

editor by automatically processing integrity and derivation rules that represent 

ontological constraints over the produced models. Section 3 briefly elaborates on the 

metamodeling and implementation technologies used in the construction of the editor. 

Section 4  presents some related work. Section 5 presents some final considerations. 

2 Presentation of the Editor 

In this section, we illustrate the support provided by the editor for automatically 

checking integrity constraints and deriving information in models. Integrity 

constraints are inspected via two different mechanisms named Live Validation and 

Batch Validation. In order to illustrate these features, let us make use of a simple 

domain model of car dealing. This simple universe of discourse is comprised of 

concepts such as Person, Car, CarCustomer, CarSupplier, Organization, Purchase and 

car parts (e.g., Engine, Chassis). In the following we briefly exemplify how the editor 

can assist the user in the construction of a simple conceptual model in this domain. 

2.1 Live Validation 

In this conceptualization, Person would typically be modeled in OntoUML as a class 

with a <<kind>> stereotype, and a CarCustomer would be modeled as a class with a 

<<role>> stereotype, as is shown in Fig. 2. In OntoUML, the <<kind>> stereotype is 

used to represent the UFO Kind category, and the <<role>> stereotype represents the 

UFO Role category. In order to explain these UFO categories, we have to describe 

some more categories, which are represented on the excerpt of the UFO taxonomy in 

Fig. 3. 
As we can see, Kinds and Roles are Entities, where Entity is the higher UFO 

category. Entity can be distinguished in Universal and Individual, where Individuals 

are entities that exist in reality possessing a unique identity, and Universals, 

conversely, are space-time independent pattern of features, which can be realized in a 

number of different individuals. In its turn, Universals can be distinguished in 

Monadic Universal and Relation (entities which glue together other entities). Within 

the category of Monadic Universal, in order to show the differences between 

Substance Universal and Relator Universal, we need to explicate what are Substances 

and Moments. 

Fig. 2. Live validation example. 



 

Substances are existentially independent individuals, i.e., there is no Entity x that 

must exist whenever a Substance y exists. Examples of Substances include ordinary 

mesoscopic objects such as an individual person, a house, a hammer, a car, but also 

the so-called Fiat Objects such as the North-Sea and its proper-parts, postal districts 
and a non-smoking area of a restaurant. Conversely, a Moment is an individual which 

can only exist in other individuals. Typical examples of moments are: a color, a 

connection, a purchase order. 

So, a Substantial Universal is a universal whose instances are Substances (e.g., the 

universal Person or the universal Apple). While, a Relator Universal is a universal 

whose instances are individual relational moments (e.g., the particular enrollment 

connecting John and a certain University is an instance of the universal Enrollment). 

We need to define some formal notions (rigidity and anti-rigidity) to be able to 

make further distinctions within Substance Universal. Definition 1 (Rigidity): A 

universal U is rigid if for every instance x of U, x is necessarily (in the modal sense) 

an instance of U. In other words, if x instantiates U in a given world w, then x must 

instantiate U in every possible world w’. ■ Definition 2 (Anti-rigidity): A universal U 
is anti-rigid if for every instance x of U, x is possibly (in the modal sense) not an 

instance of U. In other words, if x instantiates U in a given world w, then there must 

be a possible world w’ in which x does not instantiate U. ■ [8]. 

A Substantial Universal which is rigid is named here a Kind. In contrast, an anti-

rigid substantial universal is termed a Role. The prototypical example highlighting the 

modal distinction between these two categories is the difference between the universal 

(Kind) Person and the (Role) universal CarCustomer, both instantiated by the 

individual John in a given circumstance. Whilst John can cease to be a CarCustomer 

(and there were circumstances in which John was not one), he cannot cease to be a 

Person. In other words, in a conceptualization that models Person as a Kind and 

CarCustomer as a Role, while the instantiation of the role CarCustomer has no impact 
on the identity of an individual, if an individual ceases to instantiate the Kind Person, 

then it ceases to exist as the same individual. Moreover, [9] formally proves that a 

Fig. 3. Excerpt of UFO taxonomy [8]. 



 

rigid universal cannot have as its superclass an anti-rigid one. Consequently, a Role 

cannot subsume a Kind in our theory. 

Now, as discussed in [9], a common mistake in conceptual modeling is the use of 

subtyping to represent alternative allowed types, i.e., alternative types that supply 

players for a given role. In this particular case, suppose that the user attempts to 

represent that instances of Person are possible players of the role CarCustomer, by 

using subtyping. In other words, the user tries to model a Kind Person as a subtype of 

the Role CarCustomer. If allowed, this would not be an ontologically correct model, 

since it is not the case that every instance of Person is a CarCustomer, and since a 

Person cannot cease to be a Person but it can cease to be a CarCustomer. When 

attempting to create this ontologically incorrect model with the editor presented here, 

an integrity constraint is violated. As consequence, the editor ignores the 
corresponding model updating action and prompts a live validation pop-up that alerts 

the user of his attempt of creating an invalid model. The validation pop-up resulting 

from this example is shown in Fig. 2. 

2.2 Deriving Model Information 

In order to represent the relation between CarCustomer and Person, one should model 

CarCustomer as a Role played by Person in a certain context, where he buys a Car 
from a CarSupplier. Analogously, one should model CarSupplier as a Role played by 

an Organization when selling a Car to a CarCustomer. This context is materialized by 

the Material Relation purchases (represented as the <<material>> stereotype in 

OntoUML), which is in turn, derived from the existence of the Relator Universal 

Purchase (<<relator>>). In other words, we can say that a particular customer x 

purchases a particular car y from a particular supplier z iff there is a Purchase which 

mediates x, y and z. This situation is illustrated in Fig. 4. The mediation formal 

relations between the Relator Purchase and the Roles CarCustomer and CarSupplier 

are responsible for the existence of the derived Material Relation purchases that hold 

between CarCustomer and CarSupplier. Thus, the cardinality restrictions of the 

purchases relation can be systematically calculated from these associations as 

Fig. 4. Example of derivation of information. 



 

exemplified in Fig. 5 below. The derivation of purchases from the mediation relations 

is represented by a Derivation association (pictured as a dashed line association 

between purchases and Purchase, where there is a black circle), which also have its 

cardinalities systematically calculated. 

In order to better explain what is a Material Relation, a Mediation relation 

(<<mediation>>) and a Derivation relation, we need to describe more categories 

represented in Fig. 3. The Relation category is differentiated in Formal Relation and 
Material Relation, where Formal Relations are relations that hold between two or 

more entities directly, without any further intervening individual, and Material 

Relations, conversely, do need an intervening individual. Examples of formal and 

material relations are older_than and purchases, respectively. The notion Formal 

Relation is further differentiated here in Existencial Dependency and Meronymic, 

where the former represents existentially dependent associations and the latter 

represents part-whole relations. For now, we can consider two types of existentially 

dependent Formal Relations: Mediation and Derivation. A Mediation relation is a 

relation that holds between a Substantial Universal and Relator Universal. Mediation 

and Relator Universal are the basis for defining Material Relations. In order to a 

Material Relation M1 hold between two Substantial Universals S1 and S2, there must 
exists at least two Mediation relations (M2 and M3) and one Relator R, such that M2 

holds between S1 and R and M3 holds between S2 and R. The Derivation relation is a 

relation between a Material Relation M1 and the Relator Universals on which M1 

depends [8]. 

2.3 Batch Validation 

A more complete version of a model in this domain is shown in Fig. 6, which 
represents some of the parts that compose a Car. In this figure, it is represented that a 

Car is composed of one CarEngine. However, part-whole relations must obey the so-

called Weak Supplementation axiom, which, in simple words, states that in order to 

be a whole, an entity must have at least two disjoint parts. Therefore, to satisfy this 

axiom, if a Car is composed of one and only one Engine, it must also have another car 

component as a part. Now, differently from the Person-CarCustomer subtyping 

example discussed above, the lack of a second part represented in the model that 

would meet the requirement posed by the Weak Supplementation axiom can be due to 

Fig. 5. Cardinality derivation. 



 

a momentary incompleteness of the model. In other words, after the part-whole 

relation between Car and CarEngine is represented, the user can still include 

information in the model that will prevent this model from being considered 

ontologically inconsistent. As this example shows, there are validation actions that 

should only be performed by the tool once the user deems suitable. Now, as illustrated 

in Fig. 6, if this model is validated with the presented information, the editor prompts 

to the user that, in that form, the model is considered incorrect. Furthermore, the 

editor informs the user by highlighting the source and reason of inconsistency in the 

model. 

 

A possible solution to this issue is to represent that a Car is composed of something 

more than an Engine, e.g., a Chassis. Fig. 7 depicts this alternative representation 

where a car is composed of one and only one Engine and an essential unique Chassis, 

where the “essential” tag in this part-whole relations means that the whole is 

existentially dependent of the part [8]. 

Fig. 6. Batch validation example. 

Fig. 7. A possible solution to correct the model pictured in Fig. 6 above. 



 

3 The Architecture and Implementation of the Editor 

The architecture of the editor presented here has been conceived to follow a Model-

Driven Approach. In particular, we have adopted the OMG MOF (Meta-Object 

Facility) metamodeling architecture [12]. In order to describe constraints in 

UML/MOF (meta)models, the OMG also proposes the declarative formal language 

OCL (Object Constraint Language) [13]. On the formalization of the OntoUML 

profile we have used OCL expressions mainly to: define how derived 

attributes/associations get their values; define default values of attributes/associations, 

i.e., define their initial values; specify query operations and specify invariants, i.e., 

integrity constraints that determine a condition that must be true in all consistent 

system states. 
The complete implementation of the OntoUML profile as a MOF metamodel is 

reported in [14]. The same reference also describes the full set of OCL expressions 

including: 8 OCL expressions  to specify derivation rules; 145 OCL expressions to 

define default values; 13 OCL expressions to specify operations created to support 

some OCL derivation rules and invariants, and 69 invariants to model the constraints 

stated on the OntoUML profile [8]. An example of an OCL invariant representing the 

essential parthood axioms described in OntoUML is shown in the code below. One 

can notice that in this expression the modal existential dependence constraint of 

essential parthood from UFO is emulated via the existence condition (lower 

cardinality ≥ 1) plus the immutability constraint (isReadOnly = true). 

context Meronymic 

inv: if (self.isEssential = true) then self.target-> 

forAll(x | if x.oclIsKindOf(Property) then 

((x.oclAsType(Property).isReadOnly = true) and 

((x.oclAsType(Property).lower >= 1)) else false endif) 

else true endif 

In terms of implementation technology, the editor has been implemented using a 

number of plug-ins that supports graphical editor development in the context of the 

Eclipse IDE (Integrated Development Environment) [15]. For the creation of the 

OntoUML metamodel, we have used the Eclipse Modeling Framework (EMF) [16],  
[17] plug-in. This plug-in provides its own metamodeling language named ECore, 

which asides from few (mostly terminological) differences is equivalent to the EMOF 

(Essential MOF) language (a subset of the complete MOF 2.0 language) [12]. The 

EMF together with the Model Development Tools (MDT) [18] plug-in allows for the 

creation and validation of ECore models with embedded OCL constraints. Finally, to 

build the graphical interface of the editor, we have used the Graphical Modeling 

Framework (GMF) [19] plug-in. The GMF provides a high-level description of visual 

representations to support transformation to a set of java classes for the graphical 

editor using a Model-View-Controller (MVC) architecture. This process is 

schematically summarized in Fig. 8 below. 

Fig. 8. Tool generation overview. 



 

4 Related Work 

As far as we know, there is no other tool for OntoUML. However, there are other 

editors that support philosophically well-founded languages and methodologies such 

as OntoClean [20], as well as tools based on upper-level ontologies as SUMO 

(Suggested Upper Merged Ontology) [21], SUO (Standard Upper Ontology) [22] and 

the Differential Semantics theory. For instance, Protégé [23] is a free open-source tool 

which supports OntoClean and SUMO. AEON (Automatic Evaluation of ONtologies) 

[24] is an open-source tool, which allows applying OntoClean to evaluate ontologies. 

Visual Ontology Modeler [25] is an editor that includes a library of ontologies that 

represent SUO. DOE (Differential Ontology Editor) [26] is a freeware ontology editor 

which allows the user to build ontologies according to the Differential Semantics 
theory. Sigma [27] is a free open-source knowledge engineering environment for 

theories in first order logic (FOL), which is optimized for SUMO. 

5 Final Considerations 

The need for using ontologically well-founded languages for conceptual modeling, in 

general, and domain ontologies, in particular, has increasingly been recognized in the 

literature. This is often a result of interoperability concerns and the unsuitability of 

lightweight representation languages in addressing these issues. Despite that, these 

languages are still not broadly adopted in practice. One of the main reasons is the 

need for high-level expertise in handling the philosophical concepts underlying them. 

Indeed, the dissemination of formal method techniques requires convincing industries 

and standardization bodies that such techniques in fact can improve development. In 

this way, design support tools are one of the key resources to foster their adoption in 

practice [28]. 

In this paper, we present an Eclipse-based graphical editor which aims at fulfilling 
the gap of tool support for one particular theoretically well-founded representation 

language, namely, OntoUML. Underlying this editor there is an implementation of the 

OntoUML metamodel proposed by Guizzardi [8] by using MDA (Model-Driven 

Architecture) technologies, in particular, the OMG MOF (Meta-Object Facility) and 

OCL (Object Constraint Language). Moreover, by representing UFO categories and 

axiomatization in the language metamodel, the complexity of these foundational 

issues is hidden from the user while still constraining him to produce ontologically 

sound models. 

As a final remark, the promotion of a language such as OntoUML for domain 

engineering does not eliminate the need for codification languages such as OWL, 

DLRus, Alloy or F-Logic, to cite just a few examples. In pace with the meaning 

independence principle defended by Guizzardi and Halpin [29], we adopt the view 
that these classes of languages are (and should be) meant to be used for different 

purposes and in different phases on an ontology engineering process. 
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