
 

 1

Ontology-based Transformation Framework from Tropos to AORML 

 

Renata S. S. Guizzardi
1
 and Giancarlo Guizzardi

2
 

1,2Computer Science Department, Federal University of Espírito Santo, Brazil 

rguizzardi@inf.ufes.br 
2
Laboratory of Applied Ontologies (ISTC-CNR), Trento, Italy 

guizzardi@loa-cnr.it 
 

1. Introduction 

Software Agents have gained a lot of attention in the past few years, attracting 

a number of research initiatives and gaining visibility in software development 

practice. Agent’s popularity mainly resulted from the recognition that they 

represent a suitable abstraction both for conceptual modeling and system 

development. However, having the right abstraction is not enough for 

guaranteeing the development of adequate solutions. For that, a consistent 

software engineering methodology is needed. This need has led to the proposal of 

several agent-oriented methodologies. 

Software analysts and designers can profit from these methodologies, each one 

having its own strengths and drawbacks, and exhibiting characteristics that make 

them more or less appropriate for specific domains and/or system types. 

Moreover, the concepts and processes underlying each one of them can be 

targeted at different activities of the software development cycle. Nowadays, with 

the increase in the complexity of domains and systems modeled using an agent-

oriented approach, there are cases where a single methodology/modeling language 

is not sufficient to cover all activities and perspectives of the modeling process. In 



 

 2

such cases, benefits may be achieved by using concepts and processes of two or 

more of such approaches in different development activities, thereby amplifying 

their gains while minimizing their limitations. 

In this paper, we apply this idea by considering two modeling languages: the 

Tropos language on requirements analysis and the Agent-Object-Relationship 

Modeling Language (AORML) on system design. Moreover, we propose a 

methodology to transform a requirements model into a design model, by 

providing a systematic method for mapping one notation into the other. On one 

hand, the Tropos’s modeling primitives have been designed to support 

requirements analysis and, hence, do not provide specific concepts for system 

design. On the other hand, AORML supports information, interaction and 

behavior modeling, which are crucial for system’s design. However, this language 

is not specifically tailored for requirements analysis. Thus, the benefits of using 

both approaches become apparent, as one lacks what the other has to offer. 

The transformation methodology is supported by a foundational ontology, 

which enables the evaluation, comparison and identification of correspondences 

between different agent-oriented modeling languages. This ontology is based on a 

number of theories from philosophy and cognitive science, and can serve as a 

well-founded basis for: (i) making explicit the ontological commitments of each 

modeling language; (ii) defining (ontological) real-world semantics for their 

underlying concepts; (iii) providing guidelines for the correct use of these 



 

 3

concepts; (iv) relating concepts defined in different languages via their 

ontological semantics. 

The remaining of this chapter is organized as follows: section 2 motivates our 

choice for transforming Tropos models into AORML ones and discusses the 

adopted strategy for performing this transformation; section 3 describes the 

foundational ontology used in this work; section 4 applies this ontology as a 

reference model to guide the evaluation of the two languages, making the 

necessary adjustments to facilitate the smooth transformation of models; section 5 

presents the mapping between Tropos and AORML; and finally, section 6 

concludes this chapter. 

2. On the integration of the Tropos Language and AORML 

Given the current state of research on the agent-oriented software engineering 

paradigm, we aim at granting analysts and designers with freedom to select the 

appropriate tools from a vast ‘library’ of methods and languages, depending on 

the specific case at hand. It is our belief that not one method or language 

possesses all the desired modeling features. Instead, these features can often be 

attained by integrating different approaches. This view is compliant with the 

efforts of the method engineering community which prescribes the reuse of 

fragments of different methods according to a given situation (Harmsen, 

Brinkkemper & Oei, 1994). Works on agent-oriented software engineering having 



 

 4

analogous views can be found in (Henderson-Sellers, 2005; Juan, Sterling & 

Winikoff, 2004; Sabas, Delisle & Badri, 2002). 

The characteristics of the targeted domain should be carefully considered 

before choosing methods and languages to be applied. The integration of Tropos 

and AORML was specifically proposed for the Knowledge Management domain 

(Guizzardi, 2006), giving rise to a methodology named Agent-oriented Recipe for 

Knowledge Management System Development (ARKnowD). A detailed 

description of ARKnowD’s activities and life cycle, as well as a discussion on its 

applicability to Knowledge Management can be found in the chapter by 

Guizzardi, Perini, Dignum in this book. In the present chapter, however, we 

refrain from discussing details about methods and techniques, concentrating 

solely on modeling language issues and, in particular, on the suitability of the 

concepts underlying current agent-oriented modeling languages. More precisely, 

our focus here is to present a common conceptual framework that can be used to 

evaluate, compare and identify correspondences between the two modeling 

languages that are used in the ARKnowD methodology, namely, Tropos and 

AORML. 

The differences between Tropos and AORML suggest that these two 

approaches can serve complementary rather than competing roles. Tropos may 

benefit from the following strengths of AORML: 1) the fact that ‘mentalistic’ 

concepts of agents, such as beliefs and commitments, are explicitly considered in 



 

 5

system design supports the designer to reason about and to model the behavior of 

agents, both internally and in interaction with other agents of the system; 2) 

although norms and contracts are not directly supported by AORML, it provides 

deontic modeling constructs such as commitments and claims, which form the 

basis for the establishment of such norms and contracts; 3) it captures the 

behavior of agents with the help of rules. Besides these strengths, since AORML 

is an extension of UML, preserving its principles and concepts, it is an accessible 

language, and it allows the use of UML constructs whenever an extension is not 

provided, thus offering a comprehensive set of design tools. In a complementary 

manner, the explicit use of Tropos’s goals and plans provides a rich conceptual 

framework for modeling the intentional dimension of the organization. This 

includes a preliminary view of how user’s interact, without however adding 

unnecessary protocol details in the early stages of requirements analysis. Such 

concepts of goals and plans are missing in AORML. 

Our approach for integrating Tropos and AORML is inspired by the OMG 

framework for  Model Driven Architecture (MDA), developed to enable flexible 

design of distributed software systems (Miller & Mukerji, 2003). Although MDA 

specifically focuses on the object-oriented paradigm, it shares some of our 

concerns, which makes it appropriate also for agent-orientation. In particular, as 

in our work, this initiative recognizes that each system development activity has 



 

 6

its particular focus and needs, which constrain the applied constructs and 

strategies for the development of models for each one of them. 

Instead of modeling activity, MDA talks of viewpoint, which is defined as a 

“technique for abstraction using a selected set of architectural concepts and 

structuring rules, in order to focus on particular concerns within that system.” 

(Miller & Mukerji, 2003, p. 2-3). Using MDA terminology, the application of 

Tropos is mainly concerned with a computation-independent viewpoint, focusing 

on the domain of the system. At this point, the system’s requirements are hidden 

or undetermined. Tropos contributes to make explicit and clear such requirements, 

presenting an initial model of the domain entities, along with a high level view of 

their interactions and behaviors. In contrast, AORML focuses on the platform-

independent viewpoint, modeling the general functionality of the system, although 

not including the details that are specific of a given platform. At this point, the 

information, interaction and behavior aspects of the system become concrete. In 

other words, AORML details the structure of system’s entities and relations, fully 

models the processes that involve such entities, and present a comprehensive 

description of their internal behavior. 

When a system is developed, system requirements should be traceable to 

system functionalities, and vice-versa. For maintaining consistency between 

models, enabling a smooth transition from one viewpoint to another, MDA 

proposes the use of transformation processes, i.e. processes that convert from one 



 

 7

model to another model of the same system. In this work, we apply the 

metamodel transformation technique described in the MDA reference guide 

(Miller & Mukerji, 2003), which requires a mapping from the modeling 

constructs of the source to the destiny language. However, before consistent 

transformation rules are developed, the semantics of the modeling concepts of 

each language should be well understood. Furthermore, the notations should be 

carefully evaluated to check for inconsistencies on their use individually or in 

integration with one another. In this respect, our work proposes an ontological 

approach.  

An ontology is a theory that characterizes the kinds of entities which exist in a 

conceptualization of a certain domain of discourse. Moreover, it establishes a 

vocabulary and semantics for the terms referring to the entities constituting this 

conceptualization. Thus, for example, an ontology describing the domain of 

agents can be applied to create a common conceptual framework comprehending 

the concepts underlying both the Tropos language and AORML. This same 

ontology may be used as a reference model that should be fully covered by the set 

modeling constructs of these two notations, thus providing a consistent evaluation 

framework for the resulting language (i.e. the language underlying ARKnowD). 

 

 

 

 

 



 

 8

3. The UFO Ontology 

We base our Agent Ontology on the UFO (Unified Foundation Ontology) defined 

by Guizzardi and Wagner (2005). According to these authors, a foundation 

ontology “defines a range of top-level domain-independent ontological categories, 

which form a general foundation for more elaborated domain-specific ontologies” 

(Guizzardi & Wagner, 2005, p. 346). 

The UFO ontology is divided into three incrementally layered compliance sets: 

1) UFO-A defines the core of UFO, excluding terms related to perdurants (i.e., 

occurrences, events) and terms related to the spheres of intentional and social 

things; 2) UFO-B defines, as an increment to UFO-A, terms related to perdurants; 

and 3) UFO-C defines, as an increment to UFO-B, terms related to the spheres of 

intentional and social things. This section briefly describes a subset of UFO-A 

and UFO-B, focusing only on the concepts that are directly relevant for the 

understanding of ontological distinctions proposed in this article. Following, we 

present UFO-C in details, extending it to create our ontology. 

The ontologies are described here in natural language, and illustrated with the 

aid of UML class diagrams. Thus, UML is not intended here for formalization 

purposes but rather for facilitating the visualization of concepts. For an in depth 

discussion and formal characterization of UFO-A, one should refer to (Guizzardi, 

2005). The formalization of UFO-B and UFO-C is planned as future work, once 

the semantics of the concepts comprising these ontologies is fully comprehended. 



 

 9

3.1 UFO-A: Endurants and Perdurants 

Figure 1 shows an excerpt of UFO-A. UFO-A distinguishes between two kinds 

of individuals: endurants and perdurants. This distinction can be intuitively 

understood in terms of the distinction between “objects” and “processes”, 

respectively. An endurant does not have temporal parts, and persists in time while 

keeping its identity. Examples of endurants include a house, a person, a hole, the 

(objectified) color of an apple, and an amount of sand. A perdurant, conversely, is 

composed of temporal parts. A storm, a heart attack and a business process are 

three examples of perdurants. 

Endurants are further specialized into substance individual and moment 

individual. The former refers to an endurant that possesses direct spatio-temporal 

properties and can exist by itself, i.e. substance individuals are not existentially 

dependent on other endurants, except possibly on some of its parts and 

constituents. A building, a person and a dog are examples of substance 

individuals. A moment individual, however, is an endurant that cannot exist by 

itself; that is, it existentially depends on other individuals (e.g. the age of a person, 

a belief of an agent). Making an analogy with the object-oriented software 

engineering domain, we can understand the difference between substance and 

moment comparing them respectively to object and (objectified) property. 

A moment individual can be either an intrinsic moment or a relator (or 

relational moment). An intrinsic moment is a moment individual that is 



 

 10

existentially dependent on one single individual (e.g., the color of an apple 

depends on the existence of the apple itself). Meanwhile, a relator is a moment 

individual that is existentially dependent on more than one individual (e.g., a 

marriage, an enrollment between a student and an educational institution). A 

relator is an individual capable of connecting or mediating entities. For example, 

we can say that John is married to Mary because there is an individual marriage 

relator that existentially depends on both John and Mary, thus, mediating the two. 

Likewise, we can say that Lisa works for Xerox because there is an employment 

relator mediating Lisa and Xerox. 

Endurants bear moments, or inversely, moments inhere in endurants. The 

relation of inherence is a special type of existential dependence relation between 

moments and their bearers. Formally, besides existential dependency, inherence 

implies the so-called non-migration principle (Guizzardi, 2005), i.e., if a moment 

x inheres in an individual y, then there is no individual z distinct from y such that 

x inheres in z. In other words, inherence is a functional existential dependence 

relation. Fig. 1 particularly emphasizes that an intrinsic moments inheres in one 

single endurant. An externally dependent moment is a special kind of intrinsic 

moment which although inhering in a specific endurant, also existentially depends 

on another one. The employee identifier is an example of externally dependent 

moment, since although inherent to the employee, is also dependent on the 

organization where this employee works. A relator R mediating the individuals A 



 

 11

and B inheres in the individual composed of A and B (the so-called mereological 

sum of A and B) and, due to the aforementioned non-migration principle, this 

individual cannot change. In other words, R inheres in (and, thus, is existentially 

dependent on) exactly that specific collection of individuals formed by A and B. 

A substance individual is further specialized into amount of matter and 

physical object. A physical object satisfies a condition of unity, for which certain 

parts can change without affecting its identity (e.g. a house, a person, the moon). 

Conversely, an amount of matter is a substance individual that does not satisfy a 

condition of unity, typically referred to by means of mass nouns in natural 

language (e.g. a lump of clay, a pile of bricks, an amount of sand). 

In Fig. 1, we emphasized that all specializations are disjoint, meaning that if an 

individual is an instance of one specialization class, it can not be an instance of 

another specialization class with the same parent. All specialization relations 

described in this section have this nature. Hence, we refrain from providing such 

details in the subsequent figures in order to simplify the models. The above 

information presented for the individual level may also be replicated for the type 

level. Figure 2 shows an entity may be either an individual or a type, the former 

instantiating the latter. So for example, the substance individuals John, Mary and 

Lisa instantiate the substance type Person. 

Fig. 2 shows that for the category of substance types, UFO-A makes a further 

distinction based on the formal meta-properties of rigidity and anti-rigidity. In 



 

 12

simple terms, a type T is said to be rigid if every instance x of T is necessarily (in 

the modal sense) an instance of T. In other words, x cannot cease to instantiate T 

without ceasing to exist. Conversely, a type T is anti-rigid if every instance x of T 

is possibly (in the modal sense) not an instance of T, i.e., if x can cease to 

instantiate T without ceasing to exist (Guizzardi, 2005). A stereotypical example 

highlighting this distinction is provided by the types person and employee, both 

instantiated by the individual Lisa in a given circumstance. Whilst Lisa can cease 

to be an employee of Xerox (and there were periods of time in which Lisa was not 

one), she cannot cease to be a person. A substance type that is rigid is named a 

Kind. In contrast, a substance anti-rigid type is named here a Role
i
. 

Besides highlighting this important difference within the category of substance 

types, Fig. 2 also presents other entities. A relation is a type whose instances are 

tuples of connected elements. For instance, taking Lisa’s example presented 

above, the ‘works at’ relation connects Lisa to Xerox. We consider here two types 

of relations: formal relation and material relation. A formal relation holds between 

two or more entities directly, without any further intervening individual. 

Examples of formal relation include Lisa ’is older than’ Mike, and John ’is taller 

than’ Mary. As pointed out by Guizzardi (2005), the relata of these relations are in 

fact moments and not substance individuals. To say that Lisa ‘is older than’ Mike 

is to say that Lisa’s age is greater than Mike’s age. Moreover, this relation 

between Lisa and Mike exists without the need for any real connection between 



 

 13

the two. To put it differently, these relations between substance individuals are 

reducible to purely formal relations between intrinsic moments of the involved 

relata. Instantiation, inherence and existential dependency are all types of formal 

relations. 

Conversely, material relations are founded on the existence of a relator. Thus, 

Lisa ‘works at’ Xerox because there is an employment relator connecting the two. 

This employment can be composed, for example, of all commitments and claims 

associated with the role Lisa plays at that organization. Later in this section we 

provide a more extensive discussion on commitments and claims. Likewise, John 

‘is kissing’ Mary because there is an individual kiss connecting the two. In 

summary, differently from formal relations, material relations are not reducible to 

relations between intrinsic moments of the involved relata. 

3.2 UFO-B: an Ontology of Perdurants 

Figure 3 presents UFO-B, where the concept of perdurant from UFO-A is 

further specialized into state and event. A state is a perdurant whose temporal 

parts belong to the same state type as the whole. An event, on the other hand, is a 

perdurant that is related to exactly two states (its pre-state and its post-state). Pre-

state and post-state are shown in the relations between event and state in Fig. 3. 

An event is specialized into atomic and complex events. The former refers to 

an event that is not further decomposed, for instance: an explosion, or a message 

reception. The latter is an event that is composed of other events by means of 



 

 14

event composition operators. Examples of complex event comprehend a parallel 

occurrence of two explosions, a storm, a heart attack, and a work meeting. A 

process can be understood as a synonymous of complex event, i.e. an event that is 

composed of two or more events as shown in Fig. 3. 

3.3 Extending UFO-C 

Our extended version of UFO-C is depicted subsequently, starting from Figure 

4 until Figure 7. 

Fig. 4 shows that the UFO-A concept of physical object is here specialized into 

physical agent and non-agentive object. A physical agent is a physical object that 

creates action events, perceives events (possibly created by other physical agents), 

and to which we can ascribe mental states. Examples of physical agents include: a 

man, a cat, a robot. A non-agentive object is a physical object that is not a 

physical agent (e.g. a book and a tree). A non-agentive object can be a resource, 

meaning that such object is used by a physical agent with specific purposes, and 

typically owned or controlled by this or other physical agent (relation owns and 

controls outcoming from physical agent). 

A distinction is made between human agent, artificial agent and institutional 

agent (all three sub-kinds of physical agent), to differentiate humans agents, 

computational agents, and agents representing organizations or organization sub-

units (such as departments and divisions). Institutional agents are composed of 



 

 15

several internal agents, which may be of any kind of physical agent (human, 

artificial or institutional). 

Most agent-oriented approaches only focus on agents, disregarding the 

presence of objects in the modeled scenario. We consider this a limitation and 

thus, acknowledge the existence of these two distinct entities. In fact, the real 

world is composed of both active and passive entities, captured respectively by 

the concepts of agents and objects (in UFO-C, physical agent and non-agentive 

object) 

Action event and non-action event are two types of event (concept from UFO-

B). The former refers to an event that is created through the action of a physical 

agent, for instance, ‘writing a book’, and ‘reviewing a paper’. The latter is an 

event that is not created through an action of a physical agent (e.g. ‘a deadline is 

achieved’, and ‘it becomes dark’), although it may be perceived by him/her. This 

differentiation is essential in agent-oriented approaches as modeling the 

environment populated by agents is paramount. Therefore, non-action events are 

typically events generated by the environment itself and perceived by the agents 

living in it.  

A plan execution can be defined as an intended execution of one or more 

actions, being in this way a special kind of action event. In other words, a plan 

execution may be composed by one or more ordered action events, targeting a 

particular outcome of interest to the agent. These action events may be triggered 



 

 16

by both action and non-action events perceived by the agent. A plan execution is 

said to instantiate a plan (or plan type). 

Analogously to an UFO-B atomic event, an atomic action event is an action 

event that is not further decomposed, such as ‘picking a book in a shelve’ and 

‘sending a message’. Actually, ‘sending a message’ can also be seen as a subtype 

of an atomic action event, referred to as communicative action event. Physical 

agents both send and receive communicative action events. Communication is one 

of the most important aspects of agent-oriented systems as this triggers one agent 

to adopt goals or to execute action events on behalf of another. Unlike objects that 

simply execute actions when requested, an agent reasons over another agent’s 

request before agreeing on a particular course of action (Wooldridge, 1992). 

Communication may be also required to inform an agent about changes in one’s 

course of action or in the environment itself, thus altering the agent’s beliefs. 

In Fig. 5, the intrinsic moment concept of UFO-A is specialized into mental 

moment, which denotes an intrinsic moment that is existentially dependent on a 

particular agent, being an inseparable part of its mental state. Examples of mental 

moments include a belief, a desire, and an intention. We can then say that a 

mental moment inheres in a physical agent (relation inheres in).  

Belief regards information the agent has about the environment and about other 

agents. Both desire and intention refer to an agent’s goal. A desire expresses the 

will of an agent towards a particular state of affairs in reality, i.e., goals are 



 

 17

considered here to be desired state of affairs. More than a desire, an intention 

represents an internal commitment of the agent to act towards that will. Thus, 

saying that an agent has an intention towards a certain state of affairs indicates 

that: (i) this state of affairs is desired by the agent (i.e., it is a goal of that agent); 

(ii) such agent has a plan to accomplish it. In other words, an intention is always 

associated with a plan type.  

Social moment is a specialization of the UFO-A concept of externally 

dependent moment, including the concepts of commitment and claim. When two 

physical agents agree to accomplish goals to one another, a commitment/claim 

pair is generated between them. These deontic concepts are highly important to 

regulate the social relations between members of an organization. Agents may 

have several commitments and claims towards one another. For example, on one 

hand, a consultant might commit to his colleague to pass on some valuable 

information about a past case that he was involved with, which is similar to a 

present task of his colleague. On the other hand, the colleague can claim this 

knowledge transfer from the consultant. A pair commitment/claim composes a 

social relator, which is a particular type of UFO-A relator. Fig. 5 also shows that 

commitment and claim may refer to a goal (refers to between social moment and a 

goal). In other words, when a physical agent A commits to a physical agent B, this 

can imply that A adopts a goal of B. In this case, the social relator created 

between A and B state that B has the right to claim the accomplishment of this 



 

 18

specific goal to A. Castelfranchi (1995) made an important contribution on the 

understanding of commitments. In one of his work, he cites Searle, who claims 

that “a commitment is a right producing act” (Castelfranchi, 1995), highlighting 

that it is much more complex for an agent to disengage from commitments 

towards other agents (social commitments, in Castelfranchi’s term) than to 

dismiss his own intentions (which Castelfranchi calls internal commitments). 

Figure 6 emphasizes the difference between physical agent type and physical 

agent individual. Furthermore, it also depicts the difference between rigid and 

anti-rigid agent types, here physical agent kind and physical agent role, 

respectively. While person is an example of a physical agent kind, physical agent 

roles are specifically suited to model organizational roles (e.g., secretary, 

manager) as well as other roles performed by agents in specific situations that can 

be played independently of the position someone has in an organization (e.g., 

‘coffee maker’ or ‘book reader’). As previously clarified in UFO-A, a person 

cannot cease to be a person (i.e., it is a rigid concept, a kind) while a secretary can 

be promoted into manager, or can assume another organizational position (thus 

being anti-rigid, a role).  

Still aiming at clarifying the concept of agent role, Fig. 6 shows that an agent 

role is characterized by social moment types, which describe the set of general 

commitments and general claims a physical agent playing that role has. This is 

again based on the work of Castelfranchi (1995), who defines a general 



 

 19

commitment as a commitment an agent makes towards a set of goals of the same 

type. For example, when agreeing to perform the organizational role of a 

‘secretary’, one is automatically committing oneself to ‘writing letters’ and 

‘making appointments’ on behalf of one’s boss. Conversely, this person also has 

some claims a priori, such as receiving a certain salary in the end of the month 

and having a suitable working place. Bottazzi and Ferrario (2005) remind us that 

an agent’s autonomy within an organization is restricted by the set of general 

commitments and claims he/she has, as a result of playing a specific role. 

Figure 7 finally concludes our UFO-C extension, depicting the important 

distinction between the concepts of dependency and delegation. The first 

difference regards the fact that while a dependency constitutes a formal relation, a 

delegation consists of a material relation, following the definitions of UFO-A. Let 

us examine this difference in further detail. The figure shows that a dependency 

connects two physical agents (a depender and a dependee) and a dependum, 

which can be either a goal or a resource. An agent A (the depender) depends on 

an agent B (the dependee) regarding a goal G if G is a goal of agent A, but agent 

A cannot accomplish G, and agent B can accomplish G. Here, the fact that an 

agent cannot accomplish a goal may mean that this agent either does not have the 

capability to achieve it. Or else, it may denote that this agent’s pursuit towards 

this goal may interfere with his other intentions, such that he/she decides not to 

pursue this goal after all. This may well be a reason why agent A decides to 



 

 20

delegate such goal accomplishment to agent B. A delegation is thus associated 

with a dependency but it is more than that. As a material relation, it is founded on 

something more than its connected elements. In this case, the connected elements 

are two physical agents (delegator and delegatee) and a goal (delegatum), and the 

foundation of this material relation is the social relator (i.e. a commitment/claim 

pair) established between the two physical agents involved in this delegation. In 

other words, when agent A delegates a goal G to agent B, besides the fact that A 

depends on B regarding G, B commits himself to accomplish G on behalf of A. 

Goal and plan delegation refer to what Castelfranchi and Falcone (1998) define as 

open and close delegation, meaning that the former leaves the decision regarding 

the strategy towards goal accomplishment to the depender. The latter rather 

prescribes a specific strategy (i.e. a plan) the depender should adopt towards 

achieving the delegated goal. 

To illustrate the difference between dependency and delegation, consider the 

following case. Suppose John is a program committee member of a certain 

conference and that he received from Paul (the conference program chair) an 

article X to review. Suppose that John cannot review this article by himself, since 

there are some aspects of the article that are outside his field of competence. Now, 

suppose that George is a colleague of John who is knowledgeable exactly in those 

aspects that John needs to review article X. In this case, we could say that John 

depends on George to review article X. Notice, however, that this relation 



 

 21

between John and George can be reduced to relations between the goals and 

capabilities of these individual agents. Moreover, this relation does not even 

require that the related agents are aware of this dependence. This is certainly not 

the case for the relation between Paul and John. As the program committee chair, 

Paul depends on John to review article X. However, in this case, not only they are 

both aware of this dependence but there is the explicit commitment of John to 

Paul to review article X. In other words, the delegation of Paul to John to review 

article X cannot be reduced to relations between their intrinsic moments, but it 

requires the existence of a certain relator (a commitment/claim pair) that founds 

this relation.  

Not explicit in the diagram is the concept of socially can achieve, or socially 

can execute. When we say above that a certain agent can achieve a goal, this 

means that such agent is able to do it himself or can delegate to another agent that 

can accomplish it on his behalf. In the example above, if John can review part of 

article X by himself and can delegate a remaining part to George, we could say 

that John socially can achieve the goal of reviewing article X. 

Similarly to delegation, resource acquisition is also a material relation 

associated with the same concepts of dependency and social relator. We created 

this as a different concept because when agent A needs access to a resource R 

controlled by agent B, it is awkward to say that agent A delegates resource R to 

agent B. Moreover, this relation is differentiated as follows: an agent A acquires a 



 

 22

resource R from agent B is equivalent to say that agent A needs to use resource R, 

agent A does not control resource R, agent B controls resource R, and agent B 

commits himself to give agent A access to resource R. In an alternative 

formulation we can say that if agent A acquires resource R from agent B then: (i) 

there is a resource dependence from A to B w.r.t. R; (ii) A and B are mutually 

aware of this dependency; (iii) B socially commits to give A access to R. 

4. Evaluating ARKnowD Notation 

When conceiving a novel modeling language, one should obviously be 

concerned with its quality. Two aspects that influence the quality of a modeling 

language are: (i) how well the language is able to represent phenomena in its 

domain of discourse (also referred as domain appropriateness); (ii) how clearly 

the language is able to communicate such phenomena to the eventual readers of 

its models (also referred as comprehensibility appropriateness) (Guizzardi, 2005). 

ARKnowD’s language comprehends both the notation of Tropos and AORML. It 

is thus important to verify the quality of these languages individually, but 

especially the consistency in their integration to generate ARKnowD’s language. 

4.1. Evaluation Method 

Guizzardi (2005) provides a framework for evaluating domain appropriateness 

and comprehensibility appropriateness of modeling languages. This framework is 

based on the construction of a domain ontology to describe the conceptual domain 

of discourse. This ontology is then used as a reference model for the modeling 



 

 23

language, i.e. for verifying how well this modeling language is able to represent 

the concepts and relations represented in the ontology.  

Given the ontology elaborated and described in the previous section, we intend 

to apply this method to evaluate ARKnowD’s language. The evaluation criterion 

is based on a number of properties that should hold for the mapping between a 

representation (or system of representations) and the portion of reality it is 

supposed to represent. These properties are lucidity, soundness, laconicity and 

completeness if we operate at the level of individual models, i.e., analyzing the 

mapping between individual models and what they are supposed to represent. In a 

complementary way, we consider the properties of construct overload, construct 

excess, construct redundancy and (language) completeness when operating at the 

level of a system of representation, i.e., when considering the mapping between a 

language and a conceptualization of given domain. These eight properties are  

briefly described in the sequel. For an in depth presentation of this method one 

should refer to (Guizzardi, 2005).  

A model is considered lucid according to a conceptualization if each of its 

constructs represents at most one entity of this conceptualization. Although not 

exactly the same, non-lucidity is closely linked to construct overload, i.e. having a 

single language construct representing two or more ontological constructs. As 

stated in (Guizzardi, 2005, p. 31), “Construct overload is considered an 

undesirable property of a modeling language since it causes ambiguity and, hence, 



 

 24

undermines clarity. When a construct overload exists, users have to bring 

additional knowledge not contained in the specification to understand the 

phenomena which are being represented.” 

Soundness refers to the property of a model of representing solely the entities 

of the domain conceptualization. Having a construct in a modeling language that 

does not map to any ontological construct is also known as construct excess. The 

presence of this extra construct should be avoided since it undermines the 

understanding of the specification. In other words, the clarity of a specification is 

improved if the reader is able to link the language constructs to the entities of the 

domain of discourse.  

A model is said laconic if it possesses only one construct to represent each 

phenomenon in the domain or discourse (i.e., each entity in the domain ontology). 

Conversely, the same conceptual entity may be represented by two or more 

constructs in a specification, consequently adding confusion to the meaning of the 

model. A reader may ask himself, for example, if the two constructs are actually 

the same or if there is any semantic distinction between them. Non-laconicity is 

then related to construct redundancy at the language level, which besides turning 

more difficult the understanding of specifications adds unnecessary complexity to 

the modeling language. 

A model is said to be complete if every concept in the represented domain 

conceptualization is covered by at least one element of this model. This is directly 



 

 25

linked to expressivity or completeness at the language level. Language 

incompleteness entails lack of expressivity, i.e., there can be phenomena in the 

considered domain that cannot be represented by the language. Alternatively, 

users of the language can choose to overload an existing construct in order to 

represent concepts that originally could not be represented, thus, undermining 

clarity. Thus, unless some existing construct is overloaded, an incomplete 

modeling language is bound to produce incomplete models. 

4.2 Evaluation 

Taking the ontology presented in section 3 and based on the method briefly 

described above, we found a few problems in the current Tropos and AORML 

notations. Consequently, we here suggest a few adjustments in order to proceed 

with their use in ARKnowD. It is important to point out that these languages are 

here considered in integration with one another, so for example, if one 

comprehends a set of ontological concepts, the lack of these same concepts in the 

other is not considered incompleteness.  

4.2.1. Evaluating the Tropos Language 

In Tropos, there are one case of construct redundancy, one case of construct 

excess (and, hence, unsoundness), two cases of incompleteness, and one case of 

construct overload.  

Construct Redundancy and Unsoundness. First, let us address the cases of 

construct redundancy and unsoundness together. In Tropos, besides the concept of 



 

 26

agent and role, corresponding to our ontological concepts of physical agent kind 

and physical agent role, there are two other concepts: actor and position. Figure 8 

depicts these concepts and their corresponding notations. 

The concept of position is considered solely with the purpose of aggregating 

different roles. Let us analyze this concept a bit further. As stated in section 3.3, a 

physical agent role is characterized by the set of social moments types, i.e. general 

commitments and claims a physical agent playing such a role agrees to. As a role 

aggregation, a position is characterized by the union of the social moment types 

characterizing its aggregating roles. Regarding the meta-property of rigidity, a 

position like a role is an anti-rigid type. Therefore, a position as much as a Role 

can be seen as an anti-rigid type characterized by a set of social moment types. 

Hence, we conclude that there is no real distinction between the ontological 

concepts of role and position, thus not justifying the use of two different language 

primitives instead of one. To put it differently, the presence in Tropos of both role 

and position to represent the same ontological concept constitutes a case of 

construct redundancy. 

Still referring to Fig. 8, we note that actor is a general concept that can refer to 

an agent, to a role or to a position. However, we find no reason why to consider 

such a concept. Some claim that in i* (Yu, 1995), agent is defined as an instance 

of the actor type. However, this is not clear in this picture, also present in the i* 

original proposal. Moreover, such definition would only add confusion to the 



 

 27

modeling language, since there is no reason whatsoever to name an instance 

differently from its type.  

Other researchers, who apply i* for requirements analysis combined with 

object-oriented design claim that the concept of agent is important because not all 

system actors from the analysis activity become agent-oriented systems, thus 

agent could be used to differentiate object-oriented and agent-oriented systems 

(i.e., representing the latter). However, we find this a misconception since the 

term actor already implies that such an entity is ‘one who acts’, thus it is an active 

entity and could not represent an object anyway. In our view, there is no 

inconsistency in applying agents to analyze a domain and then, design the system 

using object-oriented methodologies or others. In this case, agents are applied as 

modeling metaphors only during analysis and thus, their behavior is modeled as 

active entities, even if later, the chosen implementation technology will lead them 

to be designed as passive ones. Consequently, such an explanation does not justify 

the use of two concepts, i.e., actor and agent.  

We conclude that the concept of actor leads to unsoundness, causing many of 

i* and Tropos literature not to make use of the four available concepts of actor, 

agent, position and role. Many times, authors limit themselves to one or two of 

these concepts or even worse, apply them inconsistently (for instance, while in 

one work, agent is considered an instance of an actor, in another, agent is applied 

to differentiate between agent-oriented systems and object-oriented systems). 



 

 28

Hence, our proposed solution considers only the concepts of agent and role. 

Dismissing the position and actor concepts, the analyst should identify from start, 

if a domain participant is an agent or a role (rigid and anti-rigid concepts, 

respectively). For representing an agent, ARknowD adopts Tropos’s actor 

notation (empty circle) for being the simplest form, maintaining the current 

Tropos notation for roles. 

Incompleteness and Construct Overload. Going forward with the evaluation of 

the Tropos language, we address the incompleteness and non-lucidity issues by 

considering the case illustrated in Figure 9. 

Fig. 9 depicts the following situation: the department manager of an 

organization relies on the department secretary to make an appointment for a 

meeting with all the employees of the department. For that, the secretary, on her 

turn, depends on a specific calendar system named eDate. The secretary is always 

checking for free new versions of the eDate system in the developer’s website, 

aiming at profiting from new functionality and enhancements in this system. 

Department manager, department secretary, eDate, and eDate system developer 

are examples of Tropos agents, which correspond to the UFO-C concept of 

physical agent. 

In part A), however, it is not possible to differentiate between physical agent 

type and physical agent individual. For instance, it is not clear if we talk about a 

specific secretary and a specific system, or general ones. Representing both 



 

 29

ontological concepts using only one language construct is understood as construct 

overload. This may be in the way for a clear understanding of the modeled setting. 

We therefore provided in B), a way to differentiate these two entities. Inspired by 

UML, we chose to underline the name of physical agent individuals to point out 

the difference between them and physical agent type, thus imitating the way UML 

differentiates between instances and classes. Our choice provides a suitable 

connection between Tropos and AORML, which already adopts this UML 

strategy. Following such strategy, part B) depicts eDate as an individual and all 

other agents as types. The choice of making the others as agents is to maintain a 

level of generality for the model, for instance this case would typically hold even 

if the secretary were changed. The new one would continue to be responsible for 

setting up meetings on behalf of her boss, and using the same system to do so. 

A case of incompleteness that can be noted in Fig. 9 A) refers to the lack of 

language expressivity of the Tropos language to model the concept of 

dependency. What Tropos usually terms dependency is actually a case of 

delegation according to our ontology. As seen in section 3.3, the latter is stronger 

than the former, as besides dependency, it also involves commitment from the 

dependee in relation to the depender. In part A) of Fig. 9, the delegation depicted 

between the secretary and the eDate system developer is actually only a 

dependency. The secretary does not know the developer, who on his turn has no 

way to commit specifically to her on releasing new system’s versions. In other 



 

 30

words, if the developer decides to stop providing free releases and rather to start 

charging for new eDate versions, the secretary does not have a claim towards him 

and will just have to accept this fact. To correct this expressivity problem, we 

created a new symbol to distinguish dependency from delegation. This is a similar 

arrow as used before, however empty headed to denote the lack of commitment. 

This new symbol is illustrated in Fig. 9 B). Please note that it is not our intention 

to determine whether both dependency and delegation are to be applied in all 

modeled cases. It may be that in some specific cases, only dependencies (or only 

delegations) make sense. However, with this proposal, we make sure that the 

language is expressive enough to capture both concepts since in some situations 

(as the one just illustrated), both dependency and delegation are present. 

The other case of incompleteness, actually refers to the concept of resource 

acquisition, differentiated from resource dependency by the commitment of the 

acquisitee to deliver a given resource to the acquisitor.  Figure 10 depicts the 

modeling constructs used for the three kinds of dependencies, as well as for 

resource acquisition, goal and plan delegations. The resource acquisition notation 

maintains uniformity regarding the ones used for goal and plan delegation, 

showing that analogously to these relations, a resource acquisition is a resource 

dependency added by a commitment (in this case, the commitment of the 

acquisitee to provide the acquisitor with access to the acquisitum). 

 



 

 31

4.2.2. Evaluating AORML 

In AORML, we found one case of construct overload. This regards the 

notation used at the same time to model a non-agentive object and a belief. To 

correct this problem, we use stereotypes, an UML construct commonly used to 

extend this language, differentiating old and new entities. Such construct is 

already applied in AORML, for example to distinguish between human, 

institutional and artificial agents. Figure 11 shows our proposed solution, 

depicting a typical situation involving a library institutional agent and a borrower 

human agent. The library uses an information system to organize its book 

collection. The borrower borrows books, having his own internal beliefs related to 

these books. The figure differentiates the actual books from the agent’s internal 

beliefs by stereotyping the belief class. 

5. ARKnowD Transformations: Mapping Tropos into AORML 

As previously explained, it is necessary to provide a transformation method to 

convert the notation of the models of the different viewpoints. In ARKnowD, this 

is done by mapping Tropos concepts to AORML concepts, now made 

semantically explicit by the presented UFO-C ontology. Table 1 depicts this 

mapping, previously presented in (Guizzardi, 2006). 

In Tropos, an agent models an entity that has strategic goals and intentionality 

within the system or the organizational setting. This concept directly maps to one 



 

 32

of the three types of agents in AORML: human, artificial or institutional agent, 

depending on its nature.  

Tropos’s plans may indicate paths for AORML’s interaction modeling. In 

other words, for each plan in a Tropos model, there can be an AOR Interaction 

Sequence Diagram, modeling the interactions of the agents participating in this 

plan (i.e. agents having the plan, or being connected to it by a delegation link).  

Capabilities in Tropos may be seen as a set of plans and, therefore, could be 

mapped to the set of interaction modeling paths (i.e. set of AOR Interaction 

Sequence Diagrams), representing the agent’s plans. 

Analogously, resources that represent physical or information entities in 

Tropos become objects according to AORML conceptualization.  

Additionally, in Tropos, goal, plan and resource dependency between two 

agents indicate that one agent depends on the other in order to achieve some goal, 

execute some plan, or obtain some resource. Because such dependency link 

indicates a kind of relation between the two agents (depender and dependee), an 

association link may be depicted between these agents in an AOR Agent 

Diagram, typically used for information modeling. Here, we consider the 

differences between dependency, delegation and resource acquisition pointed out 

in section 3. As mentioned in that section, besides involving dependency between 

agents, delegation implies that the delegatee actually agreed to accomplish a goal 

or perform a task on behalf of the delegator. Thus, a commitment is established 



 

 33

from the delegatee regarding the delegator (or a claim emerges from the delegator 

towards the delegatee). Therefore, goal and plan delegations leads to the 

establishment of AORML commitments/claims between agents, usually depicted 

in interaction modeling, using one or more types of AOR interaction diagrams. 

Resource acquisition is treated analogously to goal and plan delegation, since as 

previously discussed in section 3, these concepts have similar nature. In other 

words, also in the case of resource acquisition, an association link in the AOR 

Agent Diagram, and a commitment/claim link are assumed to exist between the 

two agents (the acquisitor and the acquisitee). 

Note that one of the most important entities in Tropos, the concept of ‘goal’, is 

not mapped into AORML. This relates to the fact that ARKnowD applies goal 

modeling exclusively for requirements elicitation and analysis and architectural 

design. On detailed design, all goals have already been dealt with. Goals may 

have been fulfilled or abandoned. But most commonly, goal analysis leads to the 

delegation of unsolved goals to new or old agents, who are either part of the 

organization or a new information system. And finally, concrete plans are 

assigned to goals with the purpose of accomplishing them. Consequently, when 

the detailed design activity starts, plans should be modeled rather than goals. As 

observed in Table 1, plan modeling may be done through the use of AOR 

Interaction Sequence Diagrams, which detail the protocol of communication 

between agents to realize a specific sequence of actions. 



 

 34

6. Conclusion 

This chapter described an ontology-based strategy to identify correspondences 

between two distinct agent-oriented modeling languages, namely, i.e. the Tropos 

language and AORML, enabling them to be used in two distinct development 

activities of the ARKnowD methodology. For making such correspondences, we 

proposed an MDA-inspired transformation method, which requires a mapping 

between the metamodels of the two notations. To guarantee the consistency of 

this mapping, we use an ontological approach aimed at making explicit the 

semantics of the applied agent-oriented concepts. The developed ontology also 

serves as a reference model for the evaluation of the adopted notations, allowing 

us to improve the clarity and consistency of the resulting modeling language. 

The development of a philosophically well-founded upper level ontology is an 

important step towards the definition of real-world semantics for conceptual 

modeling and agent-oriented concepts. The partition of the Unified Foundational 

Ontology (UFO) employed here reflects a certain stratification of our world. 

However, it also reflects different degrees of scientific consensus: there is more 

consensus about the ontology of endurants (UFO-A) than about the ontology of 

perdurants (UFO-B), and there is more consensus about the ontology of 

perdurants than about the ontology of intentional and social things (UFO-C). In 

particular, the extension of UFO-C proposed in this article should be regarded as 



 

 35

work in progress, and as a preliminary attempt towards the characterization of 

concepts constituting the reality of organizations and social relations. 

References 

1. Bottazzi, E., & Ferrario, R. (2005). A Path to an Ontology of Organizations. 

Proceedings of the Workshop on Vocabularies, Ontologies, and Rules for the 

Enterprise 2005 (pp. 9-16). Enschede: Centre for Telematics and Information 

Technology. 

2. Castelfranchi, C. (1995). Commitments: From Individual Intentions to Groups 

and Organizations. In Proceedings of the First International Conference on 

Multi-Agent Systems (pp. 41-48). AAAI-Press and MIT Press. 

3. Castelfranchi, C., & Falcone, R. (1998). Towards a Theory of Delegation for 

Agent-Based Systems. Robotics and Autonomous Systems, (24), 141–157. 

4. Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual 

Models. Ph.D. thesis, Enschede: University of Twente.  

5. Guizzardi, G., & Wagner, G. (2005). Some Applications of a Unified 

Foundational Ontology in Business Modeling. In P. Green and M. Rosemann 

(Eds.), Business Systems Analysis with Ontologies (pp. 345-367). London: 

Idea Group. 

6. Guizzardi, R.S.S. (2006). Agent-oriented Constructivist Knowledge 

Management. Ph.D. thesis, Enschede: University of Twente. 



 

 36

7. Harmsen, F., Brinkkemper, S., & Oei, H. (1994). Situational method 

engineering for information system project approaches. In A.A. Verrijn-Stuart 

and T.W. Olle (Eds.), Methods and associated tools for the information 

systems life cycle (pp. 169-194). Amsterdam: Elsevier. 

8. Henderson-Sellers, B. (2005). Creating a Comprehensive Agent-Oriented 

Methodology Using Method Engineering and the OPEN Metamodel. In B. 

Henderson-Sellers and P. Giorgini (Eds.), Agent-Oriented Methodologies (pp. 

368-397). London: Idea Group. 

9. Juan, T., Sterling, L., & Winikoff, M. (2004). Assembling Agent-Oriented 

Software Engineering Methodologies from Features. In P. Giorgini, J. P. 

Muller and J. Odell (Eds.), Agent-Oriented Software Engineering IV (pp. 198–

209). Berlin: Springer-Verlag.  

10. Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0.1, omg/2003-06-01. 

Reference guide published in MDA’s site.  

11. Sabas, A., Delisle, S., & Badri, M. (2002). A Comparative Analysis of 

Multiagent System Development Methodologies: Towards a Unified 

Approach. Proceedings of the 16th European Meeting on Cybernetics and 

Systems Research (pp. 599-604), Vienna, Austria. 

12. Susi, A., Perini, A., Mylopoulos, J., & Giorgini, P. (2005). The Tropos 

Metamodel and its Use. Informatica, 29(4), 401-408.  



 

 37

13. Wooldridge, M.J. (1992). Intelligent Agents. In G. Weiss (Ed.) Multiagent 

Systems: A Modern Approach to Distributed Artificial Intelligence (pp. 27-

78). Cambridge: MIT Press. 

14. Yu, E. (1995). Modeling Strategic Relationships for Process Reengineering. 

Ph.D. thesis, Toronto: University of Toronto. 

                                                 
i
 In (Guizzardi, 2005), a much richer system of substantial types is presented. There, Roles are 

characterized both in terms of anti-rigidity, relational dependence, and the sortal/non-sortal 

distinction. Together these metaproperties can differentiate Roles from other anti-rigid substantial 

types such as Role Mixins or Phases. 

 

 

Tropos Concepts AORML Constructs 

agent  agent 

Plan AOR Interaction Sequence Diagram 

Capability set of AOR Interaction Sequence 

Diagram 

Resource object 

Dependency AOR Agent Diagram association 

relation 

Delegation AOR Agent Diagram association 

relation/AOR commitment 

resource acquisition 

 

AOR Agent Diagram association 

relation/AOR commitment 

Table 1. Mapping Tropos into AORML 
 



 

 38

                                                                                                                                     

Perdurant

Physical ObjectAmount of 

Matter

{disjoint}

Substance 

Individual

Endurant

Individual

Moment 

Individual

{disjoint}

inheres in
1..*

*

1

Relator

Intrinsic 

Moment

{disjoint}

{disjoint}

Externally 

Dependent 

Moment

existentially depends on*

mediates
2..*

*

 
Figure 1. Different kinds of individuals in UFO-A 

 

Individual

Moment Type

Substance 

Kind

Substance

Type

Substance 

Role

Endurant Type

Type

Entity

Relator

Type

Material 

Relation

Formal 

Relation

Relation 

instantiates

1..**

 
Figure 2. UFO-A: differentiating between Kind and Role 



 

 39

                                                                                                                                     

 

State

Complex EventAtomic Event

Event

Perdurant

(from UFO-A)

Pre-state

Post-state
1 *

1 * 2..*

 
Figure 3. UFO-B: understanding perdurants in details 

 

Physical Object 

(from UFO-A)

Physical Agent

Non-Agentive 

Object

Event

(from UFO-B)

Action Event Non-Action 

Event

perceives 1..*

creates
1..*1..*

Communicative 

Action Event

Institutional 

Agent

receives

sends

*

*

*

1

Human Agent Artificial Agent

Resource

Complex 

Action Event

Atomic Action 

Event

controls

uses*

1..** 1..*

2..*

*

InternalAgent

Plan Execution

Plan Type

instanciates

1

*

 
Figure 4. Extending UFO-C from the UFO-A concept of Physical Object and the 

UFO-B concept of Event 



 

 40

                                                                                                                                     

 

Physical Agent

Moment 

(from UFO-A)

Relator

(from UFO-A)

Intrinsic Moment

(from UFO-A)

Mental Moment

1

1

inheres in

Intention

Commitment

State of Affairs

Goal

*

Social Moment

Claim

*

2..*

mediates

*

Plan Execution

achieves

refers to

1..*

*

refers to

Social Relator

*

*

DesireBelief

refers to
1..*

1

Plan Type

associated to

1..*

1..*

instantiates
1

*

2..*

 
Figure 5. Extending UFO-C from the UFO-A concept of Moment 

 

Physical Agent

Individual

Moment Individual

(from UFO-A)

Intrinsic 

Moment

1

inheres in

Social Moment

1..*

Physical Agent 

Kind

Physical Agent 

Type

instantiates

1..*1

Physical Agent 

Role

Social Moment 

Type
instantiates

is characterized

1 1..*

*

1..*

 
Figure 6. Pointing out the difference between Physical Agent Kind and Physical 

Agent Role 



 

 41

                                                                                                                                     

 

Physical Agent 

Goal 

Dependency

Formal Relation

(from UFO-A)

Dependency
1

Plan 

Dependency

Resource 

Dependency

Dependum

Dependum

Dependum

Depender

Dependee1

1

1

1

* *

*

*

*

Goal 

Delegation

Material Relation

(from UFO-A)

Delegation

Plan 

Delegation

Goal

Resource

Delegatum

Acquisitum

1 1

*

* *

1

* * Delegator

Delegatee*

1

1

Social Relator

associated to

1

Delegatum

Resource 

Acquisition

associated to
associated to

associated to

AcquisitorAcquisitee
1 1

* *

*
1

1

1

*

*

 
Figure 7. Distinguishing between Dependency, Delegation and Acquisition 

relations 

Agent

Actor

Role Position

occupies

plays covers

actor agent role position

B)

A)

 
Figure 8. A) an excerpt of the Tropos’s metamodel showing the concept of actor 

and its specializations (Susi, Perini, Mylopoulos & Giorgini, 2005) and B) 

corresponding notations 



 

 42

                                                                                                                                     

 

 

Department 

Secretary

setting up a meeting 

with department’s 

personnel

Department 

Manager

eDates 

System

having employees’ 

availability  

information  

A) B)

eDates 

System 

Developer

having free new 

system releases

Department 

Secretary

setting up a meeting 

with department’s 

personnel

Department 

Manager

eDates 

System

having employees’ 

availability  

information  

eDates 

System 

Developer

having free new 

system releases

 
Figure 9. Correcting two cases of incompleteness 

 
dependeedepender

goal dependency

delegateedelegator

goal delegation

dependeedepender

plan dependency

delegateedelegator

plan delegation

dependeedepender

resource dependency

aquisiteeacquisitor

resource acquisition  
Figure 10. Differentiating the three types of dependencies, goal and plan 

delegation, and resource acquisition 

 



 

 43

                                                                                                                                     

ITBE Library

Book

LibSys

<<institutional>>

Borrower

<<artificial>>

<<human>>

Book

<<belief>>

organizes

borrows

agent

object

refers to

Legend

 
 

Figure 11. Distinguishing beliefs from non-agentive objects in AORML 

 


