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For many years, the role played by domain knowledge in all
stages of knowledge discovery has been recognized by au-
thors in the field. However, the real-world semantics em-
bedded in data is often still not fully considered in tradi-
tional data mining methods and techniques. In this paper,
we defend that the quality of data mining results is directly
related to the extent that they reflect important proper-
ties of real-world entities represented therein. Analysing
and characterising the nature of these entities is the very
business of the area of Formal Ontology. We briefly elabo-
rate on two particular types of artefacts produced by this
area: Foundational Ontologies and Ontology-Driven Concep-
tual Modeling languages grounded on them. We then elabo-
rate on the benefits they can bring to several activities in a
Data Mining process.
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1 | INTRODUCTION

Data has always been an essential resource supporting decision-making. In recent years, the exponential growth in
the volume of data available has challenged organizations to find efficient ways to extract relevant information from
their data assets. In this scenario, data mining processes emerge as an essential approach to extracting strategic
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knowledge in large collections of data. Fayyad et al. (1996) first coined the term Knowledge Discovery in Databases
(KDD) as the "nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns
in data". Han et al. (2011) further stressed the characteristics of KDD cycle in dealing with massive amounts of data
spread in different kinds of data sources. These data sources may span databases, data warehouses, flat files, theWeb
and other data repositories, data streams dynamically fed from social media, sensors or other devices.

This multidisciplinary field of study emerged during the late 1980s, culminating with the recent - and still increas-
ingly active - boom of Data Science lifecycles and methodologies (Priebe andMarkus, 2015; Shcherbakov et al., 2014).
Despite the evolving terminology that has been applied to this field and its related areas, the knowledge discovery
process is essentially an iterative cycle comprising Problem Understanding, Data Pre-processing, Data mining, and Data
Post-processing. Problem Understanding specifies the problem to be addressed, and the objectives that are pursued
by the organization that motivate the knowledge discovery process. Data Pre-processing prepares data for mining,
and comprises the activities of: (i) Data cleaning - to eliminate noise and inconsistencies in data; (ii) Data integration -
to combine multiple data sources; (iii) Data selection - to filter out data that is considered irrelevant to the problem at
hand; and (iv) Data transformation - to transform and consolidate data into forms appropriate for mining. Data Mining,
in turn, is the fundamental step where computational techniques are applied to extract patterns from pre-processed
data. In industry, in media, and in some research fields “the term data mining is often used to refer to the entire knowl-
edge discovery process” (Han et al., 2011), or as a synonym for KDD, given its essential role in the entire enterprise.
Finally, Data Post-processing includes Pattern evaluation (to select from the discovered patterns the ones that truly
represent interesting knowledge, based on the quality metrics applicable for each mining technique) and Knowledge
presentation and interpretation (“when visualization and knowledge representation techniques are applied to present
mined knowledge to users” (Han et al., 2011)).

For many years, the fundamental role of domain knowledge for all stages of knowledge discovery has been recog-
nized by authors in the field (Fayyad et al., 1996; Han et al., 2011). Nonetheless, traditional data mining methods and
techniques treat data as merely “sums of attribute values" so that statistics can be calculated on them to then foster
the construction of patterns and models. Generally speaking, the real-world semantics embedded in the data is not
explicitly considered in these approaches. However, as nicely put by Mealy (1967)1, “Data are fragments of a theory
of the real-world". As a consequence, approaches that are oblivious to the real-world semantics of data are limited
to the correlations and data relationships that they can discover. In other words, the quality of data mining results is
directly related to the extent that they reflect important properties of real-world entities represented therein. In line
with this view, a recent trend in data mining research proposes leveraging domain knowledge, especially represented
as ontologies (Guarino, 1994, 1998; Guizzardi, 2007), to improve the KDD process. This paper is harmonious with this
trend. However, differently from the approaches that propose the use of the so-called domain ontologies to support
the KDD process, here we focus on discussing how each step of the KDD process can benefit from data grounded
on Foundational Ontologies. We discuss the role of foundational ontologies not as a substitute for the use of domain
ontologies, but as a complementary approach.

Foundational ontologies are philosophically well-founded axiomatic systems of domain-independent categories
and their ties (e.g. objects, events, causality, parthood, spatial-temporal connections, dependencies, etc.) that can be
used to articulate the representation of phenomena in different material domains (Guizzardi, 2007; Gangemi et al.,
2002). Examples of foundational ontologies include DOLCE (Borgo and Masolo, 2009), GFO (Herre, 2010), SUMO
(Niles and Pease, 2001) and UFO (Guizzardi, 2005; Guizzardi, G. et al., 2015). As such, they serve as a conceptual basis
for capturing the essence of particular domains in reality, and thus are potentially valuable for identifying correlations
and other interesting relationships among data reflecting their ontological counterparts.

1This paper by Mealy contains the first mention of the term ‘Ontology’ in Computer Science.
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The fundamental ontological distinctions embodied in a foundational ontology can be used to improve the quality
of the data mining process, mainly when it includes information from multiple sources that may commit to different
theories about a particular concept. Let us take the example of two different systems A and B that record information
about organ transplants. In this case, A and B may commit to different theories (ontologies) of transplants. We cannot
assume that just because the same term (e.g., Transplant) is used in both structures that they mean the same thing.
For instance, the relation between Transplant-A and Transplant-B is not one of identity if, for example, the instances
of Transplant-A are individual transplants that occur in particular time and space and the instances of Transplant-B
are types of transplant. Moreover, even if one takes transplants in senses A and B to both refer to individuals in
space and time, they can still refer to events in one case (e.g., A), while referring to reified relationships (technically,
relators - see discussion on the next section), in the other (B) (Guarino and Guizzardi, 2016; Guizzardi et al., 2016).
In the former case, the relation between Transplant-A and Transplant-B is one of instantiation, i.e., the instances of
Transplant-A are instances of instances of Transplant in the sense of system B (Transplant-B); in the latter case, it is
one of manifestation, i.e., instances of transplant in one case are manifestations of properties (e.g., right, obligations,
powers) of transplant as a bundle of relational aspects. Finally, even if transplants are events in both senses A and
B, they might refer to different formal notions of events. For example, according to sense A, an event could be an
entity that only exists in the past, thus having all its properties immutable (Guizzardi et al., 2016) whilst, according
to sense B, it could be something that unfolds in time by possibly having mutable temporal parts (Guarino, 2017).
As previously mentioned, the ontological distinctions put forth by foundational ontologies can be powerful tools for
addressing these challenges.

As we report in section 2 below, we are not the first to investigate the connection between the topics of founda-
tional ontologies and data mining. However, there are two perspectives in which the analysis put forth here is novel.
Firstly, as discussed below, most of the existing approaches that leverage on research of foundational ontologies in
this area focus on these ontologies as artifacts, e.g., using thesemodels as “semantic bridges" or “pivots" for connecting
other models (as in the area of ontology matching for schema integration). Here, in contrast, our focus is on the role
of foundational ontologies as providing a conceptual toolbox for supporting ontological analysis, meaning explication
and negotiation, and conceptual clarification. In fact, most existing approaches that use foundational ontologies in
data mining employ lightweight versions of these ontologies (Trojahn, C., Vieira, R., Schmidt, D., Pease, A., Guizzardi,
G., 2021), typically coded in inexpressive formal languages such as OWL (WebOntology Language). These models are
drastic simplifications of their corresponding ontologies’ original axiomatizations, and as such, they are much poorer
tools supporting the type of analysis advocated here. Moreover, as formal theories, they are not easy to be directly
adopted in data mining activities such as domain modeling. This is because they lack proper associated representa-
tion languages (i.e., domain models based on these foundational ontologies should be done by either specializing or
instantiating these formal theories) and tools. So, a second perspective in which this article diverges from the existing
approaches in the literature is that it reports on advances in an area termedOntology-Driven Conceptual Modeling. This
area aims at employing foundational ontologies to derive engineering tools for conceptual modeling/data modeling.
These include modeling languages, libraries of patterns and anti-patterns, and computational tools for model creation,
verification, validation, verbalization, codification and database generation, as well as automated model diagnosis and
repair via learning (Guizzardi, G. et al., 2015; Fumagalli et al., 2020). In particular, we focus here on the only founda-
tional ontology we are aware of that provides such a complete ecosystem of technologies and in a way that is familiar
to data modelers, namely, the Unified Foundational Ontology (UFO) (Guizzardi, G. et al., 2015), and the UFO-Based
Conceptual Modeling language OntoUML (Guizzardi, 2005).

The remainder of this paper is organized as follows. In Section 2, we briefly review existing literature in data
mining that refers to Foundational Ontologies. In Section 3, we briefly introduce the reader to theUnified Foundational
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Ontology (UFO) and OntoUML. In Section 4, we illustrate how some fundamental KDD activities can be improved with
the support of ontologically well-founded artifacts such as UFO and OntoUML. Finally, section 5 presents some final
considerations.

2 | FOUNDATIONAL ONTOLOGIES AND DATA MINING:
AN UNDER-EXPLORED CONNECTION

There are few works in the literature that jointly address the topics of "foundational ontology" and "data mining".
However, these proposals do not address the general implications of considering a foundational ontology in the results
of applying a data mining technique in specific material domains of interest.

The work of DMOP (Data Mining OPtimization Ontology) (Keet et al., 2015) proposes an ontology for the data
mining process domain. The proposed ontology is aligned to the DOLCE foundational ontology; however, the authors
do not address the semantic precision of material domain concepts, or how their ontological distinctions impact on
the results of the data mining process and its activities.

The works of Khan and Keet (2014) and of Padilha et al. (2012) address the alignment of foundational ontologies,
or of domain and foundational ontologies, and the data mining domain happens to be one of the studied domains
for applying their proposal. However, they also do not elaborate on the impact of making explicit the ontological
foundations of the aligned concepts on the patterns extracted by the mining techniques applied. In (Mascardi et al.,
2009) the authors systematically evaluate the use of three foundational ontologies (or upper ontologies, as they name
it) as bridges for improving the results of the matching process. They acknowledge that two of the ontologies they
evaluated (OpenCyc and SUMO-OWL) were, in fact, large-coverage general-purpose ontologies that include many
domain-specific concepts, and the third ontology (DOLCE) was the only “pure upper-ontology” they used. They con-
cluded that the gain from an upper-ontology was limited to the cases where there were domain-specific concepts
and that the use of a pure upper-ontology deteriorates the process. This could be explained by the fact that they did
not take into account the meta-properties of true ontological nature that characterize the distinctions put forth by
DOLCE. Instead, as previously mentioned, they constrained the upper ontology as “semantic bridges” (or as a pivot
model) in the matching process. This is also what is observed in the comprehensive survey reported in (Trojahn, C.,
Vieira, R., Schmidt, D., Pease, A., Guizzardi, G., 2021) on the use of foundational ontologies for schema matching; that
is, as reported there, foundational ontologies are used in that area: mainly as an artifact; represented by their weakly-
axiomatized lightweight versions; and, hence, not mainly as a tool for ontological analysis, conceptual clarification and
meaning negotiation; without the support of proper data modeling tools.

The work of Bleisch et al. (2014) uses a "foundational ontology of causation" to structure the concepts of state
and event, as well as a causality relation between events, and an allowance relation between a state and an event. The
authors use the referred ontology to define well-founded patterns and discover causality relations and movement
patterns by applying two data mining techniques: association rule mining (ARM) and sequence mining, which extends
ARM to incorporate temporal sequences of transactions. The authors justify the use of a foundational ontology to
amplify the generality of their approach but do not address the issue of semantic precision in interpreting domain
concepts. In any case, their approach may be considered an example of applying some of the ideas we propose here
to a very specific context.

Ristoski and Paulheim (2016) present a survey on the usage of Linked Open Data to provide additional knowledge
to enhance the value of data mining. The authors discuss how semantic data can be used at the different stages of
the knowledge discovery process and analyze how different characteristics of Linked Open Data are exploited by



Glenda Amaral et al. 5

different approaches, including the role played by ontologies. The vast majority of the approaches analyzed in that
work use a custom ontology or reuses an existing domain ontology, however the authors neither mention if these
ontologies are built with the support of a foundational ontology nor discuss the benefits this could bring to the KDD
process. In a previous work (Ristoski and Paulheim, 2014), the authors introduce a method that exploits hierarchies to
reduce the set of features in the pre-processing step of data mining, which has an impact on both the runtime and the
result quality of the subsequent processing steps. Similarly, although the semantics existing in hierarchies is explored
to improve the pre-processing step, as the hierarchies considered are not based on any upper-level ontology, they
do not benefit from the application of the full axiomatization of foundational ontologies as a analysis tool during the
mining process.

Similarly, other works in the literature exploit the use of taxonomic structures to improve data mining techniques,
also without benefiting from the full axiomatization of foundational ontologies in the process. This is the case of the
work from Baralis et al. (2012), who proposed a framework to discover interesting generalized association rules driven
by amultiple taxonomy that allows the opportunistic extraction of knowledge at different aggregation levels. Also, Silla
and Freitas (2011) surveyed methods addressing the problem of hierarchical classification (which the authors defined
as being any classification problem with a class structure of an IS-A hierarchy that is asymmetric, anti-reflexive and
transitive, such as taxonomies). The authors even acknowledge the existence of a few cases in which the semantics of
the underlying class hierarchy might differ (such as with the Gene Ontology which, from a semantic point of view, is
essentially a PART-OF class hierarchy), but as long as the aforementioned properties are satisfied, they are considered
as hierarchical classification problems. Therefore, these works do not commit to searching for patterns in data by
taking real-world semantics into account.

3 | THE UNIFIED FOUNDATIONAL ONTOLOGY (UFO) AND THE ONTOUML
LANGUAGE

The Unified Foundational Ontology (UFO) has been “developed by consistently putting together a number of theories
originating from areas such as Formal Ontology in philosophy, cognitive science, linguistics and philosophical logics”
to provide formal ontological foundations for conceptual modeling (Guizzardi, G. et al., 2015). DOLCE, GFO and
UFO are all centered around the same notions of what is termed the Aristotelian Square (Guizzardi, 2005). So, in
that respect, they are rather similar. In fact, UFO was created as an extension of the unification of DOLCE and GFO
to deal with a number of specific phenomena that arise in Conceptual Modeling. For example, unlike DOLCE, UFO
includes a rich ontology of relations (Guarino and Guizzardi, 2016). Moreover, unlike DOLCE, which is an ontology
of particulars, UFO includes a number of formal distinctions among types of universals (e.g., kinds, phases, roles,
mixins - see next section). Both these features have been shown to be fundamental for conceptual modeling Guizzardi
(2005). Additionally, unlike GFO, UFO has a theory of relations that is finitely instantiable (Guizzardi, G. et al., 2015),
which makes it practical to conceptual modeling applications. Furthermore, unlike DOLCE (but also SUMO, GFO,
BFO), UFO is formally connected to a conceptual modeling language (OntoUML). OntoUML was designed such that
its modeling primitives reflect the ontological distinctions of its underlying ontology, and its grammar is enriched
with semantically-motivated syntactical constrains that mirror UFO’s axiomatization. Finally, research shows that
UFO is vastly more used in Conceptual Modeling (an area closely connected to the theme of this article) than the
aforementioned ontologies (Verdonck and Gailly, 2016). For this reason, in the remainder of this section, we focus
our discussion on UFO, briefly explaining a subset of its ontological distinctions that are relevant for the process of
knowledge discovery from data, as discussed in Section 4. For a fuller discussion on this ontology, one should refer
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to (Guizzardi, 2005; Guizzardi, G. et al., 2015). In any case, we highlight that our focus on UFO here is to make our
discussion more concrete with OntoUML domain modeling examples. However, modulo the previously discussed
limitations, many of the benefits discussed here can also be achieved with use of other foundational ontologies.

UFO makes a fundamental distinction between individuals (particulars), and types (or universals), i.e., patterns of
features that are repeatable across individuals. Individuals can be endurants (roughly, things or object-like entities) and
perdurants (roughly, events, occurrences, processes). Within the category of endurants, UFO distinguishes substantials
and aspects (also termedmoments). Substantials are existentially independent objects, such as theMoon, an enterprise,
a person, a horse. As for aspects, they are existentially dependent entities, such as: (a) John’s capacity to play tennis
(which existentially depends on him); (b) a flower’s color (which depends on that flower); (c) the marriage between Bob
and Alice (which depends on both Bob and Alice). Aspects of types (a) and (b) are termed intrinsic aspects. In particular,
those of type of (a) are termed modes, and those of type (b) qualities; finally, those of type (c) are termed relators.

An important characteristic of all endurants is that they exist in time keeping their identity, even if changing
in a qualitative way (e.g., a flower’s color which may change from red to brown while keeping its identity). Modes
and qualities can be seen as objectifications of intrinsic properties of endurants. Likewise, relators can be seen as
objectifications of their relational properties. Relators are individuals with the power of connecting entities. For
example, an Enrollment relator connects an individual playing the Student role with an Educational Institution. As
discussed in depth in (Guarino and Guizzardi, 2016), relators represent the material content of domain relations and,
hence, they are reponsible for relationships holding between domain entities.

Qualities are intrinsic moments that have the power to connect the entity they qualify with values into certain
value spaces. Examples of qualities include mass, age, electrical charge and color. UFO relies on the theory of Con-
ceptual Spaces (Gärdenfors, 2004) to assume that for several perceivable or conceivable quality types there is an
associated quality dimension in human cognition. Let us take the example of ‘height’ and ‘mass’, which are associated
with one-dimensional structures with a zero point isomorphic to the half-line of non-negative numbers. Similarly,
‘date’ can be associated to a structure (a quality domain) formed by three dimensions, named Day, Month and Year.
Moreover, these structures can provide ordering for these values, allowing the comparison of qualities associated
with the same or equivalent structures.

Following Gärdenfors (2004), UFO distinguishes between integral and separable quality dimensions: “certain
quality dimensions are integral in the sense that one cannot assign an object a value on one dimension without giving
it a value on the other. For example, an object cannot be given a hue without giving it a brightness value. Dimensions
that are not integral are said to be separable, as for example the size and hue dimensions” (Gärdenfors, 2004). Quality
domains can then be defined as “a set of integral dimensions separable from all the others” (Gärdenfors, 2004): These
form geometrical structures. UFO introduces the category quality structure as a general category to the categories
quality dimension and quality domain. Finally, the projection of a quality into a quality structure is referred in the
literature as a quale, or a quality value (e.g. ‘10kg’, ‘40◦C’, ‘blue’) (Albuquerque and Guizzardi, 2013). In this paper, the
notions of qualities and conceptual value spaces (quality structures) are important because they provide powerful
means to calculating similarity among entities, as discussed in the next section.

As previously discussed, endurants can change in certainwayswhile preserving their identity. The sorts of changes
an endurant can undergo and still be the same is determined by its kind. By a kind, we mean an entity type that
necessarily classify their instances, being responsible for their principle of identity. For this reason, all endurants
classified by a kind cannot cease to instantiate it without ceasing to exist (e.g., a horse cannot cease to be a horse
and keep existing). Kinds can be specialized in other subtypes that also necessarily classify their instances, named
subkinds. For example, if we take ‘Person’ to be a kind then some of its subkinds could be ‘Man’ and ‘Woman’.

Endurant kinds and subkinds are also termed rigid types as they represent essential properties of objects. There
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are, however, types that represent contingent or accidental properties of objects, named anti-rigid types. Examples
of anti-rigid types are phases and roles. The former represent properties that are intrinsic to entities, while the latter
represent properties that entities have in a relational context, i.e., contingent relational properties.

Kinds, subkinds, phases, and roles are categories of sortals. In the philosophical literature, a sortal is a type that
provides a uniform principle of identity, persistence, and individuation for its instances (Guizzardi, 2005). In contrast
with sortals, non-sortals are types that represent properties shared by entities of multiple kinds. A particular type of
non-sortal of UFO of interest here is a roleMixin. RoleMixins are role-like (i.e., anti-rigid and relationally dependent)
types but which can be played by entities of multiple kinds. An example is the roleMixin ‘Service Provider’, which can
be played by both people and organizations.

Over the years, UFO has been applied to analyze and (re)design a multitude of modeling languages and standards.
One of these applications, however, stands out, namely the conceptual modeling languageOntoUML (Guizzardi, 2005;
Guizzardi, G. et al., 2015). OntoUML is a version of UML class diagrams that has been designed such that its modeling
primitives reflect the ontological distinctions put forth by UFO (including the ones just discussed), and its grammatical
constraints follow UFO axiomatization. In fact, OntoUML is formally a pattern-language whose modeling primitives
are ontological design patterns, representing UFO’s constituting (micro)theories (Ruy et al., 2017).

4 | IMPROVING DATA MINING WITH FOUNDATIONAL ONTOLOGIES

4.1 | Problem Understanding

Problem understanding and background knowledge are paramount for the success of a data mining process, as no
algorithm is always better than all the others for all criteria in all situations (Magdon-Ismail, 2000). “For matching
suitable algorithms for the mining goal, one needs to know not only the character of each algorithm” (Lin et al., 2006),
but also whether an algorithm is appropriate for the problem and data being considered. Moreover, “background
knowledge can be incorporated with the induction algorithm and used for evaluating the mined results” (Lin et al.,
2006).

One of the main purposes of foundational ontologies is to facilitate semantic transparency, i.e., to make explicit the
real-world semantics of data (Guizzardi, 2020). In general, themain purpose of a conceptual model (including a domain
ontology) is to make explicit the ontological commitmentmade by a given representation artifact (Guarino et al., 2019).
In an ontology-based conceptual language such as OntoUML, we go one step further as the modeling primitives of
the language make a direct connection to the categories of the underlying foundational ontology (Guizzardi, 2005).

Another aspect related to which ontology-driven modeling languages can contribute to domain understanding is
through their mechanism to support complexity management (Guizzardi et al., 2019; Figueiredo et al., 2018). Complex
domains require representations that are both large in scale, and rich in subtleties. Languages such as OntoUML are
endowed with mechanisms such as modularization, viewpoint extraction, model abstraction and summarization, as
well as the breaking down of models in cognitively tractable chunks. In fact, in OntoUML, the modeling elements
never occur freely but appear in certain modeling configurations and combined with other modeling elements, thus
forming certain modeling patterns. In other words, the modeling primitives of the language are actually patterns, i.e.,
“higher-granularity clusters of modeling elements that can appear in a model only in particular fixed configurations”
(Guizzardi, G. et al., 2015). As previously discussed, “these patterns are of an ontological nature, as they directly reflect
the ontological micro-theories underlying the language” (Guizzardi, G. et al., 2015). Besides working as a complexity
management mechanism, this characteristic of the language brings more uniformity to its models (which become
described in terms of known patterns), thus contributing to improve model comprehensibility and, consequently, to
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data understanding (Verdonck et al., 2019).

4.2 | Data Pre- and Post-processing

Data pre-processing refers to the steps applied to make data more suitable for data mining. The major tasks involved
in data pre-processing are “data cleaning, data integration, data reduction, and data transformation" (Fayyad et al.,
1996). Among them, we argue that data integration is the one that can most benefits from the use of foundational
ontologies.

Data Integration focuses on combining data from multiple sources and elucidating data value conflicts. This in-
cludes the integration not only of datamodels but also of data schemas, considering the several levels of heterogeneity,
in particular semantic heterogeneity (Ziegler and Dittrich, 2007). Semantic data integration aims to establish correct
semantic relationships between data elements represented in different datasets. This, of course, requires understand-
ing the relation in reality between their referents, i.e., the real-world entities they represent (Guizzardi, 2020).

The use of ontologies for data integration purposes has been widely acknowledged to help semantic interoper-
ability between distributed data sources, because the semantics of data included in each data source can be made
explicit with respect to an ontology a particular user group commits to. However, without making explicit the founda-
tional ontological category a given domain concept maps to, there is a significant risk of semantic misinterpretations
(or false-agreements). Therefore, the use of foundational ontologies have been successfully considered to further in-
crease the precision of the concepts definition, thus reducing ambiguous interpretations. The use of ontology-driven
languages (such as OntoUML) and of ontology design patterns (ODP) make explicit the basic ontological categories of
the domain notions represented therein and, hence, serve to “identify and/or discard potential alignments between
data from different repositories which presumably refer to the same real-world entity" (Padilha et al., 2012). When
two data repositories are semantically described through foundational ontologies, it is possible to check whether the
equivalence between two classes is correct by, for example, observing whether the basic ontological categories they
belong to are compatible.

Take the example of a typical scenario described in (Padilha et al., 2012) and modeled in Figure 1 (dotted lines
are potential concept alignments that are further investigated). In this example, a company has two subsidiaries with
independent operations; in one of them customers may be private or corporate, while the other subsidiary has only
private customers. As explained by Padilha et al. (2012), “although there is a Customer concept in each ontology
describing a source repository being integrated, the «roleMixin» stereotype applied to the Customer concept in the
left ontology makes it explicit that it is not semantically equivalent (and therefore should not be aligned) to the class
Customer in the right ontology, which is stereotyped as a «role»2”. Thus, in a data mining application in which data
from all subsidiaries should be integrated, taking foundational semantics into account prevents themistaken alignment
of these two classes both of which happen to be termed ‘Customer’ (an alignment that would probably be asserted
otherwise). The data integration task would proceed in the same way as the ontology alignment process described
in (Padilha et al., 2012), that is, “by searching for the «kind» concept that is the most specific superclass of the «role»
concept in the left ontology (that is, Person), identifying the «role» subclass PrivateCustomer and consider it as being
equivalent to the «role» Customer in the right ontology (despite their distinct names)”.

Therefore, data integration approaches could benefit from well-founded ontologies in UFO by considering the
stereotype of the OntoUML classes within design patterns to prevent the identification of incorrect semantic associa-
tions between classes. Oncemore, these spurious association would probably happen otherwise when usingmethods
such as manual analysis, automatic analysis supported by lexical-based techniques, or even automated analysis and

2For simplicity, the relational dependence of the roleMixin and role classes are not made explicit in this figure.
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F IGURE 1 Preventing semantic integration problems using well-founded ODPs

mapping techniques based on lightweight domain ontologies.
Data post-processing refers to the steps applied to assess the knowledge (in the form of patterns or models) dis-

covered by the data mining techniques, possibly returning to any of the previous phases of the KDD cycle. The major
tasks involved in data post-processing are pattern evaluation, presentation and interpretation. Pattern evaluation will
be addressed by means of the metrics presented and discussed for each of the covered data mining techniques in the
following Sections. With regard to pattern interpretation, the existence of a well-founded domain ontology may be
used to systematically guide the domain expert in understanding and validating the patterns, as well as in mapping
them to domain concepts taking into account their ontological meta-properties (Guizzardi, 2005).

4.3 | Classification

Classification is “the process of finding a function (a model, also named a classifier) that describes and distinguishes
data classes” (Han et al., 2011), where a class is a categorical label from a discrete and unordered domain, in that each
value denotes a category. More specifically, it is a data analysis task to extract a set of deductive rules which are
presumed to describe a predefined concept from the domain of discourse, with respect to recurring situations histor-
ically observed that are provided as a set of training instances. Once a classifier is learned, it is used to automatically
assign a class label to a previously unseen instance, based on the values of its other (predictive) features. Classification
is also known as “supervised learning, because the class label of each input training instance is provided” (Han et al.,
2011). Due to its broad applicability, relative simplicity and efficacy of several techniques in producing comprehensive
models (such as decision trees and deductive rules), Classification is one of the most relevant types of data mining
approaches in the knowledge discovery scenario.

The classification problem can be defined as follows. Let X = X1, . . . , Xd be a set of d predictive features and L
= l1,...,lq be a set of q class labels, where q ≥ 2. Let D = (x1,y1),(x2,y2),...,(xN ,yN ) be a dataset with N instances, where,
for the i-th instance, xi corresponds to a vector (xi 1, xi 2, . . . , xi d ), which stores values for the d features in X and
each yi ∈ L corresponds to a single target class. The goal of the classification task is to learn a classifier from D that,
given an unlabelled instance t = (x, ?), predicts its class label y.

Typically, the evaluation of a classifier refers to a subset of classical, well-defined metrics from the literature, such
as accuracy (or recognition rate), sensitivity (also named recall or true positive rate), specificity (also known as true
negative rate), precision and recall (Han et al., 2011). Most of these metrics are formally defined based on measures
that take each class label as a reference, and presumably reflect how good the classifier is at describing this class label.
Thus, to assess a classifier with respect to a class label l i , for each instance we compare the classifier’s class label
prediction with the instances’s known class label. Given that an instance of class l i is considered a positive instance,
while all other instances are considered negative, the following measures are defined: (i) P is the total number of
positive instances; (ii) N is the number of negative tuples; (iii) TP (true positives) is the number of positive instances
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that were correctly labeled by the classifier; (iv) TN (true negatives) is the number of negative instances that were
correctly labeled by the classifier; (v) FP (false positives) is the number of negative tuples that were incorrectly labeled
as positive; and (vi) FN (false negatives) is the number of positive instances that were mislabeled as negative. For
example, when classifying whether a set of Patients have cancer or not, TP is the number of ill patients that were
predicted as so by the classifier, while FN is the total of patients that do have cancer but were predicted as healthy
by the classifier. Finally, the performance metrics are calculated. Accuracy of a classifier on a given test set is the
percentage of test set instances that are correctly classified by the classifier. Thus, accuracy = (TP + TN) / (P + N).
Sensitivity is the proportion of positive instances that are correctly identified), given by sensitivity = TP / P. Specificity
is the proportion of negative tuples that are correctly identified, calculated as specificity = TN / N. Precision can be
thought of as a measure of exactness (i.e., what percentage of tuples labeled as positive are actually such) given by
precision = TP / (TP + FP), whereas recall is a measure of completeness (what percentage of positive tuples are labeled
as such), computed as recall = TP / (TP + FN) = TP / P.

We argue that the benefits of making explicit the ontological nature of the domain concepts cover several per-
spectives of a classification experiment, ranging from the definition of the class to be learned, the selection of relevant
features that characterize the training instances, and the potential for results improvement.

With regard to improving quality results, we argue that a classifier, as a model, should also isomorphically corre-
late to its represented domain of discourse, that is, through a sound, complete, lucid and laconic correlation (Guizzardi,
2007). As defined by Kirk andMacDonell (2015), “soundness requires that eachmodelling construct maps to a domain
concept; completeness requires that each domain concept is represented by a modelling construct; lucidity requires
that each modelling concept represents at most one domain concept (i.e., there is no construct overload); and laconic-
ity requires that each domain construct is represented by at least one modelling construct”. By having the guidance
of a proper ontology model, one can appropriately define the class to be learned, as well as the class labels real-world
semantics. Non-lucid class definitions, for example, lead to ambiguity (where a class label represents more than one
domain concept), which inevitably reduces precision.

Additionally, similarly to the pre-processing phase described in the previous section, the use of well-founded
ontological design patterns (ODP) may serve as an important feature to guide the development of a classifier, helping
to either choose appropriate class labels, select relevant features or improve performance of classification algorithms.
For example, take the Phase ODP as described by Amaral and Guizzardi (2019), consisting of “a phase partition, i.e.,
a disjoint and complete set of two or more complementary phases that specialize the same sortal type and that are
associatedwith the same dividing principle (e.g., gender, life status, developmental state). Phases in UFO are relationally
independent, anti-rigid types, defined as a partition of a sortal. This partition is derived based on intrinsic properties of
that sortal”. Suppose the context of a hospital that is conducting a health campaign, and which applies a classification
technique to identify patients that are likely to have cancer. Knowing that the “has cancer” class to be learned is
essentially a Phase of a Patient, will guide the definition of the class labels corresponding to each of the phases in the
partition, and also guide the selection of the features which are relevant to describe all the concepts involved in the
Phase ODP. The use of ODP may also improve the performance of the classification algorithm, by pruning the search
space of classification rules based on the ODP structural restrictions.

4.4 | Clustering

Clustering is “the process of partitioning a set of data objects (or observations) into subsets. Each subset is a clus-
ter, such that objects in a cluster are similar to one another, yet dissimilar to objects in other clusters” (Han et al.,
2011). Cluster analysis can reveal previously unknown groups within the data, as the “partitioning is not performed
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by humans, but by the clustering algorithm” (Han et al., 2011). “Clustering techniques apply when there is no class
to be predicted but the instances are to be divided into natural groups. The clusters rely on the values of a set of
pre-selected characteristics for each object in the dataset, and the set of discovered clusters presumably reflect some
mechanism that is at work in the domain fromwhich instances are extracted, a mechanism that causes some instances
to bear a stronger resemblance to each other than they do to the remaining instances” (Witten et al., 2016).

Effective clustering maximizes similarities within the cluster and minimizes similarities across clusters (Chen et al.,
1996). According to (Han et al., 2011), “because a cluster is a collection of data objects that are similar to one another
within the cluster and dissimilar to objects in other clusters, a cluster of data objects can be treated as an implicit
class”.

In this article we take the position that foundational ontologies and the process of ontological analysis supported
by them serve as a fundamental support for establishing grouping criteria and similarity calculation, reducing the pos-
sibility of creating groups of objects that do not reflect genuine real-world regularities. Because they serve as a basis
for identifying the essence of entities of a given kind (Guizzardi et al., 2019), foundational ontologies are potentially
valuable for identifying similarities in clustering process that are not merely accidental. In this direction, the identifica-
tion of the foundational categories from which the concepts are derived, makes it possible to determine their nature,
thus elucidating the differences between, for example, objects and events, dependent and independent entities, kinds
of things and their roles, among others. The ability to make explicit these distinctions may help to prevent incorrect
associations during clustering.

In the sequel we elaborate on some advantages from a clustering point view of grounding data on a foundational
ontology such as UFO.

By virtue of the aforementioned characteristics of the representation of qualities in UFO, “once the semantics
behind qualities, its values and value spaces are made explicit, it is possible to compare qualities, to constrain formal
relations based on the properties of a value space (e.g., John being-older-than Peter), to establish mappings of values
among different value spaces and to calculate similarity among entities based on their qualities” (Albuquerque and
Guizzardi, 2013). In UFO, a quality type can be associated with several distinct quality structures. Let us take the
example of the quality type color, which can be associated both with the RGB color space and with the HSB color
space. Once all quality structures associated to a quality type are compatible, it is possible to establish equivalence
relations among the regions of these structures, even when those relations are not made explicit a priori. This allows
the conciliation of different conceptualizations based on the structure of quality types. For instance, two quality
regions can be considered equivalent iff the same quality values are approximated by both regions. Following this
distinction, the color blue in HSB {Hue = 240, Saturation = 100, Brightness = 100} can be defined as equivalent to the
color blue in RGB {Red = 0, Green = 0, Blue = 255}, because these quality regions approximate the same quality value.
Thus, clustering algorithms can benefit from the equivalence of quality regions to group similar objects.

The characteristics of integral quality dimensions, according to which “one cannot assign an object a value on
one dimension without giving it a value on the other one” (Gärdenfors, 2004) is an important issue to be considered
during clustering processes, as it generally does not make sense to analyse these attributes separately when clustering
similar objects. For example, one should not consider the hue value for an object’s color without considering also the
saturation and brightness values.

Another case is the occurrence of second-order types categorizing instances of quality type, considering possible
regions of the associated quality structure. In the example provided in Carvalho et al. (2017), the authors propose
the definition of a second-order type, named color type, “categorizing color according to selected regions of a color
domain, having instances such as ‘Blue-Toned Color’ and ‘Green-Toned Color’ ”. Regarding this example, the authors
state that “since each instance of color type determines a region of the color domain, its instances (i.e., instances of
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color) always have values for quality dimensions within the specified region”. The ability to define second-order types
categorizing instances of quality type makes it possible to specify important relations between these instances. For
example, a clustering algorithm can identify that a color type is similar to another one (eg. ‘Yellow-Toned Color’ is
similar to ‘Orange-Toned Color’, while ‘Yellow-Toned Color’ is not similar to ‘Blue-Toned Color’).

Finally, the representation of concepts using generalization sets provides considerably more domain information
than the specification of delimited sets of possible values for attributes. For example, in UFO it is possible to create
a generalization set to specialize an entity into subkinds or phases. For example, phases are relationally independent
universals defined as a partition of a sortal. This partition is derived based on an intrinsic property of that universal
(e.g., Child is a phase of Person, instantiated by instances of persons who are less than 12 years old). In the context of
clustering algorithms, the specialization of an entity in phases, instead of modeling its situation as a boolean attribute
to represent its status, provides farmore domain information, which can be used to support both the clustering process
and the cluster quality evaluation. Let us take the example of the specialization of ‘Organization’ in two phases (‘Active
Organization’ and ‘Extinct Organization’) instead of modeling the situation of the organization as a boolean attribute
(e.g., ‘active: yes or no?’). Clustering data into active and extinct organizations provides far more information about
the nature of the involved data objects than grouping data based on a boolean status property.

4.5 | Association Rule Mining

“Association rules mining searches for recurring relationships in a given dataset, in order to discover interesting asso-
ciations and correlations between item sets” (Han et al., 2011). Let us consider the case of a sales dataset. The mining
of interesting associations can identify, for example, groups or sets of items that are likely to be purchased together.
“Finding frequent patterns plays an essential role in mining associations, correlations, and many other interesting re-
lationships among data. Moreover, it helps in data classification, clustering, and other data mining tasks” (Han et al.,
2011).

Similar to the sales dataset previously mentioned, databases often store data resulting from business processes,
which correspond to physical observable events. In the sales dataset, for example, each sale can be seen as an event
that corresponds to an instance in the dataset. Foundational ontologies, such as DOLCE (Borgo and Masolo, 2009),
GFO (Herre, 2010) and UFO (Guizzardi, 2005) make a fundamental distinction between endurants and events (perdu-
rants). Guarino and Guizzardi (2016), based on the ontological foundations about events and their relations, propose
a view in which “events emerge from scenes as a result of a cognitive process that focuses on relators and modes:
endurants such as relators and modes are therefore the focus of events, which in turn can be seen as manifestations
of these endurants”. In the light of this discussion, a reasonable approach would be to analyse the business events that
give rise to data in order to identify the endurants that are their focus. Since these endurants are typically relators,
they can be potential indicators of interesting associations between item sets.

A further important aspect, related to the association rule mining process, is the significant number of discovered
rules, which makes it very difficult to select and identify the interesting ones. According to Marinica et al. (2008) “in
a database, there exist, in most of cases, relations between items that we consider obvious or that we already know”.
These relations are not interesting under the perspective of knowledge discovery and should be removed from the
set of discovered rules. When data is modeled grounded on foundational ontologies, much of the semantics about
the real-world is made explicit, thus making it possible to identify associations between item sets that correspond to
previous knowledge about the domain. These associations can be removed from the set of discovered rules, as they
do not constitute new knowledge. Additionally, models based on foundational ontologies make it easy to identify the
modeling patterns used to represent data. The relations that compose these patterns should be analysed as they may
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not correspond to new knowledge, but instead to solutions to known recurrent problems. In this case, the association
rules resulting from these relations should also be filtered during the post-processing phase, thus reducing the number
of discovered rules.

As previously mentioned, ontologies have been acknowledged as a useful conceptual tool for the improvement of
semantic expressiveness of information stored in databases (Guizzardi, 2005). When it comes to mining, the semantic
regarding data objects and their relations can provide some context for the discovered associations, which can help
to identify if a potential association rule makes sense. It is especially important for detecting associations that reflect
statistical dependence between item sets rather than some genuine ontological connection.

Let us take an example extracted from (Lapuschkin et al., 2019), in which a model “trained to distinguish between
1000 categories, has not learned dumbbells as an independent concept, but associates a dumbbell with the armwhich
lifts it”. Due to the occurrence of an arm in the great majority of dumbbell images, the algorithm derived this kind of ap-
parent or illusory association, even though semantically the two objects are completely distinct and their connection is
merely accidental. In cases like this, in which algorithms do not use features that provide real world semantics, but are
based only in statistical information, the model can generate undesired associations between item sets, also known
as spurious correlations. Foundational ontologies, like UFO, comprise theories about a number of fundamental con-
cepts like object types, properties, relations, part-whole relations, among others. In the case of the aforementioned
example, according to the theories put forth by UFO, the dumbbell is an existentially independent object that has a
uniform principle of identity, while the arm is a part that plays a particular functional role, contributing in specific ways
to the functionality of a whole, which is the body. The body, in turn, is another existentially independent object that
has a a principle of identity, distinct from the dumbbell, and which has a principle of unity that binds together its parts.
Following this principle of unity, among its parts we have the arm but not the dumbbell. Again, by making explicit the
ontological nature of the information stored in the dataset, foundational ontologies can reduce the creation of unwar-
ranted accidental associations between item sets, which do not reflect real-world connections. As a consequence, it
can help to prevent the mining of misleading association rules.

Table 1 summarizes some benefits of grounding data on foundational ontologies to the different steps of the KDD
process.

5 | CONCLUSIONS

This paper provides a brief introduction to FoundationalOntologies (philosophicallywell-founded domain-independent
formal theories) as well as to Ontology-Driven Domain Modeling Languages based on these Foundational Ontologies.
The objective is to raise awareness in the Data Mining community of the benefits these artefacts can bring to several
KDD activities including Problem Understanding, Data Pre-Processing and Post-Processing (pattern evaluation) and
Data Mining, in particular for Classification, Clustering, and Association Rule Mining techniques, thus including both
supervised and unsupervised learning approaches. We focused on these techniques due to their broad applicability
in the Data Mining literature, although some of our proposed insights and discussions also apply to regression tech-
niques and to other techniques that follow the reinforcement learning paradigm, as well as to pattern interpretation,
which may be addressed in future work.

The benefits discussed in this work are grounded on two complementary aspects. On one hand, if “Data are
fragments of a theory of the real-world", uncovering the nature of the real-world entities represented in the data
is fundamental in finding truthful, stable and informative correlations and groupings therein. On the other hand,
analyzing, characterizing, and making explicit the nature of these entities is the very business of Formal Ontology for
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centuries. Although the area of Ontology-Driven Domain Modeling is supported by a multitude of methodological
and engineering tools (Guizzardi, G. et al., 2015), research is still needed for seamlessly incorporating these tools into
practical KDD methods and techniques.

TABLE 1 Summary of the benefits of Foundational Ontologies and Ontology-Driven Domain Modeling
Languages to each step of the KDD process

KDD step Benefit

Problem Understanding

Semantic transparency

Complexity management mechanisms for complex domains

Data models are more uniform

Data Pre-processing
Semantic interoperability

Ontological commitments made explicit

Classification
Systematic guidance in the development of classifiers

Increasing classification precision

Clustering

Higher probability of clusters that reflect genuine real-world categorizations

Similarity calculation grounded on ontological foundations

Easier to identify similarities that are not accidental

Preventing unwarranted associations

Expressive semantic support to the clustering process and to cluster quality evaluation

Association Rule Mining

Easier to identify relators (indicators of interesting associations between item sets)

Easier to identify relations that are not interesting to knowledge discovery

Detection of associations that reflect statistical dependence between item

sets rather than genuine ontological connections

Lower probability of creating associations that do not reflect real-world semantics

Easier to identify spurious correlations

Data Post-processing

Improved understanding of the patterns discovered

Systematic guidance in the validation of the patterns discovered

Correspondence between the patterns discovered and the domain is grounded on

ontological meta-properties
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