
Towards an Ontology of Software Defects, Errors
and Failures

Bruno Borlini Duarte1, Ricardo A. Falbo1, Giancarlo Guizzardi1,2,
Renata S. S. Guizzardi1, Vı́tor E. S. Souza1

1 Ontology and Conceptual Modeling Research Group (NEMO)
Federal University of Esṕırito Santo, Brazil

bruno.b.duarte@ufes.br

{falbo,rguizzardi,vitorsouza}@inf.ufes.br
2 Conceptual and Cognitive Modeling Research Group (CORE)

Free University of Bolzano-Bozen, Italy
gguizzardi@unibz.it

Abstract. The rational management of software defects is a fundamen-
tal requirement for a mature software industry. Standards, guides and
capability models directly emphasize how important it is for an organi-
zation to know and to have a well-established history of failures, errors
and defects as they occur in software activities. The problem is that
each of these reference models employs its own vocabulary to deal with
these phenomena, which can lead to a deficiency in the understanding
of these notions by software engineers, potential interoperability prob-
lems between supporting tools, and, consequently, to a poorer adoption
of these standards and tools in practice. We address this problem of the
lack of a consensual conceptualization in this area by proposing a ref-
erence conceptual model (domain ontology) of Software Defects, Errors
and Failures, which takes into account an ecosystem of software artifacts.
The ontology is grounded on the Unified Foundational Ontology (UFO)
and is based on well-known standards, guides and capability models. We
demonstrate how this approach can suitably promote conceptual clarifi-
cation and terminological harmonization in this area.

1 Introduction

In software and systems engineering, the term anomaly denotes a condition that
deviates from expectations, based on requirements specifications, design docu-
ments, user documents, standards as well as user’s and/or modeler’s perceptions
and experiences [1]. A software anomaly (usually loosely referred by terms such
as bug, glitch, error or defect) is a situation that suggests a potential problem
in a software artifact [2]. In other words, these concepts are used to denote that
an artifact is not behaving as expected or is not producing the desired results.

This informal use, as common and practical as it is used in our daily con-
versations, may be the source of ambiguity and false-agreement problems, since
the concept anomaly is constantly overloaded, refering to many entities with dis-
tinct nature. In a more formal environment, this construct overload may lead to



2 Duarte et al.

communication problems and material losses. Because of that, having a way to
properly classify software anomalies is important. Proper classification enables
the development of different types of anomaly profiles that could be produced as
one indicator of product quality. Also, the information that is generated when an
organization understands and systematically classifies software anomalies that
may occur at design-time or runtime is a rich source of data that can be used to
improve processes and avoid the occurrence of anomalies in future projects [3].

Defects, errors and failures have a negative impact on important aspects of
software, such as reliability, efficiency, overall cost and even lifespan. A software
with a fairly large “defect density” may go through heavy reconstruction, since
it does not meet a minimal acceptance criteria [4]. In more extreme cases, it may
be abandoned/discontinued in its early years of usage.

The Guide to Software Engineering Body of Knowledge (SWEBOK) [5] em-
phasizes the need of a consensus about anomaly characterization and how a
well-founded classification could be used in audits and product reviews. A proper
defect characterization policy can also provide a better understanding and facili-
tate corrections in the product or in the process. For an example of this necessity,
CMMI [6] defines that organizations should create or reuse some form of defect
classification method. It also suggests the use of a defect density index for many
work products that are part of the software development process.

The most recent version of the Standard Classification of Software Anoma-
lies [3] provides a classification for different types of anomalies, including infor-
mation about how they are related. Other standards are more concerned about
how to deal with anomalies in different perspectives. For instance, IEEE 1012 [7]
is focused on the Verification & Validation phase of the software life-cycle. On
the other hand, IEEE 1028 [4] focuses on anomalies in a software audit context,
which affects clients and users of a (software) product.

Although there are some proposals for classifying different terms for software
anomalies, there is no reference model or theory that elaborates on the nature of
different software anomalies. In other words, to the best of our knowledge, there
is no proper reference ontology of software anomalies. In order to address this
gap, we propose a Reference Ontology of Software Defects, Errors and Failures
(OSDEF). This ontology takes into account different types of anomalies that may
exist in software-related artifacts and that are recurrently mentioned in the set
of the most relevant standards in the area. OSDEF was developed following the
process defined by the Systematic Approach for Building Ontologies (SABiO) [8]
and grounded in the Unified Foundational Ontology (UFO) [9], including UFO’s
Ontology of Events [10]. In order to extract consensual information about the
domain, we analyzed relevant standards, guides and capability models such as
CMMI [6], SWEBOK [5], IEEE Standard Classification for Software Anoma-
lies [3], IEEE Standard for System, Software, and Hardware Verification and
Validation [7] as well as complementary current Software Engineering literature.
Finally, the ontology was evaluated by verification and validation techniques.

The remainder of this paper is structured as follows. Section 2 introduces
the ontological foundations used for developing OSDEF. Section 3 presents the



Towards an Ontology of Software Defects, Errors and Failures 3

Ontology of Software Defects, Errors and Failures. Section 4 evaluates the pro-
posed ontology. Section 5 discusses related work. Finally, Section 6 concludes
the paper.

2 Foundations: UFO and the Software Process Ontology

We ground the Ontology of Software Defects, Errors and Failures (OSDEF) in
UFO [9]. This choice is motivated by the following: (i) UFO’s foundational cate-
gories address many essential aspects for the conceptual modeling of the intended
domain, including concepts like events, dispositions and situations; (ii) UFO has
a positive track record in being able to successfully address different phenomena
in Software Engineering [11–13]; (iii) A recent study shows that UFO is among
the most used Foundational Ontologies in Conceptual Modeling and the one
with a fastest growing rate of adoption [14]. By using an ontology that is fre-
quently used, we increase the reusability of this work, also facilitating its future
integration in ontology networks in software engineering [15].

UFO is originally composed of three main parts: UFO-A, an ontology of
endurants [9]; UFO-B, an ontology of perdurants/events [10]; and UFO-C, an
ontology of social entities (both endurants and perdurants) built on top of UFO-
A and UFO-B [12]. However, for brevity, Figure 1 presents only a fragment of
UFO that contains the categories that are essential for the purpose of this arti-
cle. Moreover, we illustrate these categories and their relations using UML dia-
grams that express typed relations connecting categories, cardinality constraints
for these relations, subsumption constraints, as well as disjointness constraints
relating sub-categories with the same super-category. UFO has been formally
characterized in [9, 10, 16]. Thus, it is important to emphasize that the following
UML diagrams are used here for illustration purposes only.

Endurants and Perdurants are Concrete Particulars (also called concrete indi-
viduals), i.e., entities that exist in time and space possessing a unique identity.
Endurants do not have temporal parts, but are able to change in a qualitative
manner while keeping their identity (e.g., a person). Perdurants (or Events, oc-
currences, processes), are composed by temporal parts (e.g., a trip): they exist in
time, accumulating temporal parts and, unlike Endurants, they are immutable,
i.e., cannot change any of their properties; cannot be different from what they
are [10, 17]. Moreover, Events are transformations from a portion of reality to
another, which means that when a Situation S triggers an Event E, E can bring
about another Situation S′. Finally, Events can cause other Events. This causality
relation is a strict partial order (irreflexive, asymmetric and transitive) relation.

Actions are Events that are performed by Agents (persons, organizations or
teams) with the specific purpose of satisfying intentions of that Agent. However,
it is important to realize that although all Actions are based on intentions of
Agents, if those intentions are based on the wrong assumptions, they can lead
to problems, i.e., they can bring about situations that do not satisfy (or that
even dent) the goals (propositional content of the intention) that motivated
that action. Moments (also called aspects, particularized properties or tropes)



4 Duarte et al.

Fig. 1. Fragment of UFO showing Events, Agents and Objects.

are existentially dependent entities. This means that they need to inhere in
other Concrete Particulars in order to exist. For example, if a person (as an
Agent) or a chair (Object) cease to exist, their Moments (e.g., the Beliefs and
Intentions of that person, the texture, a bump or a scratch on that chair) will also
disappear. Dispositions are a special type of Moment that are only manifested
in certain Situations and that can fail to be manifested, but when they are
manifested, it is by the occurrence of an Event [10]. Examples of Disposition are
the capacity of a magnet to attract metallic material, or John’s competence for
playing guitar. Situations are complex Endurants that are constituted by possibly
many Endurants (including other situations). Situations are portions of reality
that can be comprehended as a whole. See [10] for a deeper discussion about
Events, Situations and Moments (including Dispositions).

For OSDEF, we reuse the concept of Software Artifact that is presented in
the Software Process Ontology (SPO) [18]: objects intentionally made to serve a
given purpose in the context of a software project or organization. Stakeholders,
which are Agents (a single person, a group or an organization) interested or
affected by the software process activities or their results, may be responsible for
them (e.g., a user or a development team). We also reuse the concept of Hardware
Equipment, which are physical objects used for running software programs or to
support some related action (e.g., a computer or a tablet). Moreover, Hardware
Equipment are not considered Software Artifacts because they are not created in
the context of a software project, although they can be considered resources in
a software project. We also reused the Program concept that is present in the
Software Ontology (SwO) [19]. According to SwO, a Program is an Artifact that
is constituted by code but which is not identical to a code. In contrast, a Program
owes its identity principle to a Program Specification, which the Program intends



Towards an Ontology of Software Defects, Errors and Failures 5

to implement. A complex aggregation of Programs can constitute a software
system.

3 An Ontology of Software Defects, Errors and Failures

To build the Ontology of Software Defects, Errors and Failures (OSDEF), we
apply SABiO [8], a method for building domain ontologies [20] that incorporates
best practices from Software Engineering and Ontology Engineering. We chose
SABiO because it is focused on the development of domain ontologies. Moreover,
it has been successfully used on the development of several domain ontologies in
Software Engineering, such as the Software Process Ontology (SPO) [11] and the
Software Ontology [21] and other ontologies developed in the context of SEON,
a Software Engineering Ontology Network [15]. Moreover, SABiO explicitly rec-
ognizes the importance of using foundational ontologies in the ontology devel-
opment process to improve the ontology quality, representativity and formality.

SABiO’s development process is composed of five phases: (1) purpose iden-
tification and requirements elicitation; (2) ontology capture and formalization;
(3) operational ontology design; (4) operational ontology implementation; and
(5) testing. These phases are supported by well-known activities in the Require-
ments Engineering life-cycle, such as knowledge acquisition, reuse, documenta-
tion, etc. Here, since our main goal is to produce a domain ontology as a reference
conceptual model, we focus on the first two phases of SABiO, executed in an it-
erative way, refining the ontology at each iteration. As discussed in Section 4,
we also conducted verification and validation of the proposed reference concep-
tual model. Phases (3) to (5), i.e., the design, implementation and testing of the
reference ontology proposed here in a computational language (e.g., Common
Logic, OWL, HOL-Isabelle, Alloy) are left for future work.

As previously mentioned, the term anomaly is commonly used to refer to a
variety of notions of distinct ontological nature. Because of that, OSDEF was
developed to provide an ontological conceptualization of the different types of
software anomalies that exist throughout the software life-cycle. To elaborate
on these different types of entities, we raised a set of Competency Questions
(CQ), which are questions that the ontology should be able to answer [22]. In
a Requirements Engineering perspective, CQs are analogous to the functional
requirements of the ontology [8]. Moreover, CQs help to refine the scope of the
ontology and can also be used in the ontology verification process. For OSDEF,
CQs were raised and refined in a highly-interactive way, through analysis of the
international standards mentioned in Section 1 and through several meetings
with ontology experts. The CQs raised for OSDEF are listed below:

– CQ1: What is a failure?
– CQ2: What is a defect?
– CQ3: What is a fault?
– CQ4: What is an error?
– CQ5: What is a usage limit?



6 Duarte et al.

– CQ6: In which type of situation can a failure occur?
– CQ7: What are the situations that result from failure?
– CQ8: What are the cases of failures?

Fig. 2. Conceptual Model of the Ontology of Software Defects, Errors and Failures.

Figure 2 shows the conceptual model of OSDEF. The central concept of our
ontology is Failure, since it is the occurrence of a failure that is usually perceived
by an agent operating the software system. As defined in standards [3, 7, 1] and
as employed in scientific literature [23], Failures are Perdurants (Events). In that
respect, the conceptual basis provided by UFO can help us to understand how
failures occur as events during the execution of software. In a software context,
a Failure is defined as an event in which a program does not perform as it
is intended to, i.e., an event that hurts the goals of stakeholders [24], which
motivated the creation of that software. As Events, Failures can cause other
Failures, in a chain of Events (e.g., a severe failure in a web server such as Apache
httpd can make all of its hosted applications experience failures as well). As
defined in UFO [10], causation is a relation of strict partial order and, hence,
failures cannot be their own causes or causes or their causes but failures can
(perhaps indirectly) trigger other failures in a chain of causation.

As Events, Failures are directly related with two distinct Situations, the first
one is the Situation that exists prior to the occurrence of that Failure and that
triggers the Failure. This Situation is represented in the ontology as a Vulnerable
State and denotes the situation that activates the Disposition that will be mani-
fested in that Failure. In other words, the state of being exposed to the possibility
of a harm or an attack. The second one is the situation that is brought about
by the occurrence of the Failure, which is defined in the ontology as the Failure
State. The occurrence of the failure transforms a portion of reality to another:



Towards an Ontology of Software Defects, Errors and Failures 7

in its pre-situation, the software is executing, it has the disposition to manifest
the failure (i.e., a Vulnerability) but the failure has not occurred yet, since the
disposition was not yet activated; in its post-situation, the (failure) event was
triggered and reality was “transformed” to a situation in which the software is
not executing its functions (at least not as intended by stakeholders).

Although it is out of the scope of this ontology to provide vocabulary for
the classification of post-failure situations, we note that Failure States can be:
transient — when a failure happens but the software system is capable of re-
covering itself; continued — when after the occurrence of the failure the Failure
State becomes permanent until some action is taken in order to bring the soft-
ware system back to a execution state in which it is capable to properly execute
its functions. Failures can also be classified by other properties, such as severity
or effect. We are also not addressing these finer-grained classification here be-
cause, once again, we are more interested in providing an ontological analysis
of the nature of different software anomalies than in providing a terminological
systematization. In our view, the former is a prerequisite for the latter.

Failures are classified in two distinct subtypes: Fault Manifestation Failures
and User-Generated Failures. The former are Failures that are manifestations of
Faults and are not caused by User Actions; the latter are Failures that are directly
caused by User Actions. These two subtypes have sub-distinctions of their own.

A Vulnerability3 represents the Dispositions that can exist in software arti-
facts or in hardware equipments. We thus refined this concept in two distinct
generalization sets. The first represents the types of the Dispositions that can
be activated and manifest Failures and is composed by Defects and Usage Limit
Vulnerabilities. The second represents the types of entities in which those Dispo-
sitions inhere: a Hardware Vulnerability inheres in a Hardware Equipment, while a
Program Vulnerability inheres in a Program. With that said, we have that both
dispositions, Defect and Usage Limit Vulnerability can inhere in both types of Ob-
jects and thus, we have the following definitions: defects that inhere in Programs
are Program Defects; defects that inhere in Hardware Equipment are Hardware
Defects. Moreover, we have that a Program Usage Limit Vulnerability is a Usage
Limit Vulnerability that inheres in a Program, and that a Hardware Usage Limit
Vulnerability is a Usage Limit Vulnerability that inheres in a Hardware Equipment.

A Defect is a type of Vulnerability that can exist in Programs or Hardware
Equipments. It is defined by the Standard Classification for Software Anoma-
lies [3] as an imperfection in a work product (WP) where that WP does not
meet its specification and needs to be repaired or replaced. What this and other
definitions in the literature [27, 5] have in common is that Defects are understood
as properties of Objects. However, differently from moments that are manifested
all the time (e.g. the color of a wall), Defects may never be activated and, conse-
quently, never be manifested into Failures. For example, suppose that a program

3 The notion of vulnerability is frequently used in a way that is restricted to defects
that can be exploited by attacks. We take a more general Risk Management view [25,
26] of vulnerabilities as dispositions that can be manifested by events that can hurt
stakeholder’s goals [24] or diminish something’s perceived value [26].



8 Duarte et al.

has a bad implementation of the method retrieveUsersByLastName, that
can cause a Failure in the software system, which will not be able to execute the
functionalities that are associated to that Defect. If that method is never invoked
during a program execution, the system may never experience the Failure that
is a manifestation of that particular Defect. Given this characteristic, we take
Defects (Vulnerabilities in general) to be Dispositions that inhere in Objects.

Defects can exist throughout the entire life-cycle of a software [28]. As previ-
ously mentioned, some Defects can (accidentally) refrain from being manifested
across software executions. When a Defect is manifested in a Failure, we term that
Defect a Fault (Runtime Defect). A Fault, hence, can be seen as a role played by
a Defect in relation to a Failure. Furthermore, we countenance the occurrence of
Failures that are directly caused by User actions. In this scenario, a User performs
an Erroneous User Action that causes a User-Generated Failure. In other words, we
name an Erroneous User Action a User action that causes such a Failure. As dis-
cussed in [29], software artifacts are designed taking into consideration Domain
Assumptions. When a software artifact makes incorrect assumptions about the
environment in which it will execute, we consider this a Program Defect. How-
ever, there are cases in which the software makes explicitly defined assumptions
(disclaimers, usage guidelines), which are neglected by users in their actions. In
this case, it is the Erroneous User Action itself that is the cause of the Failure.

As discussed in [30], events (including Failures) are polygenic entities that can
result from the interaction of multiple dispositions. For instance, we take that a
User-Generated Failure can be caused by a combination of certain dispositions of a
software system combined with certain Mental Moments of Agents. These mental
moments include Beliefs (including User False Beliefs about domain assumptions)
as well as Intentions (including User Malicious Intentions). A particular case of a
User-Generated Failure, is one in which this Usage Limit Vulnerability is exploited
in an intentional malicious manner, in what is termed an attack, e.g., a User,
with Malicious Intentions, can make a Web server fail with a DDoS (Distributed
Denial of Service) attack. In this case, the server that is being attacked has no
Defect (and, hence, no Fault), it just has a limited number of requests that it
can answer in a period of time (a capacity, which is a type of disposition). If this
number is exceeded for a long period, all system resources will be consumed and
the server will experience an Intentional User-generated Failure. This failure can
be as simple as a denial of service due to lack of resources, or as critical as a full
system crash. In a different scenario, a Non-intentional User-generated Failure can
stem from the User False Belief of a collective of users simultaneously accessing
the system (e.g., as witnessed on Nike’s website during the 2017 Black Friday).

4 Evaluation

In order to evaluate the Ontology of Software Defects, Errors and Failures (OS-
DEF), we applied verification and validation techniques, as prescribed by SABiO.
Regarding ontology verification, SABiO suggests a table that shows the ontol-
ogy elements that are able to answer the competency questions (CQs) that were



Towards an Ontology of Software Defects, Errors and Failures 9

Table 1. Results of ontology verification.

CQ Concepts and Relations

CQ1 Failure is a subtype of Event that brings about a Failure State.
A User-generated Failure is a subtype of Failure that is manifestation of a Usage
Limit Vulnerability and is caused by an Erroneous User Action stemming from
a User False Belief (Non-intentional) or a User Malicious Intention (Intentional).
A Fault Manifestation Failure is a subtype of Failure that is manifestation of a
Fault (a Runtime Defect).

CQ2 Defect is a subtype of Vulnerability (which is a subtype of Disposition) that
inheres in an Object. A Defect that inheres in a Program (i.e., a Program
Vulnerability) is called a Program Defect; A Defect that inheres in a Hardware
Equipment (i.e., a Hardware Vulnerability), is called a Hardware Defect.

CQ3 Fault is a subtype of Defect which is manifested at runtime via a Fault Mani-
festation Failure.

CQ4 An error or, more precisely, an Erroneous User Action is a subtype of User Action
(Action) that is performed by a User, which is a subtype of Stakeholder (Agent).

CQ5 Usage Limit Vulnerability is a subtype of Vulnerability that inheres in an Ob-
ject. Analogous to Defect, it can inhere in a Program (Program Usage Limit
Vulnerability) or a Hardware Equipment (Hardware Usage Limit Vulnerability).

CQ6 Vulnerable State is a subtype of Situation that activates a Fault (which, in turn,
is manifested by a Failure) and triggers a Failure.

CQ7 Failure State is a subtype of Situation that is brought by a Failure.

CQ8 A Failure can be caused by another Failure, in a chain of Events.
A Vulnerable State can activate a Fault that is manifested by a Fault Manifesta-
tion Failure.
An Erroneous User Action can cause a User-generated Failure, which is a mani-
festation of a Usage Limit Vulnerability.

raised. For validation, the reference ontology should be instantiated to check if
it is able to represent real-world situations.

Table 1 illustrates the results of verification of OSDEF regarding the prede-
fined CQs. Moreover, the table can also be used as a traceability tool, supporting
ontology change management. The table shows that the ontology answers all of
the appropriate CQs.

For a brief validation, we took real-world scenarios of famous cases of software
failures and used the ontology to analyze them, showing that OSDEF is capable
of representing and analyzing these situations.

Case 1: the Therac-25 disaster [31]. Therac-25 is a medical equipment that
handled two types of therapy: a low-powered direct electron beam and a megavolt
X-ray mode. The issue was that the software that was responsible for controlling
the equipment was reused from a previous model, missing important upgrades
and adequate testing. The Fault was manifested into a critical Failure when an
operator changed the therapy mode of the equipment too quickly, causing, in-
structions for both treatments to be simultaneously sent to the machine. The
first instruction to arrive would set the mode for the treatment to be applied
(a kind of fault known as race condition). The consequences were devastating,



10 Duarte et al.

as patients expecting an electro beam ended up receiving the X-ray and, be-
cause of that, died from radiation poisoning. This was an example of a Fault
caused by a Program Vulnerability. Although the Fault Manifestation Failure was
brought about by a User Action, however, this action cannot be considered an
Erroneous User Action (since this cannot be considered a user’s negligence of
stated assumptions).

Case 2: in 1994, an entire line of Pentium processors could not calculate
floating point operations precisely after the eighth decimal case [32]. No matter
what software was executing the calculations, the Failure could be manifested
since the Defect was intrinsic to the CPU of the computer. We can analyze
this case based on OSDEF and on the reports that the Failures happened inde-
pendently of which software was being executed. We can start our analysis by
assuming that the whole Failure State started with a Hardware Vulnerability. The
Vulnerability in this case was a Defect inhering in the chip that would prevent it
from correctly process arithmetic operation with more than eight decimal cases.
As a result, whenever a software execution would trigger the manifestation of
that Vulnerability, aFault Manifestation Failure would occur.

Case 3: in 2013, Spamhaus, a nonprofit professional protection service, was
the target of what might have been the largest DDoS attack in history. Hackers
redirected hundreds of controlled DNS servers to send up to 300 gigabits of
flood data to each server of the network, in order to stop them. For this type
of situation, when the occurrence of a Failure is directly related with deliberate
Actions of an Agent, OSDEF proposes the representation of the event as an
Intentional User-generated Failure, since in this particular case the Agents that
were responsible for the Failure were basing their Actions in a set of User Malicious
Intentions.

5 Related Work

Del Frate [23] provides an ontological analysis of the notion of failure in engineer-
ing artifacts. A theory that distinguishes between three types of failures is built:
function-based failures, specification-based failure and material-based failure. Del
Frate also discusses the relation between a failure — an event that happens to
an artifact — and a fault — a state of the artifact after the failure, for each of
the three types of failures that are proposed. The ontological analysis provided
by Del Frate shares with the work presented here the interpretation of failures
as events. However, honoring the terminology employed in software engineer-
ing standards, we conceive faults as processual roles of defects in an existing
(occurred) failure. In contrast, Del Frate considers faults as states (situations,
in the sense of UFO) in a way that is similar to what we call a Failure State.
Moreover, another important difference is that we take into account other types
of anomalies, such as defects and errors (even taking in consideration the direct
participation of human agents in the occurrence of failures). Other distinctions
worth mentioning is that our work is focused on software and grounded on a



Towards an Ontology of Software Defects, Errors and Failures 11

foundational ontology, whereas Del Frate’s work is more generic (covering all
engineering artifacts) and does not reuse any particular foundational ontology.

Kitamura & Mizoguchi [33] propose an ontological analysis of the fault pro-
cess and an ontology of faults that provides a categorization of different types
of Faults considering different facts, providing a vocabulary for specifying the
scope of a diagnostic activity. Characteristics, ontological aspects (e.g., causality
and parthood relations) and constraints of different types of faults are presented,
e.g., faults are differentiated between: externally or internally caused; structural
or property-related; or depending on their ontological nature. The ontology is
intended to be used as a tool for characterization of model-based diagnostic sys-
tems and as a formal vocabulary, for human use, during the diagnostic activity.
It is also used in a diagnostic system that aims to enumerate deeper causes of
Failures, providing “depth analysis” to diagnostic systems. In comparison with
our ontology, this work has a different focus, which is centered in the fault process
and in specifying different characteristics and constraints of Faults and Failures.

Avizienis et al. [34] proposes a taxonomy of faults, failures and errors in a
context of dependability, reliability and security. In comparison with OSDEF,
the taxonomy proposed there also understands Failures as Events and Faults and
Vulnerabilities as properties of a system, composed of software, hardware and
people. However, the concept of Error used by the taxonomy is different from the
one that we used in OSDEF. Our notion of Error is the one of an Erroneous User
Action, being based on the IEEE 1044 standard. This notion is similar to what
is termed by Avizienis and colleagues as a Human Fault. Moreover the taxonomy
presented by Avizienis et al. has a broader scope than OSDEF, presenting a
larger vocabulary focused on properties such as criticality and consistency. On
the other hand, OSDEF is more focused on defining the ontological nature of
these concepts and the relations between then, using UFO as foundation.

Finally, we should emphasize that, unlike these efforts, OSDEF has been
conceived in connection with other UFO-based Software Engineering domain
ontologies [12, 11] and with the purpose of contributing to a Software Engineering
Ontology Network (SEON) [19]. Although these previous works do not address
aspects related to software anomalies, they provide context to our work.

6 Conclusions

The main contribution of this paper is proposing an Ontology of Software De-
fects, Errors and Failures (OSDEF), developed using the SABiO approach, based
on a series of standards and capability models, and grounded in UFO. This
ontology contributes to the conceptual modeling and management of software
anomalies in a number of ways that are summarized as follows.

Firstly, by making use of UFO’s foundational categories, OSDEF provides a
conceptual analysis of the nature of different types of anomalies, systematizing
the overloaded use of the term anomaly in the Software Engineering literature.
Furthermore, this ontology can serve as a reference model for supporting the
ontological analysis and conceptual clarification of real-world failure cases. For



12 Duarte et al.

instance, although sometimes used almost interchangeably, we manage to show
that notions such as Failure, Fault, Defect and (User) Error (Erroneous User Ac-
tion) refer to different types of phenomena. In a nutshell, a Failure is an Event
caused by a Vulnerability (a Disposition). A Defect is a Vulnerability inhering in
the Program itself or in a Hardware Equipment that is manifested at runtime, in
which manifestation this Defect plays the role of a Fault. An Error (Error Erro-
neous Action) is an Action (an Event brought about by an Agent) that neglects
the assumptions under which a Program was designed.

Secondly, as a domain reference model, OSDEF can be used for the develop-
ment of issue trackers or other types of configuration management-related tools,
since it is based on widely accepted standards. Moreover, it can also be used for
enabling interoperability between existing tools developed for these purposes.

Thirdly, the ontology establishes a common vocabulary for improving com-
munication among software engineers and stakeholders, avoiding construct over-
loads and other types of communication problems.

Fourth, in addition to these uses as a reference model, an operational version
of OSDEF (for instance, implemented in a logical language such as Common
Logic or OWL) can be used to semantically annotate configuration management
and software testing data that are directly related to the occurrence of software
anomalies. In fact, as future work, we intend to connect OSDEF to our Software
Engineering Ontology Network (SEON) [15]. In particular, we intend to develop
an ontology of configuration management artifacts and combined it with OSDEF
and related ontologies. This, in turn, will enable the development of a traceability
tool to relate requirements and stakeholders goals with change requests and issue
reports that are tracked during configuration management.

We also intend to strengthen the connection between the work developed
here and a common ontology of Value and Risk [26]. After all, the management
of anomalies in software artifacts is a special case of Risk Management applied
to software. Also, we pretend to investigate further properties of Event types,
such as regularity and consistency failures in the Failure context, (e.g., the case
of the Therac-25). Finally, we intend to provide a formal characterization of the
ontology, through the definition of axioms that were not included in this paper
because of space limitations, and also to improve the evaluation of OSDEF by
comparing (instantiating) the ontology with data produced by development tools
such as, e.g., static analysis tools.

Acknowledgments

NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian re-
search funding agencies CNPq (process 407235/2017-5), CAPES (process 23038.
028816/2016-41), and FAPES (process 69382549/2015).

References

1. ISO: ISO/IEC/IEEE International Standard - Systems and software engineering



Towards an Ontology of Software Defects, Errors and Failures 13

– Vocabulary. Technical report, International Organization for Standardization
(Aug 2017)

2. Guimaraes, E., Garcia, A., Figueiredo, E., Cai, Y.: Prioritizing software anoma-
lies with software metrics and architecture blueprints. In: Modeling in Software
Engineering (MiSE), 2013 5th International Workshop on, IEEE (2013) 82–88

3. IEEE: IEEE 1044: Standard Classification for Software Anomalies. Technical re-
port, Technical report, Institute of Electrical and Electronics Engineers, Inc (2009)

4. IEEE: IEEE 1028: Standard for Software Reviews and Autis. Technical report,
Technical report, Institute of Electrical and Electronics Engineers, Inc (2008)

5. Bourque, P., Fairley, R.E., et al.: Guide to the software engineering body of knowl-
edge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)

6. SEI/CMU: CMMI R© for Development, Version 1.3, Improving processes for devel-
oping better products and services. no. CMU/SEI-2010-TR-033. Software Engi-
neering Institute (2010)

7. IEEE: IEEE 1012: Standard for System, Software, and Hardware Verification
and Validation. Technical report, Technical report, Institute of Electrical and
Electronics Engineers, Inc (2016)

8. Falbo, R.A.: SABiO: Systematic Approach for Building Ontologies. In Guizzardi,
G., Pastor, O., Wand, Y., de Cesare, S., Gailly, F., Lycett, M., Partridge, C., eds.:
Proc. of the Proceedings of the 1st Joint Workshop ONTO.COM / ODISE on
Ontologies in Conceptual Modeling and Information Systems Engineering, Rio de
Janeiro, RJ, Brasil, CEUR (sep 2014)

9. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Phd
thesis, University of Twente, The Netherlands (2005)

10. Guizzardi, G., Wagner, G., Falbo, R.d.A., Guizzardi, R.S.S., Almeida, J.P.A.: To-
wards Ontological Foundations for the Conceptual Modeling of Events. In: Proc.
of the 32th International Conference on Conceptual Modeling, Springer (2013)
327–341

11. Falbo, R.D.A., Bertollo, G.: A software process ontology as a common vocabulary
about software processes. International Journal of Business Process Integration
and Management 4(4) (2009) 239–250

12. Guizzardi, G., de Almeida Falbo, R., Guizzardi, R.S.: Grounding Software Domain
Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE
Software Process Ontology. In: Proc. of the 11th Iberoamerican Conference on
Software Engineering (CIbSE). (2008) 127–140

13. Guizzardi, R.S.S., Li, F.L., Borgida, A., Guizzardi, G., Horkoff, J., Mylopoulos,
J.: An Ontological Interpretation of Non-Functional Requirements. In Garbacz,
P., Kutz, O., eds.: Proc. of the 8th International Conference on Formal Ontology
in Information Systems. Volume 267., Rio de Janeiro, RJ, Brasil, IOS Press (sep
2014) 344–357

14. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and con-
ceptual modeling languages in ontology-driven conceptual modeling. In: Concep-
tual Modeling - 35th International Conference, ER 2016, Gifu, Japan, November
14-17, 2016, Proceedings. (2016) 83–97

15. Ruy, F.B., Falbo, R.d.A., Barcellos, M.P., Costa, S.D., Guizzardi, G.: Seon: A
software engineering ontology network. In: Knowledge Engineering and Knowl-
edge Management: 20th International Conference, EKAW 2016, Bologna, Italy,
November 19-23, 2016, Proceedings 20, Springer (2016) 527–542

16. Benevides, A.B., Bourguet, J., Guizzardi, G., Peñaloza, R.: Representing the UFO-
B foundational ontology of events in SROIQ. In: Proceedings of the Joint Ontology



14 Duarte et al.

Workshops 2017 Episode 3: The Tyrolean Autumn of Ontology, Bozen-Bolzano,
Italy, September 21-23, 2017. (2017)

17. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about
the representation of events and endurants in business models. In: International
Conference on Business Process Management, Springer (2016) 20–36

18. de Oliveira Bringuente, A.C., de Almeida Falbo, R., Guizzardi, G.: Using a foun-
dational ontology for reengineering a software process ontology. Journal of Infor-
mation and Data Management 2(3) (2011) 511

19. Duarte, B.B., Souza, V.E.S., Leal, A.L.d.C., Guizzardi, G., Falbo, R.d.A., Guiz-
zardi, R.S.S.: Ontological foundations for software requirements with a focus on
requirements at runtime. Applied Ontology (2018) 1–33

20. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages,
and (meta) models. Frontiers in artificial intelligence and applications 155 (2007)
18

21. de Souza, É.F., Falbo, R.d.A., Vijaykumar, N.L.: ROoST: Reference Ontology on
Software Testing. Applied Ontology (2017) 1–32

22. Grüninger, M., Fox, M.: Methodology for the Design and Evaluation of Ontologies.
In: IJCAI’95 Workshop on Basic Ontological Issues in Knowledge Sharing. (1995)

23. Del Frate, L.: Preliminaries to a formal ontology of failure of engineering artifacts.
In: FOIS. (2012) 117–130

24. Guizzardi, R.S.S., Franch, X., Guizzardi, G., Wieringa, R.: Ontological distinctions
between means-end and contribution links in the i* framework. In: Conceptual
Modeling - 32th International Conference, ER 2013, Hong-Kong, China, November
11-13, 2013. Proceedings. (2013) 463–470

25. Hogganvik, I., Stølen, K.: A graphical approach to risk identification, motivated by
empirical investigations. In: International Conference on Model Driven Engineering
Languages and Systems, Springer (2006) 574–588

26. Prince, T., et al.: The common ontology of value and risk. In: submitted to the
37th International Conference on Conceptual Modeling (ER 2018), Xi’an. (2018)

27. PMI: A guide to the project management body of knowledge (PMBOK guide).
Technical report, Project Management Institute (2013)

28. Chillarege, R.: Orthogonal defect classification. Handbook of Software Reliability
Engineering (1996) 359–399

29. Wang, X., Mylopoulos, J., Guizzardi, G., Guarino, N.: How software changes
the world: The role of assumptions. In: Tenth IEEE International Conference on
Research Challenges in Information Science, RCIS 2016, Grenoble, France, June
1-3, 2016. (2016) 1–12

30. Fricker, S.A., Schneider, K., eds.: Requirements Engineering: Foundation for Soft-
ware Quality - 21st International Working Conference, REFSQ 2015, Essen, Ger-
many, March 23-26, 2015. Proceedings. Volume 9013 of Lecture Notes in Computer
Science., Springer (2015)

31. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Com-
puter 26(7) (July 1993) 18–41

32. Williams, C.: Intel’s Pentium chip crisis: an ethical analysis. IEEE Transactions
on Professional Communication 40(1) (Mar 1997) 13–19

33. Kitamura, Y., Mizoguchi, R.: An ontological analysis of fault process and category
of faults. In: Proceedings of tenth international workshop on principles of diagnosis
(DX-99). (1999) 118–128

34. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE transactions on dependable and
secure computing 1(1) (2004) 11–33


