
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Ontology Engineering by Combining Ontology Patterns

Fabiano B. Ruy1,2; Cássio C. Reginato1; Victor A. Santos1;
Ricardo A. Falbo1; Giancarlo Guizzardi1

1Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department
Federal University of Espírito Santo, Vitória, Brazil

2Informatics Department, Federal Institute of Espírito Santo, Campus Serra, Serra, Brazil
{fabianoruy, cassio.reginato,victor.amsantos,

falbo, gguizzardi}@inf.ufes.br

Abstract. Building proper reference ontologies is a hard task. There are a num-
ber of methods and tools that traditionally have been used to support this task.
These include foundational theories, reuse of domain and core ontologies, de-
velopment methods, and software tool support. In this context, an approach that
has gained increased attention in recent years is the systematic application of
ontology patterns. This paper discusses how Foundational and Domain-related
Ontology Patterns can be derived, and how they can be applied in combination
for building more consistent ontologies in a reuse-centered process.

Keywords: Ontology Patterns, Conceptual Ontology Patterns, Ontology Reuse,
Ontology Engineering.

1 Introduction

Although nowadays ontology engineers are supported by a wide range of Ontology
Engineering (OE) methods and tools, building proper reference domain ontologies is
still a difficult task even for experts [1]. Besides the domain knowledge, the ontology
engineer needs to apply ontological foundations in order to develop well-founded
ontologies.

According to their generality level, ontologies can be classified into Foundational,
Core and Domain ontologies [2]. At the highest level, foundational ontologies span
across many fields and model the very basic and general concepts and relations that
make up the world [3]. Domain ontologies, in turn, describe the conceptualization
related to a specific domain [3]. Core ontologies are located between foundational and
domain ontologies, and provide a definition of structural knowledge in a specific field
that spans across different application domains in this field [2]. The generality levels
are not a discrete classification, but a continuum [4] from foundational ontologies,
totally domain-independent, to domain ontologies, for a very particular domain. Core
ontologies, though more general than domain ontologies, are domain-dependent.

Reuse is pointed out as a promising approach for OE, since it enables a speeding
up of the ontology development process. Higher level ontologies can be used to sup-
port the development of lower level ontologies, e.g., foundational ontologies can be

used to support the development of core and domain ontologies, and core ontologies
can be the basis for developing domain ontologies. However, ontology reuse, in gen-
eral, is a hard research issue, and one of the most challenging and neglected areas of
OE [5]. The problems of selecting the right ontologies to reuse, extending them, and
composing several ontology fragments have not been properly addressed yet [6].

Ontology Patterns (OPs) are an emerging approach that favors reuse of encoded
experiences and good practices. OPs are modeling solutions to solve recurrent ontolo-
gy development problems [7]. There are many different types of OPs that can be used
in different phases of the OE process. In this paper, we are interested in Conceptual
OPs (COPs), since our focus is on developing reference ontologies. A reference on-
tology is constructed with the goal of making the best possible description of the do-
main in reality, representing a model of consensus within a community, regardless of
its computational properties [8]. In other words, when developing a reference ontolo-
gy, the focus is on expressivity of the representation and truthfulness to the domain
being represented (domain appropriateness), even if computational properties such as
tractability and decidability have to be sacrificed. In summary, in the view employed
here, an ontology is a particular kind of conceptual model, namely, a reference con-
ceptual model capturing the shared consensus of a given community. As such, alt-
hough our discussion is somehow focused on domain reference ontologies, the ap-
proach advanced here should be beneficial to ontology-driven conceptual modeling in
general [9].

COPs are modeling fragments extracted from either foundational ontologies
(Foundational OPs - FOPs) or core / domain ontologies (Domain-Related OPs -
DROPs). They are to be used during the ontology conceptual modeling phase, and
focus only on conceptual aspects, without any concern with the technology or lan-
guage [10]. An OP extracted from a higher level ontology can be used to support the
development of lower level ontologies.

We argue that if FOPs and DROPs are systematically applied in combination, re-
use is maximized, making the OE process more productive, and improving the quality
of the resulting domain ontologies. In this paper, we discuss how FOPs and DROPs
can be derived, and how they can be used to develop core and domain ontologies. The
FOPs discussed here are derived from the Unified Foundational Ontology - UFO [8].
The DROPs, in turn, are related to the Enterprise domain [11]. Moreover, we show a
tool supporting the application of COPs for developing ontologies. Our main goal is
to show how the combined application of COPs could be useful for OE.

This paper is organized as follows. Section 2 briefly presents the Unified Founda-
tional Ontology (UFO), the source for the discussed FOPs. Section 3 discusses how
FOPs are derived from UFO, how DROPs are extracted from a core ontology, and
how COPs can be used in combination for developing domain ontologies. Section 4
briefly presents a software tool supporting COPs definition and application. Section 5
discusses related works. Finally, Section 6 presents our final considerations.

2 The Unified Foundational Ontology - UFO

UFO [8] is a foundational ontology that has been developed based on a number of
theories from Formal Ontology, Philosophical Logics, Philosophy of Language, Lin-
guistics and Cognitive Psychology. The aspects we present here cover object-type
(endurant) distinctions in UFO, namely, the distinction between sortal types, non-
sortal types and relators. For an in depth presentation, formal characterization and
discussion about empirical support for UFO, the interested reader should refer to [8].

By referring to a number of formal and ontological meta-properties, UFO propos-
es a number of distinctions among object types. Within these, sortal types are types
that either provide or carry a uniform principle of identity for their instances. Within
sortal types, we have the distinction between rigid and anti-rigid sortals. A rigid type
is a type that classifies its instances necessarily (in the modal sense), i.e., the instances
of that type cannot cease to be an instance of that type without ceasing to exist. Anti-
rigidity, in contrast, characterizes a type whose instances can move in and out of the
extension of that type without altering their identity. For instance, contrast the rigid
type Person with the anti-rigid types Student or Husband. While the same individual
John never ceases to be instance of Person, he can move in and out of the extension
of Student or Husband, once he enrolls in/finishes college or marries/divorces, respec-
tively.

Kinds are sortal rigid types that provide a principle of identity for their instances.
Subkinds are rigid types that carry the principle of identity supplied by a Kind. Con-
cerning anti-rigid sortals, we have the distinction between Roles and Phases. Phases
are relationally independent types defined as a partition of a sortal. This partition is
derived based on an intrinsic property of the type (e.g., Child is a phase of Person
while she has less than 18 years). Roles are relationally dependent types, capturing
that entities play roles when related to other entities (e.g., Student, Husband). Since
the principle of identity is provided by a unique Kind, each sortal hierarchy has a
unique Kind in the top [8].

Non-Sortals are categorizations that aggregate properties of distinct Sortals. Fur-
niture is an example of Non-Sortal that aggregates properties of Table, Chair and so
on. Non-Sortals do not provide principle of identity; instead, they just classify things
that share common properties but that obey different principles of identity. Rigidity
and anti-rigidity also applies to non-sortals. Rigid non-sortals are termed Categories
(e.g., Physical Object); Anti-rigid sortals are RoleMixins (e.g., Customer, Crime
Weapon). However, non-sortals can also exhibit a meta-property termed semi-rigidity.
An object type is semi-rigid if it is rigid for some of its instances and anti-rigid for
others. A semi-rigid non-sortal is termed a Mixin (e.g., Insurable Item).

For capturing these distinctions between object types put forth by UFO, Guizzardi
[8] proposed a UML profile called OntoUML. Over the years, OntoUML has been
successfully employed to build conceptual models and domain ontologies in a number
of complex domains (e.g., [12], [13]). Table 1 shows the OntoUML stereotypes.

Concerning relationships, UFO's theory of relations makes a fundamental distinc-
tion between two main types of relationships, namely: formal and material relations.
Whilst the former holds directly between two entities without any further intervening

individual, the latter is induced by the presence of mediating entities called Relators.
Relators are individuals with the power of connecting entities. For example, an en-
rollment connects a student with an educational institution, and an employment con-
nects an employee with an employer organization [8]. OntoUML has a construct for
modeling relator universals. Every instance of a relator universal is existentially de-
pendent on at least two distinct entities. The formal relations that take place between a
relator universal and the object classes it mediates are termed mediation relations (a
particular type of existential dependence relation).

Table 1. OntoUML Object Type Distinction

Stereotype Identity Rigidity Allowed Supertypes

Kind Provide Rigid Category, RoleMixin, Mixin

Subkind Carry Rigid Kind, Subkind, Category, RoleMixin, Mixin

Role Carry Anti-Rigid Kind, Subkind, Role, Phase, Category,
RoleMixin, Mixin

Phase Carry Anti-Rigid Kind, Subkind, Role, Phase, Category,
RoleMixin, Mixin

Category - Rigid Category

Mixin - Semi-Rigid Mixin, RoleMixin

Role Mixin - Anti-Rigid Mixin, RoleMixin

3 Conceptual Ontology Patterns

In the Ontology Engineering process, pattern reuse can occur in many possible ways
[10]. Our focus is on FOPs and DROPs, how they are extracted, and how they are
applied for building core and domain ontologies. Figure 1 shows, on the left side, the
ontology generality levels, and on the right, the corresponding types of COPs.

FOPs are extracted from the foundations and rules of a foundational ontology. A
FOP, capturing foundational structural content, can be reused by analogy [14], repro-
ducing their structure in the ontology being developed, by matching the referenced
concepts of the pattern to the corresponding ones in the domain. The result is an on-
tology fragment with the FOP structure shaping the structures at the level of domain
concepts. FOPs can be applied for building both core and domain ontologies.

On the other hand, DROPs capture the core knowledge of the target domain, and
can be extracted directly from core/domain ontologies fragments. It is worth to note
that when a DROP is extracted from a core/domain ontology modeled already reusing
FOPs, we have as result a richer DROP, carrying both structural and domain
knowledge, characterizing a chained COP application at the domain level. DROP
reuse occurs by extension [15], i.e., their concepts and relations become part of the
domain ontology and they are typically extended, giving rise to new more specific
concepts and relations.

Fig. 1. Generality Levels and Ontology Patterns.

Both DROPs and FOPs can be applied for engineering domain ontologies. When
developing domain ontologies, for each aspect to be modeled, the ontology engineer
should first try to find an applicable DROP, which captures the core knowledge, and
possibly a foundational structure, suitable for the modeling problem at hand. If there
is no DROP satisfying the domain requirements, she needs to build a new ontology
fragment. In this case, she can apply a FOP and reuse its structure.

Of course, modeling domain ontologies is not limited to the direct application of
patterns. Domain ontology fragments created from COPs are interrelated and need to
be put together. To do that, the ontology engineer can look for related DROPs, and
also use FOPs for combining the structure inherent to the different fragments.

3.1 Deriving and Applying Foundational Ontology Patterns (FOPs)

FOPs pack the structure and rules of some foundational aspects recurrently applied
when building core and domain ontologies. A FOP is not a foundational ontology
fragment; instead, it is a self-contained set of related foundational rules and con-
straints that is applied to solve a common modeling problem independently of do-
main. By self-contained we mean that the pattern satisfies some foundational ontolo-
gy constraints imposed to the elements involved, not contradicting any foundational
ontology rule.

We distinguish between two main types of FOPs, namely Structural FOPs and Der-
ivation FOPs. A Structural FOP captures a template structure that comes from the
application of certain foundational ontology aspects that enforce this structure to take
place. In order to exemplify, let us consider the following foundational rules from
UFO: (r1) A relator mediates at least two distinct entities; (r2) A mediation is a bidi-
rectional mandatory relation between a relator and an endurant; (r3) A role is an anti-

rigid type and must inherit the identity principle of exactly one kind; and (r4) A role is
externally dependent on a relator. A combination of (r1) and (r2) gives rise to the
Relator FOP, whilst a combination of (r3) and (r4) gives rise to the Role FOP. Since
the Relator FOP is generic, allowing mediations with different types of endurants
(kinds, roles, phases, mixins, etc.), it enables some variations combining other onto-
logical rules or even other FOPs. It is the case of the Role-Relator FOP, which com-
bines the Relator and the Role FOPs (or the four foundational rules mentioned above)
to represent the case where a relator mediates two roles. These patterns are shown in
Figure 2, as templates. They can be applied during the development of core or domain
ontologies by analogy, i.e., by reproducing their structure in the ontology being de-
veloped [10], and completing the structure with the specific knowledge. For instance,
to represent the relation of a Person booking a Room, the relator Reservation medi-
ates two roles: Customer as a role of a Person kind, and Reserved Room as a role of a
Room kind. The Role-Relator FOP can be applied to many situations relating things,
such as in a marriage, in an employment, etc.

Fig. 2. The Relator FOP.

Another recurrent applied variation of the generic Relator FOP is the Kind-Relator
FOP. It takes place when the relator mediates a role and a rigid sortal (kind or sub-
kind). This FOP is useful when the ontology engineer needs to represent a relator
between two entities but the role that could be assumed by the instances of the rigid
type is not representative in the domain (e.g., a role “University with Students”, since
it is supposed that all University has Students), and can be discarded. Box D in Figure
6 shows an example of the application of the Kind-Relator FOP.

The Role Mixin FOP [8], which addresses the problem of modeling roles with mul-
tiple allowed types is another example of Structural FOP. As Figure 3 shows, the
abstract class C is the role mixin that covers different role types. Classes A’ and B’
are the disjoint subclasses of C that can have direct instances, representing the roles
that carry the principles of identity that govern the individuals that fall in their exten-
sion. Classes A and B are the ultimate sortals (kinds) that supply the principle of iden-
tity carried by A’ and B’, respectively. The material relation R represents the common
specialization condition for A’ and B’, which is represented in C. Finally, class D
represents a endurant (such as kind, role, phase) that C is relationally dependent on.

Fig. 3. Role Mixin FOP [8]

Another important class of FOPs regards derived concepts [16]. Derivation regards
how someone can derive concepts from operations applied to other concepts. For
instance, in [17], Guizzardi demonstrates that ontological meta-properties can be de-
rived from derived Object-Types. For instance, any object-type derived by union from
two rigid Object-Types is also a rigid type. In this paper, we approach two cases of
derivation: derivation by union and derivation by intersection. Table 2 shows four
possible derived concepts obtained by union and intersection, and thus four Deriva-
tion FOPs.

Table 2. Derivation FOPs: Union and Intersection

Type 1 Operation Set of Types Result

Kind ∪ Kind,…, Kind Category

Category ∪ Category,…,Category Category

Subkind ∪ Subkind,…,Subkind Subkind, Kind

Role ∩ Role,…, Role Role

In order to exemplify the use of FOPs, we choose the Enterprise domain. Figure 4
depicts a portion of an Enterprise Core Ontology (adapted from [11]), answering the
following competency questions: (CQ1) Who are the employees of an Organization?
(CQ2) What is the time period of an Employment? (CQ3) How is an Organization
structured in terms of Organizational Units? (QC4) Which are the Projects of an Or-
ganization? (CQ5) Which are the parties involved in a Project?

The first competence question (CQ1) points the need to relate people to an organi-
zation, representing the employment relation. The Role-Relator FOP is suitable for
this case. By analogy, we can say that Person (a kind) plays the role Employee while
participating in the Employment relator, which is created by an Employeer, a role of
the Organization kind. In the same Enterprise domain, the Relator FOP applies several
times, being useful to represent, for instance, Team Membership. The competency
question CQ2 is solved by adding the startDate and endDate properties to the Em-
ployment concept. CQ3 can be solved by applying the Composition FOP, considering
two subtypes of Organization: Simple Organization, representing those organizations
not broken down into Organizational Units; and Complex Organization, representing
organizations composed of two or more Organizational Units (satisfying the so-called

weak supplementation [18] axiom for compositional structures). CQ4 can be an-
swered by the same fragment of CQ5, since the Organization itself is a party involved
in its Projects. The parties involved in Projects have diverse nature, such as Organiza-
tions, Organizational Units and People. Since each party type assumes a role applying
different principles of identity, the Role Mixin FOP applies. Thus, Project Party is a
role mixin with a material relation with the Project kind.

Fig. 4. Enterprise Core Ontology fragmented in DROPs (partial version, adapted from [11]).

To exemplify the application of a derivation pattern, let us take a fragment of the
Enterprise Core Ontology, where Team, Organizational Unit and Organization give
rise by union to the concept of Institutional Agent. Since these three concepts are
classified as kind in the ontology, the resulting derived by union type (Institutional
Agent) should be a category (see the first line of Table 2), as Figure 5 shows.

Fig. 5. The Kind Union FOP.

3.2 Extracting and Applying Domain-related Ontology Patterns (DROPs)

DROPs are reusable fragments extracted from reference core/domain ontologies.
Ideally, DROPs capture the core knowledge related to a domain, and thus they can be
seen as fragments of a core ontology of that domain [10]. Since core ontologies
should be created grounded on foundational ontologies, it is natural to build them
applying FOPs.

Once we have a core ontology, DROPs can be extracted from it through a fragmen-
tation process. Each fragment meaningful for the domain can be packaged as a
DROP. DROP complexity can vary greatly depending on the domain fragment being
represented. Sometimes a DROP contains only two related concepts; in other situa-

tions they can contain a complex combination of concepts and relations. Sometimes
the same fragment gives rise to two (or more) variant and alternative patterns; some-
times a DROP is structurally open in order to be completed by another DROP.

Regarding the DROP derivation process, while FOPs are focused on foundational
and structural aspects, when deriving a DROP, domain aspects come first. The main
rule for a DROP is to represent a recurrent fragment in the field, regardless of its
foundational structure. Thus, while FOPs tend to be generally applied, DROPs for a
specific field are very interrelated [4]. For this reason, it is usual to apply many
DROPs in combination or in a sequence for engineering domain ontologies. Ontology
Pattern Languages (OPLs) [4], for instance, are used to organize DROPs in a guided
application process.

With a core ontology in hands, fragments can be extracted to form DROPs. In or-
der to illustrate the extraction of DROPs from core ontologies, in Figure 4, the dotted
boxes show four DROPs: (A) Employment, (B) Simple Organization, (C) Organiza-
tional Structure, and (D) Project Involvement. Although each DROP represents a
distinct aspect of the core domain knowledge, they can be related in different ways.
For instance, the DROPs Simple Organization (B) and Organizational Structure (C)
are very related from the foundational point of view, since they model two comple-
mentary subkinds of the same kind. However, they can also be applied in isolation,
depending on the application domain. Another interesting aspect is that different
DROPs partially overlap between them. This is the case of the Organization concept,
which is shared by three distinct DROPs. This characteristic shows that DROPs have
a more strict relation and are often applied in combination or even in sequence. Addi-
tional examples of DROPs of the Enterprise domain and possible combinations be-
tween them can be found in [11].

In order to illustrate the combined application of COPs for building a domain on-
tology, Figure 6 presents a portion of a domain ontology for Universities. This exam-
ple explores some different situations of COP reuse at the domain level. Since Uni-
versity is a specific type of Enterprise, the Enterprise DROPs are applicable. Three
competency questions were defined for this portion of the domain ontology: (CQ1)
Who are the employees of a University? (CQ2) Who are the students of a University?
(CQ3) Which are the parties involved in a Research Project? As we can notice, CQ1
and CQ3 are, indeed, specializations of the competency questions of the Enterprise
core ontology presented before. Two DROPs of Figure 4 applies to answer CQ1 (Em-
ployment DROP) and CQ3 (Project Involvement DROP).

CQ1 can be solved directly by applying the Employment DROP. This DROP is
added to the domain model (box A in Figure 6) and its concepts and relations are
extended (in box C): University is an Organization, University Employment is an
Employment, and the roles Employer and Employee are specialized into the specific
roles University Employer and University Employee, respectively. The relations “cre-
ates” and “employs” are also specialized. This reuse by extension mechanism allows
some modifications, such as adding new properties to the concepts, restricting cardi-
nalities and adding new axioms. It is worthwhile to point out that the Employment
DROP inherits the structure of the Role-Relator FOP. Thus, the university employ-
ment fragment being modeled (box C) reuses these two COPs, from different levels.

Fig. 6. Building a Domain Ontology with different types of COPs.

For CQ2, there is not a DROP available, since Student is a notion of the University
domain, and is not modeled for Enterprises in general. However, the question treats a
relation between a specific role assumed by people and a University. Thus, the Kind-
Relator FOP applies. Reusing this FOP structure, the role Student extends Person, and
the relator Enrollment establishes the participation of Students in a University (box
D). It is important to observe that only two new concepts, Student and Enrollment,
were added to the model, taking the advantage of reusing the concepts of Person and
University already modeled.

The third question, CQ3, addresses the different parties involved in a (Research)
Project, and can be solved applying the Project Involvement DROP. As in the case of
CQ1, the DROP is added to the model (box B) and its concepts and relations are ex-
tended (box E). Research Project is a Project, and Research Project Party is a speciali-
zation of the Project Party role mixin. The University domain considers three types of
involved parties: Researchers, a more specific role of University Employee; Research
Student, a specialization of the Student role; and Research Involved Organization, a
role for Organizations involved in research projects. The first two types, have their
identity principle provided by the Person kind, thus extend Person Party. The last one
is an Organization, and extends Organization Party. This third fragment is another
case of combined reuse of COPs, since the fragment of the Project Involvement
DROP reuses the structure of the Role Mixin FOP. In this case, the joint application of
the FOP is more explicit, since the modeler needs to know the Role Mixin FOP for
assuring that the “is involved in” material relation is enough to characterize the three
new roles created in the domain.

The combined reuse of COPs can also directly support the axiomatization of the
domain ontology at hand. This is because, by reusing and adapting the COPs, one can
also directly reuse and adapt the axioms defined for that COP. For instance, in the
university employment fragment (box C in Figure 6), there are a number of axioms
that come directly from the application of the corresponding COP. In this example, by
instantiating with domain concepts parts of the generic axiomatization defined for the
Role-Relator FOP, we can have the automatic generation of formal constraints stating,

for instance, that an University Employment is multiply existentially dependent on
exactly one University Employee and exactly one University Employer; that a Uni-
versity Employer is a Person that contingently (in the modal sense) instantiates that
role when mediated by at least a University Employment, among other constraints [8].

4 Tool Support for Ontology Pattern Application in OLED

For the definition and application of FOPs and DROPs, we extended the OLED tool.
OLED1 is an ontology framework that supports the OntoUML language [8], providing
a number of features such as construction, evaluation, simulation and transformations
of OntoUML models. In order to provide support for pattern-based engineering of
OntoUML models, OLED allows the definition of FOPs and DROPs libraries. These
libraries can be created in the tool by defining each pattern as a model. Then, the suit-
able libraries can be imported and applied to build core and domain ontologies. This
feature also turns possible the combination of the ontology patterns aforementioned,
since the OLED extension enables to build a core ontology applying FOPs libraries
and then saving fragments of this core ontology in a DROP library. These DROPs
(and FOPs), in turn, can be reused to build domain ontologies.

Figure 7 illustrates these pattern supporting features for creating a domain ontolo-
gies with a DROP library. First, the Employment DROP is selected for reuse in the
pallet (left side of Figure 7a). A new window for COP configuration opens (Figure
7b), where some adaptations can be made (changing names, picking up from the
model, adding new classes, etc.). Next, the DROP classes are included in the current
model (highlighted classes), and can be specialized with specific concepts and rela-
tions from the application domain.

5 Related Work

There are few works addressing the combined application of OPs. Most of them fo-
cuses on reusing patterns of the same generality level, or of the same type.

Uschold and colleagues [19] consider the use of an implementation guide for build-
ing domain ontologies. This process has been applied, for instance, in the Gist ontolo-
gy [20]. Gist has the main purpose of being used as a catalog of generic concepts for
the enterprise domain. The Gist’s intents are similar to the idea of DROPs, but re-
stricted to the enterprise domain. Gist can be considered an enterprise core ontology
that establishes a method to apply its concepts. Hence, it would be plausible to con-
sider the Gist’s fragments as DROPs. As Gist, others trustful generic ontologies are
capable to be a source of DROPs for specific domains. One of our main concerns here
is to show that core ontologies can take advantage of using foundational ontologies
and consequently FOPs.

1 OLED: https://code.google.com/p/ontouml-lightweight-editor

(a)

(b)

Fig. 7. OLED's support for reusing COPs.

In [5], Gangemi and Presutti present six categories of patterns (namely: structural,
content, lexico-syntactic, reasoning, presentation and correspondence) for ontologies
at the design and implementation levels. Their Content Patterns are quite similar to
our DROPs. However, they do not consider foundational patterns nor discuss how
patterns can be combined.

Falbo and colleagues [10] extended Gangemi and Presutti's pattern classification,
by considering DROPs and FOPs as COPs. They also briefly show how these types of
COPs can be used for building ontologies (reuse by analogy and by extension). In
fact, we took this work as a baseline. With respect to that work, we define here a new
type of Foundational OP, the Derivation FOPs, and discussed how the mechanism for
deriving FOPs and DROPs works. We also discuss, in details, how FOPs are applied
by analogy and DROPs by extension. Finally, we present a software tool supporting
the definition and application of these COPs.

In another work of the same group [4], Falbo and colleagues discussed how core
ontologies can be organized as Ontology Pattern Languages (OPLs). An OPL pro-
vides guidance for the application of DROPs to build domain ontologies. OPLs are a
relevant example of COPs joint application, when DROPs are reused in combination,

or even in sequence. However, OPLs explore only DROP application. As contribu-
tions, we presented how FOPs, combined with DROPs, are useful for supporting the
development of domain ontologies. This combination of different level COPs is use-
ful especially for (i) applying a FOP when there is no DROP suitable for meeting a
domain requirement; (ii) applying a DROP enriched by a FOP background (combined
application of a sequence of DROPs and FOPs); (iii) combining different DROP ap-
plications in structurally valid ontology configurations; and (iv) combining DROPs
from different related OPLs. Considering all these situations, we claim that OPLs
should also consider including FOPs for building domain ontologies.

6 Final Considerations

Ontology Patterns have been recognized as a beneficial approach for Ontology Engi-
neering [5,6]. This paper discussed how FOPs and DROPs can be derived, respective-
ly from foundational and core ontologies, and how they can be applied in combination
for creating ontology-driven conceptual models, in general, and domain ontologies, in
particular. The combined application of these two different levels of COPs enriches
the model development process in many ways: (i) FOPs can complement a domain
ontology fragment by adding the necessary concepts to make the model consistent;
(ii) FOPs can be used when there is no suitable DROP for the problem at hands, and
(iii) the combined reuse of COPs can enrich a domain ontology fragment with struc-
tural and domain knowledge. Besides the advantages for modeling, COPs can also
contribute for reusing competency questions and axioms from foundational and core
ontologies. The key point is that when developing domain ontologies, foundational
aspects count as much as the domain aspects. Thus, for building well-founded and
domain compliant ontologies, it is essential to reuse both aspects. This reuse can be
achieved by applying foundational and domain-related pattern in combination.

As future work, we are studying a proper way to include FOPs into OPLs, improv-
ing the language guidance for building domain ontologies. Some efforts are also in-
vested on evolving some aspects of the OLED tool, mainly for integrating different
patterns libraries and improving the model construction usability. We are also plan-
ning an empirical study to demonstrate the advantages of this pattern-based approach
in which FOPs and DROPs are combined, both in terms of the productivity gained
and in terms of the cognitive tractability of the resulting models.

Acknowledgements

This research is funded by the Brazilian Research Funding Agency CNPq (Processes
485368/2013-7 and 461777/2014-2).

References

1. O. Noppens and T. Liebig, “Ontology Patterns and Beyond Towards a Universal Pattern
Language”, in WOP, 2009.

2. A. Scherp, C. Saathoff, T. Franz, and S. Staab, “Designing core ontologies”, Applied On-
tology, vol. 6, pp. 177–221, 2011.

3. N. Guarino, “Formal Ontology and Information Systems”, in FOIS’98, 1998, vol. 46.
4. R. A. Falbo, M. P. Barcellos, J. C. Nardi, and G. Guizzardi, “Organizing ontology design

patterns as ontology pattern languages”. In Proceedings of the 10th Extended Semantic
Web Conference - ESWC 2013 (Montpellier, France) 2013.

5. A. Gangemi and V. Presutti, “Ontology Design Patterns”, in Handbook on Ontologies, Se-
cond, S. Staab and R. Studer, Eds. Springer, 2009, pp. 221–243.

6. E. Blomqvist, A. Gangemi, and V. Presutti, “Experiments on pattern-based ontology de-
sign”, in Proc. of 5th International Conference on Knowledge Capture, K-CAP’09, 2009.

7. V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist, “eXtreme Design with Content On-
tology Design Patterns”, Proc. Work. Ontol. Patterns (WOP 2009), 2009.

8. G. Guizzardi, “Ontological foundations for structural conceptual models”, Enschede:
Telematica Instituut Fundamental Research Series, 2005.

9. G. Guizzardi, “Ontology Patterns, Anti-Patterns and Pattern Languages for Next-
Generation Conceptual Modeling”, Proceedings of the 34th International Conference on
Conceptual Modeling (ER 2014), Atlanta, USA, 2014.

10. R. A. Falbo, G. Guizzardi, A. Gangemi, and V. Presutti, “Ontology patterns: clarifying
concepts and terminology”. In Proceedings of the 4th Workshop on Ontology and Seman-
tic Web Patterns, Sidney, Australia, 2013.

11. R. A. Falbo, F. B. Ruy, G. Guizzardi, M. P. Barcellos, and J. P. A. Almeida, “Towards an
enterprise ontology pattern language”, in Proceedings of the 29th Annual ACM Symposi-
um on Applied Computing - SAC ’14, 2014, pp. 323–330.

12. U.S. Department of Defense (DoD), Data Modeling Guide (DMG) For An Enterprise Log-
ical Data Model, V2.3; 15 March 2011.

13. G. Guizzardi, M. Lopes, F. Baião, and R. A. Falbo. “On the importance of Truly Ontologi-
cal Distinctions for Ontology Representation Languages: An Industrial Case Study in the
Domain of Oil and Gas”, 14th International Conference on Exploring Modeling Methods
in Systems Analysis and Design (EMMSAD´09), Amsterdam, The Netherlands, 2009.

14. N.A. Maiden and A.G. Sutcliffe, “Exploiting Reusable Specifications Through Analogy”,
Communications of the ACM, Vol. 35, No. 4, April 1992.

15. M. Mattson, J. Bosch, and M. Fayad, “Framework Integration Problems, Causes, Solu-
tions”. Communications of ACM, 42(10), pp. 80–87, 1999.

16. A. Olivé, “Conceptual modeling of information systems”. Springer Science & Business
Media, 2007.

17. G. Guizzardi, “Ontological meta-properties of derived object types”, Proceedings of the
24th International Conference on Advanced Information Systems Engineering (CAISE
2012), Gdansk, 2012.

18. A. Varzi, “Mereology”, in The Stanford Encyclopedia of Philosophy, Spring 2015. E. N.
Zalta, Ed. 2015.

19. M. Uschold, M. King, S. Moralee, and Y. Zorgios, “The enterprise ontology”, Knowl.
Eng. Rev., vol. 13, no. 01, pp. 31–89, 1998.

20. M. Uschold and D. McComb, “Introduction to Gist”, IAOA, 2013. [Online]. Available:
http://iaoa.org/isc2014/uploads/Whitepaper-Uschold-IntroductionToGist.pdf.

