
On the importance of Truly Ontological Distinctions for

Ontology Representation Languages: An Industrial Case

Study in the Domain of Oil and Gas

Giancarlo Guizzardi1, Mauro Lopes2,3, Fernanda Baião2,3, Ricardo Falbo1

1Ontology and Conceptual Modeling Research Group (NEMO), Computer Science

Department, Federal University of Espírito Santo, Espírito Santo, Brazil
2NP2Tec – Research and Practice Group in Information Technology, Federal University of

the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
3Department of Applied Informatics, Federal University of the State of Rio de Janeiro

(UNIRIO), Rio de Janeiro, Brazil

{gguizzardi, falbo}@inf.ufes.br

{fernanda.baiao, mauro.lopes}@uniriotec.br

Abstract. Ontologies are commonly used in computer science either as a

reference model to support semantic interoperability, or as an artifact that

should be efficiently represented to support tractable automated reasoning. This

duality poses a tradeoff between expressivity and computational tractability that

should be addressed in different phases of an ontology engineering process. The

inadequate choice of a modeling language, disregarding the goal of each

ontology engineering phase, can lead to serious problems in the deployment of

the resulting model. This article discusses these issues by making use of an

industrial case study in the domain of Oil and Gas. We make explicit the

differences between two different representations in this domain, and highlight

a number of concepts and ideas that were implicit in an original OWL-DL

model and that became explicit by applying the methodological directives

underlying an ontologically well-founded modeling language.

Keywords: Ontology, Ontology Languages, Conceptual modelling, Oil and

Gas domain

1 Introduction

Since the word ontology was mentioned in a computer related discipline for the first

time [1], ontologies have been applied in a multitude of areas in computer science.

The first noticeable growth of interest in the subject in mid 1990’s was motivated by

the need to create principled representations of domain knowledge in the knowledge

sharing and reuse community in Artificial Intelligence (AI). Nonetheless, an

explosion of works related to the subject only happened in the past eight years, highly

motivated by the growing interest on the Semantic Web, and by the key role played

by ontologies in that initiative.

There are two common trends in the traditional use of the term ontology in

computer science: (i) firstly, ontologies are typically regarded as an explicit

representation of a shared conceptualization, i.e., a concrete artifact representing a

model of consensus within a community and a universe of discourse. Moreover, in

this sense of a reference model, an ontology is primarily aimed at supporting semantic

interoperability in its various forms (e.g, model integration, service interoperability,

knowledge harmonization, and taxonomy alignment); (ii) secondly, the discussion

regarding representation mechanisms for the construction of domain ontologies is,

typically, centered on computational issues, not truly ontological ones.

An important aspect to be highlighted is the incongruence between these two

trends. In order for an ontology to be able to adequately serve as a reference model, it

should be constructed using an approach that explicitly takes foundational concepts

into account; this is, however, typically neglected for the sake of computational

complexity.

The use of foundational concepts that take truly ontological issues seriously is

becoming more and more accepted in the ontological engineering literature, i.e., in

order to represent a complex domain, one should rely on engineering tools (e.g.,

design patterns), modeling languages and methodologies that are based on well-

founded ontological theories in the philosophical sense (e.g., [2]; [3]). Especially in a

domain with complex concepts, relations and constraints, and with potentially serious

risks which could be caused by interoperability problems, a supporting ontology

engineering approach should be able to: (a) allow the conceptual modelers and

domain experts to be explicit regarding their ontological commitments, which in turn

enables them to expose subtle distinctions between models to be integrated and to

minimize the chances of running into a False Agreement Problem [4]; (b) support the

user in justifying their modeling choices and providing a sound design rationale for

choosing how the elements in the universe of discourse should be modeled in terms of

language elements.

This marks a contrast to practically all languages used in the tradition of

knowledge representation and conceptual information modeling, in general, and in the

semantic web, in particular (e.g., RDF, OWL, F-Logic, UML, EER). Although these

languages provide the modeler with mechanisms for building conceptual structures

(e.g., taxonomies or partonomies), they offer no support neither for helping the

modeler on choosing a particular structure to model elements of the subject domain

nor for justifying the choice of a particular structure over another. Finally, once a

particular structure is represented, the ontological commitments which are made

remain, in the best case, tacit in the modelers’ mind. In the worst case, even the

modelers and domain experts remain oblivious to these commitments.

An example of an ontologically well-founded modeling language is the version of

UML 2.0 proposed in [5] and, thereafter, dubbed OntoUML. This language has its

real-world semantics defined in terms of a number of ontological theories, such as

theory of parts, of wholes, types and instantiation, identity, dependencies, unity, etc.

However, in order to be as explicit as possible regarding all the underlying subtleties

of these theories (e.g., modal issues, different modes of predication, higher-order

predication), this language strives for having its formal semantics defined in a logical

system as expressively as possible. Now, as well understood in the field of knowledge

representation, there is a clear tradeoff between logical expressivity and

computational efficiency [6]. In particular, any language which attempts at

maximizing the explicit characterization of the aforementioned ontological issues

risks sacrificing reasoning efficiency and computational tractability. In contrast,

common knowledge representation and deductive database languages (e.g., some

instances of Description Logics) have been specifically designed to afford efficient

automated reasoning and decidability.

In summary, ontology engineering must face the following situation: on one side,

we need ontologically well-founded languages supported by expressive logical

theories in order to produce sound and clear representations of complex domains; on

the other side, we need lightweight ontology languages supported by efficient

computational algorithms. How to reconcile these two sets of contradicting

requirements? As advocated by [7], actually two classes of languages are required to

fulfill these two sets of requirements. Moreover, as any other engineering process, an

ontology engineering process lifecycle should comprise phases of conceptual

modeling, design, and implementation. In the first phase, a reference ontology is

produced aiming at representing the subject domain with truthfulness, clarity and

expressivity, regardless of computational requirements. The main goal of these

reference models is to help modelers to externalize their tacit knowledge about the

domain, to make their ontological commitments explicit in order to support meaning

negotiation, and to afford as best as possible the tasks of domain communication,

learning and problem solving. The same reference ontology can then give rise to

different lightweight ontologies in different languages (e.g., F-Logic, OWL-DL, RDF,

Alloy, and KIF) and satisfying different sets of non-functional requirements. Defining

the most suitable language for codifying a reference ontology is then a choice to be

made at the design phase, by taking both the end-application purpose and the tradeoff

between expressivity and computational tractability into account.

In this article, we illustrate the issues at stake in the aforementioned tradeoff by

discussing an industrial case study in the domain of Oil and Gas Exploration and

Production. However, since we were dealing with a pre-existing OWL-DL codified

ontology, we had to reverse the direction of model development. Instead of producing

a reference model in OntoUML which would then give rise to an OWL-DL

codification, we had to start with the OWL-DL domain ontology and apply a reverse

engineering process to it in an attempt to reconstruct the proper underlying reference

model in OntoUML. By doing that, we manage to show how much of important

domain knowledge had either been lost in the OWL-DL codification or remained tacit

in the minds of the domain experts.

The remainder of this article is organized as follows. Section 2 briefly

characterizes the domain and industrial setting in which the case study reported in this

article took place, namely, the domain of oil and gas exploration and production and

in the context of a large Petroleum Organization. Section 3 discusses the

reengineering of the original lightweight ontology produced in the settings described

in section 2. This reengineering step was conducted by transforming the original

ontology to well-founded version represented in OntoUML. Section 4 discusses some

final considerations.

2 Characterization of the case study domain and settings

The oil and gas industry is a potentially rich domain for application of ontologies,

since it comprises a large and complex set of inter-related concepts. Ontology-based

approaches for data integration and exchange involves the use of ontologies of rich

and extensive domains combined with industry patterns and controlled vocabularies,

reflecting relevant concepts within this domain [8]. According to this author, the

motivating factors for the use of ontologies in the oil and gas industry include:

• The great data quantity generated each day, coming from diverse sources,

involving different disciplines. Integrating different disciplines to take advantage
of the real value of your information has been a complex and costly task.

• The existence of data in different formats, including structured in databases and
semi-structured in documents. To deal with the great quantity of information, as
well as heterogeneous formats, a new approach is needed to handle information
search and access.

• The necessity of standardization and integration of information along the
frontiers of systems, disciplines and organizations, to support the decision-
making with the collaborators, to the extent that better quality data will be
accessible on the opportune time.

The case study reported in this paper was conducted in a large Petroleum

Corporation, by analyzing and redesigning a pre-existing ontology in the domain of

Oil and Gas Exploration and Production, henceforth named E&P-Reservoir Ontology.

Due to the extensiveness and complexity of this domain, only few sub domains were

taken into consideration on the initial version of this ontology, namely, the “Reserve

Assessment” sub domain, and the “Mechanical pump” sub domain. The knowledge

acquisition process used to create the original E&P-Reservoir Ontology ontology was

conducted via the representations of business process models following the approach

proposed in [9] and extended in [10]. The original E&P-Reserve ontology was

codified in OWL-DL comprising 178 classes, which together contained 55 data type

properties (OWL datatypeProperties) and 96 object properties (OWL

objectProperties).

In a nutshell, a Reservoir is composed of Production Zones and organized in Fields

– geographical regions managed by a Business Unit and containing a number of

Wells. Reservoirs are filled with Reservoir Rock – a substance composed of quantities

of Oil, Gas and Water. Production of Oil and Gas from a Reservoir can occur via

different lifting methods (e.g., natural lifting, casing’s diameter, sand production,

among others) involving different Wells. One of these artificial lifting methods is the

Mechanical Pump. The simultaneous production of oil, gas and water occurs in

conjunction with the production impurities. To remove these impurities, facilities are

adopted on the fields (both off-shore and on-shore), including the transfer of

hydrocarbons via Ducts to refineries for proper processing. The notion of Reserve

Assessment refers to the process of estimating, for each Exploration Project and

Reservoir, the profitably recoverable quantity of hydrocarbons (Oil and Gas) for that

given reservoir. The Mechanical Pump subdomain ontology, in contrast, defines a

number of concepts regarding the methods of Fluid lifting, transportation, and other

activities that take place in a reservoir during the Production process.

For a more extensive definition of the concepts in this domain, one should refer to,

for instance, [11] or The Energy Standard Resource Center (www.energistics.org).

3 Reverse engineering an OntoUML version of the E&P-Reserve

Ontology

In this section, we discuss some of the results of producing an OntoUML version of

the original E&P-Reserve Ontology in this domain. In particular we focus at

illustrating a number of important concepts in this domain which were absent in the

original OWL model and remained tacit in the domain experts’ minds, but which

became manifest by the application of methodological directives underlying

OntoUML. It is important to emphasize that this section does not aim at serving as an

introduction to OntoUML neither as a complete report on the newly produced version

of the E&P-Reserve Ontology.

3.1 Making the Real-World Semantics of Relationships Explicit

Figure 1 depicts a fragment of the OWL ontology and figure 2 depicts the

correspondent fragment transformed to OntoUML.

The OntoUML language, with its underlying methodological directives, makes an

explicit distinction between the so-called material and formal relationships. A formal

relationship can be reduced to relationships between intrinsic properties of its relata.

For example, a relationship more-dense-than between two fluids can be reduced to the

relationship between the individual densities of the involved fluids (more-dense-

than(x,y) iff the density of x is higher than of y’s). In contrast, material relationships

cannot be reduced to relationships between individual properties of involved relata in

this way. In order to have a material relationship established between two concepts

C1 and C2, another entity must exist that makes this relationship true. For example,

we can say that the Person John works for Company A (and not for company B) if an

employment contract exists between John and Company A which makes this

relationship true. This entity, which is the truthmaker of material relationships, is

termed relator in OntoUML and the language determines that (for the case of material

relationships) these relators must be explicitly represented on the models [12].

Fig. 1. Representation of Fluid transportation (OWL).

Fig. 2. Alternative Representation of Fluid transportation (OntoUML), an interpretation of

Fluid transportation with unique Duct and Fluid.

Fig. 3. Interpreting Fluid transportation with multiples Ducts and Fluids.

The Conduct_Fluid relationship of figure 1 is an example of a material relationship.

Therefore, this relationship only takes place (i.e., the Conduct_Fluid relationship is

only established) between a specific duct x and a specific portion of fluid y, when

there is at least a fluid transportation event that involves the participation of x and y.

Besides making explicit the truthmakers of these relations, one of the major

advantages of the explicit representation of relators is to solve an inherent ambiguity

of cardinality constraints that exists in material relationships. Take for example the

cardinality constraints of one-to-many represented for the relationship Conduct_Fluid

in figure 1. There are several possible interpretations for this model which are

compatible with these cardinality constraints but which are mutually incompatible

among themselves. Two of these interpretations are depicted in figures 2 and 3.

On the model of figure 2, given a fluid transportation event, we have only one duct

and only one portion of fluid involved; both fluid and duct can participate in several

transportation events. In contrast, on the model of figure 3, given a fluid

transportation event, we have possibly several ducts and portions of fluid involved; a

duct can be used in several transportation events, but only one fluid can take part on a

fluid transportation.

When comparing these two models in OntoUML we can see that the original OWL

model collapses these two interpretations (among others) in the same representation,

which have substantially different real-world semantics. This semantic overload can

be a source of many interoperability problems between applications. In particular,

applications that use different models and that attach distinct semantics to

relationships such as discussed above can wrongly assume that they agree on the same

semantics (an example of the previously mentioned False Agreement Problem).

Finally, in the OntoUML models in this section, the dotted line with a filled circle

on one of its endings represents the derivation relationship between a relator type and

the material relationship derived from it [5]. For example, the derivation relationship

Fluid Transportation (relator type) and Conduct_Fluid (material relationship)

represents that for all x, y we have that: <x,y> is an instance of Conduct_Fluid iff

there is an instance z of Fluid Transportation that mediates x and y. As discussed in

depth in [5,12], mediation is a specific type of existential dependence relation (e.g., a

particular Fluid Transportation can only exist if that particular Duct and that particular

Fluid exist). Moreover, it also demonstrated that the cardinality constraints of a

material relationship R derived from a relator type UR can be automatically derived

from the corresponding mediaton relationships between UR and the types related by

R. In summary, a relator is an entity which is existentially dependent on a number of

other individuals, and via these dependency relationships it connects (mediates) these

individuals. Given that a number of individuals are mediated by a relator, a material

relationship can be defined between them. As this definition makes clear, relators are

ontologically prior to material relationships which are mere logical/linguistic

constructions derived from them [5,12]. To put it in a different way, knowing that x

and y are related via R tells you very little unless you know what are the conditions

(state of affairs) that makes this relationship between this particular tuple true.

3.2 The Ontological Status of Quantities

Figures 4 and 5 represent fragments of the domain ontology that deal with the notion

of Fluid.

Fig. 4. The representation of Fluid and related notions in OWL.

Fig. 5. The Representation of Fluid and related notions in OntoUML

In general, quantities or amounts of matter (e.g., water, milk, sugar, sand, oil) are

entities that are homeomerous, i.e., all of their parts are the same type as the whole.

Alternatively, we can say that they are infinitely divisible in subparts of the same

type. Homeomerousity and Infinite divisibility causes problems both to determine the

referent of expressions referring to quantities and, as a consequence, also problems to

specify finite cardinality constraints of relationships involving quantity types [5]. In

OntoUML, these problems are avoided by defining a modelling primitive

<<quantity>> whose semantics are defined by invoking the ontological notion of

Quantity. In OntoUML, a type stereotyped as <<quantity>> represents a type whose

instances represent portions of amounts of matter which are maximal under the

relation of topological self-connectness [5].

In figure 5, the type Fluid is represented as a quantity in this ontological sense. As

a consequence we have that Fluid: (i) is a rigid type, i.e., all instances of this type are

necessarily instances of this type (in a modal sense); (ii) provides an identity principle

obeyed by all its instances; (iii) represent a collection of essential properties of all its

instances [5,13]. Specializations of a quantity are represented with the stereotype

subkind. In figure 5, these include the specific types of Fluid:Water, Oil and Gas.

Subkinds of Fluid have meta-properties (i) and (iii) above by inheriting the principle

of identity defined by the quantity kind Fluid that should be obeyed by all its

subtypes.

On the original ontology in OWL, the equivalence between the Oil and Petroleum

concepts is represented by the Oil_Petroleum_synonym relationship defined between

these concepts. This relationship is declared as being symmetric. On the original

ontology, these concepts simply represent the general concepts of Oil or Petroleum

and do not represent genuine types that can be instantiated. As consequence in this

case, the Oil_Petroleum_synonym relationship represents also a relational type that

cannot be instantiated and only exists in fact between this pair of concepts. Therefore,

it does not make sense to characterize it as a symmetric relationship, since it functions

as an instance and not genuinely as a type.

In the semantics adopted on the revised model, Oil and Petroleum are quantity

types, the instances of which are specific portions of these Fluids. Therefore, in this

case, there is no sense in defining an Is_synonym_of relationship between Oil and

Petroleum. After all, defined this way, since these are genuine types that can be

instantiated, this relationship would have as instances ordered pairs formed by

specific portions of Oil and Petroleum, which definitely does not correspond to the

intended semantics of this relationship. In fact, the relationship Is_synonym_of is a

relationship between the Oil and Petroleum types and not between its instances. In

particular, this relationship has a stronger semantics than simply symmetry, being an

equivalence relationship (reflexive, symmetric, transitive).

The problem of the proper representation of an Is_synonym_of relationship that

could be established between any two types of fluid is solved on the model of figure

5. Firstly, the model makes an explicit distinction between the fluid types instances of

which are individual portions of fluid and a type instances of which are the concepts

of Oil, Water, Gas and Petroleum themselves. Since OntoUML is an extension of

standard UML, this can be represented by the use of notion of powertype1. In a

nutshell, a powertype is a type instances of which are other types. On this specific

model, the relationship between the Fluid Type powertype and Fluid defines that the

subtypes of the latter (Oil, Water, Gas and Petroleum) are instances of the former.

Once this distinction is made, the formal relationship of Fluid_identity2 can be

defined among the instances of Fluid Type. This relationship can, then, be defined as

an equivalence relationship which semantics is characterized by the following rule:

two fluid types are identical iff they possess necessarily (i.e., at any given

circumstance) the same instances. In the OntoUML language, this rule is defined

outside the visual syntax of the language and as part of the axiomatization of the

resulting model (ontology).

Finally, as a result of this modeling choice, particular instances of the

Fluid_identity relationship can be defined. For example, in figure 5, the link (instance

of a relationship) between Oil and Petroleum (instances of Fluid Type) is defined

explicitly as an instance of Fluid_Identity.

In the revised model of figure 5, in the same manner as Fluid and its subtypes,

Reservoir Rock is explicitly represented as a quantity type. Once more, this type

represents a genuine type instances of which are particular portions of Reservoir

Rock. The Is_accumulated_in_Reservoir_Rock relationship in the original model of

figure 4 is, hence, replaced by a special type of part-whole relationship

(subQuantityOf) between Reservoir Rock and Fluid. The SubQuantityOf relationship

defined as a primitive in OntoUML contains a formal characterization that implies: (i)

a partial order (irreflexivity, asymmetry, transitivity) relation; (ii) An existential

dependency relation, i.e., in this particular example a particular portion of Reservoir

Rock is defined by the aggregation of the specific particular portions of its constituent

Fluids; and (iii) Non-sharing of parts, i.e., each particular portion of fluid is part of at

most one portion of Reservoir Rock. It is important to emphasize that the explicit

representation of the semantics of this relationship eliminates an implicit ambiguity

on the original model.

1 http://www.omg.org/spec/UML/2.1.2/
2 The preference for the term Fluid_identity instead of Is_synonym_of is motivated by the fact

that the former refers to an identity relation among types while the latter refers merely to an

identity relation among terms.

3.3 The Containment relation to represent the spatial inclusion among physical

entities: Reservoir, Reservoir Rock and Geographic Area

The model on figure 5 also depicts the Reservoir and Geographic Area concepts and

defines the formal relationship of containment [14] between Reservoir and Reservoir

Rock and between Reservoir and Geographic Area. This relationship contains the

semantic of spatial inclusion between two physical entities (with the spatial extension)

that is also defined on the ontology’s axiomatization, e.g., outside the visual syntax of

the model.

On the original model of figure 4, there is only one relationship

Is_composed_of_Water_Gas_Oil defined between the Extracted Petroleum and the

Water, Gas and Oil concepts. On the revised ontology, this relationship is replaced by

composition relationships (subQuantityOf). As previously discussed, the richer

semantics of this relationship type makes important meta-properties of the

relationship among these elements explicit in the model. As discussed in [5, 15, 16],

the formal characteristics of this relationship, modeled as a partially order, existential

dependency relation with non-sharing of parts, have important consequences both to

the design and implementation of an information system as to the automated

processes of reasoning and model evaluation.

3.4 Making the Production Relator Explicit

As already discussed, OntoUML makes an explicit distinction between formal and

material relationships. The Extracts_Fluid relationship between Fluid and Well in the

original model is an example of the latter. In this way, following the methodological

directives of the language, the modeling process seeks to make explicit which is the

appropriate relator that would substantiate that relationship. The conclusion would

one come to is that the relationship Extracts_Fluid(x,y) is true iff there is a Production

event involving the Well x from where the Fluid y is produced. The semantic

investigation of this relationship makes explicit that the resulting fluid of this event in

fact only exists after the occurrence of this event. In other words, the portion of the

Extracted Petroleum only exists after it is produced from the event of production

involving a well. Therefore, a mixture of water, gas and oil is considered Extracted

Petroleum only when it is produced by an event of this kind. The Extract_Fluid

relationship between Well and Fluid and the Is_extracted_from_Well relationship

between Extracted Petroleum and Well on the original ontology are replaced by the

material relationship Extracts_Extracted_Petroleum between Well and Extracted

Petroleum and by the subQuantityOf relationships between the Extracted Petroleum

portion and its sub portions of Water, Gas and Oil. This representation has the

additional benefit of making clear that an event of Production has the goal of

generating an Extracted Petroleum portion that is composed of particular portions of

these Fluid types and not by directly extracting portions of these other types of fluid.

Finally, as previously discussed, the explicit representation of the Production relator

makes the representation of the cardinality constraints involving instances of Well and

Extracted Petroleum precise, eliminating the ambiguity on the representation of the

Extract_Fluid relationship on the original model.

3.5 Representing the Historical Dependence between Extracted Petroleum and

Reservoir Rock

As previously discussed, the subquantityOf relation defined in OntoUML to hold
between portions of quantities is a type of existential dependency relation from the
whole to the part. In other words, all parts of a quantity are essential parts of it. For
instance, in figure 6, we have the type Reservoir Rock stereotyped as <<quantity>>.
As a consequence, once we have the case that specific portions of water, gas and oil
are extracted from a specific portion of Reservoir Rock x (creating a portion of
Extracted Petroleum y) that specific portion x ceases to exists. Indeed, the resulting
portion of Extracted Petroleum y and the Reservoir Rock x from which y originates
cannot co-exist at the same circumstances. In fact, the same event that creates the
former is the one that destroys the latter. However, it is important to represent the
specific connection between x and y, for instance, because some characteristics from
an Extracted Petroleum could result from characteristics of that Reservoir Rock. Here,
this relation between x and y is modeled by the formal relation of historical
dependence [17]: in this case, since y is historically dependent on x it means that y
could not exist without x having existed.

Fig. 6. Extracted Petroleum and its historical dependence to a Reservoir Rock

4 Final Considerations

An ontology engineering process is composed of phases, among them are conceptual

modeling and implementation. During the whole process, the ontology being built

must be made explicit by a representation language. The diverse ontology

representation languages available in the literature contain different expressivity and

different ontological commitments, reflecting on the specific set of available

constructs in each one of them. Therefore, different ontology representation

languages, with different characteristics, are suitable to be used in different phases of

the ontology engineering process so as to address the different set of requirements

which characterize each phase. In particular, conceptual ontology modeling languages

aim primarily at improving understanding, learning, communication and problem

solving among people in a particular domain. Therefore, these languages have being

designed to maximize expressivity, clarity and truthfulness to the domain being

represented. In contrast, ontology codification languages are focused on aspects such

as computational efficiency and tractability and can be used to produce

computationally amenable versions of an ontologically-well founded reference

conceptual model. The inadequate use of a representation language, disregarding the

goal of each ontology engineering phase, can lead to serious problems to database

design and integration, to domain and systems requirements analysis within the

software development processes, to knowledge representation and automated

reasoning, and so on.

 This article presents an illustration of these issues by using an industrial case study

in the domain of Oil and Gas Exploration and Production. The case study consists in

the generation of a Conceptual Ontological Model for this domain from an existing

domain ontology in the organization where the case study took place.

The ontology representation language used to produce the redesigned model was

OntoUML, a theoretically sound and highly expressive language based on a number

of Formal Ontological Theories. The choice of this language highlights a number of

explicit concepts and ideas (tacit domain knowledge) that were implicit in the original

model coded in OWL-DL. To cite just one example, in the original representation of

Conduct_Fluid relationship, it is possible to define that a duct can conduct several

fluids and a fluid can be conducted by several different ducts. However, the lack of

the Fluid Transportation concept (a relator uncovered by the methodological

directives of OntoUML) hides important information about the domain. For instance,

it is not explicit in this case how many different fluids can be transported at the same

time or even if a duct can have more than a fluid transportation at a time. By making

these concepts explicit as well as defining a precise real-world semantics for the

notions represented, the newly E&P-Reserve ontology produced in OntoUML

prevents a number of ambiguity and interoperability problems which would likely be

carried out to subsequent activities (e.g., database design) based on this model.

In [18], an extension of OntoUML (OntoUML-R) is presented. This version of the

language allows for the visual representation of domain axioms (rules), including

integrity and derivation axioms in OntoUML. As future work, we intend to exploit

this new language facility to enhance the transformed E&P-Reserve Ontology with

visual representations of domain axioms. This enhanced model can then be mapped to

a new version of the OWL-DL codified lightweight ontology, now using a

combination of OWL-DL and SWRL rules. This enhanced lightweight model, in turn,

shall contemplate the domain concepts uncovered by the process described in this

article and, due to the combination of OWL-DL and SWRL, afford a number of more

sophisticated reasoning tasks.

References

1. Mealy, G. H.: Another Look at Data. Proceedings of the Fall Joint Computer

Conference, November 14–16, Anaheim, California (AFIPS Conference Proceedings,

Volume 31), Washington, DC: Thompson Books, London: Academic Press, 525–

534, 1967.

2. Burek, P. et al.: A top-level ontology of functions and its application in the Open

Biomedical Ontologies. Bioinformatics Vol. 22(14), pp. e66-e73, 2006.

3. Fielding, J. et al.: Ontological Theory for Ontology Engineering. In: International Conf.

on the Principles of Knowledge Representation and Reasoning (KR 2004), 9th,

Whistler, Canada, Proceedings, 2004.

4. Guarino, N.: Formal Ontology and Information Systems. In: 1st International

Conference on Formal Ontologies in Information Systems, pp. 3-15, Trento, Italy,

June, 1998.

5. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, Telematica

Instituut Fundamental Research Series No. 15, ISBN 90-75176-81-3, Universal Press,

The Netherlands, 2005.

6. Levesque, H.; Brachman, R.: Expressiveness and Tractability in Knowledge

Representation and Reasoning. Computational Intelligence, 3(1): 78-93, 1987.

7. Guizzardi, G.; Halpin, T.: Ontological Foundations for Conceptual Modeling, Applied

Ontology, pp. 91-110, Vol. 3, Number 1-2 / 2008, ISSN 1570-5838, 2008.

8. Chum, F.: Use Case: Ontology-Driven Information Integration and Delivery - A Survey

of Semantic Web Technology in the Oil and Gas Industry, W3C, April 2007.

Available in: http://www.w3.org/2001/sw/sweo/public/UseCases/Chevron/. Accessed

in Dec 2007.

9. Cappelli, C., Baião, F., Santoro, F., Iendrike, H., Lopes, M., Nunes, V. T.: An

Approach for Constructing Domain Ontologies from Business Process Models (in

Portuguese). II Workshop on Ontologies and Metamodeling in Software and Data

Engineering (WOMSDE), 2007.

10. Baião, F., Santoro, F., Iendrike, H., Cappelli, C., Lopes, M., Nunes, V. T. and

Dumont, A. P.: Towards a Data Integration Approach based on Business Process

Models and Domain Ontologies. 10th International Conference on Enterprise

Information Systems (ICEIS2008), Barcelona, pp. 338-342, 2008.

11. Thomas, J. E.: Fundamentals of Petroleum Engineering. Rio de Janeiro, Interciência,

in Portuguese, 2001.

12. Guizzardi, G.; Wagner, G., 2008. What´s in a Relationship: An Ontological Analysis,

27th International Conference on Conceptual Modeling (ER 2008), Barcelona, 2008.

13. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M., 2004. An Ontologically

Well-Founded Profile for UML Conceptual Models. 16th International Conference

on Advances in Information Systems Engineering (CAiSE), Latvia, 2004.

14. Smith, B. et al., “Relations in biomedical ontologies”, Genome Biology. 6(5), 2005.

15. Artale, A.; Keet, M.: Essential and Mandatory Part-Whole Relations in Conceptual

Data Models. 21st International Workshop on Description Logics, Dresden, (2008).

16. Keet, M.; Artale, A.: Representing and Reasoning over a Taxonomy of Part-Whole

Relations, in Guizzardi, G. and Halpin, T. (Editors), Special Issue on Ontological

Foundations for Conceptual Modeling, Applied Ontology, pp. 91-110, Volume 3,

Number 1-2 / 2008, ISSN 1570-5838, 2008.

17. Thomasson, A. L., “Fiction and Metaphysics”, Cambridge University Press, ISBN-

13: 9780521065214, 1999.

18. das Graças, A.: Extending a Model-Based Tool for Ontologically Well-Founded

Conceptual Modeling with Rule Visualization Support. Computer Engineering

Monograph, Ontology and Conceptual Modeling Research Group (NEMO), Federal

University of Espirito Santo, Brazil, 2008.

