
Engineering Requirements with Desiree: An Empirical
Evaluation

Feng-Lin Li1, Jennifer Horkoff2, Lin Liu3,
Alex Borgida4, Giancarlo Guizzardi5, and John Mylopoulos1

1: University of Trento, Trento, Italy
2: City University, London, UK

3: Tsinghua University, Beijing, China
4: Rutgers University, New Brunswick, USA

5: Federal University of Espirito Santo, Vitoria, Brazil

Abstract. The requirements elicited from stakeholders suffer from various af-
flictions, including informality, vagueness, incompleteness, ambiguity, inconsis-
tencies, and more. It is the task of the requirements engineering process to de-
rive from these a formal specification that truly captures stakeholder needs. The
Desiree requirements engineering framework supports a rich collection of refine-
ment operators through which an engineer can iteratively transform stakeholder
requirements into a specification. The framework includes an ontology, a formal
representation for requirements, as well as a tool and a systematic process for
conducting requirements engineering. This paper reports the results of a series of
empirical studies intended to evaluate the effectiveness of Desiree. The studies
consist of three controlled experiments, where students were invited to conduct
requirements analysis using textbook techniques or our framework. The results of
the experiments offer strong evidence that with sufficient training, our framework
indeed helps users conduct more effective requirements analysis.

Keywords: Requirements Problem, Controlled Experiment, Hypothesis Testing,
Effect Size

1 Introduction
Upon elicitation, requirements are typically mere informal approximations of stake-
holder needs that the system-to-be must fulfill. The core Requirements Engineering
(RE) problem is to transform these requirements into a specification that describes for-
mally and precisely the functions and qualities of the system-to-be. This problem has
been elegantly characterized by Jackson and Zave [14] as finding the specification S that
for certain domain assumptions DA entails given requirements R, and was formulated
as DA,S |= R. Here DA circumscribes the domain where S constitutes a solution for R.

The RE problem is compounded by the very nature of the requirements elicited from
stakeholders. There is much evidence that stakeholder requirements (written in natu-
ral language) are often ambiguous, incomplete, unverifiable, conflicting, or just plain
wrong [11][15]. More specifically, in our earlier studies on the PROMISE requirements
dataset [22], we found that 3.84% of the 625 (functional and non-functional) require-
ments are ambiguous [18], 25.22% of the 370 non-functional requirements (NFRs) are
vague, and 15.17% of the NFRs are potentially unattainable (e.g., they implicitly or
explicitly use universals like “any” as in “any time”) [19].

2 Li, Feng-Lin et al.

Our Desiree framework tackles the RE problem in its full breadth and depth. In
particular, it addresses issues of ambiguity (e.g., “notify users with email”, where “e-
mail” may be a means or an attribute of user), incompleteness (e.g., “sort customers”,
in ascending or descending order?), unattainability (e.g., “the system shall remain op-
erational at all times”) and conflict (e.g., “high comfort” vs. “low cost”). The Desiree
framework includes a modelling language for representing requirements (e.g., DA, S,
and R), as well as a set of requirement operators that support the incremental trans-
formation of requirements into a formal, consistent specification. The refinement and
operationalization operators strengthen or weaken requirements to transform what s-
takeholders say they want into a realizable specification of functions and qualities.

Requirement operators provide an elegant way for going from informal to for-
mal, from inconsistent/unattainable to consistent, also from complex to simple. To
support incremental refinement, we have proposed a description-based representation
for requirements [18][19]. Descriptions, inspired by AI frames and Description Log-
ics (DL) [5], have the general form “Concept <slot1: D1> ... < slotn: Dn>”, where
Di restricts sloti; e.g., R1 := “Backup <actor: {the system}> <object: Data> <when:
Weekday>”. This form offers intuitive ways to strengthen or weaken requirements. For
instance, R1 can be strengthened into “Backup ... <object: Data> <when: {Mon, Wed,
Fri}>”, or weakened into “Backup ... <object: Data> <when: Weekday ∨ {Sat}>”.
Slot-description (SlotD) pairs “< slot : D >” allow nesting, hence “<object: Data>”
can be strengthened to “<object: Data <associated with: Student>>”. In general, a
requirement can be strengthened by adding slot-description pair(s), or by strengthening
a description. Weakening is the converse of strengthening. The notion of strengthening
or weakening requirements maps elegantly into the notion of subsumption in DL and is
supported by off-the-shelf reasoners for a subset of our language.

Our main objective is to empirically evaluate Desiree, thereby answering the key
question: Does Desiree improve the RE process? In particular, the paper presents three
empirical studies involving upper-level software engineering students through controlled
experiments. The results provide strong evidence that with a training time of two hours,
Desiree can indeed help people to identify and address issues when refining stakeholder
requirements. This work builds on our earlier publications that introduced our language
for requirements and presented most of the operators [12][18][19].

The remainder of the paper is structured as follows. Section 2 introduces Desiree,
Section 3 describes the three experiments, and section 4 presents and discusses the
results. Section 5 discusses related work, while Section 6 concludes, and sketches di-
rections for further research.

2 The Desiree Framework
In this section, we present the Desiree framework [18], including a set of requirement
concepts, a set of requirement operators, a description-based syntax for representing
these concepts and operators, and a systematic methodology for transforming stake-
holder requirements into a requirements specification.

2.1 Requirements Concepts
The core notions of Desiree are shown in Fig. 1(shaded in the UML model). As in goal-
oriented RE, we model stakeholder requirements as goals. We have 3 goal sub-kinds, 4

Engineering Requirements with Desiree: An Empirical Evaluation 3

sub-kinds of specification elements (those with stereotype Specification Element), and
domain assumptions, all of which are subclasses of Desiree Element. These concepts
are derived from our experiences in analyzing the large PROMISE [22] requirements
dataset. We use examples from this set to illustrate each of these concepts and relations.

«DesireeElement»
Goal

FunctionalGoal

QualityGoal

Function

FunctionConstraint

«SpecificationElement»
QualityConstraint

<UReduceTo
0..1

1..*

OperationalizeToU>0..1 1..*

deUniversalizeToU>
1

0..1

ContentGoal

OperationalizeToU>0..1 1

«SpecificationElement»
StateConstraint

OperationalizeToU>

0..1

1..*

<UReduceTo

0..1

1..*

InterpretToU>0..1 1

deUniversalizeToU>
0..1 1

OperationalizeToU>

0..1
*

«DesireeElement»
SpecificationElement

DesireeElement

«DesireeElement»
DomainAssumption

ConflictU>

*

*

OperationalizeToU>

0..1

1..*

ObserveToU>0..1 1

«DesireeElement»
FSpecOrDA

«Goal»
STGoal «SpecificationElement»

FSpecElement

«DesireeElement»
SpecOrDA

Fig. 1. The requirements ontology (adapted from [18])

There are three points to be noted. First, ‘>’ and ‘<’ are used to indicate the read-
ing directions of the relations. Second, the relations (except “Conflict”) are derived from
applications of requirements operators (to be discussed in Section 2.2): if an operator is
applied to an X object then the result will be n..m Y objects; if that operator is not ap-
plied, then there is no relation (thus we have 0..1 as the lower bound). Third, “STGoal”,
“SpecOrDA”, “FSpecOrDA” and “FSpecElement” are artificial concepts, used to rep-
resent the union of their sub-classes, e.g., “STGoal” represents the union of “Function-
alGoal”, “QualityGoal” and “ContentGoal”. These classes are added to overcome the
limitations of UML in representing inclusive (e.g., an operationalization of a functional
goal) and exclusive (e.g., an interpretation of a goal) OR.

Functional Goal, Function and Functional Constraint. A functional goal (FG)
represents a desired state, and can be operationalized by function(s), functional con-
straint(s), domain assumption(s), or a combination thereof. For example, the goal “stu-
dent records be managed” specifies the desired state “managed”. We capture the inten-
tion of something to be in a certain state (situation) by using the symbol “:<”. So this
example is modeled as an FG “Student record :< Managed” (here “Managed” refers
to an associated set of individuals that are in this specific state). This FG can be opera-
tionalized using functions such as “add”, “update” and “remove” on student records.

When specifying a function (F), many pieces of information (e.g. actor, objec-
t, and trigger) can be associated with the desired capability. For example, “the sys-
tem shall allow users to search products” will be captured as “F0 := Search <subject:
{the system}><actor: User><object: Product>”. A functional constraint (FC) con-
strains the situation under which a function can be manifested. As above, we specify
intended situations using “< s : D>” pairs and constrain a function or an entity involved
in a function description to be in such a situation using “:<”. For example, “Only man-
agers are able to activate debit cards” can be captured as “FC1 := Activate <object:
Debit card> :< <actor: Manager>”.

Quality Goal and Quality Constraint. We treat a quality as a mapping function
that maps a subject to a value. A quality goal (QG) and quality constraint (QC) are

4 Li, Feng-Lin et al.

requirements that require a quality to have value(s) in a desired quality region (QRG)
[12]. In general, a QG/QC has the form “Q (SubjT) :: QRG”. For instance, “the file
search function shall be fast” will be captured as a QG “Processing time (File search)
:: Fast”. When the subject consists of one or more individuals (instances, in object-
oriented terms), we use curly brackets to indicate a set, e.g., “{the system}”. Note that
QGs and QCs have the same syntax, but different kinds of QRGs: regions of QGs are
vague (e.g., “low”) while those of QCs are measurable (e.g., “[0, 30]”).

Content Goal and State Constraint. A content goal (CTG) often specifies a set of
properties of an entity in the real word. To satisfy a CTG, a system needs to be in a
certain state, which represents the desired world state. That is, concerned properties of
real world entities should be captured as data in the system. We use a state constraint
(SC) to specify the desired system state. For example, to satisfy the CTG “a student
shall have Id, name and GPA”, the student record database table of the system must
include three columns: Id, name and GPA. This example can be captured as “CT G1 :=
Student :<<has id: ID><has name: Name><has gpa: GPA>” and a state constraint
(SC), “SC2 := Student record :< <ID: String> <Name: String> <GPA: Float>”.

Domain Assumption. A domain assumption (DA) is an assumption about the op-
erational environment of a system. For instance, “the system will have a functioning
power supply”, which will be captured as “{the system} :< <has power: Power>”.
In Desiree, DAs are also used to capture domain knowledge, e.g., “Tomcat is a web
server” will be captured as “Tomcat :< Web server”.

2.2 Requirements Operators

An overview of the requirements operators is shown in Table 1, where “#” indicates
cardinality. As shown, Desiree includes two groups of operators (adapted from our
previous work [18][19]): refinement and operationalization. In general, refinement op-
erators refine goals to goals, or specification elements to specification elements, and
operationalization operators map from goals to specification elements.

Table 1. An overview of the requirements operators

Requirements Operators #InputSet #OutputSet

Refinement

Reduce (Rd) 1 1..∗
Interpret (I) 1 1

deUniversalize (U) 1 1
Resolve (Rs) 2..∗ 0..∗

Operationalization Operationalize (Op) 1 1..∗
Observe (Ob) 1 1

Reduce (Rd). “Reduce” is used to refine a composite element (goal or specification
element) to simple ones, or a high-level element to low-level ones. We allow making
explicit domain assumptions when applying the “Rd” operator. For example, when re-
ducing G0 “pay for the book online” to G1 “pay with credit card”, one needs to assume
DA1 “having a credit card with enough credit”. We capture this reduce refinement as
“Rd (G0) = {G1, DA3}”.

Interpret (I). “Interpret” generalizes the original “Disambiguate” operator, and
allows us to not only disambiguate a requirement by choosing the intended meaning,
but also classify a requirement and encode it using descriptions. For example, a goal G1

Engineering Requirements with Desiree: An Empirical Evaluation 5

“notify users with email” can be interpreted as a functional goal FG2 “User :< Notified
<means: Email>”. We denote this as “I (G1) = FG2”.

deUniversalize (U). U applies to a QG/QC to weaken the requirement, such that it
is no longer expected to hold universallly. For example, going from “(all) file searches
shall be fast”, captured as QG1-1 “Processing time (File search) :: Fast”, to “(at least)
80% of the searches shall be fast”, captured as QG1-2 “U(QG1−1, File search, 80%)”.
Here we revised the signature of U by explicitly specifying the set of individuals to
which U will be applied (“File search”, in this case).

Resolve (Rs). In practice, some requirements will conflict with each other (i.e.,
they cannot be satisfied simultaneously). For example, the goal G1 “use digital certifi-
cate” would conflict with G2 “good usability” in a mobile payment scenario. We use a
“conflict” relation to capture this phenomenon (“Conflict ({G1, G2})”), and propose a
new “Resolve” operator to address this conflict. In this example, we can replace G2 by
G′2 “acceptable usability” or drop G1, which can be denoted as “Rs ({G1, G2}) = {G1,
G′2}” or “Rs ({G1, G2}) = {G2}”, respectively.

Operationalize (Op). The Op operator is used to operationalize goals into spec-
ification elements. In general, Op takes as input one goal, and outputs one or more
specification elements. For instance, the operationalization of FG1 “Products :< Paid”
as F2 “Pay <means: Credit card>” and DA3 “Credit card :< Having enough credit”
will be written as “Op (G1) = {F2, DA3}”. One can use Op to operationalize a QG as
QC(s) to make it measurable, or as Fs and/or FCs to make it implementable. In addition,
we can also operationalize a CTG as SC(s).

Observe (Ob). The Ob operator is derived from the original “Agreement” operator
by separating de-universalization from it. It is employed to specify the means, measure-
ment instruments or human used to measure the satisfaction of QGs/QCs, as the value of
slot “observed by”. Consider “(at least) 80% of the surveyed users shall report the inter-
face is simple”, which operationalizes and relaxes “the interface shall be simple”. The
original goal will be expressed as QG2-1 “Style ({the inter f ace}) :: Simple”. To cap-
ture the relaxation, we first use Ob, asking a set of surveyed users to observe QG2-1 and
obtaining QC2-2 “Ob (QG2−1, Surveyed user)”, and then use U , to require (at least)
80% of the users to agree that QG2-1 hold, i.e., “U (QC2−2, Surveyed user, 80%)”.

2.3 A Transformation Methodology

The Desiree transformation process takes as input informal stakeholder requirements,
and outputs a formal and consistent specification through incremental applications of
the operators. We use a simple requirement “The system shall collect real time traffic
info” to illustrate our three-staged Desiree method. The outputs of all stages are shown
together in Fig. 2.

The informal stage. We first capture this requirement as a goal G0. We then identify
its concerns by asking “what does it concern?”: a function “collect”, a quality “time-
liness” of collected traffic info, and a content concern “traffic info”, and accordingly
reduce G0 to G1, G2 and G3.

The interpretation stage. At this stage, we interpret G1 to a functional goal FG4, G2
to a quality goal QG7, G3 to a content goal CT G9, and encode the derived goals using
our description-based syntax.

6 Li, Feng-Lin et al.

<<Goal>>

G_5GL=GTheGsystemGshallGcollect
realGtimeGtrafficGinfo

<<Goal>>

G_{GL=GTheGsystemGshall
collectGtrafficGinfo

<<Goal>>

G_jGL=GTrafficGinfoGshallGinclude
vehicleGlocationGandGspeed

<<Goal>>

G_}GL=GCollectedGTrafficGinfo
shallGbeGinGrealGtime

<<CTG>>

CTG_8GL=GTraffic_infoGL<G<has_locationL
String><has_speedLGString>

<<SC>>

SC_{5GL=GTraffic_info_recordGL<
<locationLGString><speedLGString>

<<FG>>
FG_xGL=GTraffic_infoGL<

Collected

<<Func>>

Func_6GL=GCollectG<actorL
{the_system}>G<objectL
Traffic_info><meansL

Fixed_sensor>

<<DA>>

DA_QGL=GFixed_sensor
L<GInstalled

<<QG>>

QG_7GL=GTimeliness
vFunc_6Fobject2GLLGReal_time

<<QC>>

QC_.GL=GLatency
vFunc_6Fobject2GLLG<=G{Gvmin2

Rd

I
II

Op

Op

Op

Legend

GIGGGGLGInterpret
RdGGLGReduce
OpGLGGOperationalize
GGGGGGLGGJointGNodeGvAND2

TheGinformalGstage

TheGinterpretationGstage

TheGsmithingGstage

Fig. 2. An illustrative example for the Desiree method (with stereotypes on nodes)

The smithing stage. At this stage, we operationalize the structured goals into spec-
ification elements. For example, we operationalize FG4 “Traffic info :< Collected” as
a function “Func5 := Collect <actor: {the system}> <object: Traffic info> <means:
Fixed sensor>” and a domain assumption “DA6 := Fixed sensor :< Installed”.

We have developed a prototype tool1 to support the Desiree framework. Once we
have derived a specification from stakeholder requirements, we can automatically trans-
late it into a DL ontology using the prototype tool, and perform some useful reasoning
tasks. For example, we can check which requirements are related to “Traffic info” with
the query “< relate to: Traffic info>”.

Interested readers are referred to our previous work [18][19], where we have as-
sessed the coverage of our requirements ontology by applying it to all the 625 require-
ments in the PROMISE dataset [22], evaluated the expressiveness of our description-
based language by using it to rewrite all the 625 requirements in that dataset, and illus-
trated our methodology and available reasoning power by applying Desiree to a realistic
Meeting Scheduler case study.

3 Experiments

In this section, we describe three controlled experiments, conducted to assess whether
Desiree can indeed help people to conduct better requirement analysis. In the experi-
ments, we compared Desiree with a Vanilla RE approach, where a participant uses the
characteristics of a good software requirement specification (SRS) adapted from the
IEEE standard 830 [8] and a set of guidelines for writing good requirements introduced
in Wiegers et al. [23]. In the Vanilla method, participants manually go through and
improve stakeholder requirements using these desirable characteristics and guidelines.
This process approximates requirements walkthroughs using inspection checklists, and
is used as a baseline representing how requirements are improved in practice.

To prepare, we defined a set of requirements issues as in Table 2 by identifying the
inverse of each characteristic introduced in the IEEE standard [8]. Our experiments

1 The tool is available at https://goo.gl/oeJ9Fi.

Engineering Requirements with Desiree: An Empirical Evaluation 7

check to see if people can identify more of these issues when refining stakeholder
requirements with Desiree or with the Vanilla RE approach. We do not consider the
“Ranked” characteristic, as Desiree currently does not support requirements prioritiza-
tion. We also do not compare Desiree with the Vanilla method on “Traceability” because
Desiree is a goal-oriented method, and as such it intrinsically supports requirements to
requirements traceability (requirements to sources, and requirements to design trace-
ability are out of scope for our experiments). In addition, we introduce “Unsatisfiable”,
which is practically important but missing in the IEEE standard.

Table 2. Requirements issues

Issue Definition
Invalid A requirement is invalid if it is not the one that stakeholders want.

Incomplete (1) incomplete requirement - a requirement is incomplete if necessary information is missing for
implementation; (2) incomplete specification: an SRS is incomplete if any requirement is missing.

Ambiguous A requirement is ambiguous if it has more than one interpretation.

Unverifiable A requirement is unverifiable if it specifies unclear or imprecise value regions.

Inconsistent An SRS is inconsistent if there are: (1) conflicts between requirements; (2) terms are used in
different ways in different places.

Unmodifiable An SRS is un-modifiable if its requirements are : (1) not structurally organized; (2) redundant; or
(3) intermixing several requirements

Unsatisfiable A requirement is practically unsatisfiable (attainable) if it is impossible or too costly to fulfill.

3.1 Research Question

Our research question can be stated as: compared with the Vanilla method, can De-
siree help people to identify more requirements issues when transforming stakeholder
requirements to specifications?

We define the null hypothesis, H0, as: there is no statistical difference in the number
of requirements issues found when using Desiree (µD) vs. the Vanilla method (µV). The
alternative hypothesis, H1, is accordingly defined as: there is a positive statistical dif-
ference in the number of issues found using Desiree vs. the Vanilla method. These two
hypotheses can be formulated as Eq. 1. Similarly, we can define the null and alternative
hypotheses for all the 7 kind of issues defined in Table 2. Due to space limitation, we
do not present them here.

H0 : µD−µV = 0;
H1 : µD−µV > 0;

(1)

3.2 Experiment Design

The experimental task was to transform a set of given stakeholder requirements into
a specification through refinements. To evaluate the differences in their performance,
each participant was required to perform the task twice: s/he uses the Vanilla method
on a project X in the first session, and then uses Desiree on another project Y in the
second session. In both sessions, the participants discussed with stakeholders to elicit
necessary information for addressing identified issues (e.g., one probably needs further
information to quantify “fast”, which is vague), and submitted a refined specification.
All experimental tasks were performed electronically and online.

The experiment was duplicated three times, the first at University of Trento, Italy,
and the second and the third at Tsinghua University, China. In each experiment, we

8 Li, Feng-Lin et al.

used two projects, Meeting Scheduler (MS) and Realtor Buddy (RB), which are select-
ed from the PROMISE requirements set [22], for the experimental task. We chose 10
requirements, which cover some typical functionalities and qualities (e.g., search, us-
ability), from each project, and identified a list of issues for both projects. We also added
some issues that are newly identified by participants into the reference issue lists in each
experiment. Roughly, each project has approximately 45 issues, and each issue type has
around 5 instances (except incomplete, which accounts for nearly 50% of the issues in
each project). The statistics of these issues are available at https://goo.gl/oeJ9Fi.

In experiment one, we had 17 participants: Master’s students at the Department of
Information Engineering and Computer Science, University of Trento, taking the RE
course at the spring term of 2015. We also had 4 Ph.D. students or postdocs in the
research group of Software Engineering and Formal Methods playing the role of stake-
holder. We assigned two stakeholders to a project, and randomly separated the students
into two teams, RG1 and RG2. In the Vanilla session, we introduced the characteristics
of a good SRS [8] and the textbook techniques [23] in 30 minutes, presented the domain
knowledge of the two projects in 10 minutes, and tested in 90 minutes. In this session,
RG1 worked on MS and RG2 worked on RB. In the Desiree session, we introduced
the framework and its supporting tool in 40 minutes, and tested in 90 minutes. In this
session, the teams were given the other project.

In experiment two, we had 18 volunteer participants: Master’s students at the Insti-
tute of Information System and Engineering, School of Software, Tsinghua University.
Compared with experiment one, a few changes were made to the experimental design.
First, to improve the consistency of stakeholders’ answers, we randomly separated the
18 participants into 6 small teams of size 2 − 4, and hired 1 constant stakeholder for
all the 6 teams on the same project (the 6 teams conducted the experiment one by one,
not concurrently). Second, based on our initial observations that the training time was
too short, we increased the Desiree training time from 40 minutes to 2 hours, 1 hour
for the method and 1 hour for the tool (we also increased the Vanilla training time to 1
hour). In addition, we had updated the Desiree tool based on the feedback collected in
experiment one, mainly on the usability aspect (e.g., copy and paste).

In experiment three, we had 30 participants 2: Master’s students at the School of
Software, Tsinghua University, taking the RE course at the fall term of 2015. This ex-
periment replicates the first, with the only change to Desiree training time: 45 minutes
for the method, and 60 minutes for the tool (the Vanilla training time is 45 minutes).
Also, we hired 6 students who have already participated experiment two as our stake-
holders (7 in total, including the trainer). Similarly, stakeholders are randomly assigned
to the two projects, and students are randomly separated into two teams. The two teams
were given different projects in the two sessions.

4 Results
In this section, we report and discuss the experiment results. The data statistics collected
from the three experiments are shown in Table 3. There are three points to be noted.

2 We conducted experiment three at Tsinghua University again because: (1) the sample size of
experiment two (15) is relatively small; (2) we had additional available participants at Tsinghua
(one of the authors was teaching a RE class in the fall term there).

Engineering Requirements with Desiree: An Empirical Evaluation 9

First, in each session of the three experiments, participants were expected to discuss
questions over the given requirements via text interface with stakeholders, and produce
a refined textual requirements specification or a refined Desiree requirements model.
Second, in each experiment, the output of the Vanilla session was only text while that of
the Desiree session could be a mix of models and texts: if a participant cannot model all
the given requirements using the Desiree syntax and tool within specified time, s/he was
required to refine unmodelled requirements using natural language, but still following
the Desiree method. In a few cases, participants submitted only models or only textual
specifications in a Desiree session. Third, in the experiments, a few participants (e.g., 2
in the Vanilla session of experiment three) have refined the given requirements without
discussing any questions with stakeholders.

Table 3. Statistics of collected data: conversations, requirements texts and models

Experiment One Experiment Two Experiment Three
Session Vanilla Desiree Vanilla Desiree Vanilla Desiree

Time (min) 63 89.5 74 94 62 97
Discussions 17 16 18 15 28 29

Textual Requirement Specifications 17 14 18 12 30 23
Desiree Requirement Models - 11 - 15 - 29

Complete Samples 16 15 29

4.1 Descriptive Statistics
We carefully went through participants’ discussions and refined requirements (both
texts and models) to check how many issues they have identified in the experiments.
We say a participant has identified an issue if either of the two conditions hold.
1. A participant has asked a corresponding question, e.g., we gave a count of identified

unverifiable issue if someone has asked “how to measure fast?” to quantify “fast”.
2. A participant has eliminated an issue in his/her refined requirements specification,

either texts or models, although s/he did not ask any related question. E.g., a partic-
ipant has eliminated a term inconsistency in RB by changing “the product” to “the
system” without asking any questions.
To keep consistency, the trainer performed the evaluation for all the three experi-

ments. We show the average percentage of identified issues of participants in Table 4,
where positive results are in bold. We see that in experiment one, on average, a partic-
ipant was able to find more issues with Desiree than with the Vanilla method (35.79%
vs. 30.08%), but discovered fewer “Ambiguous” and “Unverifiable” issues. In experi-
ment two, as the training time for Desiree increased from 40 minutes to 2 hours, we
can see that the participants performed better in general: they found more issues in total
(46.27% vs. 32.93%). Experiment three has provided similar evidence as experiment
two: with a training time of near 2 hours, participants are able to find more issues with
Desiree (39.98% vs. 28.17%). In addition, we have compared the performance of each
participant on the two sample projects (MS and RB). The detailed statistics (including
raw data and statistical calculations) are available at https://goo.gl/oeJ9Fi.

4.2 Hypothesis Testing
We statistically analyzed the participants’ differences in terms of identified issues when
using Desiree vs. the Vanilla approach. Since we have far less than 30 participants in

10 Li, Feng-Lin et al.

Table 4. Statistics of issues identified by participants in the three experiments

Experiment One Experiment Two Experiment Three
Vanilla Desiree Diff Vanilla Desiree Diff Vanilla Desiree Diff

Incomplete 15.84% 19.70% 3.86% 27.30% 31.64% 4.34% 21.49% 30.77% 9.28%
Ambiguous 24.22% 20.31% -3.91% 32.22% 54.44% 22.22% 12.93% 38.45% 25.52%
Inconsistent 10.42% 15.62% 5.20% 6.67% 8.89% 2.22% 16.09% 16.38% 0.29%
Unverifiable 88.75% 84.37% -4.38% 81.33% 92.67% 11.34% 79.37% 90.27% 10.90%

Unmodifiable 20.83% 47.92% 27.09% 9.44% 43.33% 33.89% 3.45% 47.41% 43.96%
Unsatisfiable 2.78% 12.44% 9.66% 10.56% 50.00% 39.44% 3.45% 24.14% 20.69%

Total 30.08% 35.79% 5.71% 32.93% 46.27% 13.34% 28.17% 39.98% 11.81%

experiment one and two, and our Shapiro-Wilk Normality tests showed that the partic-
ipants’ differences in experiment three are not normally distributed on 3/7 of the issue
indicators, we employed both paired Student’s t test [2] and Wilcoxon Signed-Rank test
(WSR) [3] for our one-tailed hypothesis testing. The paired T test assumes that the
differences between pairs (repeated measurements on a sample, before and after a treat-
ment) are normally distributed, and is robust to moderate violation of normality [21].
As a complement, the WSR test is a non-parametric alternative to the paired T test if
the differences between pairs are severely non-normal [21].

Table 5. Statistical p-value for issues identified by participants

Experiment One Experiment Two Experiment Three
Paired T WSR Paired T WSR Paired T WSR

Incomplete 0.08331 0.03717 0.10593 0.1221 0.00007 0.00021
Ambiguous 0.71236 0.6753 0.00144 0.00288 0.00069 0.00145
Inconsistent 0.37845 0.37097 0.33507 0.30345 0.47585 0.66204
Unverifiable 0.92169 0.8449 0.01428 0.02747 0.00396 0.00519

Unmodifiable 0.00269 0.003 0.00001 0.00052 <0.00001 <0.00001
Unsatisfiable 0.04449 0.05155 <0.00001 0.00032 0.00006 0.00013

Total 0.076 0.06023 <0.00001 0.00036 <0.00001 0.00001

We report the p-values in Table 5. We can see that there is strong evidence that De-
siree can help people to identify more issues in general (the last row): for both tests,
p-value≤ 0.00036 << α = 0.05 (the common confidence level) in experiment two and
three, and p-value≈ 0.05 in experiment one. Specifically, there are strong evidence that
Desiree is able to help people to identify more “Incomplete”, “Ambiguous”, “Unveri-
fiable”, “’Unmodifiable’, and “Unsatisfiable” issues (their p-values ≤ 0.05 in at least
two experiments). We also see that there is no evidence that Desiree can help people to
identify more “Inconsistent” issues (p-value >> 0.05) in all the three experiments.

To mitigate the potential risk of accumulated type I error (a false rejection of the
null hypothesis due merely to random sampling variation) when running multiple tests
[17], we applied the Bonferroni adjustment [1] to the p-values obtained in experiment
three. We report the adjusted p-values and the related statistics (i.e., t values for the
paired T tests, Z values for the WSR tests) in Table 6. The very small adjusted p-value
(p-value < 0.00001 << 0.05) indicates a very strong evidence that the samples are not
from the null distribution. We can hence reject the null hypothesis H0 stated in Eq. 1 at
the confidence level α = 0.05, and accept the alternative hypothesis H1.

We also analyzed the effect sizes, which are shown Table 6. Effect size is the mag-
nitude of a treatment effect [6], i.e., it tells to what degree a treatment (e.g., the Desiree

Engineering Requirements with Desiree: An Empirical Evaluation 11

Table 6. Analyzing experiment three: p-values, statistics, and effect

Paired T Test Wilcoxon Signed-Rank (WSR)
Pvalue Bonferroni t(28) Effect Pvalue Bonferroni Zvalue Effect

Incomplete 0.00007 0.00046 4.4302 0.82266 0.00021 0.0015 3.52263 0.64314
Ambiguous 0.00069 0.0048 3.5536 0.6599 0.00145 0.01017 2.97754 0.54362
Inconsistent 0.47585 1 0.06111 0.01135 0.66204 1 -0.41805 -0.07633
Unverifiable 0.00396 0.02773 2.8598 0.53105 0.00519 0.03631 2.5631 0.46796

Unmodifiable <0.00001 <0.00001 8.6828 1.61236 <0.00001 0.00002 4.57097 0.83454
Unsatisfiable 0.00006 0.00044 4.4458 0.82556 0.00013 0.00094 3.64313 0.66514

Total <0.00001 <0.00001 6.5681 1.21967 0.00001 0.00008 4.24921 0.7758

method) affects the participants. For example, according to Coe [6], an effect size of
0.8 means that the score of the average person in the experimental group is 0.8 standard
deviations above the average person in the control group, and hence exceeds the scores
of 79% of the control group. We checked the effect sizes in experiment three for each
kind of requirements issue 3, and found that this interpretation matches very well with
the actual situation. Using Cohen’s conventional criteria of “small” (effect size from 0.2
to 0.3), “medium” (around 0.5), or “big” (0.8 to infinity) effect [7], the effect sizes for
“Total”, “Incomplete”, “Ambiguous”, “Unverifiable”, “Unmodifiable” and “Unsatisfi-
able” issues in experiment three fall into the“medium” or “large” category.

4.3 Analysis

In general, the results meet our expectations.
Incomplete. In our observations, Desiree is helpful in identifying incomplete re-

quirements issues mainly because: (1) the description-based syntax drives users to think
about the kinds of properties that shall be associated with the capability when specify-
ing a function; (2) the syntax facilitates the consideration of “which attributes shall be
used to describe the description (filler)?” when specifying a slot-description pair. Take
“the system shall be able to search meeting rooms records” as an example, with De-
siree, many participants were able to find the following missing information: who can
search? what kinds of search parameters shall be used? Further, more participants have
asked “what kinds of information shall a meeting room record include?”, identifying a
missing content requirement.

Ambiguous. Desiree offers operational rules for identifying potential ambiguities:
(1) checking the subject of a slot (property); (2) checking the cardinality of the re-
striction of a slot in a function description. These rules are shown to be useful in our
experiments. For example, more participants have identified the ambiguity in the re-
quirement “the system shall be able to download contact info for client”: is “for client”
attached to the function “download” or the entity “contact info”? More interestingly, for
the requirement “the system shall allow privileged users to view meeting schedules in
multiple reporting views”, after addressing the unverifiable issues of “privileged user”
and “multiple”, several participants have further asked “Shall these reporting views be
opened simultaneously or not?”, identifying an implicit ambiguity issue.

Unverifiable. We observed that the participants can easily find simple unverifiable
issues in given requirements, but tend to miss “deep” vague issues in stakeholders’ an-
swers when using the Vanilla method. With Desiree, the structuring of each requirement

3 The effect sizes in experiment one and two can be found at https://goo.gl/oeJ9Fi.

12 Li, Feng-Lin et al.

could remind them about implicit unverifiable issues. For example, most of the partic-
ipants were able to justify “the product shall have good usability” as unverifiable, but
few of them realized that “the product shall be easy to learn for realtors”, which was
given by stakeholders as a refinement of the previous requirement, is still vague. With
Desireee, participants would keep asking “how to measure easy?”. That is, when using
the Vanilla method, participants were more likely to accept vague stakeholder answers,
while using Desiree, they were more likely to notice and correct vague responses.

Un-modifiable. Desiree requires users to identify the concerns of a requirement, and
separate them if there are several. This helps to avoid intermixed requirements. With
Desiree, many participants were able to successfully decouple composite requirements
into simple ones. For example, they decoupled “the system shall be able to generate
a CMA (Comparative Market Analysis) report in acceptable time” into “generate a
CMA report” (F1 := Generate <object: CMA report>) and “the generation shall be
in acceptable time” (QG2 := Processing time (F1) :: Acceptable). Further, they were
able to capture interrelations between requirements by utilizing the Desiree tool. For
example, in the above example, the two elements are interrelated through the use of F1
as the subject of QG2. This enables us to systematically identifying the requirements to
be affected when updating a requirement.

Un-satisfiable. Desiree offers a “de-Universalize” operator for weakening require-
ments in order to make them practically satisfiable. The supporting tool also provides
hints for relaxation when the “Observe” operator is applied. As such, the participants
were able to identify more potentially un-satisfiable issues. For example, when opera-
tionalizing the QG “the search of meeting rooms shall be intuitive” by assigning sur-
veyed users, many of them have asked “how many percentage of the surveyed users
shall agree?”

Inconsistent. Our framework assumes that conflicts are explicitly defined by ana-
lysts and provides an “Resolve” operator to resolve them. As such, the framework does
not as yet offer much help in identifying inconsistency issues.

We had some additional observations over experiment results. First, we omitted
“Invalid” from our experiment results since there were no invalid issues in the two
projects (it is hard to justify which requirement is not desired by original stakeholders
who provided the requirements set). Second, the participants in experiment one had a
poorer performance on identifying “Ambiguous” and “Unverifiable” issues mainly be-
cause the training time of 40 minutes is too short: many students have spent a lot of
time struggling with the syntax and the tool, and did not have enough time to analyze
the requirements themselves. Third, the learning of Desiree varies from individual to
individual: in experiment three, 24 out of the 29 participants (82.76%) have better per-
formance when using the Desiree method while the rest (5/29, 17.24%) have slightly
poorer performance.

4.4 Feedback

We have conducted a survey on the two RE methods in each experiment. In general, the
majority of the participants have reported that the Desiree framework is useful or very
useful, but hard to learn. For example, among the 24 collected responses in the survey
of experiment three, 20 out of 24 (20/24) have reported that Desiree is useful or very

Engineering Requirements with Desiree: An Empirical Evaluation 13

useful, and 11 out of them (11/24) have reported that Desiree is hard to learn. Specifi-
cally, the participants have pointed out that the framework is useful because it offers a
structured way for classifying and representing requirements, and provides a systemat-
ic method for reducing complex requirements; it is hard to learn mainly because of its
grammar. We have also got positive feedback from the participants in each experiment.
Interested readers are referred to our survey reports available at https://goo.gl/oeJ9Fi.
1. “Desiree embodies correctness check. It enforces you to think if what you are doing

is right, e.g., functional goals, quality goals”
2. “The method helps a lot when reducing the complex requirements and help with

the standard representation of those items. Nothing is useless. The method makes
the analysis process clearer more or less. ”

3. “The tool makes me thinking in the structural and the mind is more MECE (Mutu-
ally Exclusive, Collectively Exhaustive).”

4.5 Threats to Validity
There are several threats to the validity of our evaluation.

Independence between participants. We have tried to minimize mutual interference
between participants in each experiment by: (1) assuming an exam scenario and asking
them to perform the experimental task individually; and (2) requiring them to use text to
communicate with stakeholders instead of speaking aloud (we had only 4 face-to-face
conversations in the Vanilla session of experiment three since these students did not
bring their laptops).

Assessment. The experiment results were evaluated by only one person. We have
used objective and consistent rules for making judgments, to minimize the impact of
individual subjectivity.

The nature of participants. Most of the participants in our experiments are students.
However, in experiment three, at least 8 participants (8/29) have more than 1 year work
experience (5/8 specific to RE). Also, holding the studies in two different universities
provides more confidence in the generalizability of our results. We could further mini-
mize this threat by conducting experiments in an realistic industrial setting.

Order. Desiree is used after the Vanilla method in each experiment. Although each
participant applied Desiree to a different project in the second task, s/he may have
learned from the Vanilla application in her/his first task. We could have done coun-
terbalancing: some groups apply Vanilla then Desiree, and others apply Desiree then
Vanilla; however, this setup would have been difficult to implement as part of the course
design, with alternating tutorials and exercises for different groups of students.

Sample size. The sample size of 29 in experiment three is sufficient to assume the
normality for paired T test. Also, we have ran the Wilcoxon Signed-Rank test, which
does not assume any distribution of the population, in each experiment. The threat of
generalizing our conclusion is relative low.

Training. In our experiments, the Desiree framework was taught by the designer;
and how the Vanilla RE method was taught may affect results. We have tried to be fair
in teaching and not bias the results.

Projects. The Desiree method can be more or less successful for different types of
projects, e.g., larger or more realistic. We have tried to mitigate this by using more than
one project.

14 Li, Feng-Lin et al.

5 Related Work

In the RE literature, many empirical evaluations have been conducted to assess the util-
ity of some languages or methods, but mainly on their expressiveness and effectiveness
[10][13]. Al-Subaie et al. [4] have used a realistic case study to evaluate KAOS and its
supporting tool, Objectiver, with regarding to a set of properties of requirements, intro-
duced in Davis et al. [9] and the IEEE Std 830-1998 [8]. They reported that KAOS is
helpful in detecting ambiguity and capture traceability, but the formalism of KAOS is
only applicable to goals that are in enough detail and can be directly formalized.

Work by Matulevicius et al. [20] is quite relevant. In their evaluation, the authors
have compared i* and KAOS through experiments. Besides the quality of languages
themselves, they also compared the models generated by using the two frameworks with
regarding to a set of qualitative properties in the semiotic quality framework [16]. Their
findings indicate a higher quality of the KAOS language (not significant), but a higher
quality of the i* models (the participants are not required to write formal specifications
with KAOS). They also found that the goal models produced by both frameworks are
evaluated low at several aspects, including verifiability, completeness and ambiguity.

These evaluations show that requirements initially captured in goal models are of
low quality and error prone, and techniques for incrementally improving the quality of
requirements captured in traditional goal models are needed. We have proposed Desiree
for addressing such deficiencies [18][19], in this work we conducted three experiments
to evaluate its effectiveness.

6 Conclusion

In this paper, we have presented a series of three controlled experiments that are con-
ducted to evaluate the effectiveness of the Desiree framework. The evaluation results
have provided strong evidence that given a training time around two hours, Desiree
indeed can help people to perform better requirements analysis (e.g., less ambiguous,
more complete, etc.) with a medium or big effect.

There are several directions can be further explored. First, the usability of the De-
siree tool, and the accessability of the tutorial for the Desiree approach (e.g., wiki,
video, help manual) needs to be improved. Second, our Desiree framework currently
does not have a built-in set of slots, and may result in different outputs when used by
different users as they may use different words for the same relation (e.g., “belong to”
vs. “associated with”). An interesting idea is “slot mining”: statistically analyzing the
requirements in specific application domains and eliciting a set of frequent slots.

Acknowledgements. This research has been funded by the ERC advanced grant
267856 “Lucretius: Foundations for Software Evolution” (April 2011 - March 2016). It
has also been supported by the Key Project of National Natural Science Foundation of
China (no. 61432020), and the Key Project in the National Science & Technology Pillar
Program during the Twelfth Five-year Plan Period (No. 2015BAH14F02). Jennifer is
supported by an ERC Marie Skodowska-Curie Intra European Fellow-ship (PIEFGA -
2013 - 627489) and by a Natural Sciences and Engineering Research Council of Canada
Postdoctoral Fellowship (September 2014 - August 2016).

Engineering Requirements with Desiree: An Empirical Evaluation 15

References
1. Bonferroni correction (Nov 2015), https://en.wikipedia.org/w/index.php?title=

Bonferroni_correction&oldid=692500900

2. Student’s t-test (Oct 2015), https://en.wikipedia.org/w/index.php?title=

Student%27s_t-test&oldid=687517571

3. Wilcoxon signed-rank test (Nov 2015), https://en.wikipedia.org/w/index.php?

title=Wilcoxon_signed-rank_test&oldid=690943842

4. Al-Subaie, H.S., Maibaum, T.S.: Evaluating the effectiveness of a goal-oriented requirements
engineering method. In: CERE’06. pp. 8–19. IEEE (2006)

5. Baader, F.: The description logic handbook: theory, implementation, and applications. Cam-
bridge university press (2003)

6. Coe, R.: It’s the effect size, stupid: What effect size is and why it is important (2002)
7. Cohen, J.: Statistical power analysis for the behavioral sciences. Academic press (2013)
8. Committee, I.C.S.S.E.S., Board, I.S.S.: IEEE Recommended Practice for Software Require-

ments Specifications. IEEE (1998)
9. Davis, A.M.: Software requirements: objects, functions, and states. Prentice-Hall, Inc. (1993)

10. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An empirical evaluation of the i*
framework in a model-based software generation environment. In: CAiSE’06. pp. 513–527.
Springer (2006)

11. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. In: IEEE/NASA SEW-26. pp.
97–105. IEEE (2001)

12. Guizzardi, R., Li, F.L., Borgida, A., Guizzardi, G., Horkoff, J., Mylopoulos, J.: An ontolog-
ical interpretation of non-functional requirements. In: FOIS’14. vol. 267, pp. 344–357. IOS
Press (2014)

13. Horkoff, J., Aydemir, F.B., Li, F.L., Li, T., Mylopoulos, J.: Evaluating Modeling Languages:
An Example from the Requirements Domain. In: ER’14, pp. 260–274. Springer (2014)

14. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: ICSE’95.
pp. 15–24. ACM (1995)

15. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using essential use
case interaction patterns. In: ICSE’11. pp. 531–540. ACM (2011)

16. Krogstie, J.: A semiotic approach to quality in requirements specifications. Proceedings of
the IFIP TC8/WG8 1, 231–249 (2002)

17. LeBlanc, D.C.: Statistics: concepts and applications for science, vol. 2. Jones & Bartlett
Learning (2004)

18. Li, F.L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., Mylopoulos, J.: From Stakeholder
Requirements to Formal Specifications Through Refinement. In: REFSQ’15, pp. 164–180.
Springer (2015)

19. Li, F.L., Horkoff, J., Mylopoulos, J., Guizzardi, R.S., Guizzardi, G., Borgida, A., Liu, L.:
Non-functional requirements as qualities, with a spice of ontology. In: RE’14. pp. 293–302.
IEEE (2014)

20. Matuleviius, R., Heymans, P.: Comparing goal modelling languages: An experiment. In:
REFSQ’07, pp. 18–32. Springer (2007)

21. McDonald, J.H.: Handbook of biological statistics, vol. 2. Sparky House Publishing Balti-
more, MD (2009)

22. Menzies, T., Caglayan, B., He, Z., Kocaguneli, E., Krall, J., Peters, F., Turhan, B.: The
PROMISE Repository of empirical software engineering data (Jun 2012)

23. Wiegers, K., Beatty, J.: Software requirements. Pearson Education (2013)

https://en.wikipedia.org/w/index.php?title=Bonferroni_correction&oldid=692500900
https://en.wikipedia.org/w/index.php?title=Bonferroni_correction&oldid=692500900
https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=687517571
https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=687517571
https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=690943842
https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=690943842

	Engineering Requirements with Desiree: An Empirical Evaluation
	Introduction
	The Desiree Framework
	Requirements Concepts
	Requirements Operators
	A Transformation Methodology

	Experiments
	Research Question
	Experiment Design

	Results
	Descriptive Statistics
	Hypothesis Testing
	Analysis
	Feedback
	Threats to Validity

	Related Work
	Conclusion

