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Abstract. Tarski’s semantics of predicate logic can be viewed as a cor-
respondence theory of truth where predicate-logical statements are the
truth-bearers and facts in the form of relation instances, which are based
on the ontological assumption of three categories of things: individu-
als, relationships between individuals (aka relation instances) and rela-
tionship types (aka relations), are the truth-makers. This form of facts,
and the underlying three-category ontology, although quite abstract, has
turned out to be a good choice for mathematical logic as the logic of
mathematical statements.

However, for defining the logic of statements in real-world domains we
should better distinguish between more than just three categories of
things. The experience made in the conceptual and computational mod-
eling of real-world domains, e.g. with the help of the Unified Model-
ing Language (UML) or the Web Ontology Language (OWL), suggests
that we need to distinguish between at least eight ontological categories:
objects and object types, attributions and attributes, data values and
datatypes, as well as references and reference properties. We define a
predicate logic based on these eight ontological categories, but we argue,
in the final part of the paper, that, for completeness, even two more
categories of individuals, qualities and relators, and corresponding type
categories, should be added, resulting in an ontological dodecagon.
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1 Introduction

Tarski’s semantics of predicate logic can be viewed as a correspondence theory
of truth where predicate-logical statements are the truth-bearers and facts, in
the form of relation instances, which are based on the ontological assumption
of three categories of things: individuals, relationships between individuals (aka
relation instances) and relationship types (aka relations), are the truth-makers.
This form of facts, and the underlying three-category ontology, although quite
abstract, has turned out to be a good choice for mathematical logic as the logic
of mathematical statements.

However, for defining the logic of statements in other domains, especially in
real-world domains, we should better distinguish between more than just three
categories of things. For instance, in E.J. Lowes book The Four Category Ontol-
ogy (2006), four categories are distinguished, as depicted in Figure 1: individuals
instantiating types, as well as two kinds of individuals: objects characterized
by tropes. These distinctions, which have been attributed to Aristotle in the
philosophical literature, are the basis of The Logic of the Ontological Square of
(Schneider 2009). While Lowe has to defend this choice of four basic ontological
categories against other philosophers who deny the existence either of universals
or of tropes, there is no need to defend it in the area of foundational ontology for
computational sciences where these distinctions (reading tropes as relationships)
are widely accepted.
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Fig. 1. The ontological square.

The experience made in the conceptual and computational modeling of real-
world domains, e.g., with the help of the Unified Modeling Language (UML) or
the Web Ontology Language (OWL) and its underlying description logic SROIQ
(Horrocks et al 2006), suggests that we need to distinguish more than four onto-
logical categories. In fact, the ontology underlying the model-theoretic semantics
of OWL has eight categories, as depicted in Figure 2. Two kinds of trope types are
distinguished: reference properties, which are binary relationship types (called
‘object properties’ in OWL and ‘roles’ in description logics) where the range is
an object type, and attributes, which are binary relationship types (called ‘data
properties’ in OWL) where the range is a datatype.



We argue that the eight-category ontology of OWL is still not rich enough for
being able to account for all fundamental categories of individuals. We add two
more categories of individuals (qualities and relators) and corresponding type
categories, resulting in an ontological dodecagon as depicted in Figure 3. The
goal is to develop a predicate logical formalism L12 , the logic of the ontological
dodecagon, based on this twelve-category ontology.

Before we can start to develop L12 , we first establish its foundation, the
logic of the ontological octagon L8 , as a dialect, more precisely: as a semantic
extension, of Common Logic (CL), which is a non-standard classical first-order
predicate logic that has been proposed as an ISO standard [1] for information
exchange and transmission. Languages for traditional first-order logic, as intro-
duced by Russell, Whitehead, Peano, Frege, Peirce and Tarski, exclude predicate
quantifiers and the use of the same name in both predicate and argument posi-
tion in an atomic sentence, which is permitted in Common Logic dialects.

This syntactic freedom is unusual, and may create the impression that CL
is a higher-order logic in disguise. As has been pointed out by Hayes [4], how-
ever, “a superficially ‘higher-order’ syntax can be given a completely first-order
semantics”, and CL “indeed has a purely first-order semantics, and satisfies all
the usual semantic criteria for a first-order language, such as compactness and
the Skolem-Lowenheim property”.

CL provides a superior framework for formal ontology since it allows to di-
rectly reflect ontological assumptions in a Tarski-style formal semantics. For
instance, it allows to interpret predicates as names for certain things in the
universe of discourse, representing various kinds of universals, in the same way
as names for individuals have been interpreted in standard accounts of Tarski
model-theoretic semantics. This allows expressing statements about universals
and quantifying over them in the formal ontology, which is desirable whenever
the ontological assumption is that universals exist along with individuals.

Traditional first-order predicate logics can be treated as ‘segregated’ dialects
of CL which require a distinction to be made between lexical categories of names
in order to check the admissibility of an expression in that dialect where names
in one or more categories do not denote things in the universe of discourse.

2 The Logic of the Ontological Octagon

In this section, we define the logic L8 of the ontological octagon depicted in
Figure 2 as a dialect of Common Logic. Its semantics is defined in terms of
a Tarski-style satisfaction relation between structures called L8 -interpretations
and L8 -text, which are sets of L8 -sentences.

We also show how to use L8 for formalizing the object classification theory
proposed in [3].
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Fig. 2. The eight category ontology of OWL.

2.1 Datatypes

A datatype provides the possible values of an attribute. Attributes represent in-
trinsic properties that characterize object types. L8 adopts the datatype concept
of [5].

A datatype definition is a quadruple 〈D,LS,VS , L2V 〉 where

1. D is the name of the datatype
2. LS is a non-empty set of Unicode character strings called the lexical space

of D;
3. VS is a non-empty set called the value space of D;
4. L2V is a mapping from LS to VS called the lexical-to-value mapping of D.

The elements of the lexical space are called data literals, and the elements of
the value space are called data values. Data literals are (predefined) names for
data values. They have a fixed interpretation provided by the lexical-to-value
mapping.

The extension of a datatype is its value space.

2.2 Syntax

We adopt the syntax of the Common Logic Interchange Format (CLIF), which
is defined using Extended Backus-Naur Form (EBNF), as specified by ISO/IEC
14977:1996. Literal chararacters are ‘quoted, sequences of items are separated by
commas, | indicates a separation between alternatives, { } indicates a sequence



of zero or more expressions in the enclosed category, - indicates an exception, [ ]
indicates an optional item, and parentheses () are used as grouping characters.
Productions are terminated with a semicolon.

Terms and Term Sequences A term is either a name or a complex term
consisting of an operator, which is itself a term, together with a list of arguments
in the form of a term sequence.

term = name | ( open, operator, termseq, close );

operator = term ;

Parentheses are self-delimiting lexical tokens used for grouping lexical tokens.

open = ’(’ ;

close = ’)’ ;

A term sequence is a finite sequence of terms.

termseq = { term } ;

A name is any lexical token denoting some thing from the universe of dis-
course. Predefined names with a fixed meaning are distinguished from inter-
pretable names, which are given a meaning by an interpretation.

name = predefinedname | interpretablename ;

Predefined Names Quoted strings of the form ’aaa’, which are called plain
data literals, are predefined names. A typed data literal is a term (D ’aaa’)
consisting of a datatype name D as an operator and a quoted string ’aaa’.

In addition to a set of datatype names and the associated sets of data literals,
the set of predefined names of L8 contains the following

1. names for ontological categories: Object, ObjectType, DataValue, DataType,
Attribute, and ReferenceProperty;

2. names for special properties: superclass, superproperty, domain, and range.

The meaning of these names is defined in Table 2 in Section 2.3.

Sentences A sentence is either atomic, Boolean (i.e., a negation, conjunction,
disjunction, implication or biconditional), or quantified.

sentence = atomicsentence | booleansentence | quantifiedsentence ;



Atomic Sentences An atomic sentence is either an equation, a classification
statement or property statement.

atomicsentence = equation | classificationstatement

| propertystatement ;

equation = open, ’=’, term, term, close ;

classificationstatement = open, predicate, term, close ;

propertystatement = open, predicate, term, term, close ;

predicate = term ;

Classification statements are expressed with the help of a unary predicate,
while property statements are expressed with the help of a binary predicate.
Semantically, see Section 2.3, we distinguish between two kinds of properties:
intrinsic properties are called attributes, extrinsic relational properties are called
reference properties.

Boolean Sentences Boolean sentences include negations of a sentence, con-
junctions and disjunctions of any number of sentences, and implications and
biconditionals of two sentences. The sentences (and) and (or), which denote a
conjunction and a disjunction with zero arguments, can be used as the truth-
values true and false respectively.

booleansentence = ( open, (’and’ | ’or’), { sentence }, close ) |

( open, (’if’ | ’iff’), sentence, sentence, close ) |

( open, ’not’, sentence, close ;

Quantified Sentences A quantifier may bind any number of variables, which
may be restricted to a category given by a term.

quantifiedsentence = open, (’forall’ | ’exists’), boundlist, sentence, close ;

boundlist = open, { interpretablename |

( open, interpretablename, term, close )}, close ;

2.3 Semantics

The vocabulary of an L8 -text is the set of interpretable names occurring in the
text.

The concept of an interpretation of a vocabulary is defined with respect to a
given set of datatype definitions ∆. An L8 (∆)-interpretation I of a vocabulary
V is a structure 〈UI , OI , OTI , DTI , AI , RPI , intI , extI〉 where



1. the set UI , called universe of discourse, includes the pairwise disjoint sets
OI , OTI , DTI , AI , RPI , VS 1, ..., VSn, where the VS i are value spaces of
the datatype definitions from ∆;

2. OI ⊂ UI is a set of objects;
3. OTI ⊂ UI is a set of object types;
4. DTI ⊂ UI is a set of datatypes;
5. AI ⊂ UI is a set of attributes;
6. RPI ⊂ UI is a set of reference properties;
7. intI maps datatype names from ∆ and interpretable names from V to things

from UI

8. extI maps things that are types to their extensions:
(a) an object type from OTI is mapped to a subset of OI ,
(b) a datatype from DTI is mapped to some value space VS i,
(c) an attribute from AI is mapped to a subset of OI ×VS i for some value

space VS i,
(d) a reference property from RPI is mapped to a subset of OI ×OI ;

We define the set of all properties PropI to be the union of AI and RPI .
For any subset W of V , an interpretation J of V is a W -variant of I if J

is just like I except that intI and intJ might differ on what they assign to the
members of W .

The interpretation of any expression of L8 (∆) is then determined by the
entries in Table 1.

The predefined names of L8 are interpreted as in Table 2.

2.4 A Theory of Object Classification

We now formalize the object classification theory proposed in [3] in the form
of an L8 -Text consisting of the axioms C1 – C11. In this theory, the following
names for special categories of object types are defined: Sortal, RigidSortal,
Kind, Subkind, AntiRigidSortal, Role, and PhaseType.

(C1) A sortal is an object type [that is endowed with an object identity
condition for its instances].

(supertype Sortal ObjectType)

The object types Person, Car, Dog, Child and Student are examples of sortals.

(C2) A non-sortal object type cannot have direct instances.

(forall ((C ObjectType) x)

(if

(and (not (Sortal C)) (C x))

(exists ((C’ Sortal))

(and (supertype C’ C) (C’ x))

)

)

)



Expression E The interpretation I(E)

A plain data literal (quoted string)
’aaa’

aaa

A typed data literal (Di ’aaa’) where
〈Di, LSi,VS i, L2Vi〉 ∈ ∆ and ’aaa’ ∈
LSi

L2Vi(
′aaa′)

A datatype name or an interpretable
name

intI(E)

An equation (= T1 T2) true if I(T1) = I(T2), otherwise false

A classification statement (P T ) with
P denoting an object type or a
datatype

true if I(T ) ∈ extI(I(P )), otherwise false

A property statement (P T1 T2) true if 〈I(T1), I(T2)〉 ∈ extI(I(P )), other-
wise false

A negation (not S) true if I(S) = false, otherwise false

A conjunction (and S1 ... Sk) true if I(Si) = true for all i, otherwise false

A disjunction (or S1 ... Sk) false if I(Si) = false for all i, otherwise true

An implication (if S1 S2) false if I(S1) = true and I(S2) = false, oth-
erwise true

A biconditional (iff S1 S2) true if I(S1) = I(S2), otherwise false

A quantified sentence (forall (N1 ...
Nn) S) where N = {N1, ..., Nn} is the
set of bindings for S

true if for every N -variant J of I, J(S) =
true, otherwise false

A quantified sentence (exists (N1 ...
Nn) S) where N = {N1, ..., Nn} is the
set of bindings for S

true if for some N -variant J of I, J(S) =
true, otherwise false

Table 1. Interpretation of expressions.

Examples of non-sortal object types are RedThing and InsurableItem, as
these object types do not provide any identity conditions for their instances, so
we could not tell, for instance, if two red objects perceived at different times are
the same or not.

(C3) A subtype of a sortal is again a sortal.

(forall ((C Sortal) (C’ ObjectType))

(if (supertype C’ C) (Sortal C’))

)

(C4) A rigid sortal is a sortal [that necessarily classifies all its instances
(as long as they exist)].

(supertype RigidSortal Sortal)

In other words, if x instantiates a rigid sortal O in some possible world, then
x must instantiate O in all possible worlds, in which x exists.



Sentence Interpretation

(Object T ) true if I(T ) ∈ OI , otherwise false

(ObjectType T ) true if I(T ) ∈ OTI , otherwise false

(DataValue T ) true if I(T ) ∈
⋃

VS i, otherwise false

(DataType T ) true if I(T ) ∈ DTI , otherwise false

(Attribute T ) true if I(T ) ∈ AI , otherwise false

(ReferenzProperty T ) true if I(T ) ∈ RPI , otherwise false

(supertype P1 P2) true if I(P1), I(P2) ∈ OTI

or I(P1), I(P2) ∈ DTI , and
extI(I(P1)) ⊆ extI(I(P2)), other-
wise false

(superproperty P1 P2) true if I(P1), I(P2) ∈ AI

or I(P1), I(P2) ∈ RPI , and
extI(I(P1)) ⊆ extI(I(P2)), other-
wise false

(domain P1 P2) true if I(P1) ∈ PropI and
I(P2) ∈ OTI , and extI(I(P1))[1] ⊆
extI(I(P2)), otherwise false

(range P1 P2) true if I(P1) ∈ AI and I(P2) ∈ DTI ,
or I(P1) ∈ RPI and I(P2) ∈ OTI ,
and extI(I(P1))[2] ⊆ extI(I(P2)), oth-
erwise false

Table 2. Interpretation of predefined names.

(C5) A kind is a top node in a rigid sortal hierarchy.

(forall ((C Kind) (C’ RigidSortal)) (if

(supertype C C’)

(C’ = C))

)

(C6) Every object must instantiate exactly one kind.

(forall ((o Object)) (exists ((C Kind)) (C o)))

(C7) A subkind is a rigid subtype of a kind.

(forall ((C RigidSortal) (C’ Kind)) (if

(supertype C C’)

(Subkind C))

)

(C8) An anti-rigid sortal is a sortal [that doesn’t necessarily classify
any of its instances].

(supertype AntiRigidSortal Sortal)



In other words, if x instantiates an anti-rigid sortal O in some possible world,
then there is another possible world, in which x exists, but does not instantiate
O.

(C9) A phase type is an anti-rigid sortal [that is specialized from a
kind or subkind by means of a condition depending only on attributes
of the kind or subkind].

(supertype PhaseType AntiRigidSortal)

(C10) A role is an anti-rigid sortal.

(supertype Role AntiRigidSortal)

(C11) A role is the image of a reference property].

(forall ((R Role))

(exists ((rp ReferenzProperty))

(forall ((o,o’ Object))

(if (rp o o’) (R o’))

)

)

)

3 The Ontological Dodecagon

We motivate the ontological dodecagon depicted in Figure 3, as an extension of
the ontological octagon, by arguing that there are two more kinds of individuals:

1. Qualities, which are the foundation of attributions.
2. Relators, which are the foundation of relationships, including references.

3.1 Attributions and Qualities

Attributions represent qualities.
For instance, the eye color of a person is a quality, which is something that

inheres in that object, and in no other object. We can use a predicate standing
for a color attribute for making an attribution statement about the eye color
of a person. E.g. we could say that ”The eye color of Kate is light blue”. The
underlying truthmaker of this statement is the corresponding attribution, which
associates a corresponding color data value with the object referenced by the
name ’Kate’. This attribution represents the quality. The same quality of an
object may be represented by different attributions, involving different attributes
associated with different datatypes. And the same data value may represent
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Fig. 3. The twelve category ontology of L12 .

different qualities in different attributions involving different objects. So, while
we may say that two persons have the same eye color, the underlying eye color
qualities are not the same.

It is important to understand that in our natural languages, we do normally
not have predefined names (’constants’) for qualities, but only for the data values
that represent them (recall that these names are called data literals). We may
consider the data value in an attribution as a ’conceptual approximation’ of the
quality it represents.

3.2 References, Relationships and Relators

Relationships represent relators. In particular, references represent binary rela-
tors. There may be different references, or relationships, representing the same
relator. E.g., the two references ‘Peter’s father is Tom’ and ‘Tom’s son is Peter’
represent the same relator.

Our account of relators as the foundation of relationships supports the critical
view of Kit Fine [2] who argues that the standard account of ‘relations’, according
to which they apply to instances of their relata types in a specific order is flawed.
This traditional account implies that the binary relationship of Tom being the
father of Peter and its inverse, of Peter being the son of Tom, constitute two
different facts (or states of affairs). However, the relationships of Tom being the
father of Peter and Peter being the son of Tom correspond to two descriptions
of the same state of affairs. Therefore, either we have to revise the concept of a
‘relation’ as a set of tuples, or we revise the Tarskian idea that the tuples of a
‘relation’ directly correspond to facts.



4 Conclusions

We have shown how a logic L8 of the ontological octagon, which is the ontological
foundation of the Web ontology language OWL, can be construed as a semantic
extension of Common Logic. We have argued that, for ontological completeness,
the ontological octagon has to be extended by adding qualities and quality types
as well as relators and relator types, resulting in a twelve category ontology as
depicted in the ontological dodecagon. In future work, we plan to define a logic
L12 of the ontological dodecagon as a semantic extension of L8 .
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