
Designing Web Information Systems for a
Framework-based Construction

1. Introduction

The World Wide Web (also referred to as WWW or simply Web) was created as a means to publish
documents and make them available to people in many different geographical locations. However,
the advent of the Common Gateway Interface (CGI), in 1993, allowed for authors to publish
software instead of documents and for visitors to execute them, producing dynamic results.

The evolution of Web development technology and the emergence of high-level languages (such
as PHP, ASP, JSP, etc.) and platforms (such as Microsoft .NET and Java Enterprise Edition) allowed
for more complex applications to be built on the Web. Soon enough, a handful of large B2C
(business-to-consumer, such as online stores) and B2B (business-to-business, such as supply
chain management systems) applications were being deployed on the Internet.

Thus, the concept of Web Applications (WebApps) was born. WebApps consist of a set of Web
pages or components that interact with the visitor, providing, storing and processing information.
WebApps can be informational, interactive, transactional, workflow-based, collaborative work
environments, online communities, marketplaces or web portals (Ginige & Murugesan, 2001).

In this chapter, however, we focus on a specific class of Web Applications, called Web-based
Information Systems (WISs). WISs are just like traditional information systems, although deployed
over the Internet or on an Intranet. These systems are usually data-centric and more focused on
functionality rather than content and presentation. Examples are online stores, cooperative
environments, and enterprise management systems, among many others.

Although many Software Engineering principles have long been established before the creation of
the Web, first-generation WebApps were constructed in an ad-hoc manner, with little or no
concern for them. However, with the increase of complexity of the WebApps, which is especially
true for WISs, the adoption of methodologies and software processes to support the development
team becomes crucial.

Thus, a new discipline and research field was born. Web Engineering (or WebE) can be defined as
“the establishment and use of engineering principles and disciplined approaches to the
development, deployment and maintenance of Web-based Applications” (Murugesan et al., 1999,
p. 2). Pressman (2005) complements this definition stating that WebE borrows many conventional
Software Engineering fundamental concepts and principles and, in addition, incorporates
specialized process models, software engineering methods adapted to the characteristics of this
kind of application and a set of enabling technologies.

In this field, a lot of methods and modeling languages have been proposed. Some well known
works are WebML (Ceri et al., 2000), WAE (Conallen, 2002), OOWS (Fons et al., 2003), UWE (Koch et
al., 2000), and OOHDM (Schwabe & Rossi, 1998), among others.

Parallel to the academic research, the industry and the developer community have also proposed
new technologies to provide a solid Web infrastructure for applications to be built upon, such as
frameworks and container-based architectures. Using them we can improve productivity at the
coding phase by reusing software that has already been coded, tested and documented by third
parties. As their use becomes state-of-the-practice, methods that focus on them during software
design could provide a smoother transition from models to source code.

This has motivated us to develop a WebE design method that focuses on frameworks. The
Framework-based Design Method for Web Engineering (FrameWeb) (Souza & Falbo, 2007)
proposes a basic architecture for developing WebApps and a UML profile for a set of design
models that brings concepts used by some categories of frameworks, which are applied in
container-based architectures as well.

Meanwhile, many researches have been directed to the construction of what is being considered
the future of the WWW: the Semantic Web. Coined by Berners-Lee et al. (2001), the term
represents an evolution of the current WWW, referred by some as the “Syntactic Web”. In the latter,
information is presented in a way that is accessible only to human beings, whereas in the former
data is presented both in human-readable and machine-processable formats, in order to promote

Vitor E. Silva Souza, Ricardo A. Falbo, Giancarlo Guizzardi

In: Innovations in Information Systems Modeling: Methods and Best Practices,
Edited By: Terry Halpin, John Krogstie, and Erik Proper, ISBN: 978-1-60566-278-7, IGI, 2009

the development of software agents that would help users carry out their tasks on the Web.

However, for Berners-Lee's vision to become a reality, Web authors and developers must add
semantic annotations to their Web Applications. This is neither an easy nor a small task and
support from tools and methods is needed. Thus, an extension of FrameWeb was proposed. The
Semantic FrameWeb (S-FrameWeb) (Souza et al., 2007) incorporates into the method activities and
guidelines that drive the developer in the definition of the semantics of the WISs, resulting in a
“Semantic Web-enabled” application.

The objective of this chapter is to discuss the current research state regarding Web Engineering
(methods and modeling languages), frameworks and the Semantic Web, and to present FrameWeb,
and its extension S-FrameWeb, as a new method based on best practices for the development of
Web-based Information Systems. We close the chapter by presenting future trends and
opportunities for this research.

2. Background

Web Engineering was born from the need to apply Software Engineering principles to the
construction of WebApps, adapting them to the application's size, complexity and non-functional
requirements. A lot of research on methods and modeling languages has already been conducted,
providing an extensive background for new research.

Meanwhile, companies and independent developers create frameworks and propose container-
based architectures to promote reuse and improve productivity while maintaining good design
principles. Furthermore, research on the Semantic Web has been pointing out some directions on
what the Web may become in the future.

This section discusses the current state-of-the-art and state-of-the-practice on Web Engineering,
modeling languages for WebE, frameworks for development of WebApps and the Semantic Web.

2.1. Web Engineering

Web Engineering (or WebE) uses scientific, engineering, and management principles and
systematic approaches to successfully develop, deploy, and maintain high-quality WebApps
(Murugesan et al., 1999).

As with conventional software engineering, a WebE process starts with the identification of the
business needs, followed by project planning. Next, requirements are detailed and modeled,
taking into account the analysis and design perspective. Then the application is coded using tools
specialized for the Web. Finally, the system is tested and delivered to end-users (Pressman, 2005).

Considering that, in general, the platform in which the system will run is not taken into account
before the design phase of the software process, developing a WebApp would be just like
developing any other application up to that phase. However, many differences between Web
Engineering and Conventional Software Engineering have been identified by researchers and
practitioners (Ahmad et al., 2005), such as sensitivity to content, short time frames for delivery,
continuous evolution, focus on aesthetics, etc (Pressman, 2005).

This has motivated researchers to propose different methods, modeling languages and
frameworks for Web Engineering. The amount of propositions is quite vast, demonstrating that
academics and practitioners have not yet elected a standard concerning Web development. In this
subsection we briefly present some methods, while the following subsections focus on modeling
languages and frameworks.

Web Application Extension (WAE) (Conallen, 2002) defines an iterative and incremental software
process, centered on use cases and based on the Rational Unified Process (Krutchen, 2000) and
the ICONIX Unified Process (Rosenberg & Scott, 1999). It proposes activities such as business
analysis, project planning, configuration management and an iterative process that includes the
usual software development cycle from requirement gathering to deployment.

OOWS (Object Oriented Web Solution) (Fons et al., 2003) is an extension of the OO-Method (Pastor
et al., 2001) for WebApp specification and development. It divides the software process in two
main steps: conceptual modeling and solution development. In the conceptual modeling step, the
system specification is obtained by using conceptual models. For that, OOWS introduces new
models for representing navigational and presentational characteristics of web applications. In the

solution development step, the target platform is determined, and a specific architectural style is
chosen. Then, a set of correspondences between abstraction primitives and the elements that
implement each tier of the architectural style are applied in order to automatically obtain the final
system (Pastor et al., 2003).

The UML-based Web Engineering (UWE) (Koch et al., 2000) is a development process for Web
applications with focus on systematic design, personalization and semi-automatic generation. It is
an object-oriented, iterative and incremental approach based on the Unified Modeling Language
(UML) and the Unified Software Development Process (Jacobson et al., 1999). The notation used for
design is a “lightweight” UML profile. The process is composed by requirement analysis,
conceptual navigation and presentation design, supplemented with task and deployment modeling
and visualization of Web scenarios (Koch & Kraus, 2002).

Lee & Shirani (2004) propose a component-based methodology for WebApp development, which is
divided in two major parts: component requirements analysis and component specifications.
Analysis begins identifying the required component functions and is followed by a comparison
with the functions available in existing components. The component specification phase has three
activities: rendering specification, integration specification and interface specification.

The Ariadne Development Method (Díaz et al., 2004) proposes a systematic, flexible, integrative
and platform-independent process for specification and evaluation of WebApps and hypermedia
systems. This process is composed of three phases: conceptual design, detailed design and
evaluation. Each phase is further subdivided into activities, which in turn defines sets of work
products to be built.

Díaz et al. (2004, p. 650) also define the hypermedia paradigm as one that “relies on the idea of
organizing information as a net of interrelated nodes that can be freely browsed by users selecting
links and making use of other advanced navigation tools, such as indexes or maps”. We consider
hypermedia methods quite different than methods for the development of WISs, as they focus on
content and navigational structures instead of functionality and seem to be better suitable for
information-driven WebApps.

Although hypermedia development methods are not on our focus, it is worthwhile to cite OOHDM
(Object Oriented Hypermedia Design Method) (Schwabe & Rossi, 1998), a well-known method that
is representative of hypermedia methods. It was born from the need to represent hypermedia
structures such as links, text-based interfaces and navigation, and more recently has also been
applied to Web development. For instance, an extension of this method, called OOHDM-Java2
(Jacyntho et al., 2002), was proposed, which consists of a component-based architecture and an
implementation framework for the construction of complex WebApps based on modular
architectures (e.g. Java EE). The OOHDM process is divided into five steps: requirements gathering,
conceptual design, navigational design, abstract interface design and implementation.

During our research we have also found several other methodological approaches that target
specific contexts or scenarios, such as:

 The Business Process-Based Methodology (BPBM) (Arch-int & Batanov, 2003), which blends
advantages of the structured and object-oriented paradigms for identifying and designing
business components. The central idea of business component modeling is reusability of
elementary units, which are business activities. An elementary unit that represents an
atomic changeable business process can be implemented with a portable set of Web-based
software components;

 The Internet Commerce Development Methodology (ICDM) (Standing, 2002), which is
focused on the development of B2C e-commerce applications, emphasizing not only
technical aspects, but also strategic, business and managerial aspects.

Some of the methods presented above also propose a modeling language that better suits its
purposes, such as WAE and UWE . In the next subsection, some of them are briefly presented.

2.2. Modeling Languages for Web Engineering

Modeling languages define notations to be used on the creation of abstract models to solve
problems. The Unified Modeling Language (UML) (Booch et al., 2005), for instance, is a modeling
language that defines on its metamodel standardized notations for different kinds of models, such
as class diagrams and use case diagrams. However, UML does not define when and to which

purpose each model should be used.

Hence, methodologies usually present their own modeling language or, as is most commonly
seen, use and extend UML, defining a UML Profile. For this purpose, UML includes extension
mechanisms, such as stereotypes (definition of a new model element based on an existing one),
tagged values (attachment of arbitrary textual information to elements using label/value pairs) and
constraints (semantic specification for an existing element, sometimes using a formal language).

Based on these extension mechanisms, Conallen (2002) proposed the Web Application Extensions
(WAE), which extends UML to provide Web-specific constructs for modeling WebApps. WAE also
advocates the construction of a new model, the User Experience (UX) Model, which defines
guidelines for layout and navigation modeling from requirements specification through design.
Models, like the navigation diagram, the class diagram and the component diagram (the last two
specific for the web tier), use WAE to represent Web components such as screens, server pages,
client pages, forms, links and many more.

The UML-based Web Engineering (UWE) (Koch et al., 2000) also defines a UML profile. Based on
class and association elements, it defines new elements to describe Web concepts, such as
navigation, indexes, guided tours, queries, menus and many others.

Another method that defines a modeling language based on UML is OOWS (Fons et al., 2003). For
the construction of the navigational model, UML packages represent navigational contexts and
form a directed graph where the arcs denote pre-defined valid navigational paths. Each context is
further modeled using a class diagram to show the navigational classes that form them.

Not all modeling languages are UML-based. WebML (Ceri et al., 2000) is an example. It allows
developers to model WebApp's functionalities in a high level of abstraction, without committing to
any architecture in particular. WebML is based on XML, but uses intuitive graphical representations
that can easily be supported by a CASE tool. Its XML form is ideal for automatic generation of
source code, producing Web applications automatically from the models.

Methods and modeling languages aid developers mostly during analysis and design of information
systems. However, one can also find tools that focus on the implementation phase. In the next
subsection, we discuss frameworks that have been extensively used for the development of WISs.

2.3. Frameworks for Web Development

WISs have very similar architectural infrastructure. Consequently, after the first systems started to
be built, several frameworks that generalize this infrastructure were developed to be reused in
future projects. In this context, a framework is viewed as a code artifact that provides ready-to-
use components that can be reused via configuration, composition or inheritance. When
combined, these frameworks allow large-scale n-tier WISs to be constructed with less coding
effort.

Putting together several of these frameworks can produce what we call a container-based
architecture. A container is a system that manages objects that have a well-defined life cycle. A
container for distributed applications, such as the applications servers for the Java Enterprise
Edition (Shannon, 2003), manage objects and offer services such as persistence, transaction
management, remoting, directory services, etc.

The use of these frameworks or container-based architectures has a considerable impact in the
development of a WIS. Since it is possible to find many frameworks for the exact same task, we
categorized them according their objectives into the following classes:

 Front Controller (or MVC) frameworks;

 Decorator frameworks;

 Object/Relational Mapping frameworks;

 Dependency Injection frameworks;

 Aspect-Oriented Programming frameworks;

 Authentication & Authorization frameworks.

2.3.1. Front Controller Frameworks

MVC stands for Model-View-Controller (Gamma et al., 1994). It is a software architecture that was
developed by the Xerox PARC for the Smalltalk language in 1979 (Reenskaug, 1979) and has found
great acceptance by Web developers. When applied to the Web, the MVC architecture is adapted
and receives the name “Front Controller” (Alur et al., 2003, p.166). Both terms are used
indistinguishably by Web developers.

The Front Controller architecture is depicted in Figure 1. When structured in this architecture, a
WebApp manages all requests from clients using an object known as Front Controller. Based on a
customizable configuration, this object decides which class will respond to the current request
(the action class). Then, following the Command design pattern (Gamma et al., 1994), it
instantiates an object of that class and delegates the control to it, expecting some kind of
response after its execution. Based on that response, the controller decides the appropriate view
to present as result, such as a web page, a report, a file download, among other possibilities.

Figure 1: general architecture of a Front Contoller framework.

One of these possibilities is using a template engine that defines a template language that is
usually more suitable for the view layer than the usual dynamic web technology (such as JSP, ASP
or PHP). The template language is usually simpler, making it possible for Web Designers without
specific programming skills to build them. Also, they tend to help developers not to break the
MVC architecture by restricting what can be done in the template language (e.g. can not directly
connect to a database from a template).

MVC Frameworks usually provide the front controller, a super-class or interface for action classes,
several result types and a well defined syntax for the configuration file. The template engine is a
separate tool, but the framework usually provides integration to it. Note that on n-tier
applications, this framework belongs to the Web tier and should delegate business and persistence
tasks to components on appropriate tiers.

Only for the Java platform, for instance, there are more than 50 MVC frameworks. Some of the
most popular are Struts1, Spring MVC2 and Tapestry3.

2.3.2. Decorator Frameworks

Decorator frameworks automate the otherwise tedious task of making every web page of the site
have the same layout, meaning: header, footer, navigational bar, color schemes and other
graphical layout elements produced by a Web design team. Figure 2 shows how a decorator
framework works.

1 http://struts.apache.org/2.x/index.html
2 http://www.springframework.org
3 http://tapestry.apache.org

Figure 2: the process of decoration of websites.

They work like the Decorator design pattern (Gamma et al., 1994), providing a class that intercepts
requests and wraps their responses with an appropriate layout before it is returned to the client. It
also provides dynamic selection of decorators, making it easy to create alternate layouts, such as a
“print version” of the page. Examples of this kind of framework are SiteMesh4 and Tiles5.

2.3.3. Object/Relational Mapping Frameworks

Relational Database Management Systems (RDBMS) have long been the de facto standard for data
storage. Because of its theoretical foundations (relational algebra) and strong industry, even object
oriented applications use it for object persistence, giving rise to a “paradigm mismatch” (Bauer &
King, 2004): tables, rows, projection and other relational concepts are quite different from a graph
of interconnected objects and the messages they exchange.

Among the many options to deal with this problem, there is the Object/Relational Mapping (ORM)
approach, shown in Figure 3, which is the automatic and transparent persistence of objects to
tables of a RDBMS using meta-data that describe the mapping between both worlds (Bauer & King,
2004). Instead of assembling a string with the SQL command, the developer provides mapping
meta-data for the classes and call simpler commands, such as save(), delete() or

retrieveById(). An object-oriented query language can also be used for more complex

retrievals.

The use of ORM frameworks is not restricted to Web applications and has been in use for quite
some time now in all kinds of software. The most popular Java ORM framework is Hibernate6.
Other well-known frameworks are Java Data Objects7, Apache Object Relational Bridge8 and Oracle
Toplink9.

4 http://www.opensymphony.com/sitemesh
5 http://struts.apache.org/struts-tiles
6 http://www.hibernate.org
7 http://java.sun.com/products/jdo
8 http://db.apache.org/ojb/
9 http://www.oracle.com/technology/products/ias/toplink

Figure 3: persistence of objects using an ORM framework.

2.3.4. Dependency Injection Frameworks

Object-oriented applications are usually built in tiers, each of which having a separate
responsibility. According to Fowler (2007), when we create classes that depend on objects of other
classes to perform a certain task, it is preferred that the dependent class is related only to the
interface of its dependencies, and not to a specific implementation of that service.

Creational design patterns, such as Factory Method, Abstract Factory and Builder (Gamma et al.,
1994), help implementing this good practice in programming, known today as “programming to
interfaces, not implementations” (Schmidt, 2007). For instance, if a service class depends on a
data access class, it does not need to know how the data access class will perform its duty, but
only what it will do and what method should be called for the job to be done.

Dependency Injection (DI) frameworks allows the developer to program to interfaces and specify
the concrete dependencies as meta-data in a configuration file. When a certain object is obtained
from the DI framework, all of its dependencies are automatically injected and satisfied. An abstract
example is shown in Figure 4: when the client asks for an instance of SomeClass, the DI

framework first satisfies SomeClass' dependencies and delivers the object with all dependencies

fullfiled – in the example, an instance of DependencyClass.

These frameworks are also known as Inversion of Control (IoC) frameworks, since the control (who
creates the objects) is removed from the dependent classes and given to the framework. As well as
ORM frameworks, DI frameworks are not used exclusively for WebApps, although they tend to
integrate more seamlessly with applications that run inside containers, just like a WebApp runs
inside a Web server. Lots of frameworks provide this service, including Spring Framework,
PicoContainer10, Apache Hivemind11, etc.

10 http://www.picocontainer.org
11 http://jakarta.apache.org/hivemind

Figure 4: dependency injection using a framework.

2.3.5. Aspect-Oriented Programming Frameworks

The Aspect-Oriented paradigm is based on the concept of separation of concerns: the idea is to
separate different concerns of a system to be treated separately, thus reducing the complexity of
development, evolution and integration of software (Resende & Silva, 2005). Although it concerns
the whole development process, its biggest influence is at the coding phase, with Aspect Oriented
Programming (AOP).

Once a cross-cutting concern is identified (e.g.: logging, transaction management), instead of
repeating similar code in different points, the functionality can be implemented in a single place,
becoming an aspect. Then, the different places where that aspect should be applied are identified
(these are called pointcuts) and, before the code is executed, a process called weaving is
conducted to automatically spread the aspect all over the code.

The weaving can be conducted by an AOP framework during runtime or by an AOP compiler during
compilation time. Many infrastructure concerns that are usual in Web applications are good
candidates for this separation, making AOP frameworks very popular. One example, depicted in
Figure 5, is that of transaction management. An AOP framework can make all business methods
transactional with few configuration steps, avoiding the effort of repeatedly implementing the
same logic in all of them.

Some well-known AOP frameworks for the Java platform are AspectJ12, Spring Framework and JBoss
AOP13.

12 http://www.eclipse.org/aspectj
13 http://labs.jboss.com/portal/jbossaop

Figure 5: example of application of AOP using an AOP runtime
framework.

2.3.6. Authentication & Authorization Frameworks

Another common concern of Web information systems is that of guaranteeing the security of the
information. This is usually done by two different procedures: authentication (verifying if an access
key is valid to access the application) and authorization (verifying the level of access of the
authenticated user and what she is allowed to do).

Being such an important task, frameworks were created to guarantee its proper execution. They
can be configured to support many different “auth” methods, using, as usual, meta-data and
configuration files. Some well-known auth frameworks for the Java platform are Acegi Security for

Spring14, Apache Cocoon Authentication15 and the Java Authentication and Authorization
Services16.

In spite of frameworks being much used, there is no Web Engineering method that explores their
use in the design phase of the software process. To fill this gap, we proposed FrameWeb, a
Framework-based Design Method for Web Engineering (Souza & Falbo, 2007), which is presented
in section 3.

2.4. The Semantic Web

The Semantic Web is being proposed as an evolution of the current WWW, in which information is
provided both in human-readable and computer-processable formats, in order to allow for the
semi-automation of many tasks that are conducted on the Web.

In order for the software agents to reason with the information on the Web (reasoning meaning
that the agents are able to understand it and take sensible actions according to a predefined goal),
web pages have to be presented also in a machine-readable form. The most usual way for this is
annotating the pages using formal knowledge representation structures, such as ontologies.

An ontology is an engineering artifact used to describe a certain reality, plus a set of explicit
assumptions regarding the intended meaning of its vocabulary words (Guarino, 1998). Along with
ontology representation languages such as OWL (W3C, 2007a), they are able to describe
information from a website in formal structures with well-defined inference procedures that allow
software agents to perform tasks such as consistency checking, to establish relationships between
terms and to systematically classify and infer information from explicitly defined data in this
structure.

Designing an ontology is not a straightforward task. There are many methodologies for their
construction (Gomez-Perez et al., 2005) and attention has to be given to the selection of concepts,
their properties, relationships and constraints. However, after the ontology is built, the annotation
of static Web pages with languages such as OWL becomes a simple task, especially with the aid of
tools, such as OILEd17 and Protégé18.

However, several websites have their Web pages dynamically generated by software retrieving
information from data repositories (such as relational databases) during runtime. Since these
pages cannot be manually annotated prior to their presentation to the visitor, another approach
has to be taken. Two approaches that have been proposed are dynamic annotation and semantic
Web services.

The former works by recognizing whether the request belongs to a human or a software agent,
generating the proper response depending on the client: in the first case, a HTML human-readable
Web page; in the second, a document written in an ontology specification language containing
meta-data about the information that would be displayed in the HTML version. Although the
solution seems appropriate, many aspects still need to be addressed, such as: how are the agents
supposed to find the Web page? How will they know the correct way to interact with it? For
instance, how will they know how to fill in an input form to submit to a specific request?

The latter approach is based on Web Services, which are software systems designed to support
interoperable machine-to-machine interaction over a network (W3C, 2007b). Web Services provide
a nice way for software agents to interact with other systems, requesting services and processing
their results. If semantic information is added to the services, they could become interpretable by
software agents. Meta-data about the service are written in a markup language, describing its
properties and capacities, the interface for its execution, its requirements and the consequences
of its use (McIlraith et al., 2001). Many tasks are expected to be automated with this, including
service discovery, invocation, interoperation, selection, composition and monitoring (Narayanan &
McIlraith, 2002).

As the research on the Semantic Web progresses, methods are proposed to guide developers on
building “Semantic Web-enabled” applications. An example of this is the Semantic Hypermedia
Design Method (SHDM) (Lima & Schwabe, 2003). Based on OOHDM (Schwabe & Rossi, 1998), SHDM
is a comprehensive model-driven approach for the design of Semantic WebApps.

14 http://www.acegisecurity.org
15 http://cocoon.apache.org
16 http://java.sun.com/products/jaas
17 http://oiled.man.ac.uk/
18 http://protege.stanford.edu/

SHDM's process is divided in 5 activities. In the first step, Requirements Gathering, requirements
are gathered in the form of scenarios, user interaction diagrams and design patterns. The next
phase, Conceptual Design, produces a UML-based conceptual model, which is enriched with
navigational constructs in the Navigational Design phase. The last two activities are Abstract
Interface Design and Implementation.

2.5. Some Considerations

In our research, we haven't found a method focused on the use of frameworks for the construction
of WISs nor for the development of Semantic Web applications. In the next sections, we present
FrameWeb, our proposal for the design of framework-based WISs, and its extension, S-FrameWeb,
which incorporate into the method activities and guidelines that drive the developer in the
definition of the semantics of the WISs, resulting in a “Semantic Web-enabled” application.

3. FrameWeb

FrameWeb is a design method for the construction of Web-based Information Systems (WISs)
based on frameworks. The main motivations for the creation of this method were:

(a) The use of frameworks or similar container-based architectures has become the de facto
standard for the development of distributed applications, especially those based on the
Web;

(b) There are many propositions in the area of Web Engineering, including methodologies,
design methods, modeling languages, frameworks, etc. However, we haven't found one
that deals directly with the particularities that are characteristic of the use of frameworks;

(c) Using a method that fits directly into the architecture chosen for the implementation
promotes a greater agility to the software process, which is something that is desired in
most Web projects.

In general, FrameWeb assumes that certain types of frameworks will be used during the
implementation, defines a basic architecture for WISs and proposes design models that are closer
to the implementation of the system using these frameworks.

Being a design method, it doesn't prescribe a complete software process. However, it suggests the
use of a development process that includes the following activities, as presented in Figure 6:
requirements elicitation, analysis, design, coding, testing and deployment. For a more systematic
usage of the method, it also suggests that, during Requirement Elicitation and Analysis, use case
diagrams are used to model requirements and class diagrams are used to represent the
conceptual model.

Figure 6: A simple software process suggested by FrameWeb.

Also, as mentioned earlier, one of the motivations for the creation of FrameWeb is the demand for
agility that surrounds Web projects. Thus, although the method brings more agility especially to
the design and coding phases, developers are advised to follow principles of agility during
requirements analysis, as the ones proposed by Agile Modeling (Ambler & Jeffries, 2002).

The main contributions of the method are for the Design phase: (i) the definition of a basic
architecture that divides the system in layers with the purpose of integrating better with the
frameworks; (ii) a UML profile for the construction of four different design models that bring the
concepts used by the frameworks to the design stage of the software process.

The Coding phase is facilitated by the use of frameworks, especially because design models show

components that can be directly related to them. The use of frameworks can also have impacts on
Testing and Deployment, but these are yet subject to study and research.

Throughout the next subsections we detail FrameWeb's basic architecture and its UML profile.
Examples diagrams were taken from the development of a portal for the Software Engineering Lab
(LabES) of the Federal University of Espírito Santo State using FrameWeb. Figure 7 shows its use
case diagram, simplified for brevity.

Figure 7: A simplified use case diagram for LabES
Portal.

The “LabES Portal” was proposed to provide a better interaction with the Software Engineering
community. This WIS has a basic set of services providing information about current LabES
projects, areas of interest, publications and other material available for download. Figures 8 and 9
show the conceptual models produced during Analysis.

Figure 8: Conceptual model for the User Control module of the LabES
Portal.

Basically, the portal makes a collection of items available. These items can be organized in
projects and subprojects or belong to the lab in general. Publications (papers, books, book
chapters and academic work) and generic materials can be published in the portal. Items are also
related to users (responsible user, editing users) and areas of interest.

Figure 9: Conceptual model of the Item Control module of the LabES Portal.

3.1. Framework-based WebApp Architecture

The Design activity, traditionally executed after requirement elicitation and analysis, has as
purpose the description of the logical and physical architectures of the system as well as the
development of structural and behavioral models built based on the models developed in the
previous phases, but that now consider the specific characteristics of the chosen implementation
platform.

FrameWeb defines a logical architecture for WISs based on the architectural pattern Service Layer
(Fowler, 2002, p. 133). As depicted in Figure 10, the system is divided in three main layers:
presentation logic, business logic and data access logic.

Figure 10: FrameWeb's basic architecture for WISs.

The first layer concerns the graphical user interfaces. The View package contains the Web pages,

style sheets, images, client-side scripts, templates and everything else related to the exhibition of
information to the user. The Controller package encompasses action classes and other files

related to the Front Controller framework. These two packages are mutually dependent, since
View elements send user stimuli to Controller classes while these process the response using

pages, models and other View components.

The business logic is implemented in the second layer, divided in two packages: Domain and

Application. The former contains classes that represent concepts of the problem domain

identified and modeled by the class diagrams during analysis and refined during design. The latter
has the responsibility of implementing the use cases defined in the requirements specification,
providing a service layer independent of the user interface. The Application classes deal directly

with Domain objects to implement system functionality and, thus, this dependency is represented

in the diagram.

The Controller package, on the presentation layer, depends on the Application package since

it mediates the user access to the system functionalities. User stimuli coming from View are

transformed by the Controller’s classes in method calls to classes in the Application package.

Controller and View have also dependency relationships with Domain, but this is tagged as weak

to denote low coupling: Domain objects are used only for exhibition of data or as parameters on

method invocations between one package and another, i.e., the presentation layer does not have
the right to alter domain entities.

The third and last layer regards data access and has only the Persistence package. This package

is responsible for the storage and retrieval of persistent objects in long-term duration media, such
as databases, file systems, naming services, etc. In the case of FrameWeb, it expects the use of an
ORM framework through the Data Access Object (DAO) pattern (ALUR et al., 2003, p. 462). The
DAO pattern adds an extra abstraction layer, separating the data access logic of the chosen
persistence technology in a way that the Application classes do not know which ORM framework

is being used, allowing for its replacement, if necessary. It also facilitates unit testing, as one can
provide mock DAOs for the Application classes to be tested alone.

As we can see in Figure 10, the Application package depends on the Persistence package to

retrieve, store and delete domain objects as the result of use case execution. Since the
Persistence package works with Domain objects, a weak dependency is also portrayed in the

figure.

This architecture provides a solid base for the construction of WISs based on the types of
frameworks presented in subsection 2.3. Each package contains classes or other elements that
integrate with these frameworks and, to model all these elements, FrameWeb proposes a modeling
language based on the UML, which is presented next.

3.2. Modeling Language

During design, besides specifying the system architecture, the artifacts that will be implemented
by the programmers on the coding phase should be modeled. Since FrameWeb is based on the
frameworks presented in subsection 2.3, we felt the need for a modeling language that would
represent the concepts that are present in these frameworks.

Following the same approach as other modeling languages such as WAE and UWE, FrameWeb uses
UML's lightweight extensions to represent typical Web and framework components, creating a UML
profile that is used for the construction of four kinds of diagrams, which are presented in the
following subsections: domain model, persistence model, navigation model and application model.

3.2.1. Domain Model

The domain model is a UML class diagram that represents domain objects and their persistence
mapping to a relational database. This model is used by the programmers to implement the
classes of the Domain package. FrameWeb suggests its construction in two steps:

1. Adapt the conceptual model produced during the Requirement Analysis phase to
FrameWeb's architecture and to the chosen platform of implementation. This requires
choosing data types for attributes, defining navigabilities of the associations, promoting
attributes to classes (if necessary), etc.;

2. Add persistence mappings.

Persistence mappings are meta-data that allow ORM frameworks (see subsection 2.3.3) to convert
objects in memory to tuples in Relational Data Base Management Systems and vice-versa.
Mappings are added to the domain model using stereotypes and constraints that guide developers
in the configuration of the ORM framework during implementation. Despite the fact that these
mappings are more related to persistence than domain, they are shown in this model because the
classes that are mapped and their attributes are shown here.

Table 1 describes the possible O/R mappings for the domain model. For each mapping, the table
presents the extension mechanism used and what are its possible values or syntax. None of the
mappings is mandatory and most of them have sensible defaults, reducing the amount of
elements that have to be modeled. The default values are shown in the third column in boldface.

Mapping Extension Possible Values

If the class is persistent, transient or mapped (not
persistent itself, but its properties are persistent if
another class inherits them)

Class stereotype
<<persistent>>
<<transient>>
<<mapped>>

Name of the table in which objects of a class will
be persisted

Class constraint
table=name

(default: class' name)

If an attribute is persistent or transient Attribute stereotype
<<persistent>>
<<transient>>

If an attribute can be null when the object is
persisted

Attribute constraint
null

not null

Date/time precision: store only the date, only the
time or both (timestamp)

Attribute constraint
precision = (date | time |

timestamp)

If the attribute is the primary-key of the table Attribute stereotype <<id>>

How the ID attribute should be generated:
automatically, obtained in a table, use of IDENTITY
column, use of SEQUENCE column or none

Attribute constraint
generation = (auto | table |
identity | sequence | none)

If the attribute represents the versioning column. Attribute stereotype <<version>>

If an attribute should be stored in a large object
field (e.g.: CLOB, BLOB)

Attribute stereotype <<lob>>

Name of the column in which an attribute will be
persisted

Attribute constraint
column=name

(defaults to the attribute's
name)

Size of the column in which an attribute will be
persisted

Attribute constraint size=value

If the association should be embedded (instead of
having its own table, the associated child class'
attributes are placed in the parent's table)

Attribute stereotype <<embedded>>

Inheritance mapping strategy: one table for each
class using UNION, one table for each class using
JOIN or single table for the entire hierarchy

Inheritance stereotype
<<union>>
<<join>>

<<single-table>>

Type of collection which implements the
association: bag, list, set or map

Association constraint
collection = (bag | list | set |

map)

Order of an association's collection: natural
ordering (implemented in code) or order by
columns (ascending or descending)

Association constraint
order = (natural | column

names [asc | desc])

Cascading of operations through the association:
nothing, persists, merges, deletions, refreshs or all

Association constraint
cascade = (none | persist |

merge | remove | refresh | all)

Association fetching strategy: lazy or eager. Association constraint fetch = (lazy | eager)

Table 1: Possible OR mappings for the Domain Model.

The Domain Model for the User Control module of sLabES Portal is shown in Figure 11. According

to the default values, all classes are persistent and class and attribute names are used as table and
column names respectively.

As we can see in the diagram, attributes have received mappings such as nullability and size. The
birthDate attribute was mapped as date-only precision. The recursive association in Area was

configured to be sorted naturally (will be implemented in the programming language) and to
cascade all operations (e.g. if an area is deleted, all of its subareas are automatically deleted).

Figure 11: Domain Model for the User Control module of LabES Portal.

None of the classes have ID or version attributes because they are inherited from a utility package,
as shown in Figure 12. The mapped stereotype indicates that DomainObjectSupport and

HibernatePersistentObject are not persistent entities, but their subclasses, which are entities,

inherit not only their attributes but also their O/R mappings. All domain classes in sLabES Portal
are said to extend HibernatePersistentObject, inheriting, thus, the UUID19, the persistence ID

and the version attribute.

Figure 12: Utility classes for persistence in JSchool.

The parameters I and V are generic, allowing for the user to choose the type of ID and version

attributes. HibernateBaseDAO is a base class for data access objects, described in the persistence

model, discussed in the next subsection.

3.2.2. Persistence Model

As mentioned before, FrameWeb indicates the use of the DAO design pattern (ALUR et al., 2003, p.

19 The relationship between an object's identity in memory and its primary key in the database raises several issues that
are discussed in the article “Hibernate, null unsaved value and hashcode: A story of pain and suffering”
from Jason Carreira (http://www.jroller.com/page/jcarreira?entry=hibernate_null_unsaved_value_and). The idea of
using a Universal Unique Identifier (UUID) was taken from this article.

462) to the construction of the data access layer. Thus, the persistence model is a UML class
diagram that represents DAO classes responsible for the persistence of the domain classes.
Therefore, it guides the implementation of the classes from the Persistence package. FrameWeb

suggests three steps for its construction:

1. Model the interface and concrete implementation of the base DAO (an example from the
JSchool project is shown in Figure 12);

2. Define which domain classes need basic persistence logic and create a DAO interface and
implementation for each one;

3. For each DAO, evaluate the need of specific database queries, adding them as operations in
their respective DAOs.

The persistence model presents, for each domain class that needs data access logic, an interface
and a concrete DAO that implements the interface. The interface has to be unique and defines the
persistence methods for a specific domain class. One concrete class is modeled for each
persistence technology used.

To avoid repeating in each DAO operations that are common in all of them (e.g.: save, delete,
retrieve by ID, etc.), a Base DAO (interface and implementation class) is modeled in a utility
package. Automatically all DAO interfaces inherit from the BaseDAO interface and the same
happens with concrete implementations, without the need to explicitly state that in the diagram.
Also, to avoid repeating methods in the interface and implementations, the designer can choose to
display them in one of the two only and it is inferred that all public methods are defined in the
interface and implemented in the concrete class.

Figure 12 shows the interface and implementation using Hibernate ORM framework, designed for
the sLabES Portal project. Both interface and class and declared using generic types, leaving to
their subclasses to specify which class is being persisted and what is the type for its ID attribute.
The Base DAO defines methods to retrieve all persistent entities of a given class, retrieve an entity
given its ID, save and delete an entity. As stated before, all public methods modeled in
HibernateBaseDAO are inferred to be defined in the BaseDAO interface.

Figure 13 shows the modeling of four DAOs from the sLabES Portal project, for the persistence of
the classes in the User Control module. AreaDAO and UserTypeDAO are simple, as they inherit all

basic operations from the Base DAO and don't need to define any extra ones. The other two define
extra operations. For example, UserDAO defines an operation to retrieve all users that have a
given area of interest. This is necessary because there is no navigability from Area to User (see
Figure 11) and the “Manage Area” use case needs to prevent an area from being deleted if it is
associated with any user.

Figure 13: Persistence model of the User Control module of LabES Portal.

As we can see, the persistence model does not define any UML extensions to represent the
concepts that are needed to implement the data access layer, but only some rules that make this
modeling simpler and faster.

3.2.3. Navigation Model

The navigation model is a UML class diagram that represents different components that form the
presentation layer, such as Web pages, HTML forms and action classes from the Front Controller
framework (see subsection 2.3.1). Table 2 shows the UML stereotypes used by the different
elements that can be represented in a navigation model. This model is used by developers to build
classes and components of the View and Controller packages.

Stereotype What it represents

(none)
An action class, to which the Front Controller framework
delegates the execution of the action.

<<page>> A static or dynamic Web page.

<<template>>
A template that is processed by a template engine and is
transformed into a Web page.

<<form>> A HTML form.

<<binary>>
Any binary file that can be retrieved and displayed by the browser
(e.g.: images, reports, documents, etc.).

Table 2: UML stereotypes used in the navigation model.

For Web pages and templates, the attributes of the classes represent information from the domain
that is supposed to be displayed in the page. Dependency relationships between them indicate
hyperlinks while composition associations between pages and forms denote the presence of the
form in that page.

In HTML forms, attributes represent the form fields and their types follow the HTML standard for
types of fields (e.g.: input, checkbox, etc.) or the names of the JSP tags used by the framework

(e.g., for Struts2, textfield, checkbox, checkboxlist, etc.).

The action class is the main component of the model. Its dependency associations show the
control flow when an action is executed. Table 3 lists the different meanings of this kind of
association, depending on the components that are connected by it. Dependencies that are
navigable towards an action class represent method calls, while the others represent results from
the action execution.

From To What it represents

Page / template Action class
A link in the page/template that triggers the
execution of the action.

Form Action class
Form data are sent to the action class when the
form is submitted.

Action class Page / template
The page/template is shown as one of the results of
the action class.

Action class Binary file
A binary file is shown as one of the results of the
action class.

Action class Action class
An action class is executed as result of another.
This process is known as “action chaining”.

Table 3: Dependency associations between an action class and other elements

The attributes of the action class represent input and output parameters relevant to that action. If
there is a homonymous attribute in an HTML form being submitted to the action, it means that the
data is injected by the framework in the action class (input parameter). Likewise, when one of the
result pages/templates show an attribute with the same name of an attribute of the action class,

this indicates that the framework makes this information available for the output.

When an action is executed, the framework will execute a default action method or allow/request
the explicit definition of which method to execute. In the latter case, the designer must specify
which method is being executed using the constraint {method=method-name} in the dependency

association. The same is true for associations that represent results. Naturally, these methods
should be modeled in the diagram.

When modeling action chaining, it's sometimes necessary to indicate the method that was
executed in the first action and the one that will be executed in the following. These can be
specified with the constraints outMethod and inMethod.

For dependency associations that represent results there are two other constraints that can be
used:

 {result=result name} specifies a keyword that represents this control flow, i.e., when

the action class returns this keyword as result of the action execution, the framework will
follow this flow and show the appropriate result page/template/binary file;

 {resultType=type name} determines the type of result, among those supported by the

framework. Usually, at least the following types of result are available: binary (display a

binary file), chain (action chaining), dispatch (dispatches the request), redirect

(redirects the request) and template (processes a template using a template engine).

The difference between a dispatch and a redirection is that the first makes the action's output
parameters available to the view, while the second does not. When a dependency association
doesn't specify a type, it means it is a dispatch. The default result is defined by the framework.

The designer is free to choose the granularity of the action classes, building one for each use case
scenario, one for each use case (encompassing many scenarios), one for multiple use cases, and
so forth. Moreover, he/she should decide if it's best to represent many actions in a single diagram
or have a separate diagram for each action. Figure 14 is the navigation model for a use case of
sLabES Portal.

Figure 14: Navigation Model for the use case “Autheticate User”

The figure shows that in the initial page of the portal (represented by web::index), there is a form

where login and password can be filled. When submitted, this data goes to the action class for the
execution of the executeLogin() method, which would access the business logic layer to perform

the use case. If the information filled is correct (result = success), the user is taken to

web::home, which represents the starting page for authenticated users. Otherwise, the user will be
taken back to web::index (result = input), showing once again the login form and an error

message.

If the user forgot his/her password, he/she can click on a link in the initial page to go to the
web::remindpassword page, where his/her login would be informed and sent to the action class.

The executeRemindPassword() method requests the business logic layer to send the password

to the user's email address and informs the user that the message has been sent. To log out, the
user clicks on the appropriate link and is redirected back to the initial page.

During the conception of FrameWeb, there has been a discussion on whether the navigation model
would be better represented by a sequence diagram, as it could represent better the control flow.
Two main reasons led to the choice of the class diagram: (a) it provides a better visualization of
the inner elements of action classes, pages and forms; and (b) it models composition between
pages and forms with a more appropriate notation. Nonetheless, designers are advised to build
sequence diagrams to represent complex flows when they see fit.

Last but not least, FrameWeb suggests four steps for the construction of a navigation model:

1. Study the use cases modeled during requirements analysis to define the granularity of the
action classes (using, preferably, names that can relate the actions to the use
cases/scenarios they refer to);

2. Identify how the data gets to the action class, modeling input pages and forms and the
appropriate attributes on them and in the action class;

3. Identify what are the possible results and model the output pages/templates/binary files,
also adding attributes when appropriate. We suggest that results that come from
exceptions should not be modeled to avoid polluting the diagram;

4. Periodically check if the model is getting too complex and consider dividing it into two or
more navigation models.

3.2.4. Application Model

The application model is a UML class diagram that represents classes from the Application

package and their relationship with the Controller and Persistence packages. Besides guiding

the implementation of application classes, this diagram also instructs developers on the
configuration of the Dependency Injection framework (see section 2.3.4), which is responsible for
managing the dependencies among these three packages.

The granularity of the application classes can be chosen by the developer in the same way as the
granularity of the action classes. The application model also shares similarities with the
persistence model, as it does not define any UML extension and uses the “programming to
interfaces” principle, indicating the modeling of an interface for each application class.

When an application class is modeled, all action classes that depend on it should be displayed in
the diagram, with the appropriate namespaces and relationships depicted. Analogously, all DAOs
required by the application class to execute the use case should have their interfaces shown in the
model, along with the relationship with the application class. Both relationships are represented by
directed associations and the multiplicity is not required, as it is always 1.

Figure 15 shows part of an application model of sLabES Portal, depicting the classes that
implements the “Manage User” and “Authenticate User” use cases and its relationships with
controller and persistence components. The methods of the classes represent each scenario of
each use case and define the parameters that should be given for them.

Figure 15: Part of an Application Model of the User Control module of LabES Portal.

Application classes manipulate domain objects and, thus, depend on them. These relationships,
however, are not shown in the diagram to avoid increasing the complexity of the model. One can
know about these relationships by reading the description of each use case.

FrameWeb suggests four steps for the construction of an application model:

1. Study the use cases modeled during analysis to define the granularity of the application
classes (using, preferably, names that can relate the classes to the use cases/scenarios
they implement);

2. Add to the interfaces/classes the methods that implement the business logic, giving
special attention to the name of the method (as before, with the name of the class), its
parameter, the parameters types and its return type;

3. By reading the use case descriptions, identify which DAOs are necessary for each
application class and model the associations;

4. Go back to the navigation model (if already built) and identify which action classes depend
on which application class and model their associations.

By defining the standard architecture and a UML profile for the construction of these four
diagrams, FrameWeb provides the appropriate tools for the design of framework-based WISs. To
promote the construction of “Semantic Web-enabled” WISs, an extension called S-FrameWeb was
proposed and it is presented in the next section.

4. S-FrameWeb

The main goal of S-FrameWeb is to make WISs “Semantic Web-enabled”. Being a framework-
centered method, the chosen approach is to have the Front Controller framework produce dynamic
annotations by identifying if requests come from human or software agents. In the former case,
the usual Web page is presented, while in the latter, an OWL document is returned.

To accomplish this, S-FrameWeb extends FrameWeb in the following manners:

 The activity of Domain Analysis should be conducted in the beginning of the project to
build an ontology for the domain in which the software is based. If it already exists, it
should be reused (and eventually modified);

 Requirement Specification and Analysis go as usual, except for the fact that conceptual
models build during Analysis can now be based on the domain ontology built in the

previous activity;

 During design, FrameWeb's Domain Model (FDM) receives semantic annotations based on
the domain ontology;

 During implementation, the MVC framework has to be extended in order to perform
dynamic annotation.

Figure 16 shows the software process suggested by S-FrameWeb while Table 4 summarizes the
evolution of the models throughout that software process.

Figure 16: The software process suggested by S-FrameWeb (SOUZA et al.,
2007).

Activity Artifact What the model represents

Domain Analysis Domain Ontology Concepts from the domain to which the software is
being built. Modeled in ODM, but converted to OWL
for deployment.

Requirement
Analysis

Conceptual Model Concepts that are specific to the problem being
solved. Modeled in ODM.

System Design FrameWeb's Domain
Model (FDM)

Same as above plus OR mappings. Modeled using S-
FrameWeb's UML profile.

Coding OWL code OWL representation of FDM, without OR mappings.

Table 4: Models produced by the software process suggested by S-FrameWeb (SOUZA et al., 2007)

The following subsections go through the suggested software process discussing it in more detail.

4.1. Domain Analysis

The first step for bringing a WIS to the Semantic Web is formally describing its domain. As
discussed in section 2.4, this can be achieved by the construction of an ontology. S-FrameWeb
indicates the inclusion of a Domain Analysis activity in the software process for the development
of a domain ontology (we don't use the term “domain model” to avoid confusion with FrameWeb's
Domain Model (FDM), which is a design model).

Domain Analysis is “the activity of identifying the objects and operations of a class of similar
systems in a particular problem domain” (Neighbors, 1981; Falbo et al., 2002). When a software is
built, the purpose is to solve a problem from a given domain of expertise, such as medicine, sales
or car manufacturing. If the domain is analyzed prior to the analysis of the problem, the
knowledge that is formalized about the domain can be reused when another problem from the
same domain needs a software solution (Falbo et al., 2002).

S-FrameWeb does not impose any specific method for the construction of ontologies. It also
doesn't require a specific representation language, but suggests the use of OMG's20 Ontology

20 Object Management Group – http://www.omg.org/ontology/

Definition Metamodel (ODM) (OMG, 2007), “a language for modeling Semantic Web ontologies in
the context of MDA” (Đurić, 2004). ODM defines an ontology UML profile that allows developers to
represent ontologies in UML class diagrams.

In the development of the LabES Portal, the SABiO method (Falbo, 2004) was followed, resulting in
the construction of an ontology for educational portals that deals with competency questions such
as: what are the roles of the people in the educational institution?, what are the areas of interest of
these people and the institution?, how is the institution organized?, etc. The ontology was divided
into two separate diagrams: one for the general structure of educational protals and another
specific for publications. Figure 17 shows the first one.

Figure 17: Diagram of the structural part of the ontology for educational
portals.

The domain ontology serves as a basis for the construction of the application's conceptual model
(during Requirement Analysis), which should derive some classes and associations from the
ontology, adding and modifying elements as needed, concerning the specific problem being
solved.

4.2. Requirement Specification and Analysis

The activities of Requirement Specification and Analysis should be conducted by the development
team using its methodology of preference. S-FrameWeb, like FrameWeb, does not prescribe any
methods or languages to this phase of the software process. However, as during Domain Analysis,
it suggests the use of ODM for the graphical representation of the conceptual model, as it eases
its conversion to FDM and, later on, to code (using OWL).

Figure 18 shows the conceptual model for the User Control module of the LabES Portal.

Figure 18: The conceptual model for the User Control module of LabES Portal,
in ODM.

The stereotype <<OntClass>> indicates domain classes, <<ObjectProperty>> models

associations between domain classes, <<DataType>> represents XML data types and

<<DatatypeProperty>> models associations between classes and data types.

The reader accustomed with UML conceptual models may notice that associations are represented
as classes in ODM. This is because in OWL associations are independent from classes and, for
instance, can form their own subsumption hierarchy. This could also happen with attributes, for
the same reasons. More on ODM's semantics can be found at (OMG, 2007).

In the cases where there is no need to represent associations or attributes as UML classes, S-
FrameWeb suggests the conceptual model is simplified, such as the one shown in Figure 19.
Notice that this diagram is very similar to the one in Figure 8.

Figure 19: The conceptual model for the User Control module of LabES Portal, in
its simplified version.

4.3. Design

As discussed in section 3.2, FrameWeb proposes the creation of four kinds of models during
design: domain, persistence, navigation and application models. These models are still used with
S-FrameWeb, although the domain model (FDM) should be adapted to a representation more
suitable to the purposes of this semantic extension. Therefore, S-FrameWeb suggests a new UML
profile for this diagram, mixing the profile defined by ODM with the one proposed by FrameWeb.

This new profile consists basically of the one defined by ODM, with the following adaptations:

1. Specification of association navigabilities for the implementation of the classes;

2. Addition of the O/R mappings for the configuration of the ORM framework;

3. Use of the data types of the implementation platform instead of those defined by the XML
Schema Definition (XSD) standard21;

4. Simplification of ODM's syntax when possible (if not already done previously).

Naturally, the construction of the FDM should be based on the conceptual model already built in
previous activities. Figure 20 shows the FDM for the LabES Portal. We can see that, based on the
simplified version of the conceptual model, association navigabilities were defined, data types
were chosen among those of the implementation platform and that some O/R mappings were
included. The result is very similar of that of Figure 11, due to the simplifications performed.

Figure 20: S-FrameWeb's Domain Model for the User Control module of LabES Portal.

The representation of this model in a language that mixes profiles from both ODM and FrameWeb
attempts to facilitate the implementation phase, when an OWL file representing the conceptual
model should be created and the ORM framework should be configured.

4.4. Implementation, Testing and Deployment

During implementation, the classes that, integrated with the frameworks, provide a software
solution to the problem at hand are developed. S-FrameWeb adds a new task to this activity: the
construction of OWL files representing the domain ontology and the application conceptual model
(based on the FDM). As stated before, this task is facilitated by the use of ODM in both models.

The OWL files should be used by the Front Controller framework to implement dynamic annotation
on the Web pages. S-FrameWeb proposes an extension to this kind of framework that recognizes
when a request comes from a human or from a software agent by analyzing a specific HTTP
request parameter (e.g. owl=true). In the case of a software agent, the framework should respond

with an OWL file that is based on the domain ontology and the conceptual model, and represents
the data that would be shown in the human-readable version of the page.

To experiment this approach in practice, a prototype of an extension for the Struts2 framework
was built. Figure 21 shows this extension and how it integrates with the framework. The client's
web browser issues a request for an action to the framework. Before the action gets executed, the
controller automatically dispatches the request through a stack of interceptors, following the pipes
and filters architectural style.

21 The XML Schema standard can be found at http://www.w3.org/XML/Schema. Its data types are described in a specific
page, at http://www.w3.org/TR/xmlschema-2.

Figure 21: S-FrameWeb's Front Controller framework extension for the
Semantic Web (SOUZA et al., 2007).

An “OWL Interceptor” was developed and placed as first of the stack. When the request is made,
this interceptor verifies the HTTP parameter and, if present, creates a pre-result listener that will
deviate successful requests to the “OWL Result Class”, another custom-made component that is
responsible for producing this result.

The listing below is an excerpt of an OWL document produced by the search of publications with
“FrameWeb” in their names. Publications that are returned by the applications are placed under the
<results> tag, while objects associated with them are placed under <instancesList> tag. The

association is made using the UUID of each object.

<results>

<instance>

 <uuid>2a6304f5-34c9-4356-a1ce-baa1e7b99e04</uuid>

 <areasOfInterest>130c2f70-5a37-4ad3-815b-841922584cd9</areasOfInterest>

 <areasOfInterest>93fcbf36-cdfe-4fd3-be23-a0d6ab3b45e8</areasOfInterest>

 <publishDate>2007-06-20</publishDate>

 <summary>An Application of the S-FrameWeb Method</summary>

 <participants>e5242491-b2be-4a34-b7b4-b0d9b7537517</participants>

</instance>

</results>

<instancesList>

 <instance>

 <uuid>130c2f70-5a37-4ad3-815b-841922584cd9</uuid>

 <name>Semantic Web</name>

 </instance>

 <instance>

 <uuid>93fcbf36-cdfe-4fd3-be23-a0d6ab3b45e8</uuid>

 <name>WebApps</name>

 </instance>

 <instance>

 <uuid>e5242491-b2be-4a34-b7b4-b0d9b7537517</uuid>

 <name>Vítor Souza</name>

 <birthDate>1981-06-15</birthDate>

 <gender>M</gender>

 <profession>Professor</profession>

 <institution>UFES</institution>

 <type>2e9c5b6e-0d0f-4da0-b99b-24178ca6873a</type>

 </instance>

</instancesList>

Since this result should be based on the application ontology, it was necessary to use an ontology
parser. For this purpose, we chose the Jena Ontology API, a framework that provides a
programmatic environment for many ontology languages, including OWL. With Jena and Java's
reflection mechanisms, the OWL Result Class reads all properties that are made available to the
Web page by the action, produces an OWL document containing their information and delivers it to
the software agent.

Testing should be conducted in order to check not only the source code, but also the ontologies
codified in OWL. In the context of S-FrameWeb, however, this is still open to research and study.
Deployment works as the same as other WISs, but should also include the OWL files in a specific
place in order to be used by the Front Controller's extension.

5. Future Trends

Web Engineering is a relatively new field of research. New methods, languages and frameworks are
proposed to provide practitioners with tools that can facilitate and increase the productivity when
developing WebApps.

FrameWeb is a new tool, targeting WISs that have their architecture based on frameworks. By
suggesting a standard architecture and bringing concepts from the frameworks to the design
models, developers can translate models to code more easily and designer have more control on
the outcome of the implementation.

FrameWeb was first applied in the development of the Portal of the Software Engineering Lab –
LabES. First, developers were trained in general concepts of Web Engineering, in the use of
FrameWeb and also in the following frameworks: WebWork, FreeMarker (template engine),
SiteMesh, Hibernate and Spring.

In general, the development went smoothly. The method allowed the developers to deliver the
models mostly in time and few deadlines had to be extended. However, some developers had
difficulties on capturing the idea of some frameworks, especially the MVC framework. All of them
had some experience with the Java platform, but most did not have any experience with Web
development.

At the end of the development, the developers were asked to provide feedback on the work done.
This feedback can be summarized in the following items:

 Allowing to directly model aspects related to the use of frameworks is the biggest strength
of FrameWeb;

 Implementing in Java what was modeled during design was very much facilitated by the
clear understanding of the semantics of the four models (domain, persistence, navigation
and application);

 The simplicity of the models facilitated the adoption of FrameWeb, except for the
navigation model, which added some complexity to the method.

Two other case studies were conducted. The local Java User Group ESJUG22 modeled a collaborative
learning environment called JSchool23 using FrameWeb for the same set of frameworks used in the
LabES Portal project. This helped mature the method in its initial version.

Another case study reimplemented the LabES Portal changing the Front Controller framework. This
helped identify some extensions that should be added to FrameWeb in order to cope with some
characteristics of different frameworks. For instance, this work suggested the addition of the
<<formBean>> stereotype for the navigation model to represent how the framework Struts sends

data from the web page to the action class. It also reached the conclusion that the navigation
model in FrameWeb is somewhat dependent on the instance of Front Controller frameworks used,
and not generic as it was assumed before.

More case studies should be conducted to assess the effectiveness of the method and its
appropriateness to different instances of frameworks. Many improvements can come from more
practical experiences.

The use of framework-based architectures is becoming the standard for implementation of
medium-to-large-sized WIS. Taking the Java platform as example, the definition of standards as
JavaServer Faces (JSF)24 for Web development and the new Enterprise JavaBeans (version 3.0)25 for
distributed components reinforce that conclusion. JSF defines a MVC-like architecture, and EJB 3.0
had all of its persistence model reconstructed based on Hibernate ORM framework and also makes
heavy use of Dependency Injection.

The research on the Semantic Web points out to the future of the World Wide Web. Methods for the
development of WISs should prepare for, or even help build, this new paradigm. S-FrameWeb
suggests a software process that facilitates the development of Semantic WISs by automating

22 http://esjug.dev.java.net
23 http://jschool.dev.java.net
24 http://jcp.org/en/jsr/detail?id=127
25 http://jcp.org/en/jsr/detail?id=220

certain tasks concerning the generation of semantic annotations on dynamic Web
pages.Nonetheless, FrameWeb and S-FrameWeb are far from ideal: there are several opportunities
to improve the method. Future work may include:

 Further research on the impact of the use of frameworks and FrameWeb on the activity of
Testing. The current work provides no discussion on the subject of testing;

 Proposals on layout and interaction models. Complete methods for the design of WebApps
should include models that model aesthetics and usability;

 Conduction of more formal experiments with the method, evaluating more precisely the
gains in the productivity of the development team. Currently, only informal experiments
have been conducted and conclusions have been reached by requesting developer’s
opinions;

 Tools could be developed to help create the models or to convert the models to code,
automatically implementing much of the infrastructure code and configuration for the most
used frameworks available;

 To make FrameWeb's models more generic, the development of an ontology on Web
Applications and frameworks to guide the evolution of FrameWeb's modeling language.
New concepts brought by new frameworks could be included in the ontology and, thus,
taken to the modeling language;

 Continuation on the research on the Semantic Web and in-practice experiments on the
construction of a Semantic WIS using S-FrameWeb;

 Deeper discussions on how to tackle specific Semantic Web issues such as: how will agents
find the desired web page?, how will they know how to interact with it?, how will they know
if a concept “table” refers to a piece of furniture or a systematic arrangement of data
usually in rows and columns?, will a top-level ontology be used for all the Internet?

 Evaluation on how to use Semantic Web Services with S-FrameWeb instead of the dynamic
page approach and a comparison of both solutions.

6. Conclusions

The amount of propositions in the Web Engineering area, including methods, frameworks and
modeling languages, is quite vast, demonstrating that academics and practitioners haven't yet
elected a standard when it comes to Web development.

Parallel to this, many frameworks and containers for the implementation of WISs were created,
denoting the need for a basic infra-structure that helps on the quick development of reliable
software with low future maintenance costs. With several ready-to-use and extensively tested
components, frameworks promote reuse and good programming practices.

The large utilization of these frameworks and containers by practitioners and the absence of a
design method based directed to them has motivated the proposal of FrameWeb, a method based
on frameworks for the design of WISs. The current research on the Semantic Web, with many
efforts on bringing this idea to reality has impelled us to extend this method and create S-
FrameWeb: a method based in frameworks to the construction of semantic WISs.

Given all of the options available, FrameWeb comes in as another one that targets a specific
architecture, one based on the use of frameworks. In this case, FrameWeb excels for its agility,
because models are directed towards the framework architectures and allow for quick
understanding of the implementation. It also doesn't introduce much complexity, allowing
organizations to use their own processes up to design with few adaptations, if any. Of all the
proposed design models, the navigation model is the only one we consider a little bit complex,
making FrameWeb very easy to learn and use.

S-FrameWeb complements FrameWeb, adding activities that promote the construction of Semantic
WISs. Given that the Semantic Web vision will not come true unless Web authors add semantic to
their websites, S-FrameWeb is a step in that direction, giving directives for WISs developers to
follow in order to add Semantic to Web Applications.

7. References

Ahmad, R., Li, Z., & Azam, F. (2005). Web Engineering: A New Emerging Discipline. In Proceedings
of the IEEE Symposium on Emerging Technologies (pp.445-450). Catania, Italy: IEEE.

Alur, D., Malks, D., & Crupi, J. (2003). Core J2EE Patterns: Best Practices and Design Strategies, 2nd

edition. Prentice Hall.

Ambler, S., & Jeffries, R. (2002). Agile Modeling: Effective Practices for Extreme Programming and
the Unified Process, 1st edition. John Wiley & Sons.

Arch-Int, S., Batanov, D. N. (2003). Development of industrial information systems on the Web
using business components. Computers in Industry, 50 (2), 231-250, Elsevier.

Bauer, C., & King, G. (2004). Hibernate in Action, 1st edition. Manning.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, 284,
34-43.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language User Guide. 2nd

edition. Addison-Wesley Professional.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling Language (WebML): a modeling language
for designing Web sites. Computer Networks, 33 (1-6), 137-157, Elsevier.

Conallen, J. (2002). Building Web Applications with UML, 2nd edition. Addison-Wesley.

Díaz, P., Montero, S., & Aedo, I. (2004). Modelling hypermedia and web applications: the Ariadne
Development Method. Information Systems, 30 (8), 649-673, Elsevier.

Đurić, D. (2004). MDA-based Ontology Infrastructure. Computer Science and Information Systems
1 (1), ComSIS Consortium.

Falbo R. A., Guizzardi, G., & Duarte, K. C. (2002). An Ontological Approach to Domain Engineering.
In Proceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering (pp. 351- 358). Ischia, Italy: Springer.

Falbo, R. A. (2004) Experiences in Using a Method for Building Domain Ontologies. In Proceedings
of the Sixteenth International Conference on Software Engineering and Knowledge Engineering (pp.
474-477), Banff, Alberta, Canadá.

Fons, J., Valderas, P., Ruiz, M., Rojas, G., & Pastor, O. (2003). OOWS: A Method to Develop Web
Applications from Web-Oriented Conceptual Models. In Proceedings of the International Workshop
on Web Oriented Software Technology (pp. 65-70), Oviedo, Spain.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley.

Fowler, M. (2007). Inversion of Control Containers and the Dependency Injection pattern. Retrieved
on November 19, 2001, from http://www.martinfowler.com/articles/injection.html

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Ginige, A., & Murugesan, S. (2001). Web Engineering: An Introduction. IEEE Multimedia, 8 (1),
14-18, IEEE.

Gomez-Perez, A., Corcho, O., & Fernandez-Lopez, M. (2005). Ontological Engineering. Springer.

Guarino, N. (1998). Formal Ontology and Information Systems. In Proceedings of the 1st

International Conference on Formal Ontologies in Information Systems (pp. 3-15), Trento, Italy:
IOS Press.

Jacobson I., Booch G. & Rumbaugh J. (1999). The Unified Software Development Process, Addison
Wesley.

Jacyntho, M. D., Schwabe, D., & Rossi, G. (2002). A Software Architecture for Structuring Complex
Web Applications. In Proceedings of the 11th International World Wide Web Conference, Web
Engineering Alternate Track, Honolulu, EUA: ACM Press.

Koch, N., Baumeister, H., Hennicker, R., & Mandel, L. (2000). Extending UML to Model Navigation
and Presentation in Web Applications. In Proceedings of Modelling Web Applications in the UML
Workshop, York, UK.

Koch, N., & Kraus, A. (2002). The Expressive Power of UML-based Web Engineering. In D. Schwabe,
O. Pastor, G. Rossi e L. Olsina (Ed.), Proceedings of the Second International Workshop on Web-
Oriented Software Technology (pp. 105-119), CYTED.

Krutchen, P. (2000). The Rational Unified Process: An Introduction, 2nd edition. Addison-Wesley.

Lee, S. C., & Shirani, A. I. (2004). A component based methodology for Web application
development. Journal of Systems and Software, 71 (1-2), 177-187, Elsevier.

Lima, F., & Schwabe, D. (2003). Application Modeling for the Semantic Web. In Proceedings of the
1st Latin American Web Conference (pp. 93-102), Santiago, Chile: IEEE-CS Press.

McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic Web Services. Intelligent Systems, 16 (2),
46-53, IEEE.

Murugesan, S., Deshpande, Y., Hansen, S., & Ginige, A. (1999). Web Engineering: A New Discipline
for Development of Web-based Systems. In Proceedings of the 1st ICSE Workshop on Web
Engineering (pp. 3-13). Australia: Springer.

Narayanan, S., & McIlraith, S. A. (2002). Simulation, Verification and Automated Composition of
Web Services. In Proceedings of the 11th international conference on World Wide Web (pp. 77-88),
Hawaii, USA: ACM.

Neighbors, J. M. (1981). Software Construction Using Components. Ph.D. Thesis. Department of
Information and Computer Science, University of California, Irvine.

OMG (2007). Ontology Definition Metamodel Specification. Retrieved on January 29, 2007, from
http://www.omg.org/cgi-bin/doc?ad/06-05-01.pdf

Pastor O., Gómez, J., Insfrán, E., & Pelechano, V. (2001). The OO-Method Approach for Information
Systems Modelling: From Objetct-Oriented Conceptual Modelling to Automated Programming.
Information Systems, 26 (7), 507-534, Elsevier.

Pressman, R. S. (2005). Software Engineering: A Practitioner’s Approach, 6th edition. McGraw Hill.

Reenskaug, T. (1979). THING-MODEL-VIEW-EDITOR, an Example from a planning system. Xerox
PARC Technical Note.

Resende, A., & Silva, C. (2005). Programação Orientada a Aspectos em Java. Brasport.

Rosenberg, D., Scott, K. (1999). Use Case Driven Object Modeling with UML : A Practical Approach.
Addison-Wesley.

Schmidt, D. (2007). “Programming Principles in Java: Architectures and Interfaces”, chapter 9.
Retrieved on January 29, 2007 from http://www.cis.ksu.edu/~schmidt/CIS200/

Schwabe, D., & Rossi, G. (1998). An Object Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems 4 (4), Wiley and Sons.

Shannon, B. (2003). JavaTM 2 Platform Enterprise Edition Specification, v1.4. Sun Microsystems.

Souza, V. E. S., & Falbo, R. A. (2007). FrameWeb - A Framework-based Design Method for Web
Engineering. In Proceedings of the Euro American Conference on Telematics and Information
Systems 2007 (pp. 17-24). Faro, Portugal: ACM Press.

Souza, V. E. S., Lourenço, T. W., Falbo, R. A., & Guizzardi, G. (2007). S-FrameWeb – a Framework-
based Design Method for Web Engineering with Semantic Web Support. In Proceedings of
Workshops and Doctoral Consortium of the 19th International Conference on Advanced
Information Systems Engineering (pp. 767-778), Trondheim, Norway.

Standing, C. (2002). Methodologies for developing Web applications. Information and Software
Technology, 44 (3), 151-159, Elsevier.

W3C (2007a). OWL Web Ontology Language Guide, fev. 2004. Retrieved on December 17, 2007,
from http://www.w3.org/TR/owl-guide/

W3C (2007b). W3C Glossary and Dictionary. Retrieved on January 23, 2007, from
http://www.w3.org/2003/glossary/

