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Abstract. In a series of publications, we have employed ontological theories 

and principles to evaluate and improve the quality of conceptual modeling 

grammars and models. In this article, we advance this research program by 

conducting an ontological analysis to investigate the proper representation of 

types whose instances are collectives, as well as the representation of part-

whole relations involving them. As a result, we provide an ontological 

interpretation for these notions, as well as modeling guidelines for their sound 

representation in conceptual modeling. Moreover, we present a precise 

qualification for the parthood relations of member-collective and subcollective-

collective in terms of formal mereological theories of parthood, as well as in 

terms of the modal meta-properties of essential and inseparable parts. 

Keywords: ontological foundations for conceptual modeling, part-whole 

relations, representation of collectives.  

1 Introduction 

In recent years, there has been a growing interest in the application of Foundational 

Ontologies, i.e., formal ontological theories in the philosophical sense, for providing 

real-world semantics for conceptual modeling languages, and theoretically sound 

foundations and methodological guidelines for evaluating and improving the 

individual models produced using these languages.  

In a series of publications, we have successfully employed ontological theories 

and principles to analyze a number of fundamental conceptual modeling constructs 

such as  Types, Roles and Taxonomic Structures, Relations, Attributes, among others 

(e.g., [1,2]). In this article we continue this work by investigating a specific aspect of 

the representation of part-whole relations. In particular, we focus on the ontological 

analysis of collectives and the part-whole relations involving them. The focus on 

collectives is timely given the increasing recognition of the importance of finding 

well-founded manners to represent collectives in domains such as bioinformatics in 

which collectives and their parts abound [3,4].    

Parthood is a relation of fundamental importance in conceptual modeling, being 

present as a modeling primitive in practically all major conceptual modeling 

languages. Motivated by this, a number of attempts have been made to employ 



theories of different sorts to provide a foundation for part-whole relations. These 

initiatives fall roughly in three different classes: (i) proposals that employ classical 

ontological theories of parthood (Mereologies). In this class, there is a number of 

works in the literature that employ the ontological theory put forth by the philosopher 

Mario Bunge [5] typically accessed through its most popular adaptation termed the 

BWW ontology [6,7]; (ii) proposals that are based on research from linguistics and 

cognitive science in which different sorts of Meronymic relations are elaborated. Most 

contributions in this class are based on the theory developed by Winston , Chaffin and 

Herrmann (henceforth WCH) [8]. An example of a pioneering article in this class is 

[9]; (iii) proposals which define a number of so-called secondary properties which 

have been used to further qualify parthood relations [6]. These include distinctions 

which reflect different modal aspects of parthood reflecting different relations of 

dependence (e.g., generic versus existential dependence). An example is the 

distinction between essential and inseparable parthood in [2].  

Despite their important contributions, there are significant shortcomings in the 

current scenario considering the aforementioned approaches. On the one hand, 

accounts of parthood solely based on WCH suffer from many difficulties inherited 

from the original theory. As discussed in [10,11], WCH’s original taxonomy turned 

out to be overly linguistically motivated, focusing on the linguistic term part-of (and 

its cognates). In fact, as demonstrated by these authors, the six linguistically-

motivated types of part-whole relation originally proposed in WCH give rise to only 

four distinct ontological types, namely: (a) subquantity-quantity: modeling parts of an 

amount of matter (e.g., alcohol-wine, gin-Martini, Chocolate-Toddy); (b) member-

collective: modeling a collective entity in which all parts play an equal role w.r.t. the 

whole (e.g.,  tree–forest, card–deck, lion-pack); (c) subcollective-collective: modeling 

a relation between a collective and the subcollectives that provide further structure to 

the former (e.g., the north part of the black forest-black forest, the underage children 

of John-the children on John); (d) component – functional complex: modeling an 

entity in which all parts play a different role w.r.t. the whole, thus, contributing to the 

functionality of the latter (e.g.,  heart-circulatory system, engine – car).  

On the other hand, conceptual modeling accounts of parthood based on BWW 

inherit the limitations of Bunge’s original treatment of parthood in its most basic core. 

Mereology is a mature discipline with well-defined and formally characterized 

theories. These in fact form a lattice of theories such that there is not one single 

formal meaning of part in mereology but several alternative axiomatizations of 

parthood that extend each other. Mapping modeling primitives representing part-

whole relations to these theories can indeed provide an important contribution to 

conceptual modeling. Firstly, in a direct manner because these theories can provide 

sound and fully characterized formal semantics for these relations. But, also because 

nowadays several authors have proposed codifications of different mereological 

theories by mapping them to different Description Logics, hence, providing a 

mechanism for automated reasoning with partonomies in conceptual models [12,13]. 

The negative point here is that Bunge’s theory of parthood corresponds to the weakest 

theory in mereology. In fact a theory which is even considered to be too weak to 

count as a characterization for a true part-whole relation [14]. 



Finally, most current approaches limit themselves to analyze the relation between 

the whole and its parts. However, as discussed in [15], a conceptual theory of 

parthood should also countenance a theory of wholes, in which the relations that tie 

the parts of a whole together are also considered. To put it simply, the composite 

objects in which we are interested in conceptual modeling are not mere aggregations 

of arbitrary entities but complex entities suitably unified by proper binding relations. 

This paper should then be seen as a companion to the publications in [2,16] and 

[17].  In this research program, we have managed to show that the three classification 

schemes aforementioned, namely, the linguistic-cognitive meronymic distinctions, the 

mereological theories of parthood, and the so-called secondary properties are not 

orthogonal. In fact, each particular meronymic distinction in the first scheme commits 

to basic mereological properties, secondary properties, and even requires binding 

relations of specific kinds to take place between their parts. In [17], we have managed 

to show the interconnection between these classification schemes for the case of the 

subquantity-quantity relation. In a complementary form, we did the same in [2,16] for 

the case of the component – functional complex relation. The objective of this paper is 

to follow the same program for the case of part-whole relations involving collectives, 

namely, the member-collective and the subcollective-collective relations. This paper 

is, thus, a substantial extension to the preliminary work reported in [18] in which only 

the member-collective relation is analyzed and in some of its aspects.      

The remainder of this article is organized as follows. Section 2 reviews the 

theories put forth by classical mereology as well as its connection with modal 

secondary properties of parts and wholes. The section also discusses how these 

mereological theories can be supplemented by a theory of (integral) wholes. In section 

3, we discuss collectives as integral wholes and present some modeling consequences 

of the view defended there. Moreover, we elaborate on some ontological properties of 

collectives that differentiate them not only from their sibling categories (quantities 

and functional complexes), but also from sets (in a set-theoretical sense). The latter 

aspect is of relevance since collectives as well as the member-collective and 

subcollective-collective relations are frequently taken to be identical to sets, set 

membership and the subset relation, respectively. In section 4, we promote an 

ontological analysis of two part-whole relations involving collectives, clarifying on 

how these relations stand w.r.t. to basic mereological properties (e.g., transitivity, 

weak supplementation, extensionality) as well as regarding the modal secondary 

properties of essential and inseparable parthood. As an additional result connected to 

this analysis, we outline a number of metamodeling constraints that have been used to 

implement a UML modeling profile for representing collectives and their subparts in 

conceptual modeling. Section 5 presents final considerations of this paper.  

2 A Review of Formal Part-Whole Theories  

In practically all philosophical theories of parts, the relation of (proper) parthood 

(symbolized as <) stands for a strict partial ordering, i.e., an asymmetric (2) and 

transitive relation (3), from which irreflexivity follows (1): 



∀∀∀∀x ¬(x < x) (1) 

∀∀∀∀x,y ((x < y) →→→→ ¬(y < x)) (2) 

∀∀∀∀x,y,z ((x < y) ∧∧∧∧ (y < z) →→→→ (x < z)) (3) 

These axioms amount to what is referred in the literature by the name of Ground 

Mereology (M), which is the core of any theory of parts, i.e., the axioms (1-3) define 

the minimal (partial ordering) constraints that every relation must fulfill to be 

considered a parthood relation. As previously mentioned, Mario Bunge’s 

mereological theory (Assembly Theory) corresponds to the axiomatization of Ground 

Mereology (with the only difference of assuming the existence of a null individual 

which is supposed to be part of everything else) [5]. Although necessary, these 

constraints are not sufficient, i.e., it is not the case that any partial ordering relation 

qualifies as a parthood relation. Most authors require an extra axiom termed the weak 

supplementation principle (WSP) (4) as constitutive of the meaning of part and, 

hence, consider (1-3) plus (4) (the so-called Minimal Mereology (MM)) as the 

minimal constraints that a mereological theory should incorporate [14,19]: 

∀∀∀∀x,y ((y < x) →→→→ ∃∃∃∃z (z < x) ∧∧∧∧ ¬¬¬¬overlap(z,y)) (4) 

Figure 1.a below illustrates this notion of weak supplementation. It shows that if y is a 

part of x then there must exist another part of x which is disjoint from y (the 

“missing” part of x). Loosely speaking, without this missing part, y would be identical 

to x. From a practical point of view, without WSP, models such as the one in figure 

1.b cannot be deemed incorrect. Now, following that model, suppose an event E 

which is composed of one single subevent. Isn’t this alleged part identical to the event 

E itself? In a sound model events are either atomic or are composed of at least two 

disjoint subevents.    

  

Fig. 1 Invalid situation (a) and invalid conceptual model (b) according to Minimum Mereology. 

There is an extension to MM that has then been created by strengthening the 

supplementation principle represented by (4). In this system, (4) is thus replaced by 

something termed the stronger supplementation principle (SSP). The resulting theory 

is named Extensional Mereology (EM). A known consequence of the introduction of 

SSP is that in EM we have that two objects are identical iff they have the same parts,  

i.e., SSP entails a mereological counterpart of the extensionality principle (of identity) 

in set theory. As a consequence, if an entity is identical to the (mereological) sum of 

its parts, thus, changing any of its parts changes the identity of that entity.  Ergo, an 

entity cannot exist without each of its parts, which is the same as saying that all its 

parts are essential parts.  

Essential parthood can be defined as a case of existential dependence between 

individuals, i.e., x is an essential part of y iff y cannot possibly exist without having 

that specific individual x as part [2]. This specific mode of existential dependence can 

also be defined from the part x to the whole y. We say that x is an inseparable part of 



y iff x cannot possibly exist without being a part of that specific individual y [2]. A 

stereotypical example of an essential part of a car is its chassis, since that specific car 

cannot exist without that specific chassis (changing the chassis legally changes the 

identity of the car); A stereotypical example of an inseparable part of a living cell is 

its membrane, since the membrane cannot exist without being part of that particular 

cell. As discussed in depth in [2], essential and inseparable parthood play a 

fundamental role in conceptual modeling. However, it is not the case for all types of 

entities that all their parts are essential. In other words, although EM describes the 

basic meaning of parthood for some types of entities (e.g., quantities [17] and events 

[14]), this is not the case for entities of all ontological categories. In particular, as we 

have shown in [16], for functional complexes while some of their parts are essential 

(inseparable), not all of them are essential (inseparable). As discussed in section 4, 

EM is too strong a theory in this sense also for the case of the member-collective and 

the subcollective-collective relations.   

Classical mereological theories focus solely on the relation from the parts to the 

wholes. Thus, just like in set theories we can create sets by enumerating any number 

of arbitrary entities, in classical mereologies one can create a new object by summing 

up individuals that can even belong to different ontological categories. For example, 

in these systems, the individual created by the aggregation (termed mereological sum) 

of Noam Chomsky’s left foot, the first act of Puccini’s Turandot and the number 3, is 

an entity considered as legitimate as any other. However, as argued by [10], humans 

only accept the aggregation of entities if the resulting mereological sum plays some 

role in their conceptual schemes. To use an example: the sum of a frame, a piece of 

electrical equipment and a bulb constitutes a whole that is considered meaningful to 

our conceptual classification system. For this reason, this sum deserves a specific 

concept in cognition and a name in human language. The same does not hold for the 

sum of bulb and the lamp’s base.  

According to Simons [14], the difference between purely formal mereological 

sums and, what he terms, integral wholes is an ontological one, which can be 

understood by comparing their existence conditions. For sums, these conditions are 

minimal: the sum exists just when the constituent parts exist. By contrast, for an 

integral whole (composed of the same parts of the corresponding sum) to exist, a 

further unifying condition among the constituent parts must be fulfilled. A unifying 

condition or relation can be used to define a closure system in the following manner. 

A set B is a closure system under the relation R, or simply, R-closure system iff   

cs 〈〈〈〈R〉〉〉〉 B =def  (cl 〈〈〈〈R〉〉〉〉 B)  ∧∧∧∧ (con 〈〈〈〈R〉〉〉〉 B) (5) 

where (cl 〈〈〈〈R〉〉〉〉 B) means that the set B is closed under R (R-Closed) and (con 〈〈〈〈R〉〉〉〉 B) 

means that the set B is connected under R (R-Connected). R-Closed and R-Connected 

are then defined as: 

cl 〈〈〈〈R〉〉〉〉 B =def ∀∀∀∀x ((x∈∈∈∈B) →→→→ ((∀∀∀∀y R(x,y) ∨∨∨∨ R(y,x) →→→→ (y∈∈∈∈B))) (6) 

con 〈〈〈〈R〉〉〉〉 B =def ∀∀∀∀x ((x∈∈∈∈B) →→→→ (∀∀∀∀y (y∈∈∈∈B) →→→→ (R(x,y) ∨∨∨∨ R(y,x))) (7) 

 

An integral whole is then defined as an object whose parts form a closure system 

induced by what Simons terms a unifying (or characterizing) relation  R.  



3 What are Collectives? 

According to WCH, the main distinction between collectives and quantities is that the 

latter but not the former are said to be homeomeros wholes [8]. In simple terms, 

homeorosity means that the entity at hand is composed solely of parts of the same 

type (homo=same, mereos = part). The fact that quantities are homeomeros (e.g., all 

subportions of wine are still wine) causes a problem for their representation (and the 

representation of relationships involving them) in conceptual modeling. In order to 

illustrate this idea, we use the example depicted in figure 2.a below. In this model, the 

idea is to represent that a certain portion of wine is composed of all subportions of 

wine belonging to a certain vintage, and that a wine tank can store several portions of 

wine (perhaps an assemblage of different vintages). However, since Wine is 

homeomeros and infinitely divisable in subportions of the same type, if we have that a 

Wine portion x has as part a subportion y then it also has as part all the subparts of y 

[17]. Likewise, a wine tank storing two different “portions of wine” actually stores all 

the subparts of these two portions, i.e., it actually stores infinite portions of wine. In 

other words, maximum cardinality relations involving quantities cannot be specified 

in a finite manner. As discussed, for instance in [20], finite satisfiability is a 

fundamental requirement for conceptual models which are intended to be used in 

information systems. This feature of quantities, thus, requires a special treatment so 

that they can be property modeled in structural conceptual models. A treatment that 

does not take quantities to be mere aggregations (mereological sums) of subportions 

of the same kind but integral wholes unified by a characterizing relation of 

topological maximal self-connectedness [17].  

 

  

Figure 2 Representations of a Quantity (a-left) and a Collective (b-right) with their respective parts in 

UML conceptual Models. 

As correctly defined by WCH, collectives are not homeomeros. They are composed 

of subparts parts that are not of the same kind (e.g., a tree is not forest). Moreover, 

they are also not infinitely divisible. As a consequence, a representation of a 

collection as a simple aggregation of entities (analogous to an enumerated set of 

entities) does not lead to the same complications as for the case of quantities. Take, 

for instance, the example depicted in figure 2.b, which represents a situation 

analogous to the one of figure 2.a. Different from the former case, there is no longer 

the danger of an infinite regress or the impossibility of specifying finite cardinality 

constraints. In figure 2.b, the usual maximum cardinality of “many” can be used to 

express that a group of visitors has as parts possibly many other groups of visitors and 

that a guide is responsible for possibly many groups of visitors.  

Nonetheless, in many examples (such as this one), this model of figure 2.b implies 

a somewhat counterintuitive reading. In general, the intended idea is to express that, 

for instance, John as a guide, is responsible for the group formed by {Paul, Marc, 

Group of Visitors Guide
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Lisa} and for the other group formed by {Richard, Tom}. The intention is not to 

express that John is responsible for the groups {Paul, Marc, Lisa}, {Paul, Marc}, 

{Marc, Lisa}, {Paul, Lisa}, and {Richard, Tom}, i.e., that being responsible for the 

group {Paul, Marc, Lisa}, John should be responsible for all its subgroups. A simple 

solution to this problem is to consider groups of visitors as maximal sums, i.e., groups 

that are not parts of any other groups. In this case, depicted in figure 3, the cardinality 

constraints acquire a different meaning and it is no longer possible to say that a group 

of visitors is composed of other groups of visitors in this technical sense.  

 

Figure 3. Representation of Collections as Maximal Sums 

The solution above is similar to taking the meaning of a quantity K to be that of a 

maximally-self-connected-portion of K [17]. However, in the case of collections, 

topological connection cannot be used as a unifying or characterizing relation to form 

an integral whole, since collections can easily be spatially scattered. Nonetheless, 

another type of connection (e.g., social) should always be found. A question begging 

issue at this point is: why does it seem to be conceptually relevant to find unifying 

relations leading to (maximal) collections? As discussed in the previous section, 

collections taken as arbitrary sums of entities make little cognitive sense: we are not 

interested in the sum of a light bulb, the North Sea, the number 3 and Aida’s second 

act. Instead, we are interested in aggregations of individuals that have a purpose for 

some cognitive task. So, we require all collectives in our system to form closure 

systems unified under a proper characterizing relation. For example, a group of 

visitors of interest can be composed by all those people that are attending a certain 

museum exhibition at a certain time. Now, by definition, a closure system is maximal 

(see formula (5)), thus, there can be no group of visitors in this same sense that is part 

of another group of visitors (i.e., another integral whole unified by the same relation).  

Nonetheless, it can be the case that, among the parts of a group of visitors, further 

structure is obtained by the presence of other collections unified by different relations. 

For example, it can be the case that among the parts of a group of visitors A, there are 

collections B and C composed of the English and Dutch speaking people in that 

group, respectively. Now, neither the English speaking segment nor the Dutch 

speaking segment are groups of visitors in the technical sense just defined, since the 

latter has properties lacking in both of them (e.g., the property of having both English 

and Dutch segments). Moreover, the unifying relations of B and C are both 

specializations of A’s unifying relation. For example, A is the collection of all parties 

attending an exhibition and the B is the collection of all English speakers among the 

parties attending that same exhibition. We return to this point in section 4.2. 

By not being homeomeros and infinitely divisible, collectives actually bear a 

stronger similarity to functional complexes than to quantities in the classifications of 

[10,11]. In [11], for instance, the authors propose that the difference between a 

collective and a functional complex is that whilst the former has a uniform structure, 

the latter has a heterogeneous and complex one. We propose to rephrase this 

Group of Visitors Guide
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statement in other terms. In a collective, all member parts play the same role type 

w.r.t. the whole. For example, all trees in a forest can be said to play the role of a 

forest member. In complexes, conversely, a variety of roles can be played by different 

components. For example, if all ships of a fleet are conceptualized as playing solely 

the role of “member of a fleet” then it can be said to be a collection of ships. 

Contrariwise, if this role is further specialized in “leading ship”, “defense ship”, 

“storage ship” and so forth, the fleet must be conceived as a functional complex.  

Finally, we would like to call attention to the fact that collectives are not sets and, 

thus, the member-collective and the subcollective-collective relations are not the same 

as the membership (∈) and subset (⊂) relations, respectively. Firstly, collectives and 

sets belong to different ontological categories: the former are concrete entities that 

have spatiotemporal features; the latter, in contrast, are abstract entities that are 

outside space and time and that bear no causal relation to concrete entities [1]. 

Secondly, unlike sets, collectives do not necessarily obey an extensional principle of 

identity, i.e., it is not the case that a collective is always completely defined by the 

sum of its members. We take that some collectives can be considered extensional by 

certain conceptualizations; however, we also acknowledge the existence of intentional 

collectives obeying non-extensional principles of identity [21]. Thirdly, collectives are 

integral wholes unified by proper characterizing relations; sets can be simply 

postulated by enumerating their members. This feature of the latter is named 

ontological extravagance and it is a feature to be ruled out from any ontological 

system [19]. Finally, contrary to sets, we do not admit the existence of empty or 

unitary collectives. As a consequence, we eliminate a feature of set theory named 

ontological exuberance [19]. Ontological exuberance refers to the feature of some 

formal systems that allows for the creation of a multitude of entities without 

differentiation in content. For instance, in set theory, the elements a, {a}, {{a}}, 

{{{a}}}, {…{{{a}}}…} are all considered to be distinct entities. We shall return to 

some of these points in the next section. 

4 Parthood Relations involving Collectives  

4.1 The Member-Collection Relation 

According to [22], classical semantic analysis of plurals and groups distinguish 

between atomic entities, which can be singular or collectives, and plural entities. 

From a linguistic point of view, the member-collection relation is considered to be 

one that holds between an atomic entity (e.g., John, the deck of cards) and either a 

plural (e.g., {John, Marcus}) or a collective term (e.g., the children of Joseph, the 

collection of ancient decks).  

Before we can continue, a formal qualification of this notion of atomicity is 

needed. Suppose an integral whole W unified under a relation R. By using this 

unifying (or characterizing) relation R, we can then define a composition relation <R  

such that (x <R W) iff: (i) there is a set B such that cs 〈〈〈〈R〉〉〉〉 B; (iii) (x < W) and (x ∈ B). 

Intuitively, this relation captures the idea that there is indeed a genuine connection 



between a part x and the whole W (as opposed to a merely formal one). Now, one 

important thing to highlight is that if (x <R W) then there is no y such (y <R x). In other 

words, the closure set defined by relation R are the R-atoms of W. This is because, the 

whole W unified under R is maximal under this relation (by the definition of an R-

closure system). The fact that no R-part of W can be unified under the same relation R 

of course does not imply that these R-parts need to be atomic in an absolute sense. In 

fact, given an element x such that (x <R W), x itself can be an integral wholes unified 

by a different relation R’. However, it should be clear by now that the sets of R’-

atoms of x and the set of R-atoms of W (of which x is a member) are disjoint.    

An example of a relation that takes place between an atom under relation R and an 

integral whole unified under that relation is the member-collective relation 

(symbolized as M(part,whole)). Following the above discussion, we have that these 

relations are never transitive, i.e., they are intransitive. Thus, if M(x,W) then x is 

atomic for W, and if we have M(y,x), we also have necessarily that ¬M(y,W). In 

other words, for the case of the member-collective relation, to say that a member must 

be a singular entity coincides with this entity being an atom in the sense just 

discussed, i.e., an atom w.r.t. to a characterizing relation unifying that specific whole. 

The following example illustrates the intransitivity of the member-collection 

relation: “I am member of a club C (collective) and my club is a member of an 

International Association of clubs C’ (collective). However, it does not follow that I 

am a member of this International Association of Clubs C’ since this only has clubs 

as members, not individuals”. However, an even more general statement about the 

intransitivity of this relation can be made. Since members of a collective are 

considered to be atomic w.r.t. the context in which the collective is defined, if an 

individual x is a part of (member of) a collection y, then for every z which is part of 

(member of, functional part of, sub-collection of) x, then z is not a part of (member 

of) y. In other words, the member-collective relation causes the part to necessarily be 

seen as atomic in the context of the whole, hence, “blocking” a possible transitive 

chain of part-whole relations. Thus, for instance, although an individual John can be 

part of (member of) a Club, none of John’s parts (e.g., his heart) is part of that Club. 

Regarding the weak supplementation axiom, some authors claim that this axiom is 

too hard a constraint to be imposed to the member-collective relation [4]. From a 

formal point of view, this view implies that we accept reflexive characterizing 

relations for collectives as integral wholes. Such an approach seems at first to be 

somehow afforded by common sense. For instance, we can conceive a book of poems 

composed of a single poem, a CD composed of a single track, a purchase order 

composed of single order item, or a journal issue composed by a single article. Now, 

are there disadvantages to such an approach? We can foresee two of them.  

Firstly, abandoning weak supplementation would set this relation apart from all 

the other parthood relations that we have considered, since this axiom (considered to 

be constitutive of the very meaning of part) is assumed by the relations of component-

functional complex [16], subquantity-quantity [17], and subcollective-collective 

(section 4.2). Secondly, this choice opens the possibility for the creation of collectives 

with one single member. But what then would be the difference between John, 

{John}, {{John}}, {…{{John}}…}, etc? If entities such as these are generally 



adopted, then our system can face the objection of ontological extravagance, and we 

should be reminded that avoiding this feature was one of the motivations of 

mereology in the first place [19]. Given these two reasons, we adopt in this paper the 

view that weak supplementation should be part of the axiomatization of the member-

collective relation. This obviously does not imply that we cannot have single-track 

CD’s or single-article journal issues. Following [1], in these cases, we consider the 

relation between, for instance, the tracks and the CDs to be a relation of constitution 

as opposed to one of parthood. Relations of constitution abound in ontology. An 

example is the relation between a marble statue and the (single portion of marble) that 

constitutes it [1]. In fact, a more detailed analysis of WCH initial proposal showed 

that some of their original meronymic relations are in fact cases of constitution [1,11].      

Finally, let us take the case of the secondary (modal) property of essentiality. As 

we have previously discussed, unlike sets and mereological sums, collectives do not 

necessarily have an extensional criterion of identity. That is, whereas for some 

collectives the addition or subtraction of a member renders a different individual, it is 

not the case that this holds for all of them. However, when this is the case, all 

member-collective relations that the extensional collective participates as a whole are 

relations of essential parthood. This is because, since a collective (by definition) has a 

uniform structure, then all members of a collective must be indistinguishable w.r.t. the 

whole. As a consequence, it cannot be the case that some members of a collection are 

essential while others are not. In summary, member-collective relations are only 

relations of essential parthood if the collective in the association end connected to the 

whole is an extensional individual. In the converse reading, if a collective is 

extensional then all its parts (members) are essential. 

4.2 The Subcollective-Collective Relation 

In contrast with the member-collective relation, from a linguistic point of view, the 

subcollective-collective is a relation that holds between two plural entities, or 

collectives constituted by such plural entities, such that all atoms of the first are also 

atoms of the second [22].  

Let us start with an example. Figure 4 depicts an integral whole termed the DSRG 

(Distributed Systems Research Group) unified by the relation of carrying out 

research in the area of distributed systems at University X (UtX). The R-atoms of 

DSRG are them {John, Mary, Peter, Mark}. The fact that no R-part of W can be 

unified under the same relation R also does not imply that these R-parts cannot be 

further structured to form new wholes. In other words, for example, we can take two 

different relations R’and R’’ which are specializations of R, such that they can be 

used to form new closure systems among the R-parts of DSRG. Let R’ be the relation 

of carrying out research in the same sub-area of modeling of distributed systems at 

UtX, and R’ be the relation of carrying out research in the same sub-area of 

performance of distributed systems at UtX. This situation is depicted in figure 5. 

Indeed, the fact that R’ is a specialization of the condition R implies that the 

possible relata of R’ are the R-atoms of R, i.e., R’⊆ R. When this is the case, we name 

the integral whole W’ unified under R’ a subcollective of the whole W unified under 



R. Let us name the relation between W’ and W the relation of subcollective-collective, 

symbolized as C(W’,W). We then have that C(W’,W) iff: (i) all formal parts of W’ 

are formal parts of W; (ii) the characterizing relation R’ of W’ is a specialization of 

the characterizing relation R of W.  Now, suppose an integral whole W’’ unified by 

relation R’’ and C(W’’,W’). By the above definition of the C-parthood relation, we 

have that R’’⊆ R’, and that all parts of W’’ are also parts of W’. Due to the 

transitivity of both formal parthood (<) and the subset relation (⊆), we have that R’’⊆ 

R, and also that all formal parts of W’’ are also formal parts of W. Again, by 

definition, we conclude that C(W’’,W) holds. In other words, the subcollective-

collective relation is always transitive. 

 

Figure 4. Examples of an integral whole (collective) and its members 

 

Figure 5. Examples of a collective and its subcollectives 

A second property we would like to demonstrate is the following. Suppose we have 

that M(y,x) and C(x,W), and that R’ and R are the characterizing relations of x and 

W, respectively. Since M(y,x), we have both that (y < x) and that y is an R’-atom of 

x. From C(x,W), we have that all formal parts of x are formal parts of W, but also that 

R’⊆ R. Again, due to the transitivity of both < and ⊆, we have both that (y < W) and 

that y is a R-atom of W. From this, we conclude that M(y,W). In other words, 

transitivity always holds across a member-collective relation combined with a 

subcollective-collective relation.  

Now, how does the subcollective-collective relation stand w.r.t. weak 

supplementation? Suppose that we have two collectives x and y such that C(y,x). As 

we have previously discussed, x is closure system unified by relation R, and y must be 

a closure system unified by a specialization of this condition R’. Since the 

subcollective-collective relation is irreflexive, we have that R’ is necessarily a proper 

subset of R, i.e., there are R-atoms of x which are not R’-atoms of y. This, at first, 

seems to imply that we can always have an integral whole z which is unified by 

another specialization R’’ of R (the complement of R w.r.t. R’). However, the fact 

that there are members of x which are not part of y does not mean that these members 

can define a genuine integral whole. In other words, it can be the case that the only 
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relation in common between these entities is that they obey the condition implied by 

R and the negation the condition implied by R’. As discussed in [1,5], characterizing 

entities based on negative properties is a poor ontological choice. For this reason, if 

we have that C(y,x) we do not require that there is a z different from y such that 

C(z,x), but we do require that there is a z such that ¬overlap(z,y) and M(z,x). 

In the previous sections, we have discussed that collectives are not necessarily 

extensional and that, if a member of a collective is essential to the collective, then the 

collective is an extensional entity, i.e., all its members are essential. How do 

subcollectives stand w.r.t. to this secondary property? Suppose that we have a 

collective W composed of the subcollective W’ and W’’ such that the former is an 

essential part of W but not the latter. Now, as we have discussed, the structure of 

collectives is defined via specialization of the collective’s unifying relation, i.e., the 

members of W’ and W’’ are also members of W. This implies that all subcollectives 

of W are inseparable parts of it, i.e., W’ and W’’ come to existence by refining the 

structure of W and by grouping the specific members of W. As a consequence, they 

cannot exist without that whole. A second observation we can make is that if there is 

an x which is a member of W’, and x is an essential member of W then x must also be 

an essential member of W’. The argument can be made as follows. If x is an essential 

part of W then W cannot exist without x; If W’ is an inseparable part of W then W’ 

cannot exist without W; due to the transitivity of existential dependence [14], we have 

that W’ cannot exist without x, ergo, x is an essential part of W’. Finally, since we are 

admitting that collectives are not necessarily extensional entities, it is conceivable that 

a whole W has an essential part W’ composed of members which are not essential for 

either W or W’. For instance, suppose that by law, all juries must have at least two 

members which are older than sixty years old. Although this subcollective would be 

essential to the whole, it is conceivable that its individual members are exchangeable. 

By the same reasoning, one could admit a particular subcollective to be essential to a 

whole, without requiring the other collectives of that whole to be likewise essential.            

4.3 Towards a UML Profile for Modeling Collectives and their Parts 

We summarize the results of these sections in a proposal that has been incorporated in 

a UML profile for representing the member-collective and the subcollective-collective 

relations (table 1). Since a profile is constituted by syntactical constraints and, since 

UML conceptual models are always defined at the type level, the meta-properties of 

irreflexivity, anti-symmetry and transitivity (at instance level) cannot be captured by 

profile constraints. We have included a constraint to guarantee weak supplementation 

for these relations taking into consideration the type-level nature of a UML class 

diagram, i.e., taking into consideration the minimum cardinality constraints of all 

parthood relations connected to the same type representing a whole.  

Metaclass Description 

 

A «collective» represents a type whose instances are collectives, i.e., they 

are collections of entities that have a uniform structure. Examples include a 

deck of cards, a forest, a group of visitors, a pile of bricks. 

«collective»

A



subcollective-

collective 

This parthood relation holds between two collectives. Examples include: (a) 

the north part of the Black Forest is part of the Black Forest; (b) The 

collection of Jokers in a deck of cards is part of that deck; (c) the collection 

of forks in a cutlery set is part of that cutlery set. We use the symbols 

 and  to represent the shareable and non-

shareable (see http://www.uml.org/) versions of this relation, respectively. 

member-

collective 

This is a parthood relation between a functional complex or a collective (as a 

part) and a collective (as a whole). Examples include: (a) a tree is part of 

forest; (b) a card is part of a deck of cards; (c) a club member is part of a 

club. We use the symbols  and to represent the 

shareable and non-shareable versions of this relation, respectively. 

 General Constraints 

1. Weak Supplementation: Let T be a type whose instances are wholes and let {T1…T2} 

be a set of types related to T via the subcollective-collective or member-collective 

relations. Let lowerCi be the value of the minimum cardinality constraint of the 

association end connected to Ci in the aggregation relation. Then, we have that  

(∑
=

n

i 1

lowerCi) ≥ 2; 

 Constraints applied to the subcollective-collective relation 

1. This relation only holds between collectives, i.e., they must be either stereotyped as 

«collective» or be a subtype of a type stereotyped as «collective»; 

2. Collectives are maximal entities. For this reason, it is not the case that a collective can 

have as a part another collective of the same type (i.e., unified by the same relation). As a 

consequence, these relations are irreflexive at the type level. In UML terms, the two 

association ends of this relation must be connected to classes of different types (albeit 

both stereotyped as «collective»);  

3. Also because collectives are maximal entities, a collective can have at maximum one 

subcollective of a given type.  For this reason, the maximum cardinality constraint in the 

association end connected to the part in this relation must be one (in UML terms, 

self.target.upper = 1); 

4. All subcollective-collective relations are relations of inseparable parthood. These 

relations are marked with a tagged value {insperable} and the association end connected 

to the whole must be immutable (in UML terms, self.source.readOnly = true); 

5. This relation conforms to the axiomatization of Minimum Mereology (MM), i.e., it is an 

Irreflexive, Asymmetric and Transitivity relation which obeys the Weak Supplementation 

axiom. Moreover, if a collective W has one single direct subcollective W’, then it must 

have members which are disjoint from W’; 

 Constraints applied to the member-collective relation 

1. This relation can only represent essential parthood if the object representing the whole on 

this relation is an extensional individual. In this case, all parthood relations in which this 

individual participates as a whole are essential parthood relations. These relations are 

marked with tagged value {essential} and the association end connected to the part must 

be immutable (in UML terms, self.target.readOnly = true); 

2. The class connected to association end relative to the whole individual must be a type 

whose instances are collectives, i.e., they must be either stereotyped as «collective» or be 

C C

M M



a subtype of a type stereotyped as «collective»; 

3. This is an Irreflexive and Asymmetric relation which obeys the Weak Supplementation 

axiom. However, it is also an Intransitive relation. Although transitivity does not hold 

across two member-collective relations, a member-collective relation followed by 

subcollective-collective relation  is transitive. That is, for all a,b,c, if M(a,b) and M(b,c) 

then ¬M(a,c), but  if M(a,b) and C(b,c) then M(a,c). 

4. Asides from being intransitive, a member x of a collective W is atomic w.r.t. the 

collective. This means that for if an entity y is part of x then y is not a member of W. 

For the sake of illustration, we revisit in figures 6.a and 6.b two of the examples 

discussed in this paper, explicitly representing them with the modeling primitives 

proposed in table 1. As one can observe, we decorate the standard UML symbol for 

aggregation with a C and an M to represent a subcollective-collective and member-

collective relations, respectively. 

 

 

 

Figure 6. Examples of subcollective-collective and member-collective part-whole relations 

5 Final Considerations 

The development of suitable foundational theories is an important step towards the 

definition of precise real-world semantics and sound methodological principles for 

conceptual modeling languages. This article concludes a sequence of papers that aim 

at addressing the three fundamental types of wholes prescribed by theories in 

linguistics and cognitive sciences, namely, functional complexes, quantities, and 

collectives. The first of these roughly correspond to our common sense notion of 

object and, hence, the standard interpretation of objects (or entities) in the conceptual 

modeling literature is one of functional complexes. The latter two categories, in 

contrast, have traditionally been neglected both in conceptual modeling as well as in 

the ontological analyzes of conceptual modeling grammars.    

In this paper, we conduct one such ontological analysis to investigate the proper 

representation of types whose instances are collectives, as well as the representation 

of parthood relations involving them. As result, we were able to provide a sound 

ontological interpretation for these notions, as well as modeling guidelines for their 

proper representation in conceptual modeling. In addition, we have managed to 

provide a precise qualification for the relations of member-collective and 

subcollective-collective w.r.t. to both classical mereological properties (e.g., 

transitivity, weak supplementation, extensionality) as well as modal secondary 
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properties that differentiate essential and inseparable parts. Finally, the results 

advanced here contribute to the definition of concrete engineering tools for the 

practice of conceptual modeling. In particular, the metamodel extensions and 

associated constraints outlined here have been implemented in a Model-Driven Editor 

using available UML metamodeling tools [23].  
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