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Abstract. Parthood is a relation of fundamental importance in a number of dis-

ciplines including cognitive science, linguistics and conceptual modeling. How-

ever, one classical problem for conceptual modeling theories of parthood is de-

ciding on the transitivity of these relations. This issue is of great importance 

since transitivity plays a fundamental role both conceptually (e.g., to afford in-

ferences in problem-solving) and computationally (e.g., to afford propagations 

of properties and events in a transitive chain). In this article we address this 

problem by presenting a solution to the case of part-whole relations between 

functional complexes, which are the most common types of entities represented 

in conceptual models. This solution comes in two parts. Firstly, we present a 

formal theory founded on results from formal ontology and linguistics. Second-

ly, we use this theory to provide a number of visual patterns that can be used to 

isolate scopes of transitivity in part-whole relations represented in diagrams. 

1  Introduction  

Parthood is a relation of fundamental importance from the cognitive and linguistic 

perspectives [1,2]. In conceptual modeling, part-whole relations have also been consi-

dered of substantial significance. It is present in practically all conceptual/object-

oriented modeling languages (e.g., OML, UML, EER) and, although it has not yet 

been adopted as a modeling primitive in the semantic web languages, many authors 

have already pointed out its relevance for reasoning in description logics (e.g., [3]).  

Theories of parts have been a central point of interest in philosophical enquiry 

since the pre-socratic philosophers and along the years many precise formal theories 

have been developed (e.g., General Extensional Mereology, Calculus of Individuals) 

[4]. These formal theories provide an important starting point for the understanding 

and axiomatization of the notion of Part. Nonetheless, despite their importance, there 

are many controversial properties that they ascribed to the part-whole relation that 

cannot be accepted by cognitive and conceptual theories of parthood [2,4,5]. One of 

these controversial properties is the unrestricted transitivity of parthood.  

In philosophical ontology, all mereological theories include transitivity as an 

axiom for the formal part-whole relation. Also in many conceptual modeling languag-

es, the part-whole relations are considered to be transitive (e.g., composition relation 

in UML). However, there are many counter-examples in the literature of part-whole 



relations in which transitivity is not warranted by language or cognition. For instance: 

(i) Rio de Janeiro is part of Brazil and Brazil is part of the United Nations (UN), it is 

not the case that Rio de Janeiro is part of the UN; (ii) the heart is part of the musician, 

the musician is part of the orchestra, but the heart is not part of the orchestra [2,4]. 

In [4], we revised the classical typology of parthood relations proposed in [1]. As 

demonstrated there, the six linguistically-motivated types of part-whole relation pro-

posed by [1] give rise to only four distinct ontological types, namely: (a) subquantity-

quantify (e.g., alcohol-wine) – modeling parts of an amount of matter which are uni-

fied in a whole due to a topological connection relation; (b) member-collective (e.g., a 

specific tree – the black forest) – modeling a collective entity in which all parts play 

an equal role w.r.t. the whole; (c) subcollective-collective (e.g., the north part of the 

black forest- the black forest); (d) component – functional complex (e.g., heart-

circulatory system, engine – car) - modeling an entity in which all parts play a differ-

ent role w.r.t. the whole, thus, contributing to the functionality of the latter. Moreover, 

in [4], we have demonstrated that there is a strong connection between the issue of 

transitivity of parthood and the type of the relation being considered. For instance, it 

can be formally proved that subquantity-quantify and subcollective-collective are al-

ways transitive. Moreover, although member-collective is never transitive, a combina-

tion of member-collective and subcollective-collective is again always transitive.  

Despite their relevance, these results do not suffice as a general solution for the 

problem of transitivity in conceptual modeling, since most of the entities which are 

represented in conceptual models are actually functional complexes (e.g., Persons, 

Cars, Computers, Cells, Organs, Organizations, Organizational Units). Parthood rela-

tions between functional complexes are neither transitive nor intransitive, but non-

transitive, i.e., transitive in certain occasions and intransitive in others [6]. For this 

reason, the current attempts to provide real-world semantics for part-whole relations 

in the conceptual modeling literature simply exclude transitivity from the list of pri-

mary properties of part-whole relations [7]. This solution is, again, non-satisfactory. 

From both a conceptual and computational point of view, there are many benefits 

from explicitly reasoning with the transitivity of parthood. Examples include propaga-

tion of properties and events along the transitive chain of parts (e.g., spatial change, 

rotation, creation, destruction) and diagnostic reasoning with transitive parts in bio-

medical conceptual models.  For this reason it is fundamental to understand why tran-

sitivity holds in some cases and not in others, and to determine the contexts in which  

part-whole relations are guaranteed to be transitive. 

The contributions of this article are two-fold. Firstly, we build on a formal ontolog-

ical analysis of relations [8] and on the pioneering theory of transitivity of linguistic  

functional parthood relations [2] to propose a formal theory and typology of part-

whole relations between functional complexes. Secondly, we employ this theory to  

propose a number of visual patterns that  can be  used  as  a  methodological  support 

for the  identification of  contexts of  transitivity for this mostly common type of part-

whole relations in conceptual modeling. 

The remainder of this article is organized as follows. Section 2 briefly discusses an 

ontological analysis of relations based on a Foundational Ontology. Section 3 em-

ploys this analysis to interpret the specific case of part-whole relations in functional 

complexes. Section 4 uses the results of section 3 to propose a typology of functional 



part-whole relations and a number of visual patterns for isolating the context of transi-

tivity in conceptual models. Finally, section 5 elaborates on some final consideration.      

2  Background: An Ontological Analysis of Relations 

In [8], we have presented an in depth analysis of domain relations from an ontological 

point of view. In particular, we have employed the Unified Foundational Ontology 

(UFO), a formal framework which has been constructed by considering a number of 

theories from formal ontology in philosophy, but also cognitive science, linguistics 

and philosophical logics. In a number of papers, UFO has been successfully employed 

to analyze and provide real-world semantics for conceptual modeling grammars and 

specifications. Here, we make a very brief presentation of this foundational ontology 

and concentrate only on the categories which are germane to the purposes of this 

article. For an in depth discussion on the categories of UFO, empirical evidence for 

the choice of its categories as well as formal categorization, one should see [4]. 

A fundamental distinction in this ontology is between the categories of Objects 

and Tropes. Objects are existentially independent entities. Examples include ordinary 

objects of everyday experience such as an individual person, an organization, an or-

gan, a car, and The Rolling Stones1. The word Trope, in contrast, denotes, what is 

sometimes named an individualized (objectified) property, a moment, an accident, or 

property in particular. A trope is an individual that can only exist in other individuals. 

Typical examples of tropes are a color, a connection, an electric charge, a symptom, a 

covalent bond. Tropes have in common that they are all dependent of other individu-

als (their bearers), i.e., an important feature that characterizes all tropes is that they 

can only exist in other individuals (in the way in which, for example, electrical charge 

can exist only in some conductor, or that a covalent bond can only exist if those con-

necting atoms exist). To put it more technically, we say that they inhere on other indi-

viduals. Inherence (symbolized as i) is a formal relation that has the following meta-

properties: (a) irreflexivity; (b) asymmetry; (c) intransitivity; (d) exclusive existential 

dependence, i.e., if x inheres in y then x cannot exist in a given situation without that 

very specific y existing in that same situation (existential dependence) and there is no 

z different from y such that x inheres in z. Finally, existential dependence can also be 

used to differentiate intrinsic tropes and Relators (relational tropes): intrinsic tropes 

are dependent of one single individual (e.g., color, a headache, a temperature); rela-

tors depend on a plurality of individuals (e.g., an employment, a marriage).  

Another important distinction in the UFO ontology is within the categories of rela-

tions. Following the philosophical literature, it recognizes two broad categories of re-

lations, namely, material and formal relations [8]. Formal relations hold between two 

or more entities directly, without any further intervening individual. Examples include 

the relations of existential dependence (ed), Subtype, instantiation (::), formal part-

hood (<), inherence (i), among many others not discussed here [4]. Domain relations 

such as working at, being enrolled at, and being the husband of are of a completely 

different nature. These relations, exemplifying the category of Material relations, 

                                                           
1According to this definition, the category of objects can include quantities, collectives and 

functional complexes. However, all objects we consider in this article are examples of func-

tional complexes. 



have material structure of their own. Whilst a formal relation such as the one between 

Paul and his headache x holds directly and as soon as Paul and x exist, for a material 

relation of being treated in between Paul and the medical unit MU1 to exist, another 

entity must exist which mediates Paul and MU1. These entities are termed relators.  

Relators are individuals with the power of connecting entities. For example, a 

medical treatment connects a patient with a medical unit; an enrollment connects a 

student with an educational institution; a covalent bond connects two atoms. The 

notion of relator is supported by several works in the philosophical literature [9] and, 

they play an important role in answering questions of the sort: what does it mean to 

say that John is married to Mary? Why is it true to say that Bill works for Company X 

but not for Company Y? Again, relators are special types of tropes which, therefore, 

are existential dependent entities. The relation of mediation (symbolized m) between a 

relator r and the entities r connects is a sort of (non-exclusive) inherence and, hence, a 

special type of existential dependence relation. It is formally required that a relator 

mediates at least two distinct individuals [4].   

An important notion for the characterization of relators (and, hence, for the charac-

terization of material relations) is the notion of foundation. Foundation can be seen as 

a type of historical dependence [10], in the way that, for instance, an instance of be-

ing kissed is founded on an individual kiss, or an instance of being punched by is 

founded on an individual punch, an instance of being connected to between airports is 

founded on a particular flight connection. Suppose that John is married to Mary. In 

this case, we can assume that there is an individual relator m1 of type marriage that 

mediates John and Mary. The foundation of this relator can be, for instance, a wed-

ding event or the signing of a social contract between the involved parties. In other 

words, for instance, a certain event e1 in which John and Mary participate can create 

an individual marriage m1 which existentially depends on John and Mary and which 

mediates them. The event e1 in this case is the foundation of relator m1.     

Now, let us elaborate on the nature of the relator m1. There are many intrinsic 

tropes that John acquires by virtue of being married to Mary. For example, imagine 

all the legal responsibilities that John has in the context of this relation. These newly 

acquired properties are intrinsic tropes of John which, therefore, are existentially de-

pendent on him. However, these tropes also depend on the existence of Mary. We 

name this type of trope externally dependent tropes, i.e., externally dependent tropes 

are intrinsic tropes that inhere in a single individual but are existentially dependent on 

(possibly multiple) other individuals. The individual which is the aggregation of all 

externally dependent tropes that John acquires by virtue of being married to Mary is 

named a qua individual (in this case, John-qua-husband-of-Mary). A qua individual 

is, thus, defined as an individual composed of all externally dependent tropes that in-

here in the same individual and share the same foundation. In the same manner, by 

virtue of being married to John, Mary bears an individual Mary-qua-wife-of-John. 

The notion of qua individuals is the ontological counterpart of what has been 

named role instance in the literature [11] and represent the properties that characterize 

a particular mode of participation of an individual in a relation. Now, the entity which 

is the sum of all qua individuals that share the same foundation is a relator. In this ex-

ample, the relator m1 which is the aggregation of all properties that John and Mary ac-

quire by virtue of being married to each other is an instance of the relational property 

marriage.  



The relator m1 in this case is said to be the truthmaker of propositions such as 

“John is married to Mary”, “Mary is married to John”, “John is the husband of Mary”, 

and “Mary is the wife of John”. In other words, material relations such as being mar-

ried to, being legally bound to, being the husband of can be said to hold for the indi-

viduals John and Mary because and only because there is an individual relator mar-

riage m1 mediating the two. Thus, as demonstrated in [8], material relations are purely 

linguistic/logical constructions which are founded on and can be completely derived 

from the existence of relators. In fact, in [8], we have defined a formal relation of de-

rivation (symbolized as der) between a relator type (e.g., Marriage) and each material 

relation which is derived from it.   

Finally, there is an intimate connection between qua individuals and role types: let 

T be a natural type (kind) instantiated by an individual x, and let R be a role type spe-

cializing T. We have that there is a qua individual type Q such that x instantiates R iff 

x bears an instance of Q. Alternatively, we have that for every role type R there is a 

relator type RR such that x instantiates R iff x is mediated by an instance of RR. Note 

that this conforms to the formal property of roles as relationally dependent types [12]. 

The summary of the discussion promoted in this section is illustrated in figures 1a-

c. Figure 1.a, illustrates the inherence relation between John and his externally depen-

dent tropes which are existentially dependent on Mary (as well as analogous relations 

in the converse direction). In figure 1.b, John instantiates the role type Husband 

(which is a specialization of the natural type (Male) Person) iff there is a qua individ-

ual John-qua-husband-of-Mary which inheres in John. Moreover, this figure illu-

strates that the qua individuals John-qua-husband-of-mary and Mary-qua-wife-of-

John are mutually existentially dependent. In other words, John cannot be the Hus-

band of Mary without Mary being the wife of John [4]. Finally, figure 1.c shows that 

the material relation married to is derived from the relator type Marriage and, thus, 

tuples such as <John,Mary> and <John,Mary> are instances of this relation iff there is 

an instance of Marriage that mediates the elements of the tuple.  
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Fig.1. (a-left) Objects and their inhering externally dependent tropes. (b-center) Objects, their 

instantiating roles and their inhering qua individuals. (c) Material Relations are founded on 

relators that mediate their relata. 

Notice that the relation between the two qua individuals and the relator m1 is an ex-

ample of formal relation of parthood [8]. As previously discussed, formal parthood 

conforms to the meta-properties prescribed by mereology and, therefore, is always 

transitive. Another example of a parthood relation that conform to axioms of mere-



ology is the spatial (temporal) part-whole relation between regions of space (or time) 

[9]. One of the major points advocated in this article is that the domain part-whole re-

lations that interest us in conceptual modeling are not formal but material relations: 

the fact that Brazil is part of the United Nations or that Paul’s transplanted heart is 

part of his body demand for the existence of founding events and consequent relators.      

3. Functional Complexes and Functional Dependence 

As we previously discussed, the parts of a functional complex have in common the 

fact that they all posses a functional link with the complex. In other words, they all 

contribute to the functionality (or the behavior) of the complex. According to [2], 

parthood relations between complexes represent, aside from the mereological relation 

itself, relations of functional dependence. Take the example of figure 2. Following 

[2], we claim that this type of relationship represented between the types Heart and 

Body is what is termed Generic Functional Dependence between two types. This rela-

tionship can be defined as follows: (1) GFD(X,Y) ≡ ∀x (x::X) ∧ F(x,X) → ∃y ¬(y = 

x) ∧ (y::Y) ∧ F(y,Y). 

Heart Body

11

 
Fig.2.A parthood relation between two Functional Complex Types 

The predicate F(x,X) in formula (1) has the meaning x functions as an X. In Vieu and 

Aurnague’s theory [2], it is not necessary for an X that it functions as an X. So for 

instance, it is not the case that in every circumstance an engine functions as an engine. 

We thus can think of a type X
F
 which is a specialization of X according to the 

specialization condition expressed by the predicate F(x,X), so that every X
F
 is a X 

functioning as a X. We name the type X
F
 a functional restriction of X. Notice that X

F
 

in this case is a type which can be characterized by the qua individual qX. This qua 

individual, in turn, stands for the tropes bearing in an X’s while functioning as such, 

or the particular behaviour of an X while functioning as an X. For instance, an engine 

x can have the property of emitting a certain number of decibels or being able to 

perform certain tasks only when functioning as an engine.  

In figure 3.a, we can create specializations of the types Heart and Body to the 

types Heart
F
 (FunctioningHeart) and Body

F
(FunctioningBody). In this picture, the ar-

row with the hollow head represents subtyping. The symbols ::, i and ed represent in-

stantiation, inherence and existential dependence, respectively. Whenever a heart 

functions as such, i.e., whenever it instantiates the type FunctioningHeart, there is a 

qua individual qh that inheres in it. Mutatis Mutandis, the same goes to Body and 

FunctioningBody in this picture. As represented in this picture, the qua individuals qh 

and qb are existentially dependent on each other. In this case, ed(qh,qb) can be inter-

preted as “the heart functioning behavior existentially depends on the body function-

ing behavior”. In this model the converse also holds, i.e., that ed(qb,qh), or that “the 

body functioning behaviour existentially depends on the heart functioning behavior”. 

Additionally, according to our model, a heart functioning qh must inhere in a heart h. 

Likewise, a body functioning qb must inhere a body b. From this we have that when-



ever a heart h functions as a heart (i.e., i(qh,h)) there must exist a body functioning 

behavior qb (from ed(qh,qb)), which in turn, inheres a body b (i.e., i(qb,b)). In other 

words, whenever a heart h functions as a heart, there must be a body b functioning as 

a body. Again, from the model of figure 3.a we can derive the converse information, 

namely, that whenever a body b functions as a body, there must be a heart h function-

ing as a heart. 
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Fig.3.(a-left) Representation of Types with Generic Functional Dependence and their 

Functional Restrictions. (b) Representation of the relator instance composed of two functional 

qua individuals. 

By definition of the relational qua individuals, qh and qb in figure 3.a are externally 

dependent tropes that compose a relator r that, in turn, can be said to mediate the in-

stances of FunctioningHeart and FunctioningBody. This idea is depicted in figure 3.b. 

The symbols m and < in this picture represent the mediation relation and the formal 

proper parthood relation, respectively. 

The relator universal R of which the relator r in figure 3.b is an instance, can be 

said to derive the material relation ϕR between the universals FunctioningHeart and 

FunctioningBody. We shall define here the more general binary predicate ϕ(x,y) ≡ ∃r 

m(r,x) ∧ m(r,y). In other words, ϕ(x,y) holds iff there is a relator r which mediates 

these two individuals. More naturally, in this case, we can say that ϕ hold of x and y 

of type X and Y iff x to function as an X is depends on y functioning as a Y, and vice-

versa. Notice that the functional restriction FunctioningHeart (FunctioningBody) is 

indeed relationally dependent and, consequently, it conforms to the characterization 

of role types previously discussed: a FunctioningHeart is a Heart functioning as a 

Heart in relation to a Body functioning as a Body, and vice-versa. To put in different 

terms, these functional restrictions of natural types are sorts of Roles types. 

    The predicate ϕ to hold for instances of functional restrictions X
F
 and Y

F
 requires 

the presence of a relator r to mediate these instances. This requires that the functional 

qua individuals inhering in the mediated instances of X
F
 and Y

F 
share a genuine foun-

dation. The formula (1) of generic functional dependence between X and Y can then 

be better expressed as: (2). GFD(X,Y) ≡ ∀x (x::X) ∧ F(x,X) → ∃y (y::Y) ∧ F(y,Y) ∧ 

ϕ(x,y). Notice that, by definition, a relator must mediate at least two distinct individu-

als. As a consequence, we have that ϕ(x,y) implies ¬(y = x),  rendering this condition 

superfluous in the consequent of formula (2). 

Suppose that the universal X is a specialization of another universal A. Then not on-

ly every X is an A but whenever an X functions as such it also functions as an A [2]. 

For example, suppose that X and A are the types MechanicHeart and Heart, respec-

tively. Whenever a MechanicHeart functions as a MechanicHeart, it also functions as 

a Heart, or alternatively, whenever a MechanicHeart bears the behaviour (or proper-



ties) of a functioning MechanicHeart, then it also bears the properties of a functioning 

Heart. This is illustrated in figure 4.a. We thus have that (3).(F(x,X) ∧ Subtype(X,Y)) 

→ F(x,Y).  
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Fig.4.(a-left) Propagation of Functioning to the Supertype. (b-center) Propagation of 

Functioning to the Supertype. (c-right) Transitivity of General Functional Dependence.  

Suppose the situation depicted in figure 4.b. The universal A is generally functionally 

dependent on universal B. Thus, for every instance a of A that functions as such there 

is an instance b of B functioning as a B. Moreover, the predicate ϕ holds for a and b. 

Now, since b is also a C and, due to (3), b also functions as a C. Hence, we have that 

whenever an instance a of A functions as such there is an instance b of C that func-

tions as a C. Since ϕ(a,b), we can derive that GFD(A,C). Thus, we have that the fol-

lowing is always true: (4). GFD(X,Y) ∧ Subtype(Y,Z) → GFD(X,Z).  

Now, suppose the situation depicted in figure 4.c. In this model, every instance a of 

A functioning as an A bears a particular qa behaviour. The qua individual qa is 

existentially dependent on the qua individual qb, i.e., on the behaviour of a b 

functioning as a B. However, this model also represents that if b functions as a B 

(bears qb) there is a c functioning as a C, i.e., bearing a C behavior qc. Due to 

transitivity of existential dependence [4], we have that qa is existential dependent also 

on qc. Additionally, qa and qb share the same foundation and so do qb and qc. Thus, qa 

and qc also must share the same foundation. In other words, whatever is responsible 

for creating qa and qb must also be responsible for creating qc. By definition, a relator 

is an aggregation of qua individuals that share the same foundation. We can then 

define a relator r which consists of qa, qband qc. Consequently, we have that ϕ(a,b), 

ϕ(b,c) and ϕ(a,c). Now, we have that for every instance a of A functioning as an A, 

there is an instance of c functioning as a C. Since ϕ(a,c), we then have that 

GFD(A,C). This argument shows that the following is always true: (5). GFD(X,Y) ∧ 

GFD(Y,Z) → GFD(X,Z). 

Although formula (2) defines the notion of general dependence, we need in 

addition to establish that a functional dependence link holds precisely between two 

individual entities x and y: (6). IFD(x,X,y,Y) ≡ GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) 

→ F(y,Y)). This predicate termed individual functional dependence states that if an 

individual x::X is individually functionally dependent of another individual y::Y in a 

given situation then: (i) there is a generic functional dependence between their types; 

(ii) x and y are classified as those given types in that situation; (iii) for x to function as 

a X in that situation, then y must function as a Y. 



An example of individual functional dependence is one between a particular heart h 

and a particular body b in figure 2. As discussed, there is a generic functional depen-

dence between the types Heart and Body, and if in a given circumstance a heart h 

functions as a heart there is a body b that functions as a body in that circumstance. 

4. A typology of Functional Part-Whole Relations and Visual 

Patterns for Isolating the Scope of Transitivity 

Let us now return to the example of figure 2 of a parthood relation between the 

universals Heart and Body. In this model, a particular heart h is not only functionally 

dependent of a body b in a given situation, but h is also part of b. This type of the 

parthood relation is termed in [2] direct functional parthood of type 1: 

 

Definition 1 (Direct Functional Part of type 1): An individual x instance of X is a 

direct functional part of type 1 of an individual y of type Y (symbolized as 

d1(x,X,y,Y)) iff x is a part of y and x is individually functionally dependent of y. 

Formally, d1(x,X,y,Y) ≡ ((x < y) ∧ IFD(x,X,y,Y)).          ■ 

 

Examples of d1 include cuff-sleeve, stem-plant, carburetor-engine, finger-hand, hand-

arm, arm-body, hand-body, heart-body, heart-circulatory system. In conformance with 

the findings of [3], we propose that a parthood relation between two functional com-

plexes (such as the one depicted in figure 2) should be interpreted as a case of direct 

functional parthood. In this specific case, the model implies that: ∀x x::Heart → ∃y 

y::Body ∧ d1(x,Heart,y,Body))).  

Now, suppose that we have a model such as the one represented of figure 5.a. 
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11
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Fig.5.(a-left) Examples of direct functional part of type 1. (b) Examples of direct functional 

part of type 1: transitivity always hold across parthood relations of this type.  

In this case, both the relationships between Heart and Body, and between Mitral 

Valve and Heart, are mapped in the instance level to cases of direct functional part-

hood(1), i.e., (i) ∀x x::Heart → ∃y y::Body ∧ d1(x,Heart,y,Body); (ii) ∀x 

x::MitralValve → ∃y y::Heart ∧ d1(x,MitralValve,y,Heart). The important question at 

this point is: from (i) and (ii), can we derive formula (iii) ∀x x::MitralValve → ∃y 

y::Body ∧ d1(x,MitralValve,y, Body). Notice that (iii) follows from (i) and (ii) iff d1 is 

transitive. Thus, the this question can be rephrased as: is direct functional parthood(1) 

a transitive relation?  

In the sequel we demonstrate that this is indeed the case. The abbreviations in the 

proofs are: (a) TFP (transitivity of formal parthood); (b) TLI (transitivity of the logi-

cal implication); (c) EC (Elimination of the Disjunction), and (d) IC (Introduction of 

the Disjunction).  

(T1) Theorem 1: d1(x,X,y,Y) ∧∧∧∧ d1(y,Y,z,Z) →→→→ d1(x,X,z,Z) 

Proof: 

1. d1(x,X,y,Y)      T1  

2. d1(y,Y,z,Z)      T1  



3. (x < y) ∧ IFD(x,X,y,Y)    1, Definition 1 

4. GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) → F(y,Y))  3, (6) 

5. (y < z) ∧ IFD(y,Y,z,Z)    2, Definition 1 

6. GFD(Y,Z) ∧ y::Y ∧ z::Z ∧ (F(y,Y) → F(z,Z))  5, (6) 

7. (x < z)      3,5, TFP 

8. GFD(X,Z)      4,6, (5) 

9. (x::X) ∧ (z::Z)     4,6, EC 

10. (F(x,X) → F(z,Z))     4,6, TLI 

11. GFD(X,Z) ∧ (x::X) ∧ (z::Z)  (F(x,X) → F(z,Z))  8,9,10, IC 

12. IFD(x,X,z,Z)      11, (6) 

13. (x < z) ∧ IFD(x,X,z,Z)    7,12, IC 

14. d1(x,X,z,Z)      13, Definition 1         □ 

 

We can generalize this result for any chain of direct functional dependence in a mod-

el. Another example of such case is depicted in figure 5.b. 

In models such as 5.a-b, the parthood relation represents functional dependence in 

both directions. Take for instance figure 5.b. The minimum cardinality constraint of 1 

in the Engine association end of the aggregation relation between Carburator and En-

gine implies that every instance of Carburator necessitates an Engine to function as a 

Carburator. Likewise, the minimum cardinality constraint of 1 in the Carburator asso-

ciation end of that relation implies that every Engine necessitates a Carburator to 

function as an Engine. [2] names this type of functional parthood in which x is part of 

y but y as Y is individually functionally dependent on x as an X direct functional part-

hood (2): 

 

Definition 2 (Direct Functional Part of type 2): An individual x instance of X is a 

direct functional part of type 2 of an individual y of type Y (symbolized as 

d2(x,X,y,Y)) iff x is a part of y and y is individually functionally dependent of x. 

Formally, d2(x,X,y,Y) ≡ (x < y) ∧ IFD(y,Y,x,X).          ■ 

Examples of d2 include wall-house, engine-car, electron-atom, atom-molecule, finger-

hand, hand-arm, cell-heart, feather-canary. In the sequel, we prove that d2 is also tran-

sitive. 

(T2) Theorem 2: d2(x,X,y,Y) ∧∧∧∧ d2(y,Y,z,Z) →→→→ d2(x,X,z,Z) 

Proof: 

(1). d2(x,X,y,Y)      T2 

(2). d2(y,Y,z,Z)       T2 

(3). (x < y) ∧ IFD(y,Y,x,X)    1, Definition 2 

(4). GFD(Y,X) ∧ y::Y ∧ x::X ∧ (F(y,Y) → F(x,X))  3, (6) 

(5). (y < z) ∧ IFD(z,Z,y,Y)    2, Definition 2 

(6). GFD(Z,Y) ∧ z::Z ∧ y::Y ∧ (F(z,Z) → F(y,Y))  5, (6) 

(7). (x < z)      3,5, TFP 

(8). GFD(Z,X)      4,6, (5) 

(9). (z::Z) ∧ (x::X)     4,6, EC 

(10). (F(z,Z) → F(x,X))     4,6, TLI 

(11). GFD(Z,X) ∧ (z::Z) ∧ (x::X)  (F(z,Z) → F(x,X)) 8,9,10, IC 



(12). IFD(z,Z,x,X)     11, (6) 

(13). (x < z) ∧ IFD(z,Z,x,X)    7,12,IC 

(14). d2(x,X,z,Z)     13, Definition 2         □ 

 

Whenever in a conceptual model we have a representation of a parthood relation be-

tween complex objects such as in figures 5.a-b, we have both a case of d1 and a case 

of d2. In particular, the model of figure 5.b implies both the formulae: (i) ∀x 

x::Carburator → ∃y y::Engine ∧ d1(x,Carburator,y,Engine) and (ii) ∀x x:: Engine → 

∃y y:: Carburator ∧ d2(y,Carburator,x,Engine). Since both d1 and d2 are transitive, we 

maintain that transitivity holds within any chain of direct functional dependence rela-

tions in a conceptual model. 

Now, take for instance the relationship depicted in figure 6 below. 

Human Heart
«kind»

Person

11

«role»

Musician

0..1
1

d1d2

i1

d2

 
Fig.6. Example of indirect functional part of type 1(from Human Heart to Musician).  

Every human heart necessitates a person, and every person necessitates a human 

heart, i.e., both d1 and d2 hold between direct instances of human heart and person. 

Moreover, every musician is a person. So, as any person, a musician necessitates a 

human heart, i.e., d2 holds also between instances of human heart and musician. How-

ever, it is not the case that a direct functional dependence holds between human heart 

and musician. A human heart necessitates a person, but this person does not have to 

be a musician (this is made evident by the cardinality 0..1 of the inherited relation be-

tween these two universals). This type of relationship is termed indirect functional 

parthood (1) in [2] and it is defined as follows: 

Definition 3 (Indirect Functional Part of type 1): i1(x,X,y,Y) ≡ (x < y) ∧ 

IIFD(x,X,y,Y). IIFD(x,X,y,Y) is the relation of individual indirect functional depen-

dence and is defined as (7). IIFD(x,X,y,Y) ≡ y::Y ∧ ∃Z (Subtype(Y,Z) ∧ 

IFD(x,X,y,Z)).              ■ 

 

To put it in a simple way, x as an X is individually indirect functional dependent of y 

as a Y iff for x to function as an X, y must function as a Z, whereas Z is a more gen-

eral universal (subsuming that Y) that y instantiates. Examples of i1 include handle-

door (with “movable entity” for type subsuming “door”), door-house (with “wall, en-

closure or building” subsuming “house”), engine-car (with “machine” subsuming 

“car”), brick-wall (with “construction” subsuming “wall”), valve-carburetor (with 

“fluid-holding device” subsuming carburetor), cell-heart (with “organ” subsuming 

“heart”), feather-canary (with “bird” subsuming “canary”). 

Now, take the model depicted in figure 7 below. There are two potential parthood 

relations A and B. The relation A between Mitral Valve and Musician holds iff transi-

tivity holds across (Mitral Valve →
1d

Human Heart) and (Human Heart →
1i

 

Musician), since in the other reading of these relations, i.e., (Mitral 



Valve →
2d

Human Heart) and (Human Heart →
1d

 Musician), transitivity is 

already guaranteed by theorem (T2). To put it baldly, relation A is transitive in this 

case iff d1(x,X,y,Y) ∧∧∧∧ i1(y,Y,z,Z) →→→→ i1(x,X,z,Z) is a theorem. Likewise, relation B is 

transitive in this case iff i1(x,X,y,Y) ∧∧∧∧ d1(y,Y,z,Z) →→→→ i1(x,X,z,Z) is a theorem. As we 

show in the sequel, d1(x,X,y,Y) ∧∧∧∧ i1(y,Y,z,Z) →→→→ d1(x,X,z,Z) ∨∨∨∨ i1(x,X,z,Z) is a theo-

rem (T3) while i1(x,X,y,Y) ∧∧∧∧ d1(y,Y,z,Z) →→→→ d1(x,X,z,Z) ∨∨∨∨ i1(x,X,z,Z) is not. There-

fore, whilst A is a case of indirect functional parthood between Mitral Valve and Mu-

sician, relation B is not warranted and, hence, must not exist in figure 7. 

Human Heart
«kind»

Person

«role»

Musician

0..1
1

d1d2

i1

d2

Mitral Valve

11

A (?)

d1d2

Orchestra

11

d1d2

11

B (?)

 
Fig.7. Two candidate parthood relations due to transitivity.  

(T3) Theorem 3: d1(x,X,y,Y) ∧∧∧∧ i1(y,Y,z,Z) →→→→ i1(x,X,z,Z) 

Proof: 

(1). d1(x,X,y,Y)     T3 

(2). i1(y,Y,z,Z)     T3  

(3). (x < y) ∧ IFD(x,X,y,Y)    1, Definition 1 

(4). GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) → F(y,Y)) 3, (6) 

(5). (y < z) ∧ IIFD(y,Y,z,Z)    2, Definition 3 

(6). z::Z ∧ ∃W (Subtype(Z,W) ∧ IFD(y,Y,z,W))  5, (7) 

(7). GFD(Y,W) ∧ y::Y ∧ z::W ∧ (F(y,Y) → F(z,W)) 6, (6) 

(8). (x < z)      3,5,TFP 

(9). GFD(X,W)     4,7, (5) 

(10). (x::X) ∧ (z::W)     4,7, EC 

(11). (F(x,X) → F(z,W))    4,7,TLI 

(12). GFD(X,W) ∧ (x::X) ∧ (z::W)  (F(x,X) → F(z,W)) 9,10,11,IC 

(13). IFD(x,X,z,W)     12, (6) 

(14). z::Z ∧ ∃W (Subtype(Z,W) ∧ IFD(x,X,z,W) 6,13,IC 

(15). IIFD(x,X,z,Z)     14, (7)  

(16). (x < z) ∧ IIFD(x,X,z,Z)    8,15, IC 

(17). i1(x,X,z,Z)     16, Definition 3         □ 

 

Let us now modify the model of figure 7 to depict a more realistic conceptualization. 

In this modified specification (figure 8) we have that every Blood Pump is part of a 

Circulatory System and necessitates a Circulatory System in order to work as such 

(d1). Likewise, every Circulatory System has as part a Blood Pump and necessitates 

the latter to work as such (d2). As any Blood Pump, a Biological Heart is part of a 

Circulatory System and necessitates a Circulatory System to work as such, i.e., direct 

functional dependence (2) is inherited by Biological Heart from the subsuming uni-

versal. The same obviously holds for Artificial Heart. However, it is not the case that 



a Circulatory System is directly functionally dependent of a Biological Heart specifi-

cally. To put it in an alternative way, a Circulatory System, in order to function as 

such, relies on the behavior of a Blood Pump, but this behavior does not have to be af-

forded in the specific way a Biological Heart does. In [2], this type of relationship be-

tween Biological Heart and Circulatory System is termed indirect functional parthood 

(2) and it is defined as follows:  

Definition 4 (Indirect Functional Part of type 2): i2(x,X,y,Y) ≡ (x < y) ∧ 

IIFD(y,Y,x,X).                    ■ 

Examples of i2 include heart-circulatory system (with “blood pump” subsuming 

“heart”), brick-wall (with “construction material” subsuming “brick”). 

 

 
Fig.8. Example of an indirect functional parthood of type 2 (from Biological Heart to Coronary 

Circulatory System ) and of a candidate parthood relationship (C) due to transitivity.  

Once more, we have the question: does transitivity hold across (Heart Cell 

→
2d

Biological Heart) and (Biological Heart →
2i

 Coronary Circulatory Sys-

tem)? In the other reading we have (Heart Cell Valve →
1d

Biological Heart) and 

(Biological Heart →
1d

 Coronary Circulatory System), thus, relation C is war-

ranted iff the question above is answered affirmatively. The answer in this case is 

negative, since d2(x,X,y,Y) ∧∧∧∧ i2(y,Y,z,Z) →→→→ d2(x,X,z,Z) ∨∨∨∨ i2(x,X,z,Z) cannot be 

shown to be a theorem in this theory. However, the following is a theorem: 

(T4) Theorem 4: i2(x,X,y,Y) ∧∧∧∧ d2(y,Y,z,Z) →→→→ i2(x,X,z,Z) 

Proof: 

(15). i2(x,X,y,Y)     T4 

(16). d2(y,Y,z,Z)     T4 

(17). (x < y) ∧ IIFD(y,Y,x,X)    1, Definition 4 

(18). (y < z) ∧ IFD(z,Z,y,Y)    2, Definition 2  

(19). x::X ∧∃W (Subtype(X,W) ∧ IFD(y,Y,x,W))  3, (7) 

(20). GFD(Y,W) ∧ y::Y ∧ x::W ∧ (F(y,Y) → F(x,W)) 5, (6) 

(21). GFD(Z,Y) ∧ z::Z ∧ y::Y ∧ (F(z,Z) → F(y,Y)) 4, (6) 

(22). (x < z)      3,4, TFP 

(23). GFD(Z,W)     6,7, (5) 

(24). (z::Z) ∧ (x::W)     6,7,EC 

(25). (F(z,Z) → F(x,W))    6,7,TLI 

(26). GFD(Z,W) ∧ (z::Z) ∧ (x::W)  (F(z,Z) → F(x,W)) 9,10,11,IC 

(27). IFD(z,Z,x,W)     12,(6) 

(28). x::X ∧ ∃W (Subtype(X,W) ∧ IFD(z,Z,x,W)  5,13,IC 



(29). IIFD(z,Z,x,X)     14,(7) 

(30). (x < z) ∧ IIFD(z,Z,x,X)    8,15,IC 

(31). i2(x,X,z,Z)     16, Definition 4         □ 

 

Due to this theorem we have that the relation D between Biological Heart and Circu-

latory System (depicted in figure 8 below) is warranted, since transitivity holds across 

(Biological Heart →
2i

Coronary Circulatory System) and (Coronary Circulatory 

System →
2d

 Circulatory System) in this case. 

 
Fig.8. Example of an indirect functional parthood of type 2 due to transitivity (from Biological 

Heart to Circulatory System). 

We conclude this section by providing the following set of visual patterns that can 

isolate the scope of transitivity in conceptual models containing parthood relations be-

tween functional complexes (functional parthood). Transitivity can be guaranteed for 

these relations only in cases where the patterns of figures (9.a-c) occur. In summary, 

parthood relations between concrete functional complexes are neither transitive nor 

intransitive, but non-transitive relation (i.e., transitive in certain cases and intransitive 

in others). One of the main contributions of this paper is to provide a systematic engi-

neering tool based on a solid theory to exactly inform the modeler which are the cases 

in which transitivity hold. 

A B C A B C

D

A B C

D

A B

CD

X

(a) (b)

(c)

(d)

A

B C

D

X
(e)  

Fig.9. The patterns of figures (a-c) represent cases in which a derived functional transitive 

parthood relation can be inferred. Instransitive cases are shown in figures (d) and (e). 

5 Final Considerations 

The work presented here is part of a series of publications (e.g., [4,6,8]) in which we 

make use of Ontological theories for analyzing, re-designing and providing real-world 

semantics for conceptual modeling languages and models. Here we build on a formal 



theory of linguistic functional parthood presented in [2], and on and ontological 

theory of relationships presented [8] to provide a solution to one classical problem in 

conceptual modeling, namely, deciding on the transitivity of part-whole relations be-

tween the most common objects in conceptual models (functional complexes). 

Despite being precise and ontologically well-founded, the theory presented here is 

of a substantial complexity, thus, demanding for its full understanding at least a basic 

notion of logics and an advanced understanding of formal ontology. For this reason, 

and with the intent to provide some methodological tools for helping the modeler in 

employing the results of this theory, we proposed a number of visual patterns that can 

be directly applied to diagrams to isolate the scope of transitivity of functional part-

whole relations. We believe that these results contribute to the task of defining sound 

engineering tools and principles for the practice of conceptual modeling. It is impor-

tant to emphasize that these patterns can be used to isolate the contexts of transitivity 

in a diagram regardless of the content of what is being represented there. As a conse-

quence, fully automated tool support can be built for this task in a relatively simple 

way, since the underlying algorithm merely has to check structural properties of the 

diagram and not the content of involved nodes. We are currently working on the im-

plementation of prototype to do exactly that.   
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