
Building Correct Taxonomies with a
Well-Founded Graph Grammar

Jeferson O. Batista1, João Paulo A. Almeida1,
Eduardo Zambon1, and Giancarlo Guizzardi1,2

1 Federal University of Espírito Santo, Vitória, Brazil
2 Free University of Bozen-Bolzano, Italy

jeferson.batista@aluno.ufes.br, jpalmeida@ieee.org,
zambon@inf.ufes.br, gguizzardi@unibz.it

Abstract. Taxonomies play a central role in conceptual domain modeling having
a direct impact in areas such as knowledge representation, ontology engineering,
software engineering, as well as in knowledge organization in information sci-
ences. Despite their key role, there is in the literature little guidance on how to
build high-quality taxonomies, with notable exceptions such as the OntoClean
methodology, and the ontology-driven conceptual modeling language OntoUML.
These techniques take into account the ontological meta-properties of types to
establish well-founded rules for forming taxonomic structures. In this paper, we
show how to leverage on the formal rules underlying these techniques to build
taxonomies which are correct by construction. We define a set of correctness-
preserving operations to systematically introduce types and subtyping relations
into taxonomic structures. To validate our proposal, we formalize these operations
as a graph grammar. Moreover, to demonstrate our claim of correctness by con-
struction, we use automatic verification techniques over the grammar language to
show that: (i) all taxonomies produced by the grammar rules are correct; and (ii)
the rules can generate all correct taxonomies.

Keywords: Conceptual modeling · Taxonomies · Graph grammar

1 Introduction

Taxonomies are structures connecting types via subtyping (i.e., type specialization)
relations. They are fundamental for conceptual domain modeling and have a central
organizing role in areas such as knowledge representation, ontology engineering, object-
oriented modeling, as well as in knowledge organization in information sciences (e.g.,
in the construction of vocabularies and other lexical resources). Despite their key role
in all these areas, there is in the literature little guidance on how to build high-quality
taxonomies.

A notable exception is OntoClean [4]. OntoCleanwas a pioneeringmethodology that
provided a number of guidelines for diagnosing and repairing taxonomic relations that
were inconsistent from an ontological point of view. These guidelines were grounded on
a number of formal meta-properties, i.e., properties characterizing types. Derived from
these meta-properties, the methodology would offer a number of formal rules governing

2 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

how types characterized by different meta-properties could be associated to each other
in well-formed taxonomies.

OntoClean has been sucessfully employed to evaluate and suggest repairs to several
important resources (e.g., WordNet [13]). However, being a methodology, it does not
offer a representation mechanism for building taxonomies according to its prescribed
rules. Also with the intention of addressing that problem, in [8], the authors (including
one of OntoClean’s original authors) proposed a UML profile withmodeling distinctions
based on an extension of OntoClean’s meta-properties and rules. That profile would later
become the basis of the OntoUML modeling language [5], incorporating syntactic rules
to prevent the construction of incorrect taxonomies in conceptual models. In [6], the lan-
guage has its full formal semantics defined in terms of a (proved-consistent) ontological
theory, and its abstract syntax defined in terms of a metamodel. In particular, the latter
is an extension of the UML 2.0 metamodel, redesigned to reflect the ontological distinc-
tions and axiomatization put forth by that theory. These distinctions and constraints, in
turn, have influenced other prominent modeling languages, e.g., ORM [9].

As argued in [15], instead of leveraging on this axiomatization by proposingmethod-
ological rules (as in OntoClean) or semantically-motivated syntactical constraints (as
in the OntoUML metamodel), a representation system based on this ontological theory
could employ a more productive strategy. It could leverage on that fact that the the-
ory’s formal constraints impose a correspondence between each particular type of type
(characterized by those ontological meta-properties) and certain modeling structures
(or modeling patterns). In other words, a representation system grounded on this onto-
logical theory is a pattern language, i.e., a system whose basic building blocks are not
low-granularity primitives such as types and relations but higher-granularity patterns
formed by types and relations. A MOF-based metamodel (such as UML’s) simply isn’t
capable of naturally capturing this fundamental aspect of such a representation system.

In [17], some of us have proposed a first attempt to formalize a representation system
based on that ontological theory as a true Pattern Grammar, i.e., as a Graph Grammar
with transformation rules capturing these patterns and their possible relations. Hence,
this paper can be seen as an extension of that work. On one hand, it is focused of types
and taxonomic relations. On the other hand, it extends that original work in providing
a complete set of graph transformation rules. Moreover, we use automatic verification
techniques over the grammar state space (language) to show the correctness of the
taxonomies produced by the grammar and the capability of the grammar to generate all
correct taxonomies.

This work contributes to the foundations of rigorous conceptual modeling by iden-
tifying the set of rules that should be considered as primitives in the design of correct
taxonomies. Moreover, it does that in a metamodel-independent way, so the results pre-
sented here can be incorporated into different modeling languages (again, e.g., ORM)
as well as different tools used by different communities (e.g., as a modeling plugin to
Semantic Web tools such as Protégé3).

The remainder of this paper is structured as follows. In Section 2, we review the
ontological foundations used in this work. In particular, we present a number of ontolog-
ical meta-properties, a typology of types derived from them, and the formal constraints

3 https://protege.stanford.edu/

https://protege.stanford.edu/

Building Correct Taxonomies with a Well-Founded Graph Grammar 3

governing the subtyping relations between these types. In Section 3, we present the
graph transformation grammar with operations that take into account the distinctions
and constraints discussed in Section 2. In Section 4, we discuss the formal verification
of the grammar. Finally, Section 5 presents some concluding remarks.

2 Ontological Foundations

In this section, we present some ontological distinctions that are the basis for the
remainder of this paper. These notions and the constraints governing their definitions and
relations correspond to a fragment of the foundational ontology underlying OntoUML,
and which incorporates and extends the theory of types underling OntoClean [5,7]. For
an in depth discussion, philosophical justification, empirical support, and full formal
characterization of these notions, one should refer to [5, 6].

Types represent properties that are shared by a set of possible instances. The set of
properties shared by those instances is termed the intension of type; the set of instances
that share those properties (i.e., the instances of that type) is termed the extension of that
type. Types can change their extension across different circumstances, either because
things come in and out of existence, or because things can acquire and lose some of
those properties captured in the intension of that type.

Taxonomic structures capture subtyping relations among types, both from intensional
and extensional points of view. In other words, subtyping is thus a relation between types
that govern the relation between the possible instances of those types. So, if type B is
a subtype of A then we have that: (i) it is necessarily the case that all instances of B
are instances of A, i.e., in all possible circumstances, the extension of B subsets the
extension of A; and (ii) all properties captured by the intension of A are included in
the intension of type B, i.e., B’s are A’s and, therefore, B’s have all properties that are
properties defined for type A.

Suppose all instances that exist in a domain of interest are endurants [6]. Endurants
roughly correspond to what we call objects in ordinary language, i.e., things that (in
contrast to occurrences, events) endure in time changing their properties while main-
taining their identity. Examples include you, each author of this paper, Mick Jagger, the
Moon, the Federal University of Espírito Santo.

Every endurant in our domain belongs to one Kind. In other words, central to any
domain of interest we will have a number of object kinds, i.e., the genuine fundamental
types of objects that exist in that domain. The term “kind” is meant here in a strong
technical sense, i.e., by a kind, we mean a type capturing essential properties of the
things it classifies. In other words, the objects classified by that kind could not possibly
exist without being of that specific kind [6].

Kinds tessellate the possible space of objects in that domain, i.e., all objects belong
to exactly one kind and do so necessarily. Typical examples of kinds include Person,
Organization, and Car. We can, however, have other static subdivisions (or subtypes) of
a kind. These are naturally termed Subkinds. As an example, the kind ‘Person’ can be
specialized in the (biological) subkinds ‘Man’ and ‘Woman’.

Endurant kinds and subkinds represent essential properties of objects. They are
examples of Rigid Types [6]). Rigid types are those types that classify their instances

4 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

necessarily, i.e., their instances must instantiate them in every possible circumstance
in which they exist. We have, however, types that represent contingent or accidental
properties of endurants termed Anti-Rigid Types [6]). For example, in the way that
‘being a living person’ captures a cluster of contingent properties of a person, that
‘being a puppy’ captures a cluster of contingent properties of a dog, or that ‘being a
husband’ captures a cluster of contingent properties of a man participating in a marriage.

Kinds, subkinds, and the anti-rigid types specializing them are categories of endurant
Sortals. In the philosophical literature, a sortal is a type that provides a uniform principle
of identity, persistence, and individuation for its instances [6]. To put it simply, a sortal
is either a kind (e.g., ‘Person’) or a specialization of a kind (e.g., ‘Student’, ‘Teenager’,
‘Woman’), i.e., it is either a type representing the essence of what things are or a sub-
classification applied to the entities that “have that same type of essence”, be it rigid,
i.e., a Subkind, or anti-rigid, i.e., an Anti-Rigid Sortal.

In general, types that represent properties shared by entities of multiple kinds are
termed Non-Sortals, i.e., non-sortals are types whose extension possibly intersect with
the extension of more than one kind. Non-sortals too can also be further classified
depending on whether the properties captured in their intension are essential (i.e., rigid)
properties or not.

Now, before we proceed, we should notice that the logical negation of rigidity is
not anti-rigidity but non-rigidity. If being rigid for a type A means that all instances of
A are necessarily instances of A, the negation of that (i.e., non-rigidity) is that there is
at least one instance of A that can cease to be an instance of A; anti-rigidity is much
stronger than that, it means that all instances of A can cease to be instances of A, i.e., A’s
intension describes properties that are contingent for all its instances. Finally, we call a
type A semi-rigid iff it is non-rigid but not anti-rigid, i.e., if it describes properties that
are essential to some of its instances but contingent to some other instances. Because
non-sortal types are dispersive [11], i.e., they represent properties that behave in very
different ways with respect to instances of different kinds, among non-sortal types, we
have: those that describe properties that apply necessarily to the instances of all kinds
it classifies (i.e., Rigid Non-Sortals, which are termed Categories); those that describe
properties that apply contingently to the instances of all kinds it classifies (Anti-Rigid
Non-Sortals); those that describe properties that apply necessarily to the instances of
some of the kinds it classifies but that also apply contingently to the instances of some
other kinds it classifies (i.e., Semi-Rigid Non-Sortals, termed Mixins). An example of
a category is ‘Physical Object’ representing properties of all kinds of entities that have
masses and spatial extensions (e.g., people, cars, watches, building); an example of a
anti-rigid non-sortal is ‘Customer’ representing contingent properties for all its instances
(i.e., no customer is necessarily a customer), which can be of the kinds ‘Person’ and
‘Organization’; an example of a mixin is the ‘Insurable Item’, which describe properties
that are essential to entities of given kinds (e.g., suppose that cars are necessarily insured)
but which are contingent to things of other kinds (e.g., houses can be insured but they
are not necessarily insured).

Figure 1 represents this typology of endurant types generated by the possible values
of these two properties. As always, UML arrows connect subtypes to their supertypes
(the arrowhead pointing to the supertype). Two subtyping relations joined in their ar-

Building Correct Taxonomies with a Well-Founded Graph Grammar 5

Fig. 1. A taxonomy for Endurant Types.

rowheads form a generalization set, which here we assume to tessellate the extension of
the supertype (pointed to by the joint arrowhead), i.e., these are disjoint and complete
generalization sets. The red subtyping relations and generalization sets here represent
an inheritance line created by the sortality meta-property, i.e., all endurant types are
either sortals (i.e., either kinds or specializations thereof) or non-sortals (crossing the
boundaries of multiple kinds) but not both. Finally, the blue subtyping relations and gen-
eralization sets here represent an inheritance line created by the rigidity meta-property,
i.e., all endurant types are either rigid (i.e., essentially classifying all their instances),
anti-rigid (i.e., contingently classifying all their instances), or semi-rigid (essentially
classifying some of their instances, and contingently classifying others). As a result of
the combination of these two meta-properties, we have the following six (exhausting
and mutually disjoint) types of types (i.e., meta-types): Kinds, Subkinds, Anti-Rigid
Sortals, Categories, Anti-Rigid Non-Sortals, and Mixins (in grey in Figure 1).

The ontological meta-properties that characterized these different types of types also
impose constraints on how they can be combined to form taxonomic structures [6]. As
we have already seen, since kinds tessellate our domain and, because all sortals are either
kinds or specializations thereof, we have both that: no kinds can specialize another kind;
every sortal that is not a kind specializes a unique kind. In other words, every sortal
hierarchy has a unique kind at the top.Moreover, from these, we have that any type that is
a supertype of a kind must be a non-sortal. But also that, given that every specialization
of a kind is a sortal, non-sortals cannot specialize sortals. Finally, given the formal
definitions of rigidity (including anti-rigidity), it just follows logically that anti-rigid
types (sortals or not) cannot be supertypes of semi-rigid and rigid types (sortals or not)
(see proof in [6]). For example, if we determine that ‘Customer’ applies contingently

6 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

to persons in the scope of business relationships, then a taxonomy in which a rigid
type ‘Person’ specializes an anti-rigid type ‘Customer’ is logically incorrect. Intuitively,
a person will be at the same time required through the specialization to be statically
classified as a ‘Customer’ while at the same time, being defined dynamically classified
as a ‘Customer’, in virtue of the definition of that type. So, either: (i) the definition of
‘Customer’ should be revised to capture only essential properties, becoming a rigid type
and thus solving the incorrect specialization problem; or (ii) ‘Customer’ should be an
anti-rigid specialization of the rigid type ‘Person’, inverting the direction of the original
(but incorrect) taxonomic relation.

3 Graph Transformation Rules to Build Taxonomies

Graph transformation (or graph rewriting) [10] has been advocated as a flexible formal-
ism, suitable for modeling systems with dynamic configurations or states. This flexibility
is achieved by the fact that the underlying data structure, that of graphs, is capable of
capturing a broad variation of systems. Some areas where graph transformation is being
applied include visual modeling of systems, the formal specification of model transfor-
mations, and the definition of graph languages, to name a few [3, 16].

The core concept of graph transformation is the rule-based modification of graphs,
where each application of a rule leads to a graph transformation step. A transformation
rule specifies both the necessary preconditions for its application and the rule effect
(modifications) on a host graph. The modified graph produced by a rule application is
the result of the transformation.

In this work, we use graph transformations to formally model the operations for
the construction of a taxonomy. A set of graph transformation rules can be seen as
a declarative specification of how the construction can evolve from an initial state,
represented by an initial (empty) host graph. This combination of a rule set plus an initial
graph is called a graph grammar, and the (possibly infinite) set of graphs reachable from
the initial graph constitute the grammar language.

Our main contribution in this paper is to formally define a graph grammar that,
starting from an empty taxonomy, allow us to build any (and only) correct taxonomies.
To put this more precisely: in the area of formal verification, statements about a system
are usually split between correctness and completeness properties. The correctness of
a modeled system ensures that only desirable models are possible. In our setting, this
means that only correct taxonomies can be part of the grammar language. On the other
hand, completeness ensures that if a desirable system configuration can exist “in the real
world”, then a corresponding model is reachable in the formalization. In our setting, this
means that any correct taxonomy can be created using the proposed graph grammar.

The grammar described in this section was created with GROOVE [3], a graph
transformation tool suitable for the (partial) enumeration of a grammar language, which
the tool calls the state space exploration of the graph grammar.

3.1 Introducing New Types

We start by defining transformation rules to introduce a new type in the taxonomy.
Types for four of the leaf ontological metatypes given in Fig. 1 can be introduced in

Building Correct Taxonomies with a Well-Founded Graph Grammar 7

(a) new-kind (b) new-category (c) new-mixin (d) new-antirigid-nonsortal

Fig. 2. Transformation rules to introduce an independent type.

the taxonomy without being related with a previously introduced type: these include all
Kinds and all the non-sortals: Categories,Mixins and Anti-Rigid Non-Sortals.

Fig. 2 shows the four rules that introduce independent types, using the GROOVE
visual notation for presenting rules. Each rule is formed only by a green box representing
the type that will be created during rule application. A type has an ontological metatype
(the label inside the box) and a name attribute. The “string” ellipses in Fig. 2 are the
tool notation to indicate that the name must be provided (perhaps by the tool user) upon
the type creation. No rule in Fig. 2 have preconditions. Therefore, types for these four
ontological metatypes can be introduced without requiring the existence of other types
or relations in the taxonomy.

3.2 Introducing Dependent Types

In contrast to non-sortals and kinds, Subkinds and Anti-Rigid Sortals have precondi-
tions upon their introduction.

In the case of Subkinds, their introduction requires the existence of a previous
sortal, from which the subkind will inherit a principle of identity. In addition, this sortal
must be rigid, to respect the ontological principle that a rigid type cannot specialize an
anti-rigid one. These preconditions for the introduction of a new Subkind are captured
in the rule shown in Fig. 3. The existing Rigid Sortal is shown as a black box in the
figure. The green “subClassOf” arrow states that a new direct subtyping relation will be
introduced in the model.

Fig. 3. Transformation rule to introduce a Subkind type.

8 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

Fig. 4. Transformation rule to introduce an Anti-Rigid Sortal type.

In the case of an Anti-Rigid Sortal type, the only precondition is the existence
of a previous sortal, from which the newly introduced Anti-Rigid Sortal will inherit
a principle of identity. This rule is shown in Fig. 4. Differently from a Subkind, an
Anti-Rigid Sortal can specialize any Sortal (and not only Rigid ones).

3.3 Introducing Specializations for Existing Non-Sortal Types

Having defined rules for the introduction of types, we proceed with rules to insert
subtyping relations between two types already present in the model. We start with
Category andMixin specializations, as both of these ontological metatypes have meta-
properties that allow their types to be specialized in any Endurant Type, without
breaking formal ontology principles.

Fig. 5(a) shows a rule that creates a subtyping relation between an existingCategory
supertype and an existing Mixin subtype. The red arrow in the figure prevents the
introduction of a circularity in the relations. Red elements in GROOVE rules indicate
forbidden patterns, i.e., elements that, if present, prevent the rule application. The label
“subClassOf+” indicates direct or indirect subtyping. Circularity of specializations may
be tolerated in taxonomies structured with improper specialization relations, such as
rdfs:subClassOf in the Semantic Web. A consequence of circular specializations in
that case is that mutually specializing classes become equivalent, and hence, should have
the same ontological nature. Because of this, we rule out cases of circularity involving
types of different metatypes such as a Category and a Mixin.

The forbidden pattern in Fig. 5(a) is not sufficient to prevent any circular subtyping
relation. This occurs because while a Mixin can specialize a Category, the opposite
relation is also possible. Therefore, in order to avoid any circularity, we separate the
specialization of a Category by mixins and non-mixins Endurant Types. This second
case is shown in Fig. 5(b). The forbidden pattern in this figure prevents cycles of
subtyping relations involving Categories, Mixins and other Endurant Types. The red
label “!Mixin” in Fig. 5(b) indicates that the existing Endurant Type cannot be a
Mixin.

Analogously, we created two additional transformation rules to define how the
specialization of a Mixin type can be made. These rules are not shown here due to
their similarities to the ones in Fig. 5. Finally, the rule depicted in Fig. 6 allows the
specialization of an Anti-Rigid Non-Sortal by another Anti-Rigid Type.

Building Correct Taxonomies with a Well-Founded Graph Grammar 9

(a) add-category-specialization-
in-mixin

(b) add-category-specialization

Fig. 5. Transformation rules to specialize a Category.

Fig. 6. Transformation rule to specialize an Anti-Rigid Non-Sortal type.

3.4 Introducing Generalizations for Existing Sortal Types

Kind types appear on the top of Sortal types hierarchies because kinds provide a princi-
ple of identity for all their instances. By definition, kinds cannot specialize other kinds.
Therefore, they can only specializeNon-Sortal types, more specificallyCategories and
Mixins. These specializations can already be constructed with the rules presented in
Section 3.3.

Subkind types, on the other hand, carry a principle of identity from their supertypes
and, ultimately, from exactly oneKind type. The rule shown in Fig. 7 properly captures
this restriction. If there are distinct (as defined by the not equal red dashed edge) Sub-
Kind and Rigid Sortal types that carry a principle of identity from the same Kind,
then a direct subtyping relation can be created between the two. The black edges with
labels “subClassOf*” and “subClassOf+” indicate that, for the rule to be applied, a
specialization relation from the new super-type and from the Subkind to the sameKind
must already be present, or at least that the new (direct) super-type of the Subkind is
its own Kind. Subkinds can also specialize any rigid or semi-rigid non-sortal, but these
cases are already covered by the rules presented in Section 3.3. A similar construction
for Anti-Rigid Sortal types can be seen in Fig. 8.

10 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

Fig. 7. Transformation rule to generalize a Sub-Kind type.

Fig. 8. Transformation rule to generalize an Anti-Rigid Sortal type.

4 Formal Verification

We use the GROOVE graph transformation tool to carry out a formal verification of
the graph grammar presented in Section 3. To do so, we employ verification conditions
in GROOVE, which formally define the ontological restrictions described in Section 2,
and allow us to perform an analysis over any given taxonomy (graph state model). We
then use the state space exploration functionality of the tool to check that all states
(taxonomies) satisfy the restrictions.

As stated in Section 3, our objective with the verification is two-fold: to demonstrate
the correctness and completeness of the proposed graph grammar. Correctness ensures
that the grammar rules only produce correct taxonomies, i.e., those that do not invalidate
well-formedness constraints. Completeness ensures that any and all correct taxonomies
can be produced by a sequence of rule applications.

A graph condition in GROOVE is represented diagrammatically in the same way
as transformation rules, albeit without creator (green) elements. A graph condition is
satisfied by a taxonomy model if all reader (black) elements of the condition are present
in the model, and all forbidden (red) elements are absent.

Fig. 9 shows our first graph condition, capturing the restriction that Kinds must
appear at the top of sortal hierarchies, hence not specializing another Sortal. It is
important to note that restrictions are stated positively but are checked negatively. Thus,
the condition in Fig. 9 characterizes an undesired model violation (a Kind specializing
a Sortal), and therefore, by verifying that such condition never occurs in any taxonomy
model, we can determine the grammar well-foundness. This same rationale holds for all
other conditions shown in this section.

Fig. 10 formalizes a second restrictive condition, stating that a Sortal cannot inherit
its principle of identity from more than one Kind. A third condition, shown in Fig. 11,

Building Correct Taxonomies with a Well-Founded Graph Grammar 11

Fig. 9. Restrictive condition of a Kind specializing another Sortal.

Fig. 10. Restrictive condition of a Sortal with more than one Kind.

Fig. 11. Restrictive condition of a rigid or semi-rigid type specializing an anti-rigid one.

captures the situation in which the rigidity meta-property is contradicted, that is, when
a rigid or semi-rigid type specializes an anti-rigid one. Similarly, the fourth restrictive
condition, depicted in Fig. 12, represents the situation in which the sortality meta-
property is contradicted, that is, when a Non-Sortal type specializes a Sortal one.

To specify a fifth restrictive condition, we consider that all Sortals ultimately should
specialize (or be) a Kind, from which they inherit a principle of identity. The violating
situation, in which a Sortal does not specializes a Kind, is shown in Fig. 13.

A final restriction is that any two types instantiating different ontological metatypes
cannot have a mutual (circular) subtyping relation between them. We represent such
restriction with 15 graph conditions, one for each pair of different ontological metatypes.
Fig. 14 shows the graph condition for the pair Category and Mixin. The remaining 14
conditions all have the same structure, and thus are not shown.

12 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

Fig. 12. Restrictive condition of a Non-Sortal type specializing a Sortal one.

Fig. 13. Restrictive condition of a Sortal without a Kind.

Fig. 14. An example of a condition with two equivalent types of different ontological metatypes.

4.1 Verifying Correctness

The first step in verifying the correctness of the graph grammar proposed is to enumerate
its language, i.e., construct all possible taxonomies reachable by any sequence of rule
applications. Subsequently, the graph conditions just presented are checked against these
constructed taxonomies. If any model triggers one or more graph conditions, then we
know the model violates some ontological restrictions, and therefore it is incorrect.
Consequently, the goal of the correctness analysis is to verify that no taxonomy in
the language is incorrect. To perform the grammar state space exploration we use the
GROOVE Generator, a command-line tool designed for this task. Details of GROOVE
usage can be found at the tool manual4, and additional case studies that illustrate the
tool functionalities are presented in [3].

A major caveat in the first step above is that the grammar language is infinite, thus
preventing a complete enumeration in a finite amount of time. To copewith this situation,
we need to perform a bounded exploration with the GROOVE tool. In this setting, our
bound # is the maximum number of types present in a taxonomy. When performing the

4 Available at https://sourceforge.net/projects/groove/

https://sourceforge.net/projects/groove/

Building Correct Taxonomies with a Well-Founded Graph Grammar 13

types (#) Produced taxonomies Incorrect taxonomies
1 4 0
2 24 0
3 223 0
4 3,865 0
5 146,882 0
6 ? ?

Table 1. Results of correctness analysis.

types (#) All taxonomies Incorrect taxonomies Correct taxonomies
1 6 2 4
2 78 54 24
3 2,456 2,233 223
4 228,588 224,723 3,865
5 ? ? ?

Table 2. Results of completeness analysis.

exploration, the tool managed to generate a total of 150,998 taxonomies up to a bound
= 5, with a breakdown of this total per bound value shown in Table 1. The table also
shows that our correctness goal was validated (at least up to # = 5), with no taxonomies
being flagged as incorrect by the graph conditions.

Given the inherently exponential growth of the number of possible taxonomies
with respect to bound # , it was not possible to continue the exploration for # = 6
and beyond due to memory limitations (the execution was halted after several million
models partially produced.) This state space explosion is a common problem for all
explicit state model checkers, such as GROOVE [3].

To support that the correctness results in Table 1 are significant, we rely on the
small scope hypothesis, which basically claims most design errors can be found in small
counterexamples [2]. Experimental results suggest that exhaustive testing within a small
finite domain does indeed catch all type system errors in practice [14], and many case
studies using the tool Alloy have confirmed the hypothesis by performing an analysis in
a variety of scopes and showing, retrospectively, that a small scope would have sufficed
to find all the bugs discovered [12].

4.2 Verifying Completeness

The verification described in the previous section assures that all taxonomies produced
are correct, but does nothing to persuade us that any and all possible correct taxonomies
can be produced. To provide this kind of assurance is the goal of the completeness
verification described below.

To perform the completeness analysis we need to consider not only correct tax-
onomies but also the incorrect ones. To this end, we developed another, completely
permissible, graph grammar that allows the creation of both correct and incorrect mod-
els. The grammar is quite simple, with six rules for the unrestricted creation of the leaf

14 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

types of types in Fig. 1, and one rule allowing the introduction of a subtyping relation
between any two endurant types.

The results of the exploration with this new permissible grammar are presented in
Table 2. As expected, the rate of growth in this scenario is even steeper, given that
more models can be produced. The tool was able to perform a bounded exploration up
to # = 4, with larger bounds exceeding the available memory. The second column of
Table 2 lists all taxonomies createdwith the new grammar, both correct and incorrect.We
again use the graph conditions to flag violations of ontology restrictions in the models.
If a taxonomy triggers any of the graph conditions, then it is considered incorrect.
Conversely, if no graph condition is triggered by a model, then it certainly describes a
correct taxonomy. The last two columns in the table summarize this classification.

The completeness goal can be verified by a comparison between the Correct tax-
onomies column of Table 2 and the Produced taxonomies column of Table 1. It can be
seen immediately that all values up to # = 4 match. Given that the permissible grammar
produces all possible models (correct and incorrect), this allows us to conclude that the
taxonomy grammar of Section 3 produces all correct taxonomies, and only the correct
ones. To strengthen this validation claim we once again rely on the small scope hypoth-
esis: although the completeness result is not formally proven for models of arbitrary
size, the bounded values shown provide strong evidence that such result holds. Also,
the bound limit could be pushed (at least a bit) further with additional computational
resources and time.

5 Final Considerations

In this paper, we propose a systematic approach for building ontologically well-founded
and logically consistent taxonomic structures. We do that by leveraging on a typology of
endurant types. This typology, in turn, is derived from an ontological theory that is part of
the Unified Foundational Ontology (UFO) [7], and which underlies the Ontology-Driven
Conceptual Modeling language OntoUML [6].

The original theory puts forth a number of ontological distinctions based on formal
meta-properties. As a result of the logical characterization of these meta-properties, we
have that certain structures (patterns) are imposed on the language primitives represent-
ing these distinctions [15]. We have identified a set of primitive operations on taxonomic
structures that, not only guarantees the correctness of the generated taxonomies, but also
is capable of driving the construction of any correct taxonomy. This forms the basis for
the systematic design of such structures at a higher level of abstraction.

Given the limitations of metamodels as a mechanism for representing a language’s
abstract syntax, these structures were not treated as first-class citizens before and have
remained hidden in the abstract syntax of the original OntoUMLproposal [5]. This paper
addresses this exact problem. By leveraging on that theory, and propose a pattern gram-
mar (graph transformation grammar) that embeds these distinctions and that guarantees
by design the construction of taxonomic structures that abide by the formal constraints
governing their relations. The work proposed here advances the work initiated in [17].
For example, by employing the state exploration mechanism supported by GROOVE,
we managed to detect important omissions in the rule set proposed in that original work.

Building Correct Taxonomies with a Well-Founded Graph Grammar 15

Another important aspect is that our proposal captures the representation conse-
quences of that ontology theory in a way that is metamodel-independent. For this
reason, these results can be carried out to other languages and platforms. In particular,
we are currently developing a plugin for Protégé that, among other things, implements
the primitive operations proposed in this paper. This plugin is intended to be used in
tandem with the gUFO ontology (a lightweight implementation of UFO) [1]. In that
implementation, these operations take the form of ontology patterns to be applied, to
support its users in modeling consistent Semantic Web ontologies.

Acknowledgments

This research is partly funded by Brazilian funding agencies CNPq (grants numbers
312123/2017-5 and 407235/2017-5) and CAPES (Finance Code 001 and grant number
23038.028816/2016-41).

References

1. Almeida, J.P.A., Guizzardi, G., Falbo, R.A., Sales, T.P.: gUFO: a lightweight implementation
of the Unified Foundational Ontology (UFO) (2019)

2. Gammaitoni, L., Kelsen, P., Ma, Q.: Agile validation of model transformations using com-
pound f-alloy specifications. Science of Computer Programming 162, 55–75 (2018)

3. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and
analysis using GROOVE. International journal on software tools for technology transfer
14(1), 15–40 (2012)

4. Guarino, N., Welty, C.A.: An overview of OntoClean. In: Handbook on ontologies, pp.
151–171. Springer (2004)

5. Guizzardi, G.: Ontological foundations for structural conceptual models. No. 15 in Telematica
Institute Fundamental Research Series, University of Twente (2005)

6. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales, T.P.:
Endurant types in ontology-driven conceptual modeling: Towards OntoUML 2.0. In: Inter-
national Conference on Conceptual Modeling. pp. 136–150. Springer (2018)

7. Guizzardi, G.,Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontological foundations
for conceptual modeling: The unified foundational ontology (UFO) story. Applied ontology
10(3-4), 259–271 (2015)

8. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An ontologically well-founded
profile for UML conceptual models. In: International Conference on Advanced Information
Systems Engineering. pp. 112–126. Springer (2004)

9. Halpin, T., Morgan, T.: Information modeling and relational databases. Morgan Kaufmann
(2010)

10. Heckel, R.: Graph transformation in a nutshell. Electronic notes in theoretical computer
science 148(1), 187–198 (2006)

11. Hirsch, E.: The concept of identity. Oxford University Press (1992)
12. Jackson, D.: Alloy: a language and tool for exploring software designs. Communications of

the ACM 62(9), 66–76 (2019)
13. Oltramari, A., Gangemi, A., Guarino, N., Masolo, C.: Restructuring WordNet’s top-level:

The OntoClean approach. LREC2002, Las Palmas, Spain 49 (2002)
14. Roberson, M., Harries, M., Darga, P.T., Boyapati, C.: Efficient software model checking of

soundness of type systems. ACM Sigplan Notices 43(10), 493–504 (2008)

16 J.O. Batista, E. Zambon, J.P.A. Almeida, G. Guizzardi

15. Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From reference ontologies
to ontology patterns and back. Data & Knowledge Engineering 109, 41–69 (2017)

16. Zambon, E.: Abstract Graph Transformation – Theory and Practice. Centre for Telematics
and Information Technology, University of Twente (2013)

17. Zambon, E., Guizzardi, G.: Formal definition of a general ontology pattern language using
a graph grammar. In: 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS). pp. 1–10. IEEE (2017)

	Building Correct Taxonomies with aWell-Founded Graph Grammar

