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Extended Abstract

Motivation

Formally capturing the nature of complex concepts and events, and the dynamic
transformations they bring about in the world, is a difficult problem. In com-
parison, what formal knowledge representation struggles with, humans perform
without much thought or effort. Inspired by this, previous representations of
the cognitive perception of real world scenes were sometimes based on formal
frameworks used in näıve physics [10], such as situation calculus or causal logic.
Through these, classic commonsense reasoning problems such as cracking an egg
[20] were then often described with long and complex axiomatisations that offer
little in terms of cognitive adequacy or conceptual clarity.

Formally it is an important distinction that, unlike for objects, there are no
‘borders’ in the passing of time. One event often floats seamlessly into another
without pauses, beginnings or ends. The human mind has an ability to take
dynamic perceptions and, based on certain cognitive principles grounded in spa-
tiotemporality, identify when a new event takes place [16]. If these principles can
be integrated into a formal framework representing events, a more cognitively
plausible method for commonsense reasoning over events is possible.

To do this, we look at image schemas. They are abstract generalisations of
events learned from repeated experiences in the world [18, 15] and are com-
monly described as capturing sensorimotor patterns of relationships and their
transformations. As such, they exist in both static forms (e.g. Link, Contain-
ment and Center Periphery) and in dynamic, temporally-dependent forms
(e.g. Linked Path, Going In and Revolving Movement) [5]. For simplicity
and in terms of priority, many formal studies of image schemas have focused on
capturing the static aspects of image schemas (e.g. [3]). However, in order to
represent events and more dynamic concepts, also the temporal and transforma-
tional dimension of image schemas require attention. Some work has been done
to model the dynamic aspects of image schemas but they are often limited to a
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particular schema or situation that cannot be easily generalised (e.g. [12, 8]). The
principle that image schemas can be combined with one another is a fundamental
aspect of how they construct meaning both in natural language and in the con-
ceptualisation of objects and events. For this purpose, image schemas have been
suggested to be gathered into ‘profiles’ which represent the full spatiotemporal
skeleton for the conceptualisation of a particular concept [21].

We argue that, by using the formal representation of these conceptual prim-
itives in different combinations, it is possible to approach a more cognitively
plausible representation of events. Additionally, we argue that change in image-
schematic state corresponds to plausible points of division in formal event seg-
mentation. Initially, this formal representation needs to be bootstrapped for the
most simple image schemas, for which we employ the tailor-made spatiotemporal
logic for image schemas ISL, introduced in [13]. Formalisations of more complex
image schemas are derived from those for simpler ones, and complex events are
described as a temporal sequence of scenes carrying significantly distinct image-
schematic information.

Brief Introduction to ISL: The Image Schema Logic

Image schemas are abstract patterns that become detectable only due to their
prevalence in natural language and cognition in general. Therefore, much like
with all spatiotemporal formalisation problems, it is not trivial to formally rep-
resent them in a satisfactory way [9, 1]. One problem for formalising image
schemas is that the cognitively-driven investigations of how humans perceive
and experience time cannot easily be mapped to existing temporal logic ap-
proaches [4]. These limitations to the use of off-the-shelf calculi also extend to
the spatial domain. A well known formalism, which has been extensively used for
the representation and handling of qualitative spatial knowledge is the Region
Connection Calculus (RCC) [6].

While image schemas are often discussed without an immediate formal corre-
spondence, there exists a number of attempts to capture them formally (e.g. [3]).
The formal language ISL [13]3 is intended to capture the basic spatiotemporal
interactions which are relevant for image schemas. Briefly, ISL is an expressive
multi-modal logic building on RCC [22], Ligozat’s Cardinal Directions (CD) [19],
Qualitative Trajectory Calculus (QTC) [24], with 3D Euclidean space assumed
for the spatial domain, and Linear Temporal Logic over the reals (RTL). The
work on formalising individual image schemas and their dynamic transforma-
tions in ISL was initiated, for instance, in [12] and expanded to include agency
in [17] through the addition of see-to-it-that (STIT) logic [2].

At its core, ISL follows a popular temporalisation strategy (studied in further
detail in [7]), where temporal structures are the primary model-theoretic objects
(e.g., a linear order to represent the passage of time), but at each moment of time
we allow complex propositions that employ a secondary semantics. The atoms in

3 ISL was further developed under the name ISLFOL by the addition of a First-Order
concept language in [11].
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(a) Scene 1:
The egg is
supported
by a hand.

(b) Scene 2:
The egg is
no longer
supported
(dropped).

(c) Scene
3: The egg
falls to the
ground.

(d) Scene
4: The egg
hits the
ground.

(e) Scene
5: The egg
breaks.

Fig. 1: Event Segmentation of Dropping an Egg. Boxes around scenes denote non-
temporally extended scenes which mark transitions in image-schematic structure.

ISL are then topological assertions about regions in space using RCC8, the rela-
tive movement of objects w.r.t. each other using QTC, and relative orientation,
using CD. The purpose of quantification is to separate different sortal objects,
while otherwise the syntax of the language follows a standard multi-modal logic
paradigm.

Three Types of Image Schema Combinations

Formalising image schemas using ISL makes it possible to represent the individual
image schemas as well as their combinations, a necessary requirement to repre-
sent events. We argue that image schema combinations come in (at least) three
fundamentally different flavours. To briefly summarise the three approaches, as-
sume a ‘small’ finite set of atomic image schemas A is given, namely those that
are cognitively learned first and cannot be further decomposed.

Firstly, the merge operation takes a number of those image schemas and
merges them (non commutatively) into newly created primitive concepts. These
primitives are not yet logically analysed, but carry strong cognitive semantics.
This process can be iterated to create ever more complex primitives, as hap-
pens in the cognitive development of children. Therefore, the merge operation
multiplies the set of available image schema primitives.

Secondly, the collection operation technically corresponds to the formation
of an unsorted multiset of atomic and merged image schemas used to describe
scenes or objects in a complex scenario.

Thirdly, structured covers the case where, on the one hand, merged image
schemas receive a formal semantics, and on the other hand, the temporal inter-
action that is absent in the ‘collection’ scenario is formally made explicit using
temporal logic.

An Egg-Cracking Example

One of the prototypical knowledge representation problems, ‘cracking an egg,’
is—as an event—rather simple to conceptualise yet very complex to formalise.
Previous formalisations of the problem (e.g. [20]) result in lengthy descriptions
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∀E:Obj,H,G:Rgn.Support(H,E) U (¬Contact(H,E) ∧On Path To(E,G)

U Blocked(E,G) ∧G (Blocked(E,G) ∧
H¬Blocked(E,G) ∧POn Path To(E,G) →
Splitting(E) ∧GSupport(G,E) ∧
G(Support(H,E) → Contact(H,E))

Fig. 2: ISL formalisation of dropping an egg.

where individual axioms aim to capture all the necessary requirements for the
scenario, with a particular difficulty in formally separating high-level schematic
conceptualisation from the formalisation of low-level, physics-based information
related to affordances. When taking the embodied point of view which moti-
vates our modelling based on image schemas, such low-level modelling is largely
abstracted away. Instead, e.g. the verification of the affordance of an object to
contain a liquid is taken care of by embodied interaction in the case of humans,
and by experiment in physics simulations in the case of AI.

One important hypothesis is that, for each step, a conceptually different
scene of undefined temporal length takes place. This translates into there being
a change in the image-schematic state. The scenario can be described with a
sequential image schema combination based on the scenes presented in Figure 1
and the ISL formalisation in Figure 2.

This follows the idea of modular design pattern [25], where each image schema
can be formalised as a modelling pattern, a micro-theory, which can be referenced
and reused in different situations and contexts for entirely different kinds of
objects via a generic import interface. A large selection of these image schema
patterns appears in [11]. In ISL, the entire event of dropping an egg could be
formalised as in Fig. 2, where E, H, and G stand for Egg, Hand, and Ground,
respectively. Importantly, the image schema profiles of all scenes are distinct (in
particular (d) has different image schemas related to force compared to (a) as it
follows vertical movement).

Although looking at commonsense reasoning problems such as ‘egg cracking’
may look a bit isolated in terms of broader AI research trends, the idea of using
cognitively-inspired building blocks that can together represent and model in-
creasingly large-scale situations and problems is in fact of wide relevance. As the
notion of image schemas stems from the sensorimotor processes and is closely
connected to cognitive linguistics, their formal integration into robotics systems
and natural language processing systems provides clear directions for future
work. Indeed, the next step on this research agenda is to connect our approach
to cognitive robotics environments as for instance described in [23]. Here, sym-
bols may be grounded in actual environments, and symbolic twin-worlds and
knowledge bases, together with physics simulations, can provide precise tests for
preconditions of actions and events whose detail, for instance, in the level of
force present, escapes the image-schematic modelling level.
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