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Abstract— Humans can easily memorize images of places 

and labels (road names, addresses, etc.) associated with them, 

as well as trajectories defined by sequences of images and 

corresponding positions. Later, they are able to remember 

places’ labels and relative positions when seeing the same 

images again. In this work, we present an image-based 

mapping, global localization and position tracking system 

based on Virtual Generalizing Random Access Memory (VG-

RAM) weightless neural networks, dubbed VIBML. VIBML 

mimics humans ability of learning about a place and of 

recognizing the same place in a later moment, as well as of 

tracking self-movement through the environment using images. 

We evaluated the performance of VIBML on the precise 

localization of an autonomous car using real-world datasets. 

Our experimental results showed that VIBML is able to localize 

car-like robots on large maps of real world environments with 

accuracy equivalent to that of state-of-the-art methods – 

VIBML is able to localize an autonomous car with average 

positioning error of 1.12m and with 75% of the poses with 

error below 1.5m in a 3.75km path around the main campus of 

the Federal University of Espírito Santo. 

I. INTRODUCTION 

We, humans, can easily memorize images of places where 

we have been and labels associated with them, such as road 

names, addresses, etc. We can also remember the relative 

positions between places when seeing their images again, 

and track our self-movement through the environment only 

using images. In this work, we present a novel approach to 

image-based mapping, global localization and position 

tracking based on Virtual Generalizing Random Access 

Memory (VG-RAM) weightless neural networks (VG-RAM, 

for short) [1], dubbed VIBML (VG-RAM Image-Based 

Mapping and Localization, Fig. 1). VIBML mimics humans’ 

abilities of learning about a place and of recognizing the 

same place in a later moment. It also mimics humans’ ability 

of tracking self-movement through the environment using 

images.  

VIBML solves the mapping, global localization and 

position tracking problems using camera images only.  In 

robotics, the mapping problem consists in creating a 

representation of the environment, while the localization 
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problem consists in determining the robot’s position with 

respect to the map [2]. The localization problem can be 

divided in global localization, position tracking and the 

kidnapped robot problem (not treated here) [2]. In the global 

localization problem, the initial robot’s position is unknown; 

i.e. the robot is initially somewhere in its environment, but it 

lacks knowledge of where it is. In the position tracking 

problem, the robot keeps track of its position over time, once 

the initial robot’s position is determined. 

 
As we have already shown in [3], it is possible to perform 

global localization using camera images only. However, 

such approach has a positioning accuracy limited to the 

global position of the robot in the moment of map 

construction. In this work, we present an extended system 

(VIBML) that is able, not only to localize the robot globally, 

but also to correct its position according to the current point 

of view of the robot.  

The system was extended to store three-dimensional (3D) 

landmarks along a learned cockpit view trajectory during the 

map construction. Robot trajectory is assumed to be 

restricted to the acquired cockpit view, and therefore it must 

always follow the same orientation of map construction. 

VIBML performs position tracking by using the learned 3D 

landmarks (stored in the map) to search for 3D landmarks in 

currently observed images and uses them to refine the 

robot’s pose. The refinement is achieved by employing an 

Extended Kalman Filter (EKF), which predicts the robot 

state based on a car-like motion model and corrects it using a 
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Fig. 1. Illustration of VIBML performing global localization and 
position tracking around the UFES’ campus. VIBML uses previously 

learned image-pose pairs stored in a neural map to estimate global 

poses (red cars) from currently observed images. VIBML’s neural 
position tracking keeps a smooth trajectory (green dots), even in case 

of global localization failure (purple car). 

 



  

landmark measurement model. 

This paper presents two major contributions: firstly, it 

describes a system of fundamental importance for 

autonomous robotic systems that don't have access to GPS 

signal, but do have access to pre-labeled images with 

coordinates information such as Google Street View; 

secondly, it integrates several well known methods in one 

novel system for image based mapping and localization. 

We evaluated the performance of VIBML on the 

localization of an autonomous car using a set of mapping 

and localization experiments with real-world datasets. These 

datasets consist of data acquired from several sensors during 

laps (a 3.57 km long circuit) performed by our autonomous 

car around the campus of the Universidade Federal do 

Espírito Santo – UFES (Federal University of Espírito Santo, 

Brazil). Our experimental results showed that VIBML is 

able to localize robots on large maps of real world 

environments with accuracy equivalent to state of the art 

methods, like Occupancy Grid Mapping (OGM) with Monte 

Carlo Localization (MCL) [2]. VIBML was able to localize 

our autonomous car with average positioning error of 1.12 m 

and with 75% of the poses with error below 1.5 m. 

II. BACKGROUND 

Much of the work in robotics vision in the last decade 

relied in visual features with certain degree of invariance to 

affine transformations [4][5] to provide robust landmarks for 

mapping and localization [6][7]. Se et al. [6], for instance, 

developed a vision-based SLAM algorithm for indoor 

mobile robots using stereo and Scale-Invariant Feature 

Transform (SIFT) [4]. Both approaches [6][7] (and many 

similar ones) are mainly conceived as map-based indoor 

localization and may not be suitable for large outdoor 

environments. 

Several other works focused in situations in which only 

the initial position of the robot is given. In the seminal work 

of Nister et al. [8], visual features present in pairs of 

consecutive video frames are matched so that the camera 

motion can be estimated from the feature tracks, in a 

technique called visual odometry. Geiger et al. [9] developed 

a system where a sparse feature matcher was used in 

conjunction with a visual odometry algorithm for generating 

maps of consistent 3D point-clouds. In spite of their 

capabilities for visual odometry and/or map construction, 

none of these techniques are suitable for global localization. 

In more recent work, Cummins et al. [10] presented FAB-

MAP, which is an appearance-based SLAM similar to 

VIBML, since it allows for continuous global localization by 

retrieving a previously learned image from the current 

image. In SeqSLAM [11], Milford et al. described a state-of-

the-art appearance-based SLAM that estimates the best 

matching candidate within a segment of a sequence of 

previously seen images from a given image. This approach 

can handle extreme conditions of environment appearance, 

even for long running distances. Recently, Majdik et al. [12] 

developed a system that globally localizes a micro aerial 

vehicle in urban environments using images captured by a 

single onboard camera. A histogram-voting scheme is used 

to match those images with georeferenced data provided by 

Google Street View. In spite of their capabilities for global 

localization, none of these techniques deal with the position 

tracking problem.  

III. VG-RAM IMAGE-BASED MAPPING AND LOCALIZATION 

(VIBML) 

 VIBML is an extension of the image-based global 

localization approach based on VG-RAM that we presented 

previously in [3]. VIBML integrates global localization and 

position tracking into a single solution to provide smooth 

and reliable trajectory estimation. VIBML comprises three 

main subsystems (Fig. 2): VG-RAM Image-Based Mapping 

(VIBM), VG-RAM Image-Based Global Localization 

(VIBGL), and VG-RAM Image-Based Position Tracking 

(VIBPT).  

 The VIBM subsystem (red contour in Fig. 2) is 

responsible for creating a map of the environment. VIBM 

extends the map representation used in [3] to incorporate 3D 

landmarks detected on images along a map-making 

trajectory. These 3D landmarks are used for performing 

position tracking. Firstly, VIBM receives images of the 

environment, captured by the robot’s stereo camera, along 

with the robot’s global poses where the images were 

captured. Subsequently, it detects characteristics points on 

the received images and computes their 3D positions (3D 

landmarks) using the distance information obtained from 

depth maps. These depth maps are computed by a stereo 

matching algorithm [9]. Finally, VIBM learns images, 

associated global poses and landmarks’ positions by 

employing the VG-RAM architecture described in [3]. This 

VG-RAM architecture builds a Neural Map of the 

 
Fig. 2. VIBML system architecture. The VIBM subsystem (red 

contour) is responsible for mapping (it uses a VG-RAM to learn 
triples consisted of images, global poses and 3D landmarks sets which 

represents a place). The VIBGL subsystem (also in red contour) is 

responsible for the system start up and continuous global localization 
(it basically recoveries global poses from VIBM's VG-RAM) . The 

VIBPT subsystem (green contour) is responsible for correcting the 

global pose estimation and for keeping track of new poses over time. 
 



  

environment, which is represented by the contents of the 

memories of the VIBM’s VG-RAM neurons. 

The VIBGL subsystem (also in red contour in Fig. 2 - 

described in [3]) is responsible for the system start up and 

continuous global localization. It receives images of the 

environment and uses the previously acquired knowledge – 

the Neural Map – to retrieve the robot´s global poses and the 

associated landmarks’ positions referent to the place where 

the images were captured during the map construction. 

The VIBPT subsystem (green contour in Fig. 2) is 

responsible for correcting the VIBGL’s estimates of the 

robot's global pose, and for keeping track of the precise 

poses of the robot over time. It employs an EKF [13] to 

integrate sensor readings over time through consecutive 

steps of state prediction and correction.  

The state prediction step is performed by means of our 

robot’s motion model, which obeys Ackermann kinematics 

[14]. The robot’s motion model uses velocity and steering 

angle information, computed from images using visual 

odometry [9], to estimate the robot pose over time.  

The state correction step is performed by means of a 

measurement model and operates in two phases. In the first 

phase, VIBPT corrects the robot’s local pose by fusing the 

predicted local pose with the global pose estimated by 

VIBGL. This procedure ensures that the local pose error is 

bounded by the global pose error. In the second 

phase, VIBPT receives the current image of the environment 

and queries VIBGL for the most similar image in the Neural 

Map. The 3D landmarks associated with the retrieved image 

are projected by VIBPT to the camera’s coordinate system. 

Subsequently, VIBPT searches for the projected landmarks 

in the current image of the environment using a visual search 

mechanism based on VG-RAM [15]. Once the 

correspondences are found, VIBPT computes their 3D 

positions (3D observations) using a depth map computed by 

a stereo matching algorithm [9]. Finally, VIBPT corrects the 

robot’s pose using the 3D observations as reference (more 

details in Section III.D) 

A. VG-RAM Weightless Neural Network 

The VG-RAM is a very effective machine learning 

technique that offers easy implementation and fast training 

procedure [1]. A basic network architecture comprises two 

layers: an input layer and a neural layer. Differently from 

weighted neural networks, that store knowledge in their 

synapses, in VG-RAM each neuron of a neural layer has a 

set of weightless synapses S = {s1, …, sp}. The data read 

from the input layer through the synapses are transformed in 

a vector of bits I = {i1, …, ip} (one bit per synapse) using a 

synapse mapping function that transforms non-binary values 

from the input layer in binary values. 

During VG-RAM training, an input pattern j and its 

expected output label tj are set in the input layer and the 

output of the VG-RAM neural layer respectively. Firstly, 

each neuron extracts a binary input vector Ij from the input 

layer, via its set of synapses S (one bit per synapse). 

Secondly, the expected output label tj is set in the output of 

the corresponding neuron in the neural layer. Finally, this 

input-output pair Lj = (Ij, tj) is subsequently stored into the 

neuron’s memory, which works as a look-up table. 

During VG-RAM test, an input pattern is set in the input 

layer and each neuron extracts a binary input vector I from 

the given input pattern via its set of synapses S. The neurons 

subsequently use I to search and find, in their memory, the 

input Ij, belonging to the learned input-output pairs Lj = (Ij, 

tj) that is the closest (using hamming distance) to the I vector 

extracted from the input layer. Finally, the output of the 

neuron receives the label value tj of this Lj input-output pair.  

For a better explanation of the VG-RAM applied to image 

classification please refer to [3], and for basic concepts of 

VG-RAM please refer to [1]. 

B. VG-RAM Image-Based Mapping (VIBM) 

The VIBM subsystem employs a VG-RAM architecture 

that captures holistic and feature-based aspects of input 

images by using two different synaptic interconnection 

patterns [3]. Basically, VIBM learns associations between 

input images,   , from the environment, the robot’s global 

poses, and 3D landmarks, that are visible in the images. Let 

   be the robot global pose associated with   , and    be the 

set of 3D landmarks associated with   . Let also 

T = {T1, …, Tj, ..., T|T|} be a set of triplets Tj = (  ,   ,   ) 

presented to VIBM. In the mapping phase (or training), the 

   of each triplet Tj is set as the VIBM’s input image and the 

corresponding index j is copied to the output of each neuron 

of VIBM’s Neuron Layer. Then, all neurons are trained to 

output j when sampling from    with their synapses.  

1) Detection of 3D Landmarks  

To select 3D landmarks in the images, the VIBM 

subsystem employs the iLab Neuromorphic Tookit Vision 

C++ Tool (iNVT) [16]. We use the iNVT neuromorphic 

model because it is inspired in the human visual attention, 

which fits well with our neural based system. This model 

estimates scene elements (points) that are likely to attract the 

attention of human observers. These elements are considered 

the characteristic points or saliencies of an image. 

Fig. 3 illustrates the detection of characteristic points on an 

image. Given an input image (Fig. 3 (a)), the sky is removed, 

and after the iNVT’s visual attention model computes an 

initial saliency map (Fig. 3 (b)). This saliency map is a 

combination of color, intensity and orientation feature-maps 

that are represented as local discontinuities of an image in 

these modalities. A winner-take-all neural network detects 

the point of highest contrast in the salience map and draws 

the focus of attention towards this point (or saliency) (green 

circles in Fig. 3 (c)). For each shift of attention, an inhibition 

process in the saliency map (Fig. 3 (b)) is performed to 

prevent the detection of the same salience twice. After this 

inhibition process, the saliency map (Fig. 3 (b)) is updated 

(the next salient point is highlighted) and the above steps are 

repeated until a certain number of saliencies are selected (all 

circles of Fig. 3 (c)). Saliencies detected on dynamic objects 

(like vehicles or pedestrians) should be discarded. Therefore, 



  

a threshold proportional to the vehicle's displacement 

between two image frames is used to drop saliencies that 

have a relative movement greater than of the vehicle 

displacement. 

 
To compute the 3D positions of detected saliencies, 

VIBM employs the Library for Efficient Large-scale Stereo 

Matching (LIBELAS) [9]. Given a pair of stereo images, 

LIBELAS computes a depth map (Fig. 3 (d)). By using the 

information of distance stored in the depth map and the 

stereo camera’s projective parameters, VIBM can compute 

the 3D positions of the saliencies (i.e. the 3D landmarks that 

are later used for position tracking).  

C. VG-RAM Image-Based Global Localization (VIBGL) 

To perform the global localization, the VIBGL subsystem 

uses the same VIBM’s VG-RAM architecture [3]. As a 

matter of fact, the VIBGL is only the representation of the 

VIBM’s architecture test phase. Given a query image, 

VIBGL infers a robot’s global pose based on the previously 

acquired knowledge – the Neural Map. For that, the query 

image is set as VIBGL’s input image and all neurons 

compute their outputs, which are values of j used during 

training. Different neurons may vote for different values of j, 

so the most voted value of j is used for determining the 

output of VIBGL (global pose,   , and the 3D landmark set 

  ). 

D. VG-RAM Image-Based Position Tracking (VIBPT) 

A major restriction of VIBGL is that it estimates the 

robot’s global pose using previously acquired knowledge – 

the Neural Map – without performing any correction on the 

global localization error inherent to the estimated robot's 

global pose. 

In the mapping phase, when VIBGL builds its internal 

representation of the environment (using the VIBM 

architecture), it learns that a particular input image, Ij, was 

captured at global pose Gj. After that, in the localization 

phase, when another arbitrary Ii, similar to the Ij, is presented 

to VIBGL, it outputs that the inferred image global pose is 

exactly Gj. Nevertheless, this is not necessarily true, since 

the Ii may have been captured at Gi that is slightly different 

from the VIBGL’s outputted Gj (Fig. 4). This emphasizes 

the fact that the estimated Gj may usually need to be 

corrected to best approximate the real Gi. 

 
In order to provide a more reliable and precise robot pose, 

we built the VIBPT subsystem, which integrates the 

VIBGL’s estimated global poses and the matching of 3D 

landmarks previously stored in the map with 3D observation 

correspondences. For that, VIBPT employs an EKF [2].  

1) Localization with EKF 

EKF is a recursive filter that estimates the state of a non-

linear system [13]. At a given time, it uses its knowledge 

about the previous system’s state and sensor measurements 

to estimate the new system’s state and the covariance matrix 

of the estimation error. In this work, we used the EKF in the 

context of robot localization [2].  The EKF was implemented 

employing the Bayesian Filtering Library (BFL [17]).  

The system state transition model [2] of our EKF 

implementation was defined by means of the velocity 

motion model of a car-like robot. This velocity motion 

model considers the kinematics of a car-like robot [14] and 

assumes that we can control it through translational velocity 

(   and steering wheel angle (   commands (   (    ) 

computed from visual odometry [9].  

The measurement model of our EKF implementation was 

split in two phases. In the first phase, we use a simple linear 

measurement model [13] with additive Gaussian noise to 

fuse the robot’s global pose (estimated by VIBGL) with the 

local pose (estimated by VIBPT in the EKF state prediction 

step). Thereby, VIBPT can reduce the local pose drift over 

time and can limit the uncertainty about the local pose 

within the global pose error. In the second phase, we employ 

a landmark measurement model [2] that uses the 3D 

landmarks stored in the Neural Map and their 3D observation 

correspondences (found by visual search [15]) to update the 

local pose. For this, the landmark measurement model 

computes two measurement vectors: (i) the expected 

measurement vector, represented by the distance and angle 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Detection of 3D landmarks. (a) Scene image. (b) Initial 

saliency map computed by iNVT. (c) Image saliencies detected by 

iNVT. (d) Depth map computed by LIBELAS. 

 
Fig. 4. Error in the global pose of an image estimated by VIBGL. 
Given a query input image, Ij, the global pose, Gj, (associated with 

previously learned Ij) estimated by VIBGL may not represent the true 

Gi, because the images may have been acquired from different points 
of view. 



  

between the local pose and the 3D landmark pose stored in 

the Neural Map; and (ii) the observation measurement vector, 

represented by the distance and angle between the local pose 

and the 3D observations. Finally, the expected measurement 

and observation measurement vectors are used by the EKF's 

landmark measurement model [2] to correct the local poses 

proportionally to the displacement between them. 

2) Visual Odometry 

VIBPT employs the Library for Visual Odometry 2 

(LIBVISO2) [9] to compute    (    . LIBVISO2 

estimates the relative displacement between two consecutive 

positions of a camera over time using the stereo images 

captured in these positions. Given the displacement between 

two consecutive camera poses    can be computed by: 

   
√  

     
 

  
 and     atan2 ( 

  

  
 | |), ( 1 ) 

where    and    are the relative displacements in the   and 

  coordinates, respectively,    is the displacement in the 

orientation, L is the distance between the front and rear 

wheels’ axles and    is the time between two image 

captures. 
3) Visual Search of Landmarks 

Fig. 5 shows how the VIBPT system performs the 

matching between the 3D landmarks previously stored in the 

Neural Map with the 3D observations currently made by the 

robot's camera. 

 
Firstly, VIBPT queries VIBGL for the most similar image 

(left image in Fig. 5), along with its respective 3D landmarks 

(blue sphere in Fig. 5), to the image currently seen by the 

robot (right image in Fig. 5). Subsequently, VIBPT 

reprojects the 3D landmarks outputted by VIBGL back to 

the camera’s coordinate system (left-blue arrow in Fig. 5) in 

order to obtain the 2D coordinates of the characteristic 

points. Finally, it searches for these characteristic points in 

the image seen by the robot (green arrow in Fig. 5). The 

search (referred as visual search) is performed using a 

biological inspired detector, also based on VG-RAM [15]. 

Once the correspondences for each characteristic point are 

found, VIBPT computes their 3D positions (right-blue arrow 

in Fig. 5), i.e. the 3D observations represented as a red 

sphere in Fig. 5, using the depth map computed by the 

LIBELAS stereo matching algorithm [9]. 

a) VG-RAM Architecture for Visual Search 

Fig. 6 shows an example of a training instance of our VG-

RAM architecture for visual search [15]. 

 
In Fig. 6, the network is trained to detect the curb of the 

street on the image. Fig. 6 (a) shows the training image with 

the center of attention marked with a green dot; Fig. 6 (b) 

shows the log-polar mapping of the VG-RAM’s input onto 

the network neural layer; and Fig. 6 (c) shows the output of 

the neural layer after training. As Fig. 6 (c) shows, neurons 

with receptive field over or near the center of attention are 

trained to produce outputs with values higher than zero 

(white or gray), while those with receptive field far from the 

center of attention are trained to output zero (black). 

Fig. 7 shows an example of a test instance of our VG-

RAM architecture for visual search, where neurons of the 

network, trained to detect the curb, generate their outputs 

according to the image region monitored by their receptive 

fields. Fig. 7 (a) shows the test image with the found center 

of attention marked with a green dot and Fig. 7 (b) shows the 

output of the VG-RAM’s neural layer. As  Fig. 7 (b) shows, 

neurons with the centre of their receptive fields over or near 

the centre of attention generate higher outputs. 

 
4) Outlier Removal 

Although the VIGBL subsystem usually estimates global 

poses with an acceptable accuracy, it might sometimes 

predict a global pose that is far from the actual robot´s global 

pose. Such a wrong prediction causes a bad measurement 

integration in the VIBPT's linear measurement model. To 

minimize this issue, the Outlier Removal considers the three 

global pose estimations of VIBGL with higher confidence 

value to choose the best,  (  , to be used in the linear 

measurement model. The best pose is defined as the closest 

global pose to the current local pose, as in Equation ( 2 ): 

 (          
           

 (√(       
  (      )

 
 )

 
 ( 2 ) 

 
Fig. 5. Visual Search of  3D landmarks (stored in the Neural Map) in 
the image currently observed by the  robot. 

   
(a) (b) (c) 

Fig. 6. Example of a training instance of the VG-RAM architecture 
for visual search. (a) Training image and characteristic point to search 

for (green dot).  (b) Log-Polar centered in the characteristic point of 

(a). (c) Neurons activation. 

 

  
(a) (b) 

Fig. 7. Example of a test instance of our VG-RAM architecture for 

visual search. 



  

where,   ,   ,   , and    are the position components of 

the global pose   and the current local pose   respectively.  

Hence, the smaller the Euclidean distance between the 

VIBGL's estimated global pose,  , and the previous 

VIBPT's estimated local pose,  , is, the greater are the 

chances of   being the best global pose estimation,  (  . If 

the distance between these two poses is larger than a pre-

defined threshold, there is a high chance of the estimated 

global pose,  , being an outlier and, therefore, it is 

considered an global localization failure and it is discarded 

by the system. Note that, the global localization failure is 

different from the global localization error. The latter is the 

error attributed to the difference between the current robot 

pose and the global pose retrieved by the VIBLG (i.e. the 

pose when the map was constructed). 

IV. EXPERIMENTAL METHODOLOGY 

A. Autonomous Robot Platform 

We collected the data to evaluate the VIBML system’s 

performance using the Intelligent and Autonomous Robotic 

Automobile (IARA) [3] developed at the Laboratório de 

Computação de Alto Desempenho – LCAD (High-

Performance Computing Laboratory – www.lcad.inf.ufes.br) 

of UFES. 

To build the datasets used in this work, we used IARA’s 

frontal Bumblebee XB3 left camera to capture images 

(640x480 pixels), and IARA’s Occupancy Grid Mapping - 

Monte Carlo Localization (OGM-MCL) system to capture 

associated global poses.  The OGM-MCL system fuses 

visual odometry pose, Global Positioning System (GPS) 

pose and Inertial Measurement Unit (IMU) data from 

IARA’s sensors into a precise fused odometry using a 

Particle Filter [2], and localizes the robot on a previously 

created occupancy grid map. The OGM-MCL system uses 

the fused odometry and the robot’s motion model (suitable 

for car-like robots with Ackermann steering [14]) to predict 

the robot’s pose, and correct it by performing a probabilistic 

matching between the IARA’s Velodyne HDL-32 data with 

the data registered in the grid map. 

B. Datasets 

For the experiments, we have used two laps data acquired 

in different dates. For each lap, IARA was driven with an 

average speed of about 30 km/h around the UFES campus. A 

full lap around the campus has an extension of about 3.57 

km (Fig. 1). During the laps, image and robot’s global pose 

data were synchronously acquired within 1-meter interval 

between global poses. 

The first lap data was recorded in October 3
rd

 2012 

(UFES-2012), while the second lap data was recorded in 

April 18
th

 2014 (UFES-2014). The difference in days 

between the recording of the first and the second lap data is 

almost two years. Such time difference resulted in a 

challenging testing scenario, since it captured substantial 

changes in the campus environment. Such changes include 

differences in traffic conditions, number of pedestrians, and 

changes in lighting condition. Also, there were substantial 

building infrastructure modifications alongside the roads in 

between dataset recording.  

For a detailed description of the datasets mentioned 

above, and how the world changed between the two years,  

please refer to [3]. These datasets are available at 

http://www.lcad.inf.ufes.br/log.  

V. EXPERIMENTS 

In this section, we show and discuss the outcomes of our 

experiments. We present the experiments performed to 

evaluate VIBML in two parts: (i) comparison of positioning 

error using position tracking plus global localization (VIBPT 

subsystem) and using global localization only (VIBGL 

subsystem); and (ii) comparison between VIBML's overall 

performance and the OGM-MCL system. 

The experiments used to evaluate the VIBGL subsystem 

are thoroughly described in [3]. 

A. Positioning Error 

To compare the positioning error of VIBPT and VIBGL, 

we run a set of experiments using the 1-meter spacing 

UFES-2012 and UFES-2014 datasets [3] for training and 

testing, respectively. 

We measured the positioning error of VIBPT and VIBGL 

by means of how close their estimated trajectories are to the 

trajectory estimated by the OGM-MCL system (our ground 

truth). For this, we measured the Euclidean distance between 

VIBPT and VIBGL trajectories to the trajectory estimated 

by the OGM-MCL system. We considered the distance 

between each pose estimated by VIBPT or VIBGL to the 

closest pose estimated by OGM-MCL.  

Fig. 8 shows the comparison between VIBPT’s and 

VIBGL’s positioning error. In Fig. 8, the results are shown 

as box-plots having mean, inter-quartile range and whiskers 

of the error distribution for VIBPT and VIBGL. 

 
As shown in Fig. 8, if we use VIBPT, the positioning 

error decreases of about 0.6m. The reason is that the 

estimated global pose is corrected by means of the matching 

of map-stored landmarks with observation correspondences. 

As consequence, the uncertainty about the robot's pose 

reduces (the positioning error of more than 75% of the 

VIBPT’s poses are below the VIBGL’s average positioning 

error) and the VIBPT’s positioning error becomes smaller 

than the VIBGL’s positioning error. 

 
Fig. 8. Comparison between VIBPT’s and VIBGL’s positioning error. 
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B. Localization Performance 

To show the equivalence between the VIBML system and 

the OGM-MCL system, we evaluated the localization 

performance of both systems independently. For this, we 

measured the localization performance of both systems by 

means of the localization noise and the localization 

displacement between the running of the two systems on the 

UFES-2012 dataset and UFES-2014 dataset. 

1) Localization Noise  

   To compare the localization noise of VIBML and OGM-

MCL, we run a set of experiments using the 1-meter spacing 

UFES-2012 dataset [3] for mapping and localization. 

Firstly, we recorded the OGM-MCL estimated poses by 

running OGM-MCL 10 times along the UFES’ campus 

trajectory and storing the estimated poses,    
, for each one 

of the individual laps,                   . 
Subsequently, for each pose    

 of     , we measured the 

Euclidean distance between    
 and the corresponding pose 

    of lap     ,    , and calculated the average and 

standard deviation of these distances. Finally, we calculate 

the mean of these standard deviations using the Square Root 

of the Pooled (or weighted) Variances (SRPV [18]) as 

defined in Equation ( 3 ): 

      √
 

 
 ∑  

 

 

   

 

 

( 3 ) 

where   is equal to the number of experiments performed 

and    is the standard deviation of the Euclidean distance of 

the estimated poses between the experiment i and i-1. The 

same steps were followed to compute the VIBML’s 

localization noise. 

 
Fig. 9 shows, for OGM-MCL and VIBML, the average of 

the Euclidean distance in meters between each pose    
 of 

lap    and the corresponding pose    
 of lap   , for all 

combinations of laps. In Fig. 9, the horizontal axis represents 

the index, i, of the poses estimated by each system along the 

UFES’ campus trajectory, while the vertical axis represents 

the average of the Euclidean distances. The orange curve 

represent the OGML-MCL's localization noise while the 

blue curve represents the VIBML's localization noise. 

To summarize the results shown in Fig. 9, the localization 

noise (mean of the standard deviations) of both systems were 

calculated using the SRPV metric (Equation ( 3 )). For 

OGM-MCL the localization noise was about 0.16m. It is 

important to note that the resolution of the grid-map of 

OGM-MCL is 0.2m. So, a SRPV of 0.16m highlights the 

good precision of this system. For VIBML the localization 

noise was also calculated using the SRPV metric (Equation ( 

3 )) and was about 0.07m.  

Comparing the curves of both systems in Fig. 9, we can 

see that the localization noise relative to VIBML is 

considerably smaller than the noise relative to OGM-MCL. 

Although the EKF, used in VIBML, and the Particle Filter 

used in OGM-MCL are comparable algorithms, the particle 

filter has a worse performance when used with a number of 

particles lower than or close to 1000 units [19]. In the 

present case, this would explain the higher noise regarding 

OGM-MCL, since its implementation uses only 1000 

particles units. 

2) Localization Displacement 

To compare the localization displacement of VIBML and 

OGM-MCL, we firstly used the 1-meter spacing UFES-2012 

dataset,  to build one occupancy grid map,      , and one 

neural map,      , for the OGM-MCL and VIBML systems 

respectively. Secondly, we used the 1-meter spacing UFES-

2014 dataset to build one more occupancy grid map,      , 

and one more neural map,      , for OGM-MCL and 

VIBML systems respectively.  

Subsequently, using the built maps, we tested both of the 

systems using the UFES-2014 dataset for localization. For 

this, we ran the OGM-MCL's localization on the      and 

      maps, and generated two trajectories,      
   and      

  . 

And after, we run the VIMBL's localization on maps       

and      , and generate two trajectories      
   and      

  . 

Finally, we computed the localization displacement of the 

systems by measuring the average of the Euclidean distance 

between the two trajectories (     
   and      

  )  estimated by 

OGM-MCL  and the two trajectories (     
   and      

  ) 

estimated by VIBML. 

 
Fig. 11 shows the localization displacement of OGM-

MCL. In Fig. 11, the horizontal axis represents the index, i, 

of the poses along the UFES-2014 trajectory, while the 

vertical axis represents the Euclidean distance in meters 

between the two estimated trajectories (     
   and      

  ). 

 To summarize the results shown in Fig. 11, we used the 

average of the Euclidean distance between the poses. We 

found that the localization displacement of OGM-MCL is 

about 2.40m. 

Fig. 12 shows the localization displacement of VIBML. In 

 
Fig. 9. Localization noise of both systems. OGM-MCL’s localization 

noise is show in orange curve. VIBML's localization noise using 
UFES-2012 dataset for mapping and localization. 

 
Fig. 11. OGM-MCL’s localization displacement.  

 



  

Fig. 12, the horizontal axis represents the index, i, of the 

poses along the UFES-2014 trajectory, while the vertical 

axis represents the Euclidean distance in meters between the 

two estimated trajectories (     
   and      

  ). 

To summarize the results shown in Fig. 12, we used the 

average of the Euclidean distance between the poses. We 

found that the localization displacement of VIBML is about 

2.61m. 

 
Comparing the curve signature of graphs in Fig. 11 and in 

Fig. 12, as well as the average of Euclidean distance of both 

systems, it is possible to observe that the two systems are 

equivalents. Although the localization displacements are 

bigger than 2m in both cases, this is an expected result for 

this kind of experiment because it focus on behaviour of the 

displacement over time and not on its absolute value. This is 

due to the fact that although the vehicle performs the same 

route in 2012 and 2014, it does not accomplish exactly the 

same trajectories (i.e. it might have slightly different poses 

in the same point of the route). As can be seen in both 

graphs, the curves are mostly the same for the whole 

trajectory. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we presented a new image-based mapping, 

global localization and position tracking approach based on 

VG-RAM weightless neural networks.  After testing VIBML 

using a set of mapping and localization experiments with 

real-world datasets, results showed that VIBML is able to 

localize robots on large maps of real world environments. 

Our image-based system was able to localize an autonomous 

car in a circuit of 3.57km with accuracy equivalent to the 

state of the art OGM-MCL method, which uses LIDARs and 

grid-maps for localization. VIBML localized our 

autonomous car with average positioning error of 1.12m and 

with 75% of the poses below 1.5m error. In addition, the 

position tracking functionality of VIBML decreased the 

positioning error of the previous VIBGL’s system [3]  by 

0.6m. 

 Although VIBML presented a good performance in 

regards to position tracking, it has shortcomings, including: 

unreliable initialization, since in 5% of the cases (as showed 

in [3]) the global localization might fail; and the poor time 

performance as a whole, since we were interested in a proof 

of concept and therefore we have not put effort on 

optimizing the filters used.  

Directions for future work include to address the issues 

raised above, and to extend the VIBML to perform 

localization in widely used image-maps like Google Street 

View. 
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