
 

 

 

 

Abstract—Mapping and localization are fundamental 

problems in autonomous robotics. Autonomous robots need to 

know where they are in their area of operation to navigate 

through it and to perform activities of interest. In this paper, we 

propose an Image-Based Global Localization (VibGL) system 

that uses Virtual Generalizing Random Access Memory 

Weightless Neural Networks (VG-RAM WNN). For mapping, 

we employ a VG-RAM WNN that learns the world positions 

associated with the images captured along a trajectory. During 

the localization, new images from the trajectory are presented to 

the VG-RAM WNN, which outputs their positions in the world. 

We performed experiments with our VibGL system applied to 

the problem of localizing an autonomous car. Our experimental 

results show that the system is able to learn large maps (several 

kilometers in length) of real world environments and perform 

global localization with median pose precision of about 3m. 

Considering a tolerance of 10m VibGL is able to localize the car 

95% of the time. 

I. INTRODUCTION 

APPING and localization are fundamental problems in 

autonomous robotics. Autonomous robots need to 

know where they are in their area of operation to 

navigate through it and to perform activities of interest. 

Therefore, they need maps of the environment and the ability 

to localize themselves in these maps using sensor data.  

The Simultaneous Localization And Mapping (SLAM) 

problem [1] consists of organizing and/or transforming sensor 

data to create precise representations of the environment, i.e. 

maps, given a series of robot estimated positions and 

associated sensor data about the environment. A SLAM 

system addresses not only the localization, but also the 

mapping problem simultaneously. Many probabilistic 

approaches have been proposed to solve the mapping, 

localization, and SLAM problems [1]; however, some 

instances of these problems are more difficult to solve than 

others. Global localization, for example, is more challenging 

than position tracking [1], and mapping and localization are 

currently harder to perform with cameras than with Light 

Detection and Ranging (LIDAR) laser systems. Nevertheless, 
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global localization is of fundamental importance for 

autonomous robotic systems that might be turned on 

anywhere in their area of operation (e.g., autonomous cars). 

Because cameras are much cheaper than LIDAR, the 

development of efficient localization and mapping techniques 

based on cameras is relevant for more widespread use of these 

techniques. 

In this paper, we present a new Image-Based Global 

Localization approach employing Virtual Generalizing 

Random Access Memory (VG-RAM [2]) Weightless Neural 

Networks (WNN) for mapping and localization, dubbed 

VibGL (Fig. 1). VibGL efficiently solves the global 

localization problem using camera images, but it does not 

map the environment and simultaneously localizes the robot 

(it is not a SLAM system)[1]. Instead, it firstly learns a map of 

an environment using camera images and sensors‟ data, and 

later, it localizes the robot in this environment using camera 

images only. Humans are capable of easily memorizing 

images of places and labels associated with them (road 

names, addresses, etc.) as well as trajectories defined by 

sequences of images and corresponding poses. In later 

moments, they are able to remember labels or poses when the 

same images are seen again. Similarly, in the mapping phase, 

VibGL firstly receives images of the environment as well as 

positions (labels) where the images were captured using other 

sensors‟ data. Subsequently, it learns associations between 

images and positions that are used as a map of the 

environment. In the localization phase, VibGL receives 

images of the environment and uses previously acquired 

knowledge – "the map" – to output the positions representing 

the places the system believes these images were captured. 

We have tested VibGL with a set of mapping and 

localization experiments using real-world datasets. These 

datasets consist of data from various sensors acquired 

systematically during laps performed by an autonomous car 

in a 3.57 km long circuit. These datasets were constructed for 

this work and are made publicly available with the 

corresponding ground-truth. Our results have shown that 

VibGL achieves 95% precision in real world settings with a 

tolerance error of about 10 meters. 

This paper is organized as follows. After this introduction, 

in Section II, we present an overview of the related work. In 

Section III, we present a brief introduction of the neural 

network we employ, VG-RAM WNN. In Section IV, we 

explain our method for image-based global localization using 

VG-RAM WNNs. In Section V, we describe our 
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experimental methodology and, in Section VI, we analyze our 

experimental results. Our conclusions and directions for 

future work follow in Section VII. 

 

II. RELATED WORK 

Much of the work in Robotics Vision in the last decade 

relied in visual features with certain degree of invariance to 

affine transformations [3, 4] (e.g. rotation, translation, scale) 

for providing robust landmarks for mapping and localization 

[5, 6]. Se et al. [5], for instance, developed a vision-based 

indoor mobile robot SLAM algorithm using stereo and SIFT, 

while Wolf et al. [6] used invariant features based on image 

histograms for indoor localization using cameras. Both 

approaches (and many similar ones) are mainly conceived as 

map-based indoor localization and may not be suitable for 

large outdoor environments, as our approach is. In addition, 

they are not able to perform continuous global localization as 

VibGL does.  

Several more recent work focus in situations in which only 

the initial position of the robot is given. In the seminal work 

of Nister et al., for example [7], visual features present in 

pairs of consecutive video frames are matched and estimation 

of the camera motion is computed from the feature tracks. 

This technique (named visual odometry) is very useful to 

estimate the motion of a mobile system; however, visual 

odometry does not keep a map of the environment. Davison et 

al., in another seminal work [8], developed a SLAM 

algorithm that tracks a large set of image features from 

monocular or stereo video and builds a 3D map of features. 

Lategahn et al. [9] also track a large set of features from stereo 

images using an EKF SLAM and compute dense feature maps 

using them. A similar approach was proposed by Geiger et al. 

[10], where a sparse feature matcher in conjunction with a 

visual odometry algorithm were used for generating maps of 

consistent 3D point-clouds. In spite of their capabilities for 

visual odometry and/or map construction, none of these 

techniques is suitable for continuous global localization. 

RatSLAM [11] is a biologically inspired SLAM approach 

that uses a simplified visual odometry in addition to 

appearance-based image template-matching for building 

maps consisting of simulated cells activations. The system 

performance was evaluated on a 66 km long urban street, with 

many loops. Results showed that RatSLAM is capable of 

building maps online, close loops and re-localize through 

sequences of familiar visual scenes, i.e. it is capable of global 

localization; however, this global localization requires 

several image frames.  

RatSLAM was tested in conjunction with FAB-MAP [12] 

that is another appearance-based SLAM. FAB-MAP [13] is 

similar to our work, since it allows continuous global 

localization by detecting that an image is similar to a 

previously learned image. However, FAB-MAP is based in 

the bag-of-words image retrieval systems developed in the 

computer vision community [14] and its learning is costly, 

while VibGL is based on WNN that learns in one shot. 

SeqSLAM [15] is another state-of-the-art appearance-based 

SLAM that calculates the best candidate matching of an 

image within a segment of a sequence of previously seen 

images. Although this approach can handle normal and 

extreme conditions in environment appearance even for long 

running distances, it is not capable of continuous global 

localization as VibGL is.  

III. VG-RAM WNN 

VG-RAM WNN is a very effective machine learning 

technique that offers easy implementation and fast training 

procedure, thanks to its simplicity [2]. Such neural networks 

comprise a set of neural layers composed of VG-RAM 

neurons connected to other layers through synapses. 

A basic network architecture comprises two layers: an 

input layer and a neural layer. Differently from weighted 

neural networks, that store knowledge in their synapses, in 

VG-RAM WNNs each neuron of a neural layer has a set of 

weightless synapses S = {s1, …, sp}. The data read from the 

corresponding input layer through the synapses are 

transformed in a vector of bits I = {i1, …, ip} (one bit per 

synapse). Each bit of this vector is computed using a synapse 

mapping function that transforms non-binary values from the 

input layer in binary values.  

The VG-RAM WNN neurons store knowledge in private 

local memories that work as look-up tables and keep sets 

L = {L1, …, Lj, …, Lm} of pairs Lj = (Ij, tj), where Ij is a binary 

input vector and tj is its corresponding output label. The 

binary input vectors are extracted from the input layers via the 

set S of synapses of each neuron, while the output labels t are 

the learned neurons‟ output-values for each binary input 

vector I.  

VG-RAM WNN supervised training and test work as 

follows. During training, an input pattern and its expected 

output pattern are set in the input layer and the output of the 

VG-RAM neural layer respectively. Firstly, each neuron 

 
Fig. 1. Examples of VibGL results for a full lap around the 

Universidade Federal do Espírito Santo (UFES). Images on the left and 

right of each image pair are samples of images received as input and 
returned as output by VibGL respectively. Red cars denote the poses 

estimated by VibGL. Green-marked images are samples of 

true-positives image-pose pairs outputted by VibGL, while the 
red-marked one is a sample of a false-positive.  



 

 

 

extracts a binary input vector I from the input layer, via its set 

of synapses S (one bit per synapse). Secondly, the expected 

output label t is set in the output of the corresponding neuron 

in the neural layer. Finally, this input-output pair L = (I, t) is 

subsequently stored into the neuron‟s look-up table. During 

test, an input pattern is set in the input layer and each neuron 

extracts a binary input vector I from the given input pattern 

via its set of synapses S. The neurons subsequently use I to 

search and find, in their look-up tables, the input Ij, belonging 

to the learned input-output pairs Lj = (Ij, tj) that is the closest 

to the I vector extracted from the input layer. Finally, the 

output of the neuron receives the label value tj of this Lj 

input-output pair. In case of more than one pair Lj with an 

input Ij at the same minimum distance of the extracted input I, 

the output value tj is randomly chosen among them. 

The search for the nearest input in each neuron‟s memory 

is performed sequentially and the distance is measured using 

the Hamming distance. It is important to note that the 

Hamming distance between two binary patterns can be 

efficiently computed at machine code level in current 64-bit 

CPUs and GPUs of personal computers using two 

instructions: one to identify the bits that differ in 64-bit 

segments of the two binary patterns, i.e. a bit-wise 

exclusive-or instruction; and another to count these bits, i.e. a 

population count instruction.  

IV. VG-RAM IMAGE-BASED GLOBAL LOCALIZATION 

VibGL memorizes images and associated poses 

(i.e. "a map") and can later recover the poses from similar 

images of the same environment (localization in the map). 

For that, during training, VibGL learns a map of the 

environment, represented internally by the contents of the 

memories of its neurons, in a way that mimics the human 

ability of learning visual maps. 

A. Overview 

This section describes the core of the VibGL system. 

VibGL is designed to learn a sequence of images and 

associated poses that describes a trajectory according to a 

cockpit perspective. Doing so, it allows for global 

localization considering all learned locations in the 

trajectories, given a single image. Therefore, it can be used as 

a GPS replacement within the learned trajectories, but, 

instead of using satellites for localization, it uses visual cues 

from images. 

B. VibGL Architecture 

The VibGL employs a VG-RAM WNN architecture that 

captures holistic and feature-based aspects of input images by 

using two different synaptic interconnection patterns. Fig. 2 

shows an overview of the VibGL system. 

VibGL uses a single Neural Layer with u × v VG-RAM 

neurons with m-size memory (see Fig. 2). This Neural Layer 

is connected to two input layers, (i) Cropped Input and (ii) 

Gaussian-Filtered Cropped Input, according to two different 

synaptic interconnection patterns, S1 and S2, respectively. 

S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are subsets of 

S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1   S2, where S is 

the set of synapses of each neuron of the VibGL‟s Neural 

Layer.  

 
Each neuron samples the Cropped Input and the 

Gaussian-Filtered Cropped Input in two different ways: 

holistically, with S1; and feature-based, with S2. The set of 

synapses S1 samples the Cropped Input holistically because it 

is defined according to a uniform random interconnection 

pattern that covers the whole Cropped Input; while S2 

samples the Gaussian-Filtered Cropped Input featured-based 

because it is defined according to a Normal distribution 

centered in the position of the neuron mapped to this input 

(see Fig. 2 and [16] for details about the feature-based 

synaptic interconnection pattern). 

 

 
Fig. 2.  Illustration of the VibGL system. VibGL employs a u × v 
VG-RAM WNN Neural Layer of neurons with m-size memory. Each 

neuron is connected to two processed versions of the Input Image 

(Cropped Input and Gaussian-Filtered Cropped Input) through two sets 
of synapses, S1 and S2 (exemplified for one neuron in yellow and 

orange respectively). S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are 

subsets of S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1   S2, where S is the 
set of synapses of each neuron. This set of synapses samples the 

neuron‟s inputs as a vector of bits I = {i1,1, …, i1,p, i2,1, …, i2,q}. The 
Neural Layer shows an example of activation pattern based on the 

binary input vectors I and labels t of the learned pairs L = (I, t). Each 

neuron responds with the label tj associated with the input Ij that is the 
closest to the binary input vector I extracted from the Cropped Input 

and the Gaussian-Filtered Cropped Input. The labels t are indexes to 

geo-tagged images. 



 

 

 

The synaptic mapping function that maps non-binary 

image pixels to binary values is a minchinton cell type-0 [17] 

that works as follows. Each pixel is treated as an integer 

y = b × 256 × 256 + g × 256 + r, where b, g, and r are the 

blue, green and red color channels. The non-binary pixel 

value y read by each synapse is subtracted from the 

non-binary pixel value y read by the subsequent synapse in 

the set of synapses of each neuron, 

S = {s1,1, …, s1,p, s2,1, …, s2,q}. The value read by the last 

synapse, s2,q, is subtracted from the value read by the first, s1,1. 

If a negative value is obtained, the bit corresponding to that 

synapse is set to one; otherwise, it is set to zero. 

The two input layers, Cropped Input and Gaussian-Filtered 

Cropped Input, are processed versions of the Input Image. 

While the Cropped Input is simply a region of interest defined 

in the input image, the Gaussian-Filtered Cropped Input is the 

result of a Gaussian filter applied to this region of interest (see 

Fig. 2 for an example). 

The region of interest was defined in order to remove 

irrelevant pixel information from the input image. In our case, 

the bottom of the image is cropped out to eliminate static part 

of the car roof visible in the field of view of a mounted-on 

camera. The Gaussian filter, in the other hand, is used as a 

low-pass image filter. Since a feature-based synaptic 

interconnection pattern is used to sample this input layer, 

high-frequency attenuation is necessary to remove spurious 

high-frequency information irrelevant for localization. 

During VibGL training, the system learns images and 

associated camera-poses. Let T = {T1, …, Tj, ..., T|T|} be a set 

of pairs Tj = (imagej, posej) presented to VibGL. The imagej 

of each pair Tj is set as the VibGL‟s Input Image and the 

corresponding index j is copied to the output of each neuron 

of VibGL‟s Neuron Layer. Then, all neurons are trained to 

output j when sampling from imagej via Cropped Input and 

Gaussian-Filtered Cropped Input images. After training, the 

index j learned by the neurons can be used for recovering 

posej or imagej. 

During test, given a query image, VibGL infers a pose 

based on the previously acquired knowledge. A query image 

is set as VibGL‟s Input Image and all neurons compute their 

outputs, which are indexes (32-bit integers). Each neuron 

infers an index based on the input binary vectors extracted by 

their synapses. The number of votes for each index is counted 

and the network outputs the index with the largest count.  

V. EXPERIMENTAL SETUP 

This section presents the experimental setup used to 

evaluate the VibGL system. It starts describing the 

autonomous vehicle platform used to acquire the datasets, 

follows presenting the datasets themselves, and finishes 

describing the methodology used in the experiments. 

A. Autonomous Vehicle Platform   

We collected the data to evaluate the performance of the 

VibGL system using the Intelligent and Autonomous Robotic 

Automobile – IARA (Fig. 3). IARA is an experimental robotic 

platform based on a Ford Escape Hybrid that is currently 

being developed at Laboratório de Computação de Alto 

Desempenho (High-Performance Computing Laboratory – 

www.lcad.inf.ufes.br) of Universidade Federal do Espírito 

Santo - UFES (Federal University of Espírito Santo – Brazil).  

 
Our robotic platform has several high-end sensors, 

including: two Point Grey Bumblebee XB3 stereo cameras 

and two Bumblebee 2 stereo cameras; one Light Detection 

and Ranging (LIDAR) Velodyne HDL 32-E; and one 

GPS-aided Attitude and Heading Reference System 

(AHRS/GPS) Xsens MTiG (see Fig. 3). To process the data 

coming from the sensors, the platform has four Dell Precision 

R5500 (2 Intel Xeon 2.13 GHZ, 12 GB  RAM, 2 SSDs of 

120GB on RAID0 and GPU cards Tesla C2050). We 

implemented many software modules for IARA that currently 

allows for its autonomous operation (such as modules for 

mapping, localization, obstacle avoidance, navigation, etc.; 

see video of IARA autonomous operation at 

http://youtu.be/4rFCjrFdR7o and videos about other IARA‟s 

software modules at http://www.youtube.com/user/lcadufes).  

To build the datasets used in this work, we used IARA‟s 

frontal Bumblebee XB3 left camera to capture images 

(640x480 pixels), and IARA‟s fused-odometry module to 

capture associated poses (6 degrees of freedom – 6D). 

IARA‟s fused-odometry module employs a Monte Carlo 

particle filter [1] to fuse sensor data coming from the 

AHRS/GPS and from the visual-odometry module. The 

visual-odometry module employs the LibViso2 library [18] to 

compute IARA‟s basic odometry data (6D pose) from images 

collected from IARA‟s frontal Bumblebee XB3 stereo 

camera. The poses computed by our fused-odometry module 

have precision of about 2.5m (GPS Circular Error Probability 

equals to 2.5m). 

B. Datasets 

For the experiments, we have used two laps data acquired 

in different dates. Basically, for each lap, IARA was driven 

with an average speed of 30 km/h around UFES campus. A 

full lap around the university campus has an extension of 

about 3.57 km. During the laps, image and pose data were 

synchronously acquired. 

 
Fig. 3. Intelligent and Autonomous Robotic Automobile (IARA) with 

the mounted-on Point Grey Bumblebee XB3 camera (marked in green) 

used in experiments. Learn more about IARA at www.lcad.inf.ufes.br. 

http://www.lcad.inf.ufes.br/
http://youtu.be/4rFCjrFdR7o
http://www.youtube.com/user/lcadufes
http://www.lcad.inf.ufes.br/


 

 

 

The first lap data was recorded in October 3
rd

 2012 

(UFES-2012) and comprises a sequence of 15,306 

image-pose pairs, while the second lap data was recorded in 

September 16
th

 2013 (UFES-2013) and comprises a sequence 

of 9,017 image-pose pairs. The difference in days between the 

recording of the first and the second lap data is almost one 

year. Such time difference resulted in a challenging testing 

scenario since it captured substantial changes in the campus 

environment. Such changes includes differences in traffic 

conditions, number of pedestrians, and alternative routes 

taken due to construction work obstructions on the road. Also, 

there were substantial building infrastructure modifications 

alongside the roads in between dataset recording.  

The correspondences between the two lap data were 

established using the Euclidean distance between image-pose 

pairs to define a ground truth. In average, the distances 

between UFES-2012 and UFES-2013 corresponding 

image-pose pairs is 1.56m (σ = ±1.14). To evaluate the effect 

of learning different numbers of images (the more images 

VibGL learns, the more labels it has to differentiate) the lap 

data were sampled at four different intervals: 1m, 5m, 10m, 

and 15m. After sampling the UFES-2012, four datasets were 

created: 1-meter spacing dataset with a total of 2,485 

image-pose pairs, a 5-meter dataset with a total of 639 

image-pose pairs, a 10-meter dataset with 331 image-pose 

pairs, and a 15-meter dataset with 224 image-pose pairs. The 

same was done with the UFES-2013 resulting in four datasets 

with a total of 2,689, 670, 345 and 233 image-pose pairs. All 

datasets mentioned above are available at: 

http://www.lcad.inf.ufes.br/log. 

C. Experimental Methodology 

In order to validate our system, we have run a set of 

localization experiments. The two lap data (UFES-2012 and 

UFES-2013) were divided into training and test datasets. In 

all experiments, the training and test datasets were from 

different dates. One of them was used to teach the system 

about the trajectory (training the system), and the other was 

used to test the accuracy of the system by estimating poses 

along the learned trajectory. We measured the Euclidean 

distance from the estimated pose to the associated ground 

truth pose in the testing set.  

To increase the testing scenario, we have crossed the two 

lap data by running four tests with the 1-meter, 5-meter, 

10-meter, and 15-meter spacing datasets sampled from 

UFES-2012 as training and the 1-meter spacing dataset 

sampled from UFES-2013 as testing, and four tests with the 

1-meter, 5-meter, 10-meter, and 15-meter spacing datasets 

sampled from UFES-2013 as training and the 1-meter spacing 

dataset sampled from UFES-2012 as testing.  

VI. RESULTS AND DISCUSSIONS 

In this section, we show and discuss the outcomes of our 

experiments. The results are presented in four parts: 

classification accuracy; positioning error; true and false 

positives; and finally, qualitative results. 

A. Classification Accuracy 

This subsection shows the relationship between the amount 

of frames learned by the VibGL system and its classification 

accuracy. We measured the system classification accuracy in 

terms of how close the VibGL‟s estimated image-pose pair, 

Te, is to the correct image-pose pair, Tc, for a given query 

image, Tq. The image-pose pairs Te and Tc belong to the 

training dataset, while the image Tq belongs to the test dataset. 

The correct pair, Tc, was defined through the established 

ground truth correspondence with Tq. Ideally, Te is equal to Tc 

if VibGL is correct in its estimate, since both image-pose 

pairs Tc and Te belongs to the training dataset. 

Fig. 4 shows the classification accuracy results obtained 

using UFES-2012 dataset for training and UFES-2013 dataset 

for testing. The vertical axis represents the percentage of 

image-pose pairs Te that were within an established maximum 

number-of-frames distance from the image-pose pair Tc. The 

number-of-frames distance is equal to the amount of 

image-pose pairs that one has to go forward or backwards in 

the training dataset to find Tc from the corresponding Te. The 

horizontal axis represents the number-of-frames distance. 

Finally, the curves of the graph of Fig. 4 show how the 

accuracy increases with the allowed maximum 

number-of-frames distance for the different training datasets. 

  
As the graph of Fig. 4 shows, VibGL‟s classification 

accuracy increases with the maximum allowed 

number-of-frames and reaches a plateau at about 5 frames for 

all training datasets. However, for the UFES-2012 1-meter 

spacing training dataset, the VibGL classification uncertainty 

is large in the beginning of the curve due to the similarity 

between images in the near-by image-pose pairs. If one does 

not accept any system error (number-of-frames allowed equal 

zero), the accuracy is only about 18% when the system is 

trained with the 1-meter spacing dataset. But, if one accepts 

as correct an image-pose pair up to 5 frames ahead or behind 

the correct image-pose pair, Tc, the accuracy increases to 

about 92%. On the other hand, when using a dataset with a 

larger spacing between image-pose pairs for training, the 

system accuracy increases more sharply. For example, when 

the system is trained with the 5-meter spacing dataset, with an 

 
Fig. 4. Classification accuracy for different maximum 

number-of-frames allowed using UFES-2012 dataset for training and 

UFES-2013 dataset for test. 

http://www.lcad.inf.ufes.br/log


 

 

 

allowed number-of-frames equal to 1, the classification rate is 

about 90%.  

Although the VibGL might show better accuracy when 

trained with large-spaced datasets, the positioning error of the 

system increases. This happens because one frame of error for 

the 1-meter training dataset represents a much smaller error in 

meters than one frame of error with large-spaced training 

dataset (e.g., 10m).  

Fig. 5 shows the classification accuracy results obtained 

using UFES-2013 dataset for training and UFES-2012 dataset 

for testing. As the graph of Fig. 5 shows, swapping training 

and test datasets does not change the VibGL performance 

behavior. 

 

B. Positioning Error  

We performed experiments to evaluate the relationship 

between the spacing between image-pose pairs learned by 

VibGL and the positioning error of its estimated poses.  

The results of these experiments are shown as box-plots 

having median, inter-quartile range and whiskers of the error 

distribution for the 1-meter, 5-meter, 10-meter and 15-meter 

training datasets. Box-plots are shown only for the setup 

UFES-2012 as training and UFES-2013 as test because the 

experiments present the same behavior in both directions. 

The horizontal axis of Fig. 6 shows training datasets 

spacing intervals, while the vertical axis shows the distance of 

the estimated image-pose pair Te to the given image-pose pair 

Tq. As the graph of Fig. 6 shows, the positioning error 

increases as the spacing between training image-pose pairs 

increases, but not linearly. The median error is larger than 1m 

for the 1-meter spacing training dataset, but smaller than the 

spacing of the other datasets. The performance of VibGL with 

the 1-meter dataset can be explained by the fact that the 

datasets themselves are imprecise due to the poor accuracy of 

our data collection framework. As mentioned before, the 

distances between UFES-2012 and UFES-2013 

corresponding image-pose pairs is 1.56m (σ = ±1.14).  

The horizontal axis of Fig. 7 shows training datasets 

spacing intervals, while the vertical axis shows the distance of 

the estimated image-pose pair Te to the correct image-pose 

pair Tc. 

 
As the graph of Fig. 7 shows, the larger the spacing in 

between the training frames, the smaller the positioning error 

is. This can be seen by analyzing the distribution of error for 

the 5, 10 and 15-meters plots, where the median error is 

around 0 and the majority of errors are within the spacing 

used for training (i.e., within one frame).  

 
While Fig. 6 shows a continuous error value between the 

estimated pose at Te and the given pose Tq, Fig. 7 shows a 

discretized error value between the estimated pose at Te and 

the correct image-pose Tc. 

C. True and False Positives 

After analyzing classification accuracy and positioning 

error, in this section, we examine the true and false positives 

of VibGL for the 1-meter training dataset and 1-meter test 

dataset, with a 10m error tolerance. This allows us to identify 

patterns of positioning errors in the datasets.  

Fig. 8 shows the results for the experiments with the 

UFES-2012 dataset used for training and the UFES-2013 

dataset for test. In this figure, blue dots represent estimated 

positions that were inside the tolerance of 10m from the 

correct image-pose pair, i.e., true positives. Red circles 

represent the estimated image-pose pairs that were outside the 

 
Fig. 5. Classification accuracy for different maximum 

number-of-frames allowed using UFES-2013 dataset for training and 

UFES-2012 dataset for test.   

 

 
Fig. 6. Positioning Error Distribution between Te and Tq using the 

UFES-2012 dataset for training and the UFES-2013 dataset for testing. 

 
Fig. 7. Positioning Error Distribution between Te and Tc using the 

UFES-2012 dataset for training and the UFES-2013 dataset for testing.  



 

 

 

tolerance of 10m, i.e., false positives. Red circles are 

connected to their corresponding correct image-pose pairs 

(green crosses) through a line. 

 
Fig. 9 shows the results for the experiments with the 

UFES-2013 dataset used for training and the UFES-2012 

dataset for test. 

 
From the plots in Fig. 8 and Fig. 9, it is possible to see three 

regions where most errors occurred in a sequence (the three 

big green zones on the right side of the Fig. 8 and Fig. 9). 

Further analysis of these regions showed they correspond to 

three points where the car went off-route in one of the 

datasets. Since there were obstructions on the road at the 

period, the car was forced to leave the main street and, 

therefore, generated shifted images (see Fig. 10). Such 

differences in the training and test images leaded the VibGL 

system to misclassifications and, consequently, to failure in 

localizing IARA correctly on those regions. 

D. Qualitative Results 

To visualize the qualitative results for VibGL's estimated 

positions, we extracted two samples of matched frames along 

the UFES campus: the first one having five true positive 

samples (Fig. 11), and the second one having three false 

positive samples (Fig. 12).  

Fig. 11 shows examples of true positive frames using the 

UFES-2013 dataset as training dataset. As it can be seen, the 

frames were matched despite changes in sunlight position, 

shadows, road infrastructure (first, second and fourth rows), 

car movements (third row) and loss of leaves on the trees 

(fourth row). 

 
Fig. 12 shows examples of false positive frames using the 

UFES-2013 as training dataset. The system fails at places 

with certain similarity, e.g., the sky-shape in the first and fifth 

rows looks the same. Moreover, in the first row, the two 

frames were captured on a curve within the same road paving. 

In the second row, we can see the above-mentioned off-route 

problem, when the car needs to get out of the route. 

An online demo video shows the VibGL's performance on 

a complete lap around the university campus (see video at 

http://youtu.be/czxSMb0irw4). In the video, we used the 1 

meter-spacing UFES-2013 dataset for training and the 5 

meter-spacing UFES-2012 dataset for testing. 

VII. CONCLUSION AND FUTURE WORK 

In this work, we present a new Image-Based Global 

Localization approach based on VG-RAM WNN, named 

VibGL. VibGL is designed for mapping and localization, and 

efficiently solves the global localization problem [1]. For 

that, it first learns a map of an environment and, later, 

localizes the robot in the same environment using camera 

images only. In the mapping phase, VibGL firstly receives 

images of the environment as well as the associated poses of 

the camera that captured the images. Subsequently, it learns 

neural associations between images and poses, which 

describe the environment as a map. In the localization phase, 

VibGL receives images of the environment and uses 

previously acquired knowledge, the “map”, to output the 

positions where the system believes these images were 

captured.  

We have tested VibGL with a set of mapping and 

localization experiments using real-world datasets. Our 

results have shown that VibGL is capable of learning large 

maps (several kilometers in length) and, later, localizing a 

robot in these maps with median pose precision of about 3m. 

Considering a tolerance of 10m, the system is able to 

correctly localize the robot 95% of the time (test cases). 

As future work, we plan to compare VibGL with existing 

other image retrieval methods. In addition, we intend to 

extend VibGL to a full neural SLAM system. 

 

 
Fig. 8. Ground truth plot using UFES-2012 dataset in the training 

procedure. Blue dots represent true positives (TP); lines connect false 
positives (FP) represented by red circles and their respective 

ground-truth correspondences represented by green crosses (CORR). 

 
Fig. 9. Ground truth plot using UFES-2013 dataset in the training 

procedure. Blue dots represent true positives (TP); lines connect false 
positives (FP) represented by red circles and their respective 

ground-truth correspondences represented by green crosses (CORR). 

 
 

Fig. 10. IARA's original trajectory (left image, UFES-2012 dataset). 

Shifted image generated when the car went off-route (right image, 

UFES-2013 dataset). 

http://youtu.be/czxSMb0irw4
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Fig. 11. True positive qualitative results using the UFES-2013 dataset 
as training dataset. The left column represents the trained frames and 

right column the VibGL‟s output frames. 

 
Fig. 12. False positive qualitative results using the UFES-2013 dataset 

as training dataset. The left column represents the trained frames and 

right column the VibGL‟s output frames. 


