
 

 

 

 

Abstract—The Virtual Generalizing Random Access Memory 

Weightless Neural Network (VG-RAM WNN) is an effective 

machine learning technique that offers simple implementation 

and fast training. One disadvantage of VG-RAM WNN, 

however, is the test time for applications with many training 

samples, i.e. large multi-class classification applications. In such 

cases, the test time tends to be high, since it increases with the 

size of the memory of each neuron. In this paper, we present a 

new methodology for handling such applications using 

VG-RAM WNN. By employing data clustering techniques to 

reduce the overall size of the neurons’ memory, we were able to 

reduce the network’s memory footprint and the system’s 

runtime, while maintaining a high and acceptable classification 

performance. We evaluated the performance of our VG-RAM 

WNN system with compressed memory on the problem of traffic 

sign recognition. Our experimental results showed that, after 

compression, the system was able to run at very fast response 

times in standard computers. Also, we were able to load and run 

the system at interactive rates in small low-power systems, 

experiencing only a small reduction in classification 

performance. 

 

Keywords—Virtual Generalizing Random Access Memory 

Weightless Neural Networks, Clustering Techniques, Traffic 

Sign Recognition.  

I. INTRODUCTION 

EIGHTLESS Neural Networks (WNN) do not store 

knowledge in their connections, but in Random Access 

Memories (RAM) inside the network’s neurons. The 

synapses of each neuron collect a vector of bits from the 

network’s input (neuron’s input vector) and use it as a RAM 

address to access the respective associated label value 

(neuron’s output value) stored at this RAM address. Training 

can be made in one shot and basically consists of storing the 

desired neuron’s output value in the address associated with 

the neuron’s input vector [1]. In spite of their remarkable 

simplicity, WNN are very effective as pattern recognition 

tools, offering easy implementation in addition to fast training 

[2]. However, neuron memory size becomes prohibitive if the 

neuron’s input vector is too large, since it is dictated by this 

 
Edilson de Aguiar is with the Department of Computer Science and 

Electronics, UFES, São Mateus, ES, Brazil.  

Avelino Forechi, Lucas Veronese, Mariella Berger, Alberto Ferreira De 
Souza (e-mail: alberto@lcad.inf.ufes.br), Claudine Badue, and Thiago 

Oliveira-Santos are with the Department of Informatics, UFES, Vitoria, ES, 

Brazil.  
This work was supported in part by Conselho Nacional de 

Desenvolvimento Científico e Tecnológico-CNPq-Brasil (grants 

552630/2011-0, 308096/2010-0, and 314485/2009-0) and Fundação de 
Amparo à Pesquisa do Espírito Santo-FAPES-Brasil (grant 48511579/2009). 

vector size (neuron memory size is equal to 2
p
, where p is the 

neuron’s input vector size). 

The proponents of Wilkes, Stonham and Aleksander 

Recognition Device (WiSARD) tackled this problem by 

splitting the p-sized neuron’s input vector in q segments, each 

one used as address of a specific RAM memory module of 

size 2
p/q

 [3]. During training, a p-sized training input pattern is 

split in q parts and each p/q-sized input sub-pattern is used as 

address of the corresponding RAM module; the addressed 

position in each RAM module receives (stores) the label 

value (RAM module’s output value) associated with the input 

pattern. During test, the p-sized test input pattern is also split 

in q parts and each p/q-sized input sub-pattern is used as 

address of the corresponding RAM module; the neuron’s 

output value is the most frequent label value observed among 

the outputs of the q RAM modules. Thanks to this 

organization, the total amount of memory required per neuron 

is reduced from 2
p
 to q × 2

p/q
.  

The proponents of the Virtual Generalizing Random 

Access Memory (VG-RAM) Weightless Neural Networks 

(WNN) took a step further by only requiring memory 

capacity to store the data related to the training set [4]. Instead 

of storing an output label value that can be referenced by a 

binary input pattern, this type of WNN neuron stores pairs of 

corresponding input-output patterns, i.e. vector of bits as 

input and label value as output. The memory footprint is 

optimized with such an approach whereas the performance of 

training is maintained, facilitating the prototyping of 

applications for classification. One disadvantage introduced 

by this method is the test speed of unknown samples, which 

depends on the size of the neurons’ memory (that is equal to 

the number of trained input-output pairs) – during test, the 

search for the closest pattern is performed sequentially and 

requires scanning the whole memory of each neuron.  

It has been shown that this type of network has high 

classification performance for a variety of multi-class 

classification applications, such as text categorization [5, 6], 

face recognition [7, 8, 9], and traffic sign detection and 

recognition [10, 11]. However, although classification speed 

might be ignored in applications with small training datasets, 

it becomes a problem in applications with large training 

datasets. Therefore, the use of this network in systems that 

demand fast response, or in small low-power systems, is 

restricted by the number of training samples. Since this 

number can be quite large for some of the mentioned 

applications, the sequential search for the closest pattern in 

the memory of each neuron hinders performance during test 

Compressing VG-RAM WNN Memory for  

Lightweight Applications 

Edilson de Aguiar, Avelino Forechi, Lucas Veronese, Mariella Berger,  

Alberto F. De Souza, Claudine Badue, and Thiago Oliveira-Santos 

W 

mailto:alberto@lcad.inf.ufes.br
https://plus.google.com/101802752531997883122


 

 

 

of new samples. Moreover, small low-power systems have 

further restrictions on available memory, which makes it 

difficult or even impossible to load networks trained with 

large training datasets on such devices.  

To address these problems and propose a solution for 

applications based on VG-RAM WNN (VG-RAM for short) 

with large training datasets, this work investigates the use of 

data compression techniques to reduce the overall size of the 

neurons’ memory, while keeping a high and acceptable 

classification performance. Under the hypothesis that not all 

data stored in the memory of a neuron are relevant for good 

classification performance of the network, we apply data 

clustering techniques to eliminate redundant or irrelevant 

examples from the memory (i.e. to eliminate lines of the 

look-up table illustrated in Fig. 1). Using a complex 

multi-class classification application, i.e. traffic sign 

recognition, we compare the classification performance of 

VG-RAM with full memory with that of VG-RAM with the 

memory compressed at different levels.  Additionally, as 

baseline, we compare the classification performance of 

standard VG-RAM against that of VG-RAM with random 

deletion of neuron memory samples. Our results show that it 

is possible to run such heavy multi-class classification 

applications implemented with VG-RAM at very fast 

response times on standard computers, or at good interactive 

levels on small low-power systems. 

This paper is organized as follows. After this introduction, 

in Section II, we briefly present our VG-RAM architecture 

for multi-class classification, i.e. traffic sign recognition. 

Subsequently, in Section III, we describe the technique used 

to reduce the overall size of the neurons’ memory, while 

keeping a good classification performance. In Section IV, we 

present our experimental methodology and analyze our 

experimental results. Finally, our conclusions and directions 

for future work follow in Section V. 

II. VG-RAM WNN 

The architecture of VG-RAM WNNs comprises neural 

layers with many neurons connected to input layers (e.g. 

images or other neural layers) through a set S = {s1, …, sp} of 

synapses. Since VG-RAM neurons generate outputs in the 

form of label values, t, the output of a neural layer can also 

function as an image, where each pixel is the output of a 

neuron.  

The synapses of a VG-RAM neuron are responsible for 

sampling a binary vector I = {i1, …, ip} (one bit per synapse) 

from the input layer according to the neuron’s receptive field. 

Each bit of this vector is computed using a synapse mapping 

function that transforms non-binary values in binary values. 

Individual neurons have private memories, i.e. look-up tables, 

that store sets L = {L1, …, Lj, …, Lm} of learned binary input 

vectors I and corresponding output labels t, i.e. Lj = (Ij, tj) 

(input-output pairs). An illustration of a single layer of such a 

network is presented in Fig. 1. 

 
VG-RAMs operate in two phases: a training phase, in 

which neurons learn new pairs of binary input vectors and 

corresponding output labels (input-output pairs); and a test 

phase, in which neurons receive binary input vectors and 

respond with the label values associated with the closest 

binary input vectors in the input-output pairs previously 

learned.  

More specifically, in the training phase, each neuron 

includes a new input-output pair, or line L, in its local 

memory as follows. Firstly, an input image is set in the Input 

Layer of the VG-RAM (Fig. 1). Secondly, the corresponding 

Neuron Outputs are set in the Neural Layer of the VG-RAM 

(expected output value t of each neuron for the input image 

set). Finally, one input-output pair (binary input vector I and 

corresponding output label t) is extracted for each neuron and 

added into its memory as a new line L = (I, t). In the test 

phase, each neuron computes an output label t as follows. 

Firstly, an input image is set in the Input Layer of the 

VG-RAM. Secondly, a binary input vector I is extracted for 

each neuron. Finally, each neuron searches its memory to find 

the input-output pair Lj = (Ij, tj) whose input Ij is the closest to 

the extracted input I, and sets the corresponding Neuron 

Output of the Neural Layer with the output value tj of this 

pair. In case of more than one pair with an input at the same 

minimum distance of the extracted input, the output value is 

randomly chosen among them. The memory search is 

sequential and the distance function is the Hamming distance. 

  

 
Fig. 1.  Illustration of a single layer VG-RAM WNN. The VG-RAM 

Neural Layer comprises many neurons that are connected to the Input 

Layer (e.g. an image) by a set of Synapses S = {s1, …, sp}. The 
synapses of a VG-RAM neuron sample a binary vector I = {i1, …, ip} 

from the Input Layer according to the neuron’s Receptive Field. The 

bits of this vector are computed using a synapse mapping function that 
transforms non-binary values into binary values. Each neuron of the 

Neural Layer has a private memory (Look-up Table) of size m that 

stores a set L = {L1, …, Lj, …, Lm} of Lj = (Ij, tj) input-output pairs 
learned during training. Each neuron shows an output activation value t 

(Neural Layer colored circles) read from its memory (Look-up Table 

column t). This value corresponds to the output of the input-output pair 
Lj, whose input Ij is the closest to the current binary input vector I 

extracted by the neuron synapses. 



 

 

 

 
The Hamming distance between two binary patterns can be 

efficiently computed at machine code level in current 

machines using two instructions: one instruction to identify 

the bits that differ in the two binary patterns, i.e. bit-wise 

exclusive-or; and another instruction to count these bits, i.e. 

population count instruction.  

III. VG-RAM WNN MEMORY COMPRESSION 

Despite the high classification performance of VG-RAM 

WNN for a variety of multi-class classification applications, 

the test performance depends on the size of the memory of 

each neuron. Considering an application requiring a 

VG-RAM with n neurons, each containing a memory with m 

input-output pairs, its runtime performance will be 

proportional to n × m (O(nm)).  Unfortunately, many 

problems require a large training dataset to be solved 

satisfactorily (e.g. traffic sign recognition [10]). For 

applications with a large training set, the value of m is large 

and may limit the use of VG-RAM, since testing a new input 

sample requires a sequential search for the closest pattern in 

the m-sized memory of the n neurons. 

We aim at reducing the overall size m of the Look-up 

Tables, thus improving runtime performance and reducing 

memory footprint, while keeping an acceptable classification 

accuracy. Assuming that the memory of each neuron will 

have a large amount of redundant or irrelevant information, 

we should be able to accomplish relevant compression by 

carefully eliminating input-output pairs of the neurons’ 

Look-up Tables. This can be achieved by using a clustering 

algorithm to find the most relevant input-output pairs in the 

memory of each neuron as described next. 

Considering the large number of relevant clustering 

techniques ([12, 13, 14]) and the fact that the clustering 

procedure needs to be done many times for each neuron (see 

below), we decided to use k-Means [15] due to its simplicity 

and efficiency. The k-Means algorithm partitions a set I of |I| 

vectors into k clusters, k < |I|, where the parameter k is set a 

priori. This iterative partitioning minimizes the sum, over all 

clusters, of the within-cluster sums of point-to-cluster- 

centroid distances. For our experiments, we used the 

Hamming distance to define the centroids of each cluster.   

Fig. 2 illustrates our VG-RAM memory compression 

framework that works as follows. Initially, the original 

memory of each neuron, containing m lines, is sorted 

according to its output label t (i.e. traffic sign of same type).  

The result is a set of lines ordered according to each output 

type, e.g. the set of lines L
1
 = { 1

1L , …, 1

1mL } for outputs of type 

equal to label 1, L
2
 = { 2

1L , …, 2

2mL } for outputs of type equal 

to label 2, until  L
l
 = { lL1

, …, l

ml
L } for outputs of type equal to 

label l.  Subsequently, we apply k-Means separately to each 

set of lines L
1
, L

2
, …, L

l
, partitioning each one of them into k 

clusters. Each cluster has a centroid C that is equivalent to a 

memory line L. k-Means computes the set C
1
 = { 1

1C , …, 1

1kC } 

of centroids from the lines of set L
1
, where k1 < m1 and 

m1 = |L
1
|; the set C

2
 = { 2

1C , …, 2

2kC } of centroids from the 

lines of set L
2
, where k2 < m2; and so on until the set  

C
l
 = { lC1

, …, l

kl
C }, where kl < ml. The centroid sets C

1
, C

2
, …, 

C
l
 become the new memory entries for the respective neuron 

(see Fig. 2). This process is repeated for all neurons, i.e. the 

clustering process is performed n × l times. As a result, the 

  

 
Fig. 2.  VG-RAM WNN memory compression framework. The 
original memory of each neuron, containing m lines, is grouped 

according to its output type, t. Each group is clustered separately using 

k-Means and the resulting centroids become the new entries for the 

compressed memory. 



 

 

 

number of entries in the VG-RAM memory is reduced 

according to the specified number of clusters kj of each label 

type j. To maintain the original memory balance between 

entries for the different output types, we used different values 

of k for each label type, i.e. kj = mj × cl, where 0 < cl < 1 is the 

VG-RAM memory compression level. 

 Our approach modifies the contents of the neurons’ 

memory. It can even create a new entry that was not part of 

the learning process. We see this property as an advantage of 

our framework since it is able to summarize the memory 

information according to the data.  Please note that the input 

patterns Ij = {i1, …, ip} of all centroids Cj = (Ij, tj) must be 

binary, therefore, the centroids’ elements need to be rounded 

to values 0 or 1. 

IV. EXPERIMENT AND RESULTS 

In order to validate our work, we used our framework to 

compress the memory of a VG-RAM WNN system designed 

for traffic sign recognition [10].  In the next subsections, we 

briefly present the traffic sign recognition system (Section 

IV-A). Then, we describe the dataset used for our 

experiments (Section IV-B).  Thereafter, we detail the 

experiments and the results obtained with our compression 

framework to enable fast response time applications on 

standard computers (Section IV-C) and acceptable interactive 

times on small low-power systems (Section IV-D).   

A. Traffic Sign Recognition Application 

The traffic sign application used in this paper employs a 

VG-RAM architecture with one neural layer connected to a 

(50 × 50)-sized input grayscale image (please see Fig. 3 for an 

overview of the system, and refer to [10] for details). The 

synaptic mapping function that maps non-binary image pixels 

to binary values is a minchinton cell [16] that works as 

follows. The non-binary value read by each synapse 

connected to the grayscale image is subtracted from the value 

read by the subsequent synapse in the set of synapses of each 

neuron, S, where |S| = p = 64 (the last synapse, sp, is 

subtracted from the first, s1). If a negative value is obtained, 

the bit corresponding to that synapse is set to one. Otherwise, 

it is set to zero. The receptive field of each neuron is randomly 

defined during the network creation and follows a Normal 

distribution centered in the position of the neuron mapped to 

the input layer (see [10]). The centers of the receptive fields 

are mapped to the input according to a log-polar transform 

that mimics interconnection patterns observed in the 

biological vision system [10]. Subsequent use of the synapses 

assumes the same receptive field.  

In contrast to the system proposed in [10], where one 

grayscale image was generated for each color channel for 

improving recognition performance, in this paper only the 

channel with the highest accuracy was chosen to run our 

experiments, i.e. the green channel. Additional experiments 

have shown that the compression method used here is not 

channel dependent (Section IV-C).  

 

B. Dataset 

The experiments in this work follow the same setup 

described in [10] and, therefore, use the German Traffic Sign 

Recognition Benchmark (GTRSB) dataset 

(http://benchmark.ini.rub.de/) [17, 18]. The GTRSB 

comprises 39,209 training images and 12,630 test images for l 

= 43 different classes of traffic signs. Each image is cropped 

on a specific traffic sign and has a size between 15 × 15 and 

250 × 250 pixels. Examples of traffic sign images from the 

GTRSB database can be seen in Fig. 4. 

All traffic sign images of the dataset were rescaled to 

50 × 50 pixels in order to fit the VG-RAM input size. 

 
Fig. 3. Illustration of the architecture of the traffic sign application. It 

receives a colored input image that is pre-processed (cropped, scaled, 
filtered, etc.). The resulting grey scale image is set as the Input Layer of 

a single layer VG-RAM. The Neural Layer, comprising 51 × 27 

neurons, samples the Input Layer according to a log-polar mapping, i.e. 
the center of the Receptive Field of each neuron maps to the Input 

Layer in a log-polar fashion (green dots). Each neuron samples the 

input layer with 64 Synapses that are randomly distributed within its 
Receptive Field (red traced circle) according to a Normal distribution. 

This figure illustrates a macro view of the neurons (front) in addition to 

an example of the real outputs of the neurons (back). 

http://benchmark.ini.rub.de/


 

 

 

 

C. Desktop Experiments 

Using the training and test framework proposed in [17], we 

first trained a VG-RAM WNN with 39,209 images. To 

compensate for small annotation errors in the dataset, each 

image was trained three times: one with the original image, 

and two with small random variations in scale, orientation 

and translation. The resulting memory (input-output memory 

lines) of each neuron, considering a neural layer with 

n = 1,377 neurons [10], was compressed according to the 

framework described in Section III. With the resulting 

compressed memory, we performed a variety of experiments 

to examine the performance of our framework, i.e. the 

tradeoff between reducing network’s memory footprint and 

system runtime, while maintaining high and acceptable 

classification accuracy.  

Our first experiment analyses the behavior of the 

compressed memory of each neuron using our proposed 

framework. Initially, each neuron memory contained 

m = 3 × 39,209 = 117,627 lines, equivalent to 

(p / 8 + sizeof(t)) × m × n = 1,854MB of binary data, where 

the function sizeof(j) returns the number of bytes of the scalar 

j.  These data were reduced with 4 compression levels: 

cl = 10% of the original data (m = 11,762 lines – around 

185MB), cl = 1% of the original data (m = 1,160 lines – 

around 18MB), cl = 0.5% (m = 570 lines – around 9MB) and 

cl = 0.25% (m = 272 lines – around 4MB). Please note that 

0.25% is the lowest possible level in order to maintain the 

memory balance and avoid erasing a traffic sign type from the 

dataset. The relation between compression level and memory 

footprint is illustrated in Fig. 5.  

As Fig. 5 shows, the memory footprint (obviously) 

decreases linearly with the number of lines in the Look-up 

Table of each neuron. Therefore, by decreasing the number of 

lines, our framework is able to reduce the memory footprint 

of the application, which is particularly important for 

applications running on desktop computers with limited 

memory or on small low-power systems.  

Our second experiment analyses the effect of the memory 

compression in the runtime of the overall system. For this 

experiment, we ran our C/C++ OpenMP optimized code in a 

Dell Precision R5500 machine, with 2 Intel Xeon processors 

of 2.13 GHZ, and 24 GB of DDR3 RAM of 1.33 GHZ, 

running Ubuntu 12.4LTS. We ran the system with all five 

compression levels (original memory, and memory with 

compression levels 10%, 1%, 0.5% and 0.25%) for all 12,630 

test images in the dataset. The runtime per image was 

calculated as an average over all images in the test dataset. 

The relation between compression level and system’s runtime 

is shown in Fig. 6.  

 
As Fig. 6 shows, there is an almost linear relationship 

between compression level and system’s runtime. For 

example, running the system with the original memory takes 

in average around 470ms to process each image. This value is 

reduced to around 50ms for the first level of compression 

(10% of the original memory). Other levels of compression 

allow processing each input image even faster (for example, 

8ms per image with 1% of the original memory).  This result 

shows that our compression framework enables very fast 

implementations of our VG-RAM based system.  

 
Our third experiment analyses the effect of the memory 

compression in the classification performance of the system. 

We ran the system with all five possibilities (original 

memory, and memory created with compression levels 10%, 

1%, 0.5% and 0.25%) for all 12,630 test images in the dataset. 

The relation between compression level and system’s 

classification performance is shown in Fig. 7.  

As shows in Fig. 7, we can see a small reduction in 

accuracy as the compression level increases. As an example, 

the classification accuracy of the system with the original 

memory is around 97.93%. This value is reduced to around 

97.42% for the first level of compression (10% of the original 

memory). Reducing the memory even further (1% of the 

original memory) decreases the precision to around 96.11%, 

 
Fig. 4. Examples of traffic sign images of the GTRSB database. 

 
Fig. 5.  Memory footprint of our traffic sign recognition application for 

several memory compression levels, cl. 

 

 

 
Fig. 6.  Runtime for our traffic sign recognition application using 

VG-RAM WNN. We compared the system’s runtime using the original 

memory and all four compression levels.  



 

 

 

which is still high and acceptable for such complex 

application. This result shows that our compression 

framework is able to create compressed memories that 

maintain a high and acceptable classification performance for 

our VG-RAM based system.  

 
We also performed one experiment to compare the 

classification performance of our framework against random 

deletion of neuron memory entries.  As shown in Fig. 8, for 

small memory compressions, the difference between our 

framework and random deletion is small. For example, the 

classification accuracy using the first level of compression 

(10% of the original memory) is around 97.42%, against 

96.98% for random deletion. This demonstrates that the 

VG-RAM architecture creates many redundant entries in the 

memory, and even randomly eliminating entries will not 

affect much the classification performance.  However, as the 

compression level increases, we can see a gap increasing 

between the performance of our framework and random 

deletion. For example, the classification accuracy of our 

framework using the last level of compression (0.25% of the 

original memory) is around 92.73%, against 89.8% for 

random deletion.  This demonstrates that a careful scheme of 

eliminating entries of the neurons’ memory is useful and 

improves the overall accuracy.  

Our next experiment verifies if our compression technique 

is color-channel dependent. The original system presented in 

[10] used a voting scheme with a combination of all three 

image color channels, red, green, and blue, to improve the 

overall classification performance. This comes with an 

increase in running time and memory footprint. As we would 

like to reduce these costs, we decided to run all experiments 

in this paper using the channel with the highest accuracy, i.e. 

the green channel. The behavior of the classification 

performance of our compression framework for all color 

channels is shown in Fig. 9. 

In Fig. 9, we can see similar performances using the 

original memory for all color channels, with the green 

channel performing slightly better than the others do. The 

system accuracy using the second level of compression (1% 

of the original memory) also shows similar small reductions 

in classification performance, demonstrating that our 

framework is not channel dependent and could potentially be 

applied to other applications.  

 

 
Fig. 9.  Classification performance for our traffic sign recognition application 

using VG-RAM for the different color channels, red, green, and blue. Our 
framework shows similar classification results for all three color-channels, 

with the green channel performing slightly better than the others using the 

original and the compress memory. 

D. Experiments with Small Low Power Systems  

Considering the advances in mobile processing, small low 

power, and embedded systems, we used the same C/C++ code 

(i.e. not optimized for special embedded environments) to 

verify the potential of our compression framework in two 

simple and cheap devices: RaspBerry Pi Model B revision 2
1
 

and pcDuino V1
2
. Our experiments show that it is possible to 

run a VG-RAM traffic sign recognition system on such 

devices using our memory-compressing framework.  

It is clear that such an application with full memory would 

be impossible to be processed or even loaded on most 

embedded systems because of their limited memory and 

processing power. Therefore, we decided to test our system 

on the two mentioned low power systems with four levels of 

compression: cl = 5% of the original data (m = 5,881 lines – 

 
1 http://www.raspberrypi.org 
2 http://www.pcduino.com 

90.00

92.00

94.00

96.00

98.00

100.00

Red Green Blue

P
re

ci
si

o
n

 [
%

]

Color Chanel

Original

1%

 
Fig. 7.  Classification performance for our traffic sign recognition 
application using VG-RAM WNN. We compared the system’s 

accuracy using the original memory and all four levels of compression. 

 

 
Fig. 8.  Classification performance for our traffic sign recognition 
application using VG-RAM WNN. As shown in the figure, carefully 

compressing the memory using our framework slightly affects the 

overall classification performance. In contrast, random deletion of 
neuron memory entries creates a more significant decrease in 

classification performance. 

 

http://www.raspberrypi.org/
http://www.pcduino.com/


 

 

 

around 92,7MB), cl = 1% of the original data (m = 1,176 

lines – around 19MB), cl = 0.5% (m = 588 lines – around 

9MB) and cl = 0.25% (m = 294 lines – around 5MB). Please 

note that we started with the compression level of 5% in order 

to compare the results of both devices, since the RaspBerry Pi 

cannot load our complete VG-RAM traffic sign architecture 

with compression level 10% on its memory.  

First, we used a pcDuino device, equipped with a 1 GHz 

ARM Cortex A8 processor and 2GB of RAM running Linux. 

We ran the system with all four possibilities (memory created 

with compression levels 5%, 1%, 0.5% and 0.25%) for a 

subset of the test images in the dataset. The runtime per image 

was calculated as an average over all tested images. The 

relation between compression level and system runtime is 

shown in Fig. 10. As shown in this figure, our pcDuino 

system is able to process the images at interactive rates (i.e. 

around 4-6 Hz) for different levels of memory compression.  

 
We also tested a RaspBerry Pi device, equipped with a 

700MHz processor and 512MB of RAM running Linux. As 

before, we ran the system with all four possibilities for a 

subset of the test images in the dataset. The relation between 

compression level and system runtime is shown in Fig. 11. As 

shown in this figure, our RaspBerry Pi system needs more 

time to process the images than the pcDuino. However, it can 

be seen that with the use of memory compression, the traffic 

sign recognition application running on a RaspBerry Pi 

achieves similar runtime to the same application without 

memory compression running on a standard PC (please 

compare the last two bars of the graph of Fig. 11 with the first 

of the graph of Fig. 6). This illustrates the advantage of our 

clustering scheme.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a new framework for applying 

VG-RAM WNN to complex multi-class classification 

problems. We have shown that by using clustering 

techniques, it is possible to eliminate irrelevant and redundant 

information from the input-output Look-up Table of each 

neuron with little compromise of the classification 

performance. As a result, our framework is able to reduce the 

network memory footprint and its runtime enabling its 

application in systems that require very fast response times in 

standard computers, and at interactive rates for small 

low-power systems. The classification performance is 

slightly reduced depending on the level of memory 

compression. However, this can be justified by a gain in 

speed and in memory usage.  

 

 
We evaluated the performance of our framework using the 

GTSRB dataset, creating a traffic sign recognition system 

based on VG-RAM WNN. Our experiments showed that our 

system can be employed for traffic sign recognition with good 

accuracy (recognition rates around 95%) at 121.3 

recognitions per second in standard computers with a 0.5% 

memory compression level. Using the same setup, our system 

could run on a PcDuino at 4.3 recognitions/s and on a 

RaspBerry Pi at 2.1 recognitions/s, requiring a memory 

footprint of only 9MB to store the neurons’ memory.  

One of the main advantages of VG-RAM over other neural 

network approaches is its simple implementation and fast 

training. We believe that the memory compression 

framework proposed in this paper can help improving the test 

performance of VG-RAM, especially for applications 

requiring large training datasets.  

For future work, we would like to evaluate the performance 

of other clustering techniques for memory compression and 

evaluate the overall system on different multi-class 

classification problems.  

REFERENCES 

[1] I. Aleksander, ―Self-adaptive universal logic circuits,‖ Electronics 
Letters, vol. 2, no. 8, pp. 321–322, Aug. 1966. 

[2] I. Aleksander, ―From WISARD to MAGNUS: A Family of 

Weightless Virtual Neural Machines,‖ in RAM-Based Neural 
Networks, Singapore: World Scientific Publishing Co Pte Ltd, 1998, 

pp. 18–30. 

[3] I. Aleksander, W. V. Thomas, and P. A. Bowden, ―WISARD: a 
radical step forward in image recognition,‖ Sensor Review, vol. 4, no. 

3, pp. 120–124, Dec. 1984. 

[4] T. Ludermir, A. Carvalho, A. Braga, and M. Souto, ―Weightless 
neural models: A review of current and past works,‖ Neural 

Computing Surveys, vol. 2, pp. 41–61, 1999. 

[5] A. F. De Souza, C. Badue, B. Z. Melotti, F. T. Pedroni, and F. L. L. 
Almeida, ―Improving VG-RAM WNN Multi-label Text 

Categorization via Label Correlation,‖ in Eighth International 

 
Fig. 10.  Runtime for our traffic sign recognition application using 
VG-RAM WNN running on the pcDuino device.  Interactive rates can 

be achieved with memory compression. 

 
Fig. 11.  Runtime for our traffic sign recognition application using 

VG-RAM WNN running on a RaspBerry Pi.  



 

 

 

Conference on Intelligent Systems Design and Applications, 2008. 

ISDA ’08, 2008, vol. 1, pp. 437–442. 

[6] A. F. De Souza, F. Pedroni, E. Oliveira, P. M. Ciarelli, W. F. 

Henrique, L. Veronese, and C. Badue, ―Automated Multi-label Text 

Categorization with VG-RAM Weightless Neural Networks,‖ 
Neurocomput., vol. 72, no. 10–12, pp. 2209–2217, Jun. 2009. 

[7] A. F. D. Souza, C. Badue, F. Pedroni, E. Oliveira, S. S. Dias, H. 

Oliveira, and S. F. de Souza, ―Face Recognition with VG-RAM 
Weightless Neural Networks,‖ in Artificial Neural Networks - 

ICANN 2008, V. Kůrková, R. Neruda, and J. Koutník, Eds. Springer 

Berlin Heidelberg, 2008, pp. 951–960. 
[8] A. F. De Souza, C. Badue, F. Pedroni, S. Schwanz, H. Oliveira, and 

S. F. de Souz, ―VG-RAM Weightless Neural Networks for Face 

Recognition,‖ in Face Recognition, M. Oravec, Ed. InTech, 2010. 
[9] J. L. Moraes, A. F. D. Souza, and C. Badue, ―Facial access control 

based on VG-RAM weightless neural networks,‖ in Proceedings of 

the International Conference on Artificial Intelligence (ICAI’2011), 
2011, pp. 444–450. 

[10] M. Berger, A. Forechi, A. F. D. Souza, J. de Oliveira Neto, L. 

Veronese, and C. Badue, ―Traffic sign recognition with VG-RAM 

Weightless Neural Networks,‖ in 2012 12th International 

Conference on Intelligent Systems Design and Applications (ISDA), 

2012, pp. 315–319. 
[11] A. F. De Souza, C. Fontana, F. Mutz, T. Alves de Oliveira, M. 

Berger, A. Forechi, J. de Oliveira Neto, E. de Aguiar, and C. Badue, 

―Traffic sign detection with VG-RAM weightless neural networks,‖ 
in The 2013 International Joint Conference on Neural Networks 

(IJCNN), 2013, pp. 1–9. 
[12] R. Xu and I. Wunsch, D., ―Survey of clustering algorithms,‖ IEEE 

Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, Maio 

2005. 
[13] A. K. Jain, M. N. Murty, and P. J. Flynn, ―Data Clustering: A 

Review,‖ ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Setembro 

1999. 
[14] L. Rokach, ―A survey of Clustering Algorithms,‖ in Data Mining and 

Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. 

Springer US, 2010, pp. 269–298. 
[15] J. MacQueen, ―Some methods for classification and analysis of 

multivariate observations,‖ presented at the Proceedings of the Fifth 

Berkeley Symposium on Mathematical Statistics and Probability, 
Volume 1: Statistics, 1967. 

[16] R. J. Mitchell, J. M. Bishop, S. K. Box, and J. F. Hawker, 

―Comparison of some methods for processing Grey Level data in 
weightless networks,‖ in RAM-based neural networks, J. Austin, Ed. 

Singapore: World Scientific Publishing Co Pte Ltd, 1998, pp. 66–71. 

[17] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ―The German 
Traffic Sign Recognition Benchmark: A multi-class classification 

competition,‖ in The 2011 International Joint Conference on Neural 

Networks (IJCNN), 2011, pp. 1453–1460. 
[18] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ―Man vs. 

computer: benchmarking machine learning algorithms for traffic sign 

recognition,‖ Neural Netw, vol. 32, pp. 323–332, Aug. 2012. 

 


