
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

A Motion Planner for Car-Like Robots Based on

Rapidly-Exploring Random Trees

Rômulo Ramos Radaelli, Claudine Badue, Michael André Gonçalves,

Thiago Oliveira-Santos, Alberto F. De Souza

Departamento de Informática, Universidade Federal do Espírito Santo, Vitória, ES, Brazil

rmradaelli@gmail.com, claudine@lcad.inf.ufes.br,

es.michael@gmail.com, todsantos@inf.ufes.br,

alberto@lcad.inf.ufes.br

Abstract. We propose a motion planner for car-like robots based on the rapid-

ly-exploring random tree (RRT) method. Our motion planner was designed es-

pecially for cars driving on roads. So, its goal is to build trajectories from the

car’s initial state to the goal state in real time, which stay within the desired lane

bounds and keep a safe distance from obstacles. For that, our motion planner

combines several variants of the standard RRT algorithm. We evaluated the

performance of our motion planner using an experimental robotic platform

based on a Ford Escape Hybrid. Our experimental results showed that our mo-

tion planner is capable of planning trajectories in real time, which follow the

lane and avoid collision with obstacles.

Keywords: Motion planning; car-like robots; rapidly-exploring random trees.

1 Introduction

Mapping, localization and control are very important tasks in autonomous robotics.

Mapping involves the creation of a map of the environment around the robot, that

may contain information pertaining to the places that the robot may or may not be

able to navigate, localization involves the estimation of the robot’s state relative to the

map, and control involves the translation of control commands of velocity and steer-

ing wheel angle into acceleration, brake and wheel efforts. Another very important

task in autonomous robotics, and the focus of this paper, is motion planning. To per-

form this task, a software module receives as input the map of the environment, the

initial robot’s state relative to the map, and the goal state; and produces as output a

trajectory from the initial robot’s state to the goal state. The trajectory might be repre-

sented in several ways. For a car-like robot, we represent it using a list of commands

of velocity and steering wheel angle, along with the respective execution durations (a

list of triplets). A proper trajectory leads the robot from its initial state to

the goal state, while avoiding collision with known obstacles.

mailto:es.michael@gmail.com
mailto:alberto@lcad.inf.ufes.br

Different methods can be found in the literature to address the problem of motion

planning for car-like robots. This type of robots is subject to both kinodynamic con-

straints (arising from kinematic and dynamic constraints) and environmental con-

straints (arising from obstacles). A possible approach is to reduce and discretize the

state space so that classical search methods like A* [1] or D* [2] can find a collision-

free trajectory from the car’s initial state to the goal state in the constrained space.

This approach usually converges very fast and provides good results. Nevertheless,

the trajectory found with those methods might not be followed exactly by the car,

because, in its building, not all the constraints of the movement of the car can be

properly considered. Thus, the solution has to be further processed to generate an

improved version that can be followed by the car. Another possible approach is to

employ a more accurate model of the car motion and use sampling based search

methods that can deal with the high-dimensional state space to find a feasible solu-

tion. An example of this type of method is the Rapidly-Exploring Random Tree

(RRT), which was first introduced by LaValle [3]. RRT has been successfully used in

the motion planning of car-like robots–the motion planning subsystem of the fourth

placed winner of the DARPA Urban Challenge, the MIT robot “Talos”, is based on

the RRT [4].

In this paper, we propose a motion planner based on RRT for car-like robots that

are subject to both kinodynamic and environmental constraints. Our motion planner

was designed especially for cars driving on roads. So, its goal is to build trajectories

from the car’s initial state to the goal state in real time, which stay within the desired

lane bounds and keep a safe distance from obstacles. For that, our motion planner

combines two previous variants of the standard RRT to (i) reduce its sensitivity to the

distance metric [5] and (ii) attempt to quickly grow the tree toward the goal state [6].

Our motion planner also incorporates five unique RRT variants to: (i) bias the loca-

tion of sampling random states toward the lane region, (ii) select the most promising

control commands for extending states, (iii) choose the best trajectories, (iv) discard

non-promising states, and (v) reuse part of the trajectory built in the previous planning

cycle. Although, in the form we have design them, they are unique to our work, the

main ideas behind these last five RRT variants are similar to those proposed by Ku-

wata et al. [4] (first and third ones), Powers et al. [7] (second one), Frazzoli et al. [8]

(fourth one), and Bekris and Kavraki [9] (fifth one).

We evaluated the performance of our motion planner using an experimental robotic

platform based on a Ford Escape Hybrid. Our experimental results showed that our

motion planner is capable of planning trajectories in real time, which follow the lane

and avoid collision with obstacles. To the best of our knowledge, the combination of

techniques we have employed to solve the motion planning problem is unique and the

results we have obtained are satisfactory.
This paper is organized as follows. After this introduction, in Section 2, we present

the motion model of car-like robots we have used and the standard RRT algorithm. In
Section 3, we describe our approach for motion planning for car-like robots. In Section
4, we describe our experimental methodology and, in Section 5, we analyze our exper-
imental results. Our conclusions and directions for future work follow in Section 6.

2 Background

The motion model for car-like robots can be described as follows. Let and be the

car’s location, given by the midway of the two rear wheels; the car’s orientation;

the distance between the front and rear wheels’ axles; the car’s velocity; the car’s

acceleration; the steering wheel angle, given by the average of the angle of the right

and left front wheels; and the rate of change of the steering wheel angle. Also, let

 be the state of the car at time and

 the control command at time . So, after the small time interval,

the car will be at state given by ,

 , and

, where and

 .

A high-level description of the standard RRT algorithm [10] is given in the follow-

ing. The initial car’s state, , is added to an initially empty tree, . At each itera-

tion, a random state, , is firstly taken from the collision-free state space, .

Secondly, the state closest to already present in , , is identified according

to a distance metric. Thirdly, is extended to a new state, , as follows. A

control command is selected either randomly or according to a specific criterion. A

possible criterion is to choose the command that yields a as close as possible to

 . The command is then applied to over a small time interval, which creates

 . If lies in , then a vertex representing and a directed edge repre-

senting the command that takes to are added to . A trajectory is found

when reaches the goal state, . The iterative procedure is executed until a

stop criterion is satisfied (e.g., is reached or a maximum number of iterations is

achieved).

3 Our Approach for Motion Planning

Our motion planner incrementally builds from using random states biased

toward the lane region, and plans a trajectory from to in real time, which

stays within the desired lane bounds and keeps a safe distance from obstacles. At each

planning cycle, our motion planner receives as input: (i) an updated map of the envi-

ronment around the car; (ii) the initial car’s state relative to the map; (iii) the location

of the lane center relative to the map; (iv) an updated list of goal states, comprising

intermediate goal states and the final goal state; and (v) the trajectory built in the pre-

vious planning cycle. Our motion planner then produces as output a trajectory from

the initial car’s state, , to the first goal state, , of the updated list of goal

states. The trajectory is represented by a list of control commands (triplets
) that leads the car from to and is planned at a fixed frequency (hz

in our experiments).

It is important to note that, in spite of being ready to, our motion planner does not

handle movable obstacles yet. For this, it would be enough to add a system for track-

ing the movable obstacles states in the present and estimating their states in the future.

The movable obstacle state would comprise obstacle’s geometry, pose, and velocity.

When selecting or control commands to extend , given the future states of

movable objects, our motion planner would discard states or commands which would

lead to a collision with a movable obstacle.

3.1 Reducing Metric Sensitivity

Our motion planner incorporates the RC-RRT [5], a variant of the standard RRT de-

signed for reducing its sensitivity to the distance metric. The RC-RRT collects infor-

mation during the exploration of the state space and extends according to both the

distance metric and exploration information, which can make it less sensitive to the

distance metric. For each state in , the RC-RRT records whether a control command

has already been applied to the state. If a command has already been applied to the

state, it is discarded, i.e., it is not considered for the state anymore. If all possible

commands have already been applied to the state, it is discarded, i.e., it is not consid-

ered as a anymore. For each state in , RC-RRT also computes a constraint

violation frequency (CVF). For each inserted to , its CVF is initialized to zero.

When a control command applied to the state leads to a collision, the CVF of the state

is increased by

, the CVF of the parent state is increased by

 , and the CVF of the

 -th parent state is increased by

 , where is the number of possible commands.

So, each state’s CVF is bounded to the interval. When selecting a state to be

extended, RC-RRT verifies if the commands for the state are exhausted. If so, the

state is discarded; otherwise, the state is discarded with a probability equal to its CVF.

3.2 Biasing the Location of Random States Toward the Lane Region

Another variant of the standard RRT is employed to bias the location of random states

toward the lane region. For that, with a given probability, is taken from the lane

region instead of from the whole state space as follows. A first sample is taken ran-

domly from the lane center between and , and a second sample is taken

randomly from a circle with a small radius centered in the first sample. The second

sample is then considered as .

3.3 Selecting the Most Promising Control Commands

Another variant of the standard RRT is employed to select the most promising control

commands for extending states. It considers not only the proximity to , but also

other criteria associated with environmental and traffic-law constraints, namely dis-

tance from obstacles, proximity to the lane center, maintenance of velocity limits, and

execution of authorized maneuvers. The space of control commands is discretized and

each possible command, , receives a cost calculated according to the following equa-

tion:

 ∑ , (1)

where is a command selection criterion, is the cost assigned to with

regard to , and is the weight assigned to . Both and

 are bounded to . The sum of the weights of all criteria is equal to

one, i.e., ∑ . When selecting a control command for extending a

state, for each possible command, our motion planner verifies if the command has

already been applied to the state. If so, the command is discarded; otherwise, it is

applied to the state to check if lies in . If not, the command is discarded,

and the CVF of the state and the parent states are increased. The non-discarded com-

mand with smallest cost is selected. Our motion planning considers the five criteria

described below to select a control command.

1. Proximity to . Higher costs are attributed to commands that take farther

from , while lower ones are assigned to commands that bring closer to

 .

2. Distance from obstacles. An occupancy grid map is used to represent the probabil-

ity of occupancy by obstacles. An obstacle distance grid map is used to represent

the proximity to obstacles. The obstacle distance map is derived from the occupan-

cy map as follows. If the value of an occupancy map cell is higher than a given

threshold, then it is considered to be occupied and the corresponding cell of the ob-

stacle distance map is set to one. Otherwise, it is considered free and the corre-

sponding cell of the obstacle distance map is made equal to the corresponding cell

of the occupancy map. The obstacle distance map is used to attribute costs to con-

trol commands according to the distance from obstacles. Higher costs are attributed

to commands that bring closer to an obstacle, while lower ones are assigned to

those that take farther from an obstacle.

3. Proximity to the lane center. A lane distance grid map is used to represent the prox-

imity to the lane center. In the lane distance map, a value in the interval indi-

cates the distance to the lane center: the closer to 1 a grid cell, the farther it is to the

lane center. The lane distance map is used to attribute costs to control commands

according to the proximity to the lane center. Higher costs are attributed to com-

mands that extend a state to another farther from the lane center, while lower ones

are assigned to those that extend a state to another closer to the lane center.

4. Maintenance of velocity limits. A minimum cost is attributed to velocity commands

equal to the maximum limit; the cost increases as the difference between the ve-

locity command and the desired limits increases.

5. Execution of authorized maneuvers. A maximum cost is attributed to control com-

mands that move the car backwards, while a minimum one is assigned to those that

move it forward.

3.4 Selecting the Best Trajectories

Another variant of the standard RRT is employed to select the best trajectories. It

takes into account not only the time to achieve , but also other criteria associated

with environmental constraints, namely distance from obstacles and proximity to the

lane center (second and third criteria described above in Section 3.3). The trajectory

cost is defined by the cost of its last state, i.e., the state that reaches . The initial

state, , receives a cost equals to zero. Each of the other states, , receives a cost

computed according to the following equation:

 ∑ , (2)

where is the parent state; is the time taken by the control

command, , to bring to ; is the cost assigned to with regard

to ; and is the weight assigned to . Both and

are bounded to . The sum of the weights of all criteria is equal to one, i.e.,

∑ .

At each planning cycle, is made empty and the cost of the best trajectory, ,

is initialized to infinity. Every time a new trajectory, , is found, the cost of the

best trajectory is updated to .

3.5 Growing the Tree Toward the Goal State

The Connect heuristic [6] is employed to attempt to quickly grow toward after

each successful extension (addition). Instead of attempting to extend by a

single step, the Connect heuristic repeats the extension step until or an obstacle

is reached. In this way, if is in the car’s direction and there is no obstacle be-

tween the car and , a trajectory may be generated with a smaller number of itera-

tions.

3.6 Discarding Non-Promising States

Another variant of the standard RRT is employed to discard non-promising states. For

that, a state, , has its lower bound on the cost-to-go to estimated as:

‖ ‖

, (3)

where ‖ ‖ is the Euclidean distance between and , and is the

maximum velocity. Every time a new trajectory is found, for each state, , if
 , then can be safely discarded from , as it
cannot provide a better solution than the one that has just been found. Additionally,
whenever is created, if , then
is discarded.

3.7 Reusing Part of the Previous Trajectory

Another variant of the standard RRT is employed to reuse part of the trajectory

built in the previous planning cycle. A large part of the trajectory built in the previous

planning cycle might still be valid and can be used to speed up the search for a new

solution. The valid states – those that lie in and have not been followed by the

car yet – are added to .

3.8 Our Motion Planner Algorithm

A high-level description of our motion planner algorithm is given in the following.

The initial car’s state, , and the valid states of the previous trajectory are added to

 . At each iteration, the random state, , is firstly taken from the lane region with

a given probability. Secondly, is identified using the Euclidean distance and the

CVF information as follows. For each state in , , the motion planner checks if all

possible commands have already been applied to . If so, is discarded; otherwise,

the probability of discarding is equal to the value of its CVF. The non-discarded

with least distance to is selected as . Thirdly, is extended as follows.

For each possible command, , the motion planner verifies if has already been ap-

plied to . If so, is discarded; otherwise, is applied to to check if

lies in . If not, is discarded, and the CVF of and the parent states are

increased. The non-discarded with smallest cost is applied to to verify if

 . If so, is discarded; otherwise, a

vertex representing and a directed edge representing the command that takes

 to are added to . Fourthly, if the extension is successful, the Connect

heuristic repeats the extension step until or an obstacle is reached. Fifthly, if

 is reached and , then the best trajectory is

updated and is pruned, i.e., for all states, , in , if
 , then is discarded from .

The iterative procedure is executed until the minimum planning time is reached.

However, if no trajectory is found during the minimum planning time, the iterative

procedure is executed until the maximum planning time (or timeout). In case of

timeout, the car is stopped.

4 Experimental Methodology

Our Intelligent and Autonomous Robotic Automobile (IARA) is based on a Ford

Escape Hybrid (Fig. 2(a)). It has several high-end sensors, including: two Point Grey

Bumblebee XB3 stereo cameras and two Point Grey Bumblebee 2 stereo cameras, one

Light Detection and Ranging (LIDAR) Velodyne HDL 32-E, and one GPS-aided

Attitude and Heading Reference System (AHRS/GPS) Xsens MTiG. To process the

data coming from the sensors, the platform can hold up to four Dell Precision R5500.

We implemented many software modules for IARA that currently allows for its au-

tonomous operation, such as modules for mapping, localization, behavior selection,

path following, control, and motion planning (that is the focus of this paper). We also

implemented a software module for autonomous vehicle simulation to help in the

development and testing of all the other IARA’s modules (that was also used to eval-

uate the performance of the motion planner presented in this paper).

The main parameters of our motion planner are: maximum car’s velocity, ;

maximum steering wheel angle, ; minimum planning time, ; maximum

planning time (or timeout), ; maximum distance between states, , given by

the maximum distance and ; and the probability of taking from the

lane region, . The values of the main parameters used in our simulation experi-

ments were: m/s, deg, s, s,

 m, and . The values of the parameters used in the experiments

with IARA are the same as those used in the simulation experiments, except for

 s and s.

The experiments with our autonomous vehicle simulator were carried out on maps

and other data computed using sensor logs captured by IARA while manually driven

on a part of the road that surrounds the main campus of our university. For defining

the location of the lane center, IARA was driven along the center of the desired lane

segment of the road. During the course, estimated car’s locations were acquired. The-

se locations are considered as lane center estimates and provided as input to our mo-

tion planner.

The experiments with IARA were conducted on a parking lot of the campus of our

university. We defined a fake lane in the parking lot and driven IARA along the cen-

ter of the fake lane for acquiring car’s locations to be provided as lane center esti-

mates.

5 Experimental Results and Discussion

5.1 Experiments with the Autonomous Vehicle Simulator

To evaluate the contributions of each RRT variant considered in this paper, we exam-

ined the performance of our motion planner in the simulator using five different con-

figurations. The Configuration 1 incorporates only the standard RRT. The Configura-

tion 2 incorporates only the RC-RRT [5]. The Configuration 3 incorporates (a) the

Configuration 2 and (b) discarding of non-promising states using only the time crite-

ria. The Configuration 4 incorporates (a) the Configuration 2 and (b) selection of the

most promising control commands for extending states, discarding of non-promising

states, and selection of the best trajectory using various criteria associated with envi-

ronmental and traffic-law constraints. The Configuration 5 incorporates (a) the Con-

figuration 2, (b) the Configuration 4, and (c) biasing of the location of random states

toward the lane region and the Connect heuristic [6].

In the simulation experiments, the list of goals was composed of only the final

 . Thus, the motion planner executed only a single planning cycle. Consequently,

the reuse of previous trajectories was not evaluated. Finally, it was used the same

 and final .

Fig. 1 shows the results of our simulation experiments. In each of these figures, the

blue rectangle denote , the yellow rectangle the final , yellow lines edges,

grey lines edges leaving states with a high CVF (equal to), red lines edges leaving

discarded states, green lines trajectories found, and the blue line the best trajectory

found.

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 1. Performance of our motion planner using: (a) Configuration 1, (b) Configuration 2, (c,

d) Configuration 3, (e) Configuration 4, and (f, g) Configuration 5. For visibility purposes, we

provide two different views of the same result: views (c) and (d) show and the best trajectory

found for Configuration 3, and views (f) and (g) show and the best trajectory found for Con-

figuration 5.

Fig. 1(a) shows the performance of our motion planner using Configuration 1. As

it can be observed in Fig. 1(a), the state space was sparsely explored. Also, the final

trajectory (blue line) passes close to obstacles and far from the lane center.

Fig. 1(b) shows the performance of our motion planner using Configuration 2. Our

motion planner with the RC-RRT explored the state space much better than with the

standard RRT. The reason is that the RC-RRT avoids similar expansions by applying

a control command to a state only once. This guarantees that new expansions will

always explore new regions. The RC-RRT also penalizes states whose expansion

attempts are likely to fail based on the CVF. As it can be seen in Fig. 1(b), states with

a high CVF (grey lines) are those close to obstacles that, most of the time, extend to

obstacles.

Despite the fact that the RC-RRT explored the state space better than the standard

RRT, the solutions found by both algorithms are equivalent. Both algorithms explore

the whole state space, instead of focusing the search on the region of interest (the

lane), which result in feasible solutions but clearly far from the optimum one. To

avoid exploration of non-interesting regions, our motion planner with Configuration 3

estimates the lower bound on the cost-to-go to for all states using the time crite-

ria, and discards and prevents the insertion in of those that have lower bound costs

(plus their own costs) higher than the best trajectory found until the current moment.

Fig. 1(c, d) shows the performance of our motion planner using Configuration 3. For

visibility purposes, we provide two different views of the same result: Fig. 1(c) shows

 built during the planning cycle and Fig. 1(d) shows the best trajectory found. As it

can be observed in Fig. 1(c) and (d), the motion planner focused the exploration on

the lane region (Fig. 1(c)) and found a trajectory close to the optimum one (Fig. 1(d)).

However, although the trajectory found is close to the optimum one in terms of time,

it is far from the desired one in terms of distance from obstacles and proximity to the

lane center.

To provide trajectories that do not violate environmental and traffic-law con-

straints, our motion planner adopts a more sophisticated approach to select the most

promising control commands for extending states, to choose the best trajectories, and

to discard non-promising states considering other criteria (namely distance from ob-

stacles, proximity to the lane center, maintenance of velocity limits and execution of

authorized maneuvers). Fig. 1(e) shows the performance of our motion planner using

Configuration 4. As it can be seen in Fig. 1(e), the trajectory found maintains distance

from the curbs and stays within the lane bounds.

To further restrict exploration to the region of interest, our motion planner biases

the location of random states toward the lane region. Also, to attempt to quickly grow

 toward , whenever an expansion is well succeeded, our motion planner em-

ploys the Connect heuristic. Fig. 1(f) and (g) show the performance of our motion

planner using Configuration 5. For visibility purposes, we provide two different views

of the same result: Fig. 1(f) shows built during the planning cycle and Fig. 1(g)

shows the best trajectory found. As it can be observed in Fig. 1(f) and (g), the motion

planner restricted the exploration on the lane region even further (Fig. 1(f)) and built a

trajectory from a safe distance from the curbs and within the lane bounds (Fig. 1(g)).

5.2 Experiments with IARA

Different from the simulation experiments, in the experiments with IARA the list of

goals was composed of several goal states. Thus, the motion planner executed several

planning cycles and, consequently, reused part of previous trajectories. Also, it was

used approximately the same (in the real world it is impossible to pose the car in

the same state more than once) and the same final .

We executed the same experiment with IARA ten times. The experiments were ex-

ecuted with a safety driver and a computer operator inside the car. The former was

responsible for stopping the car if any problem occurred, and the later for operating

and observing the progress of the IARA’s autonomous operating system.

Fig. 2(b) shows the estimated IARA’s locations acquired during each of the ten

runs. In this figure, different-colored lines denote the estimated IARA’s locations in

distinct runs. In all runs, the motion planner built trajectories within the fake lane

around the parking lot. The whole trajectory length (from to) was 145.82

m long on average and the whole trajectory time was of 60.18 s on average. Also,

although is built randomly, in all runs our motion planner built very similar trajecto-

ries. The reason is that the search of the state space was biased toward the lane region,

which constrained the possible solutions. Finally, the motion planner was capable of

planning trajectories in only s (hz).

(a) (b)

Fig. 2. (a) Intelligent and Autonomous Robotic Automobile (IARA); (b) Estimated locations of

IARA acquired during each one of the ten runs

6 Conclusions and Future Work

We presented a motion planner for car-like robots driving on roads based on RRT.

Our motion planner combines several variants of the standard RRT algorithm to re-

duce its sensitivity to the distance metric, build trajectories within the desired lane

bounds, and speed up its convergence.

We evaluated the performance of our motion planner using an autonomous vehicle

simulator. To evaluate the contributions of each RRT variant considered in this paper,

we examined the performance of our motion planner using several combinations of

them, ranging from the most naïve (that includes only the standard RRT) to the most

sophisticated one (that includes all the RRT variants considered). The results of the

simulation experiments showed that the most sophisticated configuration outperforms

the others in terms of distance from obstacles and proximity to the lane center. We

also analyzed the performance of our motion planner using the Intelligent and Auton-

omous Robotic Automobile (IARA) based on a modified Ford Escape Hybrid. The

results of the experiments with IARA showed that our motion planner is capable of

planning trajectories in real time, which stay close to the lane center and keep a safe

distance from obstacles.

Directions for future work include: (i) smoothing of the trajectory to make it more

close to that generated by a human driver; (ii) interaction with other environmental

structures, such as movable obstacles and traffic signs; (iii) motion planning on un-

structured parking lots; and (iv) comparison of the performance of our motion planner

and human drivers using IARA.

References

1. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous driving

in unknown environments. In Khatib, O., Kumar, V., Pappas, G., eds. : Experimental

Robotics: The Eleventh International Symposium. Springer, Berlin (2009) 55-64

2. Urmson, C., Anhalt, J., Bagnel, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins,

D., Gittleman, M., Harbaugh, S., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish,

D., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M., Ferguson, D.: Autonomous

driving in urban environments: Boss and the urban challenge. Journal of Field Robotics:

Special Issues on the 2007 DARPA Urban Challenge 25(8), 425-466 (2008)

3. LaValle, S.: Rapidly-exploring random trees: a new tool for path planning. Technical

Report , Iowa State University (1998)

4. Kuwata, Y., Fiore, G., Teo, J., Frazzoli, E., How, J.: Motion planning for urban driving

using RRT. In : IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp.1681-1686 (2008)

5. Cheng, P., LaValle, S.: Resolution complete rapidly-exploring. In : IEEE International

Conference on Robotics and Automation, pp.267–272 (2002)

6. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning.

In : IEEE International Conference on Robotics and Automation, pp.995-1001 (2000)

7. Powers, M., Wooden, D., Egerstedt, M., Christensen, H., Balch, T.: The sting racing team's

entry to the urban challenge. In Rouff, C., Hinchey, M., eds. : Experience from the DARPA

Urban Challenge. Springer-Verlag, London (2012) 43-66

8. Frazzoli, E., Dahleh, M., Feron, E.: Real-time motion planning for agile autonomous

vehicles. In : American Control Conference, pp.43-49 (2001)

9. Bekris, K., Kavraki, L.: Greedy but safe replanning under kinodynamic constraints. In :

IEEE International Conference on Robotics and Automation, pp.704-710 (2007)

10. LaValle, S., Kuffner, J.: Rapidly-exploring random trees: progress and prospects. In

Donald, B., Lynch, K., Rus, D., eds. : Algorithmic and Computational Robotics: New

Directions. A. K. Peters, Welessley (2001) 293-308

11. Macek, K., Becked, M., Siegwart, R.: Motion planning for car-like vehicles in dynamic

urban scenarios. In : IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp.4375-4380 (2006)

12. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: A Randomized Strategy for Cooperative

Robot Exploration. International Conference on Robotics and Automation 768-774 (2007)

13. Chang-an, L., Jin-gang, C., Guo-dong, L., Chun-Yang, L.: Mobile robot path planning

based on an improved rapidly-exploring random tree in unknown environment.

International Conference on Automation and Logistics, 2375-2379 (2008)

14. LaValle, S. M., Kuffner, J. J. .: Randomized kinodynamic planning. In : IEEE International

Conference on Robotics and Automation, pp.473-479 (1999)

15. Ju, T., Liu, S., Yang, J., Sun, D.: Rapidly exploring random tree algorithm-based path

planning for robot-aided optical manipulation of biological cells. Transactions on

Automation Science and Engineering 11(3), 649-657 (2014)

