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Abstract— We present a biologically inspired approach to 

traffic sign detection based on Virtual Generalizing Random 

Access Memory Weightless Neural Networks (VG-RAM WNN). 

VG-RAM WNN are effective machine learning tools that offer 

simple implementation and fast training and test. Our VG-

RAM WNN architecture models the saccadic eye movement 

system and the transformations suffered by the images captured 

by the eyes from the retina to the superior colliculus in the 

mammalian brain. We evaluated the performance of our VG-

RAM WNN system on traffic sign detection using the German 

Traffic Sign Detection Benchmark (GTSDB). Using only 12 

traffic sign images for training, our system was ranked between 

the first 16 methods for the prohibitory category in the German 

Traffic Sign Detection Competition, part of the IJCNN’2013. 

Our experimental results showed that our approach is capable 

of reliably and efficiently detect a large variety of traffic sign 

categories using a few training samples.   

I. INTRODUCTION 

Safety during driving is a very important research topic for 

the automotive industry. One of the technologies that can 

make cars safer to drive is automatic detection and 

recognition of traffic signs. Such technology aims to warn 

the driver of inappropriate actions, e.g., speeding, taking a 

wrong turn in a one-way street, as well as to help the driver 

in difficult situations, e.g., bad weather, tiredness, 

sleeplessness etc. Although the traffic sign detection process 

could be simplified as the appearance of certain traffic signs 

are fixed, sometimes even described by law, in real-world 

situations, given the substantial appearance variation, for 

instance, due to different light conditions, weather, viewpoint 

changes, ageing of the traffic sign and even deformations, 

simple approaches are not reliable and more robust methods 

are necessary. 

While humans are capable of detecting the large variety of 

existing traffic signs efficiently, automatic systems are still a 

challenge. Given the high industrial relevance, automatic 

traffic sign detection and recognition has been attracting 

many researchers’ attentions in recent years [1]. Despite 

many recent advances, traffic sign detection is still a 
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complex real-world problem, which makes it one important 

application for advanced and autonomous driving systems.  

A useful detection system needs to cope with sign rotation, 

different lighting conditions, perspective changes, occlusion 

and all kinds of weather conditions. 

Given an image of a scene, the general problem of traffic 

sign identification is to try and identify one or more traffic 

signs in the image using a priori information about the shape, 

color or features present in the traffic signs. The current 

solutions in the literature commonly involves segmentation 

of traffic signs from the scenes (traffic sign detection), 

feature extraction from the traffic sign regions, and 

recognition. In this paper, we are only interested in the traffic 

sign detection part of the identification problem. 

For traffic sign detection, a variety of techniques have 

been proposed in the literature (see overviews in [1], [2], 

[3]), which can be grouped in three main categories: color-

based methods, shape-based methods and feature-based 

methods. Color-based methods [4] usually apply color 

segmentation combined with edge detection techniques to 

find specific shapes corresponding to traffic signs in images. 

Shape-based methods rely mostly in edge information to 

extract geometric constraints that correspond to traffic signs, 

like circles in the images [5]. In addition, radial symmetry 

[6] can be employed to detect regular shapes like triangles, 

squares, octagons, etc. Feature-based methods apply machine 

learning techniques to special features detected in the 

images. Among the most commonly used techniques are 

Neural Networks [7], Support Vector Machines [8] and 

AdaBoost methods [9]. 

In this paper, we present a biologically inspired approach 

to traffic sign detection based on Virtual Generalizing 

Random Access Memory Weightless Neural Networks (VG-

RAM WNN [10]). VG-RAM WNN are effective machine 

learning tools that offer simple implementation and fast 

training and test. Our VG-RAM WNN systems model the 

biological saccadic eye movement system and the 

transformation suffered by the images captured by the eyes 

from the retina to the superior colliculus of the mammalian 

brain.  

We evaluated the performance of our system using the 

German Traffic Sign Detection Benchmark (GTSDB) 

(http://benchmark.ini.rub.de) [11]. Our experimental results 

showed that our approach is capable of reliably and 

efficiently detect a large variety of traffic sign categories 

using only 12 traffic sign images for training.  

This paper is organized as follows. After this introduction, 

in Section II we briefly discuss the saccadic eye movement 

system and the transformation suffered by the images 
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captured by the eyes from the retina to the superior colliculus 

of the mammalian visual system. In Section III, we present a 

biologically inspired VG-RAM WNN architecture for traffic 

sign detection. In Section IV, we describe our experimental 

methodology and analyze our experimental results. Our 

conclusions and directions for future work follow in Section 

V. 

II. SACCADIC SYSTEM AND MAPPING FROM THE RETINA TO 

THE SUPERIOR COLLICULUS 

The saccadic eye movement subsystem of the mammalian 

visual system is the main responsible for pointing the fovea 

towards objects of interest [12]. The fovea is the central 

region of the retina that has the highest density of receptors 

and thus affords the greatest visual acuity. The saccade 

system produces rapid eye movements (saccades) that shift 

the fovea rapidly to a visual target (saccade target) in the 

visual field. The purpose of the saccade is to move the eyes 

as quickly as possible. As there is no time for large visual 

feedback to significantly modify the course of a saccade, 

corrections to the direction of eyes movement are typically 

made in successive saccades.   

The saccadic eye movements are controlled by the 

midbrain’s superior colliculus (SC). The images captured by 

the eyes are transformed into electrical impulses by the retina 

and, through the optic nerve, are projected into the SC and 

other cerebral areas [12]. The neural projection from the 

retina to SC follows a retinotopic mapping, i.e., neighboring 

regions in the retina are projected onto neighboring regions 

of the SC [13]. Before a saccadic movement, cells in the SC 

are activated and a winner-takes-it-all behavior leads to the 

selection of a point in the visual field retinotopically mapped 

in the SC—this point is the target of the saccade [14]. 

 

 
Figure 1: Log-polar transform. 

 

The mapping from the retina to SC follows a log-polar 

function [13]. Figure 1 shows the log-polar transform of an 

image, centered on the point (xc, yc)—this point corresponds 

to the center of attention in the visual field. Note that the 

circle (in red) in the left image of Figure 1 becomes a 

straight line in the right image, and the regions around the 

circle’s center (the fovea of the model) in the left image 

occupy a much larger area in the right image. The 

mathematical modeling of the log-polar transform commonly 

used in the literature is given by: 
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In this paper, we did not employ the log-polar transform 

exactly as shown above, but a variant that was created to 

emulate more precisely the mapping from the retina to SC. 

Figure 2 shows this variant of the log-polar transform. As 

Figure 2 shows, neighboring regions in the image around the 

circle’s center (the fovea of the model) are also neighbors in 

the log-polar transform (retinotopy), as occurs in the SC. 

This does not occur in the transform depicted in Figure 1. 

 

 
Figure 2: Our variant of the log-polar transform. 

 

III. TRAFFIC SIGN DETECTION WITH VG-RAM WNN 

A. VG-RAM WNN 

RAM-based neural networks, also known as n-tuple 

classifiers or weightless neural networks, do not store 

knowledge in their connections but in Random Access 

Memories (RAM) inside the network’s nodes, or neurons. 

These neurons operate with binary input values and use 

RAM as lookup tables: the synapses of each neuron collect a 

vector of bits from the network’s inputs that is used as the 

RAM address, and the value stored at this address is the 

neuron’s output. Training can be made in one shot and 

basically consists of storing the desired output in the address 

associated with the neuron’s input vector [15]. 

In spite of their remarkable simplicity, RAM-based neural 

networks are very effective as pattern recognition tools, 

offering fast training and test, in addition to easy 

implementation [10]. However, if the network input is too 

large, the memory size becomes prohibitive, since it must be 

equal to 2
n
, where n is the input size.  

Virtual Generalizing RAM (VG-RAM) Weightless Neural 

Networks (WNN) are RAM-based neural networks that only 

require memory capacity to store the data related to the 

training set [16]. In the neurons of these networks, the 

memory stores the input-output pairs shown during training, 

instead of only the output. In the test phase, with a 

distributed neuron memory model, each neuron searches 



 

 

 

associatively its memory by comparing the input presented to 

the network with all inputs in the input-output pairs learned; 

with a shared neuron memory model, each neuron searches 

the memory of all the network’s neurons. The output of each 

VG-RAM WNN neuron is taken from the pair whose input is 

nearest to the input presented—the distance function 

employed by VG-RAM WNN neurons is the Hamming 

distance. If there is more than one pair at the same minimum 

distance from the input presented, the neuron’s output is 

chosen randomly among these pairs. 

Considering a distributed neuron memory model, Table 1 

shows the lookup table of a VG-RAM WNN neuron with 

three synapses (X1, X2 and X3). This lookup table contains 

three entries (input-output pairs), which were stored during 

the training phase (entry #1, entry #2 and entry #3). During 

the test phase, when an input vector (input) is presented to 

the network, the VG-RAM WNN test algorithm calculates 

the distance between this input vector and each input of the 

input-output pairs stored in the neuron’s lookup table. In the 

example of Table 1, the Hamming distance from the input to 

entry #1 is two, because both X2 and X3 bits do not match the 

input vector. The distance to entry #2 is one, because X1 is 

the only non-matching bit. The distance to entry #3 is three, 

as the reader may easily verify. Hence, for this input vector, 

the algorithm evaluates the neuron’s output, Y, as label 2, 

since it is the output value stored in entry #2. 

 

Table 1: VG-RAM WNN neuron lookup table. 

Lookup Table X1 X2 X3 Y 

entry #1 1 1 0 label 1 

entry #2 0 0 1 label 2 

entry #3 0 1 0 label 3 

 ↑ ↑ ↑ ↓ 

input 1 0 1 label 2 

 

B. VG-RAM WNN Architecture for Traffic Sign Detection 

Our VG-RAM WNN architecture for traffic sign 

detection, named TSD, has a single bidimensional array of m 

 n neurons, N, where each neuron, ni,j, has a set of synapses, 

W = (w1,w2,...w|w|), which are connected to the network’s 

bidimensional input, Φ, of u  v pixels, φk,l (Figure 3). The 

mapping of the elements of Φ onto the center of the 

receptive field of each neuron of N follows a log-polar 

function, which models the mapping from the retina to SC 

(Section II). 

The synaptic interconnection pattern of each neuron ni,j 

(which consubstantiates its receptive field), Ωi,j,σ(W), follows 

a bidimensional Normal distribution with variance σ
2
 

centered at 
lk  , , where the coordinates k and l of Φ are 

given by the inverse log-polar function of the coordinates i 

and j of N; i.e., the distribution of coordinates k and l of the 

pixels of Φ to which ni,j connects via W follow the 

probability density functions: 
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where σ is a parameter of the architecture, and the coordinates 

k and l of the pixel of Φ where the Normal distribution is 

centered at are calculated by: 
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and  is the log-factor of the log-polar function and is a 

parameter of the architecture 

The Ωi,j,σ(W) synaptic interconnection pattern mimics that 

observed in many classes of biological neurons [12]. It is 

randomly created when the network is built and does not 

change afterwards; furthermore, although random, it is the 

same for all neurons. Moreover, the memory of all neurons is 

shared (Section III.A). Thus, when the network is trained, 

each neuron learns the association between the information 

collected by its synapses and a given output, but all neurons 

share everyone else knowledge afterwards. 
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Figure 3: Schematic diagram of our VG-RAM WNN 

architecture for traffic sign detection. 

 

VG-RAM WNN synapses can only get a single bit from 

the input. Thus, in order to allow our VG-RAM WNN to 



 

 

 

deal with images, in which a pixel may assume a range of 

different values, we use minchinton cells [17]. In the 

proposed VG-RAM WNN architecture, each neuron’s 

synapse, wt, forms a minchinton cell with the next, wt+1 (w|W| 

forms a minchinton cell with w1). The type of the minchinton 

cell we have used returns 1 (one) if the synapse wt of the cell 

is connected to an input element, φk,l, whose value is larger 

than the value of the element φr,s to which the synapse wt+1 is 

connected, i.e., φk,l > φr,s;  otherwise, it returns zero (see the 

synapses w1 and w2 of the neuron n1,1 of Figure 3). 

During training, the training image is cropped by a square 

centered at the traffic sign image center. The crop square 

size is estimated to contain the traffic sign image and part of 

the background. We use distinct scale factors for the crop 

square size to match various sizes of traffic sign images. The 

image patch extracted from the training image by the crop 

square is scaled to fit into Φ, filtered by a Gaussian filter to 

smooth out artifacts produced by the scaling, and its pixels 

are copied to Φ. The image patch’s center is used as the 

center of the log-polar function (center of attention in the 

visual field) that maps Φ onto N. Each neuron is then trained 

to output a value different than zero if the center of its 

receptive field is within a circle with radius r centered at the 

image patch’s center, and zero otherwise, where r is a 

parameter of the architecture. The trained value decreases as 

the center of the receptive field of the neurons moves away 

from the circle’s center until it reaches zero at its border. 

This procedure is repeated for all images in the training set. 

During training, the scale factor used in the scaling 

mentioned above is set to a value that puts the traffic sign 

image precisely within the circle of radius r. 

Figure 4 shows a training instance, where the TSD neural 

network is trained to detect a traffic sign in a training image. 

Figure 4(a) shows the training image with the border and 

center of the ground truth bounding box marked with a red 

square and red cross, respectively; Figure 4(b) shows the 

transformed (scaled and filtered) image patch extracted from 

the training image; Figure 4(c) shows the log-polar mapping 

of Φ onto N (this is only for visualization); and Figure 4(d) 

shows the output of N after training. As Figure 4(d) shows, 

neurons with the center of their receptive fields within the 

circle centered at the image patch’s center (compare the 

Figure 4(c) with the Figure 4(d)) are trained to produce 

outputs with values higher than zero (white or gray), while 

those with the center of its receptive field far from the 

circle’s center are trained to output zero (black). Note that 

circles become rectangles after our log-polar transform, and 

the regions around the center of the transform occupy a much 

larger area (compare the representations of the circular 

traffic sign with that of the triangular traffic sign in Figure 

4(c)). 

During testing, the test image is probed by our system at 

several points regularly spaced. We use 12 distinct scale 

factors for this probing to match various sizes of traffic sign 

images, mimicking the procedure of looking at the image 

from different distances. The probing is made using 

horizontal and vertical shifts of the center of the log-polar 

function (center of attention) in the test image proportional 

to the size of the crop square (window of attention) 

mentioned above, such that the square shifts yield partially 

overlapped image patches, which allows detection of traffic 

sign images in the boundaries of the window of attention.  

 

 
(a) 

 
  

(b) (c) (d) 

Figure 4: Example of a training instance of our VG-RAM 

WNN architecture for traffic sign detection (TSD).  

 

Each image patch extracted from the test image is scaled 

(to fit into Φ), filtered (by a Gaussian filter to smooth out 

artifacts), and its pixels are copied into Φ. The neurons then 

generate their output according to their receptive fields. 

Neurons with receptive field on regions of the image patch 

similar to regions of traffic sign images previously trained 

generate outputs with high values. After a procedure 

equivalent to the winner-takes-its-all behavior observed in 

the SC [14], the neuron with the highest output is selected 

and the inverse log-polar function in the coordinates of this 

neuron is used to compute the coordinates of a point 

(saccade target) in the image patch possibly belonging to a 

traffic sign image. The log-polar function center (center of 

attention) is moved (saccade) to this point in the test image 

and the neurons’ outputs are recomputed. This procedure is 

repeated one or more times, or until the log-polar function 

center does not move anymore. A matching score, that 

quantifies the similarity between the center of the image 

patch and a traffic sign, is computed by comparing the image 

of the output of N after testing to that after training (Figure 

4(d)). If the output of N after testing is similar to the output 

of N after training, a traffic sign image might have been 

detected in the image patch. 

Figure 5 shows a testing instance, where neurons in the 

network, trained to detect traffic signs, generate their outputs 

according to the image region monitored by their receptive 

fields. Figure 5(a) shows the test image with the center of 



 

 

 

attention marked with a red cross; Figure 5(b) shows the 

transformed (scaled and filtered) image patch extracted from 

the test image; Figure 5(c) shows the log-polar mapping of Φ 

onto N (just for visualization); and Figure 5(d) shows the 

output of N before the saccade. As Figure 5(d) shows, 

neurons with the center of their receptive fields on a traffic 

sign image generate higher outputs (compare the Figure 5(c) 

with the Figure 5(d)). Figure 5(e) to Figure 5(h) are 

equivalent to Figure 5(a) to Figure 5(d), with the difference 

that they illustrate the testing instance after the saccade. As 

Figure 5(h) shows, the output of N after the saccade is very 

similar to the output of N after training (compare Figure 4(d) 

with Figure 5(h)), which indicates that a traffic sign image 

might have been detected in the image patch. An animation 

of a single training and several subsequent saccades is 

available at http://youtu.be/H_LdE8fcbF4. 

The TSD degree of belief that a traffic sign has really been 

detected in the image patch is estimated using Bayesian 

inference, as described below in Section III.C. The whole 

system final decision is regulated by a threshold: if the 

degree of belief is larger than this threshold, then a traffic 

sign has been detected. Nevertheless, the detected traffic sign 

image might be out of the center of the image patch extracted 

from the test image (as it is in Figure 5(e)). To precisely find 

the center of the detected traffic sign image, we employ a 

second VG-RAM WNN that explores the symmetry present 

in the traffic sign image, as described below in Section III.D. 

C. Degree of Belief in the Traffic Sign Detection 

Our system maps the matching score—that quantifies the 

similarity between the center of the image patch and a traffic 

sign (Section III.B)—into a probability measure. This 

probability measure is expressed as p(D | M, S, X, Y), where 

D is a binary random variable, and D = True if a traffic sign 

has been detected and D = False if it has not; and M = {m1, 

m2, …, m|M|}, S = {s1, s2, …, s|S|}, X = {x1, x2, …, x|X|} and Y 

= {y1, y2, …, y|Y|}  are discrete random variables that 

represent the discretization of the possible values of 

matching scores, scale factors, and saccade target x and y 

coordinates in the test image, respectively. Using the Bayes’ 

Theorem, the probability that a traffic sign image has been 

detected in the image patch (p(D = True)), given that the 

network computed a matching score in the interval mi, the 

image patch was extracted from the test image according to 

the scale factor si, and the saccade target is within the range 

of horizontal coordinates xi and vertical coordinates yi of the 

test image, can be formulated as:  

 

),,,(

)|,,,()(
),,,|(

YXSMp

DYXSMpDp
YXSMDp


 , 

(9) 

 

 

where 

 

)|()|()|()|()|,,,( DYPDXPDSPDMPDYXSMp   and (10) 

 

)|~()|~()|~()|~()(~

)|()|()|()|()(),,,(

DYPDXPDSPDMPDP

DYPDXPDSPDMPDpYXSMp




. 

(11) 

 

 
(a) 

 
  

(b) (c) (d) 

 
(e) 

 
  

(f) (g) (h) 

Figure 5: Example of a testing instance of our VG-RAM 

WNN architecture for traffic sign detection (TSD). 

 

To estimate the values of p(D), p(~D), p(M | D), p(M | 

~D), p(S | D), p(S | ~D), p(X | D), p(X  | ~D), p(Y | D), ), and 

p(Y | ~D), we used a training subset and a validation subset. 

We trained the network with the images of the training 

subset, examined the TSD output with the validation subset, 

and estimated the values of the terms of the Equations (10) 

and (11) mentioned above. 

The probability that a traffic sign has (or has not) been 

detected, p(D = True) (or p(D = False)), can be estimated as 

the percentage of saccades that hit (or do not hit) the 

associated ground truth bounding boxes of the validation 



 

 

 

subset, according to the four constraints described below in 

this section.  

The probabilities p(M = mi | D = True) (or p(M = mi | D = 

False)) can be estimated as the percentage of matching 

scores in each interval mi, given that a traffic sign has (or has 

not) been detected, i.e., D = True (or D = False). The 

probabilities p(S = si | D = True) (or p(S = si | D = False)) 

can be estimated as the percentage of image patches 

extracted according to a scale factor si, given that D = True 

(or D = False). The probabilities p(X = xi | D = True) (or p(X 

= xi | D = False)) can be estimated as the percentage of 

saccade targets within the range of horizontal coordinates xi, 

given that D = True (or D = False). Finally, the probabilities 

p(Y = yi | D = True) (or p(Y = yi | D = False)) can be 

estimated as the percentage of saccade targets within the 

range of vertical coordinates yi, given that D = True (or D = 

False). 

A saccade hits a ground truth bounding box if four 

constraints are satisfied. Let dx and dy be distances in the x-

axis and y-axis, respectively, between the saccade target and 

the center of the ground truth bounding box; wgt the width of 

the ground truth bounding box; and wei the traffic sign 

estimated width as a function of si (wei = c/si, where c is a 

parameter of our system). The first constraint specifies that 

the saccade target must be near the center of the ground truth 

bounding box, i.e.: 
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The second that the image patch size must be close to the 

size of the ground truth bounding box, i.e.: 

 

2.17.0  gteigt www . (14) 

 

The third that the matching score must be greater or equal 

to 0.3, and the fourth that the traffic sign image must belong 

to a pre-defined category of traffic signs. 

Our system final decision is regulated by a threshold: if 

p(D = True | M = mi, S = si, X = xi, Y = yi) is larger than the 

threshold, then a traffic sign has been detected. The 

threshold value can either be specified by the system’s user 

or automatically tuned using a training subset and a 

validation subset, by varying the threshold value until the 

performance of interest in terms of precision and recall is 

achieved (the validation subset is part of the training dataset 

but not of the test dataset [18]).  

D. VG-RAM WNN for Traffic Sign Centralization 

We employ a second VG-RAM WNN that explores the 

symmetry present in the detected traffic sign images to try 

and find their center.  This second VG-RAM WNN, named 

TSC, has the same architecture of the first one (TSD), 

previously presented in Section III.B, and operates in the 

three steps described below. 

In the first step, the center of attention of TSC (the center 

of its log-polar) is pointed at a traffic sign image detected by 

TSD (actually, TSD’s saccade target). To do that, an image 

patch, centered at the target of the TSD’s saccade, is 

extracted from the test image by a crop square using the 

same scale factor used by TSD for detection. This image 

patch is scaled and filtered, and its pixels are copied to the 

input Φ of TSC. TSC is, then, trained to learn the appearance 

of the image surrounding TSD’s saccade target. The training 

procedure is identical to the one followed by TSD and 

described previously in Section III.B, except by the 

parameter r that, in the case of TSC, it is set in such a way 

that TSC’s neurons learn to output values different than zero 

in a smaller region of the traffic sign image that TSD has 

possibly detected, instead of the whole traffic sign image.  

In the second step, the image patch is swapped 

horizontally and the TSC neurons generate their output 

according to their receptive fields. If TSD’s saccade hit the 

center of a traffic sign image, its swapped image will appear 

very similar due to the traffic sign image symmetrical form. 

Therefore, in this case, the TSC neurons will show activation 

very similar to the one learned and a TSC saccade will not 

move its center of attention. In the other hand, if TSD’s 

saccade hit a point not in the center of the traffic sign image, 

the image region that will appear similar will be a region 

symmetric to the one learned by TSC. Therefore, the TSC 

neurons that will show activation will be those that have 

receptive field in regions where the swapped image is 

symmetrical to the learned image. A TSC saccade will, then, 

move its center of attention to this region. The distances in 

the x-axis, h
xd , and y-axis, h

yd , between the  current center of 

attention (the target of TSC saccade), (xs, ys), and the target 

of the TSD saccade, (xc, yc), are computed and saved 

( cs
h
x xxd   e cs

h
y yyd  ). Considering the symmetrical 

appearance of traffic sign images, it is expected that TSC’s 

saccade in this step is mostly horizontal (i.e., 0h
yd ). 

In the third step, the image patch is swapped vertically and 

the same procedure is followed. The distances in the x-

axis, v
xd , and y-axis, v

yd , between the  current center of 

attention (the target of TSC saccade) and the target of the 

TSD saccade are computed and saved. In this case, it is 

expected that TSC’s saccade is mostly vertical (i.e., 0v
xd ). 

Actually, if ||2.0|| h
x

h
y dd  and ||2.0|| v

y
v
x dd  , our 

system consider that the image patch contains a traffic sign 

image and that its center has been found at the point 

)
2

,
2

(

v
y

c

h
x

c

d
y

d
x  . In this case, the crop square’s center is 

moved to this point and the traffic sign detection process is 

considered complete. The traffic sign bounding box can then 

be easily computed using this point coordinates and the 

current scale factor.  

If the first TSC saccade is not mostly horizontal or the 

second is not mostly vertical, TSC neurons’ memories are 

deleted so that this procedure can be repeated starting from a 

point chosen randomly near (xc, yc) and a higher scale factor. 



 

 

 

So, while ||2.0|| h
x

h
y dd   and ||2.0|| v

y
v
x dd   and a 

maximum number of iterations has not been reached, the 

whole process is repeated. If the maximum number of 

iterations is reached, our system considers that the image 

patch does not contain a traffic sign image. An animation of 

the TSC operation is available at 

http://youtu.be/SZ9w1XBWJqE. 

IV. EXPERIMENTAL EVALUATION AND DISCUSSION 

A. Experimental Methodology 

To evaluate the performance of VG-RAM WNN on traffic 

sign detection, we used the German Traffic Sign Detection 

Benchmark (GTSDB) (http://benchmark.ini.rub.de) [11].  

The GTSDB dataset contains 600 images in the training 

dataset and 300 images in the test dataset. All images have a 

resolution of 1360×800 pixels. Each image might or might 

not contain traffic signs, which are categorized into 

prohibitory, danger and mandatory categories that are, in 

turn, subcategorized into 12, 15 and 8 subcategories, 

respectively.  

 
 training subset (12 samples from 0-299 range) 

 

Bayesian 

Inference 

Module 
TSD  

 

 

images 

ground truth 

Inference 

Table 

terms of Eqs. (10) and (11) 

(ImgId, m, si, xc, yc) 

validation subset 

(300-599 range) images 

 
Figure 6: Flow chart of the validation phase of our system. 

 

Figure 6 shows the flow chart of the validation phase of 

our system, which is used for estimating the values of the 

terms of the Equations (10) and (11). In this phase, TSD uses 

as input a training subset and a validation subset (see Figure 

6). The training subset is composed of only 12 traffic sign 

images selected from within the first 300 images (0-299 

range) of the GTSDB training dataset. These 12 traffic sign 

images are randomly taken from those images that contain 

traffic signs of the prohibitory category. The validation 

subset is composed of the remaining 300 images (300-599 

range) of the GTSDB training dataset. We trained TSD with 

the 12 traffic sign images of the training subset and tested it 

with the whole images of the validation subset. TSD outputs 

a (ImgId, m, s, xc, yc) tuple for each test instance, where 

ImgId is the image identification number, m is the matching 

score, s is the scale factor, and xc and yc are the coordinates 

of the saccade target (we used a single saccade for each test 

instance). These tuples are fed to the Bayesian Inference 

Module, which accumulates these tuples for the whole 

validation subset and, after that, using the GTSDB training 

dataset ground truth, estimates and stores the terms of 

Equations (10) and (11) in the Inference Table. 

Figure 7 shows the flow chart of the test phase of our 

system. In this phase, TSD uses as input a training subset and 

a test subset (see Figure 7). The training subset is composed 

of only 12 traffic sign images, the same used in the 

validation phase. The test dataset is composed of all 300 

images (0-299 range) of the GTSDB test dataset, or the last 

300 images (300-599 range) of the GTSDB training dataset. 

We trained TSD the same way as in the validation phase and 

tested it with the whole images of the test dataset. TSD 

output was fed to the Bayesian Inference Module, that, in 

this phase, thanks to the Inference Table built in the 

validation phase, is able to output a tuple that includes p, 

which is a short for p(D = True | M = mi, S = si, X = xi, Y = 

yi), and the same members of the tuple it received from TSD 

(see Figure 7). If this tuple is above a threshold, it is fed to 

TSC, otherwise it is discarded. TSC tries and finds the center 

of the traffic signs it receives or discards the tuple as well. 

The traffic signs properly centered by TSC are outputted as 

bounding boxes in the test image that can be compared with 

the GTSDB dataset ground truth.  
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Figure 7: Flow chart of the test phase of our system. 

 

B. Experimental Results 

TSD and TSC architectures have 5 parameters: (i) the 

number of neurons, m  n; (ii) the number of synapses per 

neuron, |W|; (iii) the size of the network input, u  v; (iv) the 

standard deviation, σ, of the two-dimensional Normal 

distribution followed by the synaptic interconnection pattern 

of the neurons, Ω; and (v) the log-factor, , of the log-polar 

function that maps Φ onto N. We have used the following 

parameters in our experiments, which were chosen in an ad 

hoc manner: (i) number of neurons equal to 65 × 49; (ii) 

number of synapses per neuron equal to 256; (iii) size of the 

network input equal to 201 × 201; (iv) σ
 
equal to 5; and (v)  

equal to 2.  

We have used 12 different scale factors, which were 

chosen in such way that the largest traffic sign in the GTSDB 

database (128 × 128 pixels) could fit into the receptive field 

of the TSD neurons trained with a value different than zero 



 

 

 

in the case of the smaller scale factor; and the smaller traffic 

sign image (16 × 16  pixels) could fit in the receptive field of 

the TSD neurons in the case of the highest scale factor. 

To evaluate the contributions of each module of our traffic 

sign detection system, we examined its performance (i) 

considering only TSD, (ii) considering TSD and the 

Bayesian Inference Module, and (iii) considering the whole 

system. Figure 8 shows the performance of our system in a 

precision × recall curve for the GTSDB training dataset in 

the (i), (ii) and (iii) scenarios, named Matching score, 

Probability and Probability+Symmetry scenarios, 

respectively.  

The graph of Figure 8 has three curves, one for each 

scenario. As the graph of Figure 8 shows, the whole system 

performs the best (Probability+Symmetry scenario), i.e., the 

area under the precision × recall curve is the largest, when 

using the whole system. However, the performance of the 

system using the scenarios Matching score and Probability 

are, at first glance, unexpected. 

The graph of Figure 8 shows that the area under the 

precision × recall curve for the Probability scenario is 

smaller than that of the Matching score scenario and the 

reverse would at first be expected. However, this happens 

because the Bayesian Inference Module removes most of the 

tuples it receives even using a low probability as threshold. 

In the Matching score scenario, on the other hand, many 

tuples are accepted as valid traffic signs and some of them 

end up contributing to the recall of this reduced version of 

our system. One may reason that, in spite of that, this version 

should be preferred and the whole system should not include 

the Bayesian Inference Module. However, this would put a 

large burden in the TSC module, since, in the Matching 

score scenario, much more tuples would be submitted to it.  
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Figure 8: Performance of our system: precision × recall—

GTSDB training dataset. 

 

The difference in area between the Probability+Symmetry 

and the Probability curves demonstrates the benefits of using 

the TSC module for performing symmetry correction—most 

tuples that would be considered false positives are corrected 

by TSC and contributes for the better overall recall shown by 

the Probability+Symmetry curve. 

We have submitted the results of our system for traffic 

sign detection to the GTSDB evaluation webpage on 

February 28th, 2013. Our system was ranked between the 

first 16 methods for the prohibitory category, showing an 

area of 85.12% under the precision × recall curve. The graph 

in Figure 9 shows the data we collected from the GTSDB 

webpage—red curve with squared data points—together with 

the performance of our system with the training dataset 

previously shown in Figure 8—blue curve with diamond data 

points. As the graph in Figure 9 shows, the performance in 

the training set is consistent with the performance in the 

testing set. 
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Figure 9: Performance of our system: precision × recall—

GTSDB test dataset. 

 

We have also measured the performance of our systems in 

terms of time. Running in a Dell Alienware Aurora R1 

machine, with an Intel Core i7-930 quad-core processor (8M 

Cache, 2.8 GHz) and 12 GB of RAM, TSD can be trained in 

3.85 seconds (12 traffic signs) and performs a saccade in 

0.42 seconds on average, while TSC performs the whole 

process required for symmetry detection and correction in 

0.18 seconds on average. Therefore, if the whole system 

detects a traffic sign in a single TSD saccade, the total 

detection time of a traffic sign is 0.60 s = 0.42 s + 0.18 s (the 

consumed by the Bayesian Inference Module is negligible). 

However, the system may not detect a traffic sign with a 

single TSD saccade. Actually, to cover a single image, in our 

experiments we performed 780 saccades because we use 

several scale factors—for the highest scale factor 162 

saccades are necessary. Nevertheless, the system can be used 

in fewer and coarser scale factors, say the smallest scale 

factor, which requires a total of 6 TSD saccades. In this case, 

using current desktop computers, our whole system can 

operate at a rate of about one image each 3.6 s. It is 

important to mention that our implementation can be 

optimized for taking advantage of hardware accelerators, 



 

 

 

such as GPU, FPGA or digital signal processors, improving 

the time performance figures just mentioned, and, in such 

case,  we believe it can be used on-line. 

C. Discussion 

The traffic sign detection performance of our system is the 

result of two factors. First, each synapse of TSD and TSC 

collects the result of a comparison between two pixels, which 

is executed by its corresponding minchinton cell. Our 

configurations for both systems have hundreds of synapses 

per neuron and thousands of neurons. Therefore, during 

testing, hundreds of thousands of such comparisons are 

performed on each input image and the results are checked 

against equivalent results learned from training images. This 

amount of pixel comparisons allows not only for high 

discrimination capability but also generalization. Second, 

thanks to the synapse interconnection patterns and log-polar 

architecture, each neuron of TSD or TSC monitors a specific 

region of the traffic sign, which reduces the overall impact of 

occlusion, and varying color and illumination conditions on 

the performance of these systems.  

We believe that our system could show much better traffic 

sign detection performance if proper parameter tuning were 

employed—we adjusted all system parameters in a ad hoc 

manner—and if a large number of training images were 

used—we used only 12 traffic sign images in all 

experiments. We were unable to perform parameter tuning 

tests with more training samples, and tests with other 

categories of traffic signs due to time constraints.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we present a new approach for traffic sign 

detection based on Virtual Generalizing Random Access 

Memory Weightless Neural Networks (VG-RAM WNN). 

Our experiments showed that VG-RAM WNN can be 

employed for traffic sign detection with good accuracy, 

despite a very small number of training samples. The main 

advantage of VG-RAM WNN against other neural network 

approaches employed for traffic sign recognition is its simple 

implementation and fast training and test. For future work, 

we plan to tune the parameters of our VG-RAM WNN 

architecture and increase the number of training examples, 

which can improve its performance even further.  We also 

would like to evaluate the proposed system on traffic signs of 

Brazil’s road environment. 
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