



Abstract— We present a biologically inspired approach to

traffic sign detection based on Virtual Generalizing Random

Access Memory Weightless Neural Networks (VG-RAM WNN).

VG-RAM WNN are effective machine learning tools that offer

simple implementation and fast training and test. Our VG-

RAM WNN architecture models the saccadic eye movement

system and the transformations suffered by the images captured

by the eyes from the retina to the superior colliculus in the

mammalian brain. We evaluated the performance of our VG-

RAM WNN system on traffic sign detection using the German

Traffic Sign Detection Benchmark (GTSDB). Using only 12

traffic sign images for training, our system was ranked between

the first 16 methods for the prohibitory category in the German

Traffic Sign Detection Competition, part of the IJCNN’2013.

Our experimental results showed that our approach is capable

of reliably and efficiently detect a large variety of traffic sign

categories using a few training samples.

I. INTRODUCTION

Safety during driving is a very important research topic for

the automotive industry. One of the technologies that can

make cars safer to drive is automatic detection and

recognition of traffic signs. Such technology aims to warn

the driver of inappropriate actions, e.g., speeding, taking a

wrong turn in a one-way street, as well as to help the driver

in difficult situations, e.g., bad weather, tiredness,

sleeplessness etc. Although the traffic sign detection process

could be simplified as the appearance of certain traffic signs

are fixed, sometimes even described by law, in real-world

situations, given the substantial appearance variation, for

instance, due to different light conditions, weather, viewpoint

changes, ageing of the traffic sign and even deformations,

simple approaches are not reliable and more robust methods

are necessary.

While humans are capable of detecting the large variety of

existing traffic signs efficiently, automatic systems are still a

challenge. Given the high industrial relevance, automatic

traffic sign detection and recognition has been attracting

many researchers’ attentions in recent years [1]. Despite

many recent advances, traffic sign detection is still a

Manuscript received on March 1st, 2013. This work was supported in

part by Conselho Nacional de Desenvolvimento Científico e Tecnológico-

CNPq-Brasil (grants 552630/2011-0, 308096/2010-0, and 314485/2009-0)

and Fundação de Amparo à Pesquisa do Espírito Santo-FAPES-Brasil

(grant 48511579/2009).

Alberto F. De Souza, Cayo Fontana, Filipe Mutz, Tiago Alves de

Oliveira, Mariella Berger, Avelino Forechi, Jorcy de Oliveira Neto, Edilson

de Aguiar, and Claudine Badue are with the Departamento de Informática,

Universidade Federal do Espírito Santo, Vitoria, ES, 29075-910, Brazil

(phone: +55-27-4009-2138; fax: +55-27-4009-5848; e-mails:

alberto@lcad.inf.ufes.br, claudine@lcad.inf.ufes.br).

complex real-world problem, which makes it one important

application for advanced and autonomous driving systems.

A useful detection system needs to cope with sign rotation,

different lighting conditions, perspective changes, occlusion

and all kinds of weather conditions.

Given an image of a scene, the general problem of traffic

sign identification is to try and identify one or more traffic

signs in the image using a priori information about the shape,

color or features present in the traffic signs. The current

solutions in the literature commonly involves segmentation

of traffic signs from the scenes (traffic sign detection),

feature extraction from the traffic sign regions, and

recognition. In this paper, we are only interested in the traffic

sign detection part of the identification problem.

For traffic sign detection, a variety of techniques have

been proposed in the literature (see overviews in [1], [2],

[3]), which can be grouped in three main categories: color-

based methods, shape-based methods and feature-based

methods. Color-based methods [4] usually apply color

segmentation combined with edge detection techniques to

find specific shapes corresponding to traffic signs in images.

Shape-based methods rely mostly in edge information to

extract geometric constraints that correspond to traffic signs,

like circles in the images [5]. In addition, radial symmetry

[6] can be employed to detect regular shapes like triangles,

squares, octagons, etc. Feature-based methods apply machine

learning techniques to special features detected in the

images. Among the most commonly used techniques are

Neural Networks [7], Support Vector Machines [8] and

AdaBoost methods [9].

In this paper, we present a biologically inspired approach

to traffic sign detection based on Virtual Generalizing

Random Access Memory Weightless Neural Networks (VG-

RAM WNN [10]). VG-RAM WNN are effective machine

learning tools that offer simple implementation and fast

training and test. Our VG-RAM WNN systems model the

biological saccadic eye movement system and the

transformation suffered by the images captured by the eyes

from the retina to the superior colliculus of the mammalian

brain.

We evaluated the performance of our system using the

German Traffic Sign Detection Benchmark (GTSDB)

(http://benchmark.ini.rub.de) [11]. Our experimental results

showed that our approach is capable of reliably and

efficiently detect a large variety of traffic sign categories

using only 12 traffic sign images for training.

This paper is organized as follows. After this introduction,

in Section II we briefly discuss the saccadic eye movement

system and the transformation suffered by the images

Traffic Sign Detection with VG-RAM Weightless Neural Networks

Alberto F. De Souza, Cayo Fontana, Filipe Mutz, Tiago Alves de Oliveira, Mariella Berger, Avelino

Forechi, Jorcy de Oliveira Neto, Edilson de Aguiar, and Claudine Badue

captured by the eyes from the retina to the superior colliculus

of the mammalian visual system. In Section III, we present a

biologically inspired VG-RAM WNN architecture for traffic

sign detection. In Section IV, we describe our experimental

methodology and analyze our experimental results. Our

conclusions and directions for future work follow in Section

V.

II. SACCADIC SYSTEM AND MAPPING FROM THE RETINA TO

THE SUPERIOR COLLICULUS

The saccadic eye movement subsystem of the mammalian

visual system is the main responsible for pointing the fovea

towards objects of interest [12]. The fovea is the central

region of the retina that has the highest density of receptors

and thus affords the greatest visual acuity. The saccade

system produces rapid eye movements (saccades) that shift

the fovea rapidly to a visual target (saccade target) in the

visual field. The purpose of the saccade is to move the eyes

as quickly as possible. As there is no time for large visual

feedback to significantly modify the course of a saccade,

corrections to the direction of eyes movement are typically

made in successive saccades.

The saccadic eye movements are controlled by the

midbrain’s superior colliculus (SC). The images captured by

the eyes are transformed into electrical impulses by the retina

and, through the optic nerve, are projected into the SC and

other cerebral areas [12]. The neural projection from the

retina to SC follows a retinotopic mapping, i.e., neighboring

regions in the retina are projected onto neighboring regions

of the SC [13]. Before a saccadic movement, cells in the SC

are activated and a winner-takes-it-all behavior leads to the

selection of a point in the visual field retinotopically mapped

in the SC—this point is the target of the saccade [14].

Figure 1: Log-polar transform.

The mapping from the retina to SC follows a log-polar

function [13]. Figure 1 shows the log-polar transform of an

image, centered on the point (xc, yc)—this point corresponds

to the center of attention in the visual field. Note that the

circle (in red) in the left image of Figure 1 becomes a

straight line in the right image, and the regions around the

circle’s center (the fovea of the model) in the left image

occupy a much larger area in the right image. The

mathematical modeling of the log-polar transform commonly

used in the literature is given by:

     RyyxxR cc log
22

 and (1)

 
 

 arctan 


















c

c

xx

yy
.

(2)

In this paper, we did not employ the log-polar transform

exactly as shown above, but a variant that was created to

emulate more precisely the mapping from the retina to SC.

Figure 2 shows this variant of the log-polar transform. As

Figure 2 shows, neighboring regions in the image around the

circle’s center (the fovea of the model) are also neighbors in

the log-polar transform (retinotopy), as occurs in the SC.

This does not occur in the transform depicted in Figure 1.

Figure 2: Our variant of the log-polar transform.

III. TRAFFIC SIGN DETECTION WITH VG-RAM WNN

A. VG-RAM WNN

RAM-based neural networks, also known as n-tuple

classifiers or weightless neural networks, do not store

knowledge in their connections but in Random Access

Memories (RAM) inside the network’s nodes, or neurons.

These neurons operate with binary input values and use

RAM as lookup tables: the synapses of each neuron collect a

vector of bits from the network’s inputs that is used as the

RAM address, and the value stored at this address is the

neuron’s output. Training can be made in one shot and

basically consists of storing the desired output in the address

associated with the neuron’s input vector [15].

In spite of their remarkable simplicity, RAM-based neural

networks are very effective as pattern recognition tools,

offering fast training and test, in addition to easy

implementation [10]. However, if the network input is too

large, the memory size becomes prohibitive, since it must be

equal to 2
n
, where n is the input size.

Virtual Generalizing RAM (VG-RAM) Weightless Neural

Networks (WNN) are RAM-based neural networks that only

require memory capacity to store the data related to the

training set [16]. In the neurons of these networks, the

memory stores the input-output pairs shown during training,

instead of only the output. In the test phase, with a

distributed neuron memory model, each neuron searches

associatively its memory by comparing the input presented to

the network with all inputs in the input-output pairs learned;

with a shared neuron memory model, each neuron searches

the memory of all the network’s neurons. The output of each

VG-RAM WNN neuron is taken from the pair whose input is

nearest to the input presented—the distance function

employed by VG-RAM WNN neurons is the Hamming

distance. If there is more than one pair at the same minimum

distance from the input presented, the neuron’s output is

chosen randomly among these pairs.

Considering a distributed neuron memory model, Table 1

shows the lookup table of a VG-RAM WNN neuron with

three synapses (X1, X2 and X3). This lookup table contains

three entries (input-output pairs), which were stored during

the training phase (entry #1, entry #2 and entry #3). During

the test phase, when an input vector (input) is presented to

the network, the VG-RAM WNN test algorithm calculates

the distance between this input vector and each input of the

input-output pairs stored in the neuron’s lookup table. In the

example of Table 1, the Hamming distance from the input to

entry #1 is two, because both X2 and X3 bits do not match the

input vector. The distance to entry #2 is one, because X1 is

the only non-matching bit. The distance to entry #3 is three,

as the reader may easily verify. Hence, for this input vector,

the algorithm evaluates the neuron’s output, Y, as label 2,

since it is the output value stored in entry #2.

Table 1: VG-RAM WNN neuron lookup table.

Lookup Table X1 X2 X3 Y

entry #1 1 1 0 label 1

entry #2 0 0 1 label 2

entry #3 0 1 0 label 3

 ↑ ↑ ↑ ↓

input 1 0 1 label 2

B. VG-RAM WNN Architecture for Traffic Sign Detection

Our VG-RAM WNN architecture for traffic sign

detection, named TSD, has a single bidimensional array of m

 n neurons, N, where each neuron, ni,j, has a set of synapses,

W = (w1,w2,...w|w|), which are connected to the network’s

bidimensional input, Φ, of u  v pixels, φk,l (Figure 3). The

mapping of the elements of Φ onto the center of the

receptive field of each neuron of N follows a log-polar

function, which models the mapping from the retina to SC

(Section II).

The synaptic interconnection pattern of each neuron ni,j

(which consubstantiates its receptive field), Ωi,j,σ(W), follows

a bidimensional Normal distribution with variance σ
2

centered at
lk  , , where the coordinates k and l of Φ are

given by the inverse log-polar function of the coordinates i

and j of N; i.e., the distribution of coordinates k and l of the

pixels of Φ to which ni,j connects via W follow the

probability density functions:

2

2

2
2

)(

, 2

1
)(



 
k

k

k

ek





 and

(3)

2

2

2
2

)(

, 2

1
)(



 
l

l

l

el





 ,

(4)

where σ is a parameter of the architecture, and the coordinates

k and l of the pixel of Φ where the Normal distribution is

centered at are calculated by:

  cos
2

 d
u

k and
(5)

  send
v

l 
2

,
(6)

where


























1

1

2

2

2




m

mi

u
d and

(7)



































2

 if ;
22

3

2
 if ;

22

3

m
k

nn

jn

m
k

nn

jn







 ,

(8)

and  is the log-factor of the log-polar function and is a

parameter of the architecture

The Ωi,j,σ(W) synaptic interconnection pattern mimics that

observed in many classes of biological neurons [12]. It is

randomly created when the network is built and does not

change afterwards; furthermore, although random, it is the

same for all neurons. Moreover, the memory of all neurons is

shared (Section III.A). Thus, when the network is trained,

each neuron learns the association between the information

collected by its synapses and a given output, but all neurons

share everyone else knowledge afterwards.

> > >...

...

...

w1 w2 w|W|
...

> > >...

...

...

synapses W

φ1,1 φ1,2 φ1,3 ... φk,l ... φr,s φu,v

...i1,1 i1,2 i1,3 i1,4 i1,5 ... ix,y iξ,η

input Φ

image I

w1 w2 w|W|
...

n1,1neurons N nm,n

minchinton

cells

crop, scale and filter

Figure 3: Schematic diagram of our VG-RAM WNN

architecture for traffic sign detection.

VG-RAM WNN synapses can only get a single bit from

the input. Thus, in order to allow our VG-RAM WNN to

deal with images, in which a pixel may assume a range of

different values, we use minchinton cells [17]. In the

proposed VG-RAM WNN architecture, each neuron’s

synapse, wt, forms a minchinton cell with the next, wt+1 (w|W|

forms a minchinton cell with w1). The type of the minchinton

cell we have used returns 1 (one) if the synapse wt of the cell

is connected to an input element, φk,l, whose value is larger

than the value of the element φr,s to which the synapse wt+1 is

connected, i.e., φk,l > φr,s; otherwise, it returns zero (see the

synapses w1 and w2 of the neuron n1,1 of Figure 3).

During training, the training image is cropped by a square

centered at the traffic sign image center. The crop square

size is estimated to contain the traffic sign image and part of

the background. We use distinct scale factors for the crop

square size to match various sizes of traffic sign images. The

image patch extracted from the training image by the crop

square is scaled to fit into Φ, filtered by a Gaussian filter to

smooth out artifacts produced by the scaling, and its pixels

are copied to Φ. The image patch’s center is used as the

center of the log-polar function (center of attention in the

visual field) that maps Φ onto N. Each neuron is then trained

to output a value different than zero if the center of its

receptive field is within a circle with radius r centered at the

image patch’s center, and zero otherwise, where r is a

parameter of the architecture. The trained value decreases as

the center of the receptive field of the neurons moves away

from the circle’s center until it reaches zero at its border.

This procedure is repeated for all images in the training set.

During training, the scale factor used in the scaling

mentioned above is set to a value that puts the traffic sign

image precisely within the circle of radius r.

Figure 4 shows a training instance, where the TSD neural

network is trained to detect a traffic sign in a training image.

Figure 4(a) shows the training image with the border and

center of the ground truth bounding box marked with a red

square and red cross, respectively; Figure 4(b) shows the

transformed (scaled and filtered) image patch extracted from

the training image; Figure 4(c) shows the log-polar mapping

of Φ onto N (this is only for visualization); and Figure 4(d)

shows the output of N after training. As Figure 4(d) shows,

neurons with the center of their receptive fields within the

circle centered at the image patch’s center (compare the

Figure 4(c) with the Figure 4(d)) are trained to produce

outputs with values higher than zero (white or gray), while

those with the center of its receptive field far from the

circle’s center are trained to output zero (black). Note that

circles become rectangles after our log-polar transform, and

the regions around the center of the transform occupy a much

larger area (compare the representations of the circular

traffic sign with that of the triangular traffic sign in Figure

4(c)).

During testing, the test image is probed by our system at

several points regularly spaced. We use 12 distinct scale

factors for this probing to match various sizes of traffic sign

images, mimicking the procedure of looking at the image

from different distances. The probing is made using

horizontal and vertical shifts of the center of the log-polar

function (center of attention) in the test image proportional

to the size of the crop square (window of attention)

mentioned above, such that the square shifts yield partially

overlapped image patches, which allows detection of traffic

sign images in the boundaries of the window of attention.

(a)

(b) (c) (d)

Figure 4: Example of a training instance of our VG-RAM

WNN architecture for traffic sign detection (TSD).

Each image patch extracted from the test image is scaled

(to fit into Φ), filtered (by a Gaussian filter to smooth out

artifacts), and its pixels are copied into Φ. The neurons then

generate their output according to their receptive fields.

Neurons with receptive field on regions of the image patch

similar to regions of traffic sign images previously trained

generate outputs with high values. After a procedure

equivalent to the winner-takes-its-all behavior observed in

the SC [14], the neuron with the highest output is selected

and the inverse log-polar function in the coordinates of this

neuron is used to compute the coordinates of a point

(saccade target) in the image patch possibly belonging to a

traffic sign image. The log-polar function center (center of

attention) is moved (saccade) to this point in the test image

and the neurons’ outputs are recomputed. This procedure is

repeated one or more times, or until the log-polar function

center does not move anymore. A matching score, that

quantifies the similarity between the center of the image

patch and a traffic sign, is computed by comparing the image

of the output of N after testing to that after training (Figure

4(d)). If the output of N after testing is similar to the output

of N after training, a traffic sign image might have been

detected in the image patch.

Figure 5 shows a testing instance, where neurons in the

network, trained to detect traffic signs, generate their outputs

according to the image region monitored by their receptive

fields. Figure 5(a) shows the test image with the center of

attention marked with a red cross; Figure 5(b) shows the

transformed (scaled and filtered) image patch extracted from

the test image; Figure 5(c) shows the log-polar mapping of Φ

onto N (just for visualization); and Figure 5(d) shows the

output of N before the saccade. As Figure 5(d) shows,

neurons with the center of their receptive fields on a traffic

sign image generate higher outputs (compare the Figure 5(c)

with the Figure 5(d)). Figure 5(e) to Figure 5(h) are

equivalent to Figure 5(a) to Figure 5(d), with the difference

that they illustrate the testing instance after the saccade. As

Figure 5(h) shows, the output of N after the saccade is very

similar to the output of N after training (compare Figure 4(d)

with Figure 5(h)), which indicates that a traffic sign image

might have been detected in the image patch. An animation

of a single training and several subsequent saccades is

available at http://youtu.be/H_LdE8fcbF4.

The TSD degree of belief that a traffic sign has really been

detected in the image patch is estimated using Bayesian

inference, as described below in Section III.C. The whole

system final decision is regulated by a threshold: if the

degree of belief is larger than this threshold, then a traffic

sign has been detected. Nevertheless, the detected traffic sign

image might be out of the center of the image patch extracted

from the test image (as it is in Figure 5(e)). To precisely find

the center of the detected traffic sign image, we employ a

second VG-RAM WNN that explores the symmetry present

in the traffic sign image, as described below in Section III.D.

C. Degree of Belief in the Traffic Sign Detection

Our system maps the matching score—that quantifies the

similarity between the center of the image patch and a traffic

sign (Section III.B)—into a probability measure. This

probability measure is expressed as p(D | M, S, X, Y), where

D is a binary random variable, and D = True if a traffic sign

has been detected and D = False if it has not; and M = {m1,

m2, …, m|M|}, S = {s1, s2, …, s|S|}, X = {x1, x2, …, x|X|} and Y

= {y1, y2, …, y|Y|} are discrete random variables that

represent the discretization of the possible values of

matching scores, scale factors, and saccade target x and y

coordinates in the test image, respectively. Using the Bayes’

Theorem, the probability that a traffic sign image has been

detected in the image patch (p(D = True)), given that the

network computed a matching score in the interval mi, the

image patch was extracted from the test image according to

the scale factor si, and the saccade target is within the range

of horizontal coordinates xi and vertical coordinates yi of the

test image, can be formulated as:

),,,(

)|,,,()(
),,,|(

YXSMp

DYXSMpDp
YXSMDp


 ,

(9)

where

)|()|()|()|()|,,,(DYPDXPDSPDMPDYXSMp  and (10)

)|~()|~()|~()|~()(~

)|()|()|()|()(),,,(

DYPDXPDSPDMPDP

DYPDXPDSPDMPDpYXSMp




.

(11)

(a)

(b) (c) (d)

(e)

(f) (g) (h)

Figure 5: Example of a testing instance of our VG-RAM

WNN architecture for traffic sign detection (TSD).

To estimate the values of p(D), p(~D), p(M | D), p(M |

~D), p(S | D), p(S | ~D), p(X | D), p(X | ~D), p(Y | D),), and

p(Y | ~D), we used a training subset and a validation subset.

We trained the network with the images of the training

subset, examined the TSD output with the validation subset,

and estimated the values of the terms of the Equations (10)

and (11) mentioned above.

The probability that a traffic sign has (or has not) been

detected, p(D = True) (or p(D = False)), can be estimated as

the percentage of saccades that hit (or do not hit) the

associated ground truth bounding boxes of the validation

subset, according to the four constraints described below in

this section.

The probabilities p(M = mi | D = True) (or p(M = mi | D =

False)) can be estimated as the percentage of matching

scores in each interval mi, given that a traffic sign has (or has

not) been detected, i.e., D = True (or D = False). The

probabilities p(S = si | D = True) (or p(S = si | D = False))

can be estimated as the percentage of image patches

extracted according to a scale factor si, given that D = True

(or D = False). The probabilities p(X = xi | D = True) (or p(X

= xi | D = False)) can be estimated as the percentage of

saccade targets within the range of horizontal coordinates xi,

given that D = True (or D = False). Finally, the probabilities

p(Y = yi | D = True) (or p(Y = yi | D = False)) can be

estimated as the percentage of saccade targets within the

range of vertical coordinates yi, given that D = True (or D =

False).

A saccade hits a ground truth bounding box if four

constraints are satisfied. Let dx and dy be distances in the x-

axis and y-axis, respectively, between the saccade target and

the center of the ground truth bounding box; wgt the width of

the ground truth bounding box; and wei the traffic sign

estimated width as a function of si (wei = c/si, where c is a

parameter of our system). The first constraint specifies that

the saccade target must be near the center of the ground truth

bounding box, i.e.:

2
8.0

gt

x

w
d  and

(12)

2
8.0

gt

y

w
d  .

(13)

The second that the image patch size must be close to the

size of the ground truth bounding box, i.e.:

2.17.0  gteigt www . (14)

The third that the matching score must be greater or equal

to 0.3, and the fourth that the traffic sign image must belong

to a pre-defined category of traffic signs.

Our system final decision is regulated by a threshold: if

p(D = True | M = mi, S = si, X = xi, Y = yi) is larger than the

threshold, then a traffic sign has been detected. The

threshold value can either be specified by the system’s user

or automatically tuned using a training subset and a

validation subset, by varying the threshold value until the

performance of interest in terms of precision and recall is

achieved (the validation subset is part of the training dataset

but not of the test dataset [18]).

D. VG-RAM WNN for Traffic Sign Centralization

We employ a second VG-RAM WNN that explores the

symmetry present in the detected traffic sign images to try

and find their center. This second VG-RAM WNN, named

TSC, has the same architecture of the first one (TSD),

previously presented in Section III.B, and operates in the

three steps described below.

In the first step, the center of attention of TSC (the center

of its log-polar) is pointed at a traffic sign image detected by

TSD (actually, TSD’s saccade target). To do that, an image

patch, centered at the target of the TSD’s saccade, is

extracted from the test image by a crop square using the

same scale factor used by TSD for detection. This image

patch is scaled and filtered, and its pixels are copied to the

input Φ of TSC. TSC is, then, trained to learn the appearance

of the image surrounding TSD’s saccade target. The training

procedure is identical to the one followed by TSD and

described previously in Section III.B, except by the

parameter r that, in the case of TSC, it is set in such a way

that TSC’s neurons learn to output values different than zero

in a smaller region of the traffic sign image that TSD has

possibly detected, instead of the whole traffic sign image.

In the second step, the image patch is swapped

horizontally and the TSC neurons generate their output

according to their receptive fields. If TSD’s saccade hit the

center of a traffic sign image, its swapped image will appear

very similar due to the traffic sign image symmetrical form.

Therefore, in this case, the TSC neurons will show activation

very similar to the one learned and a TSC saccade will not

move its center of attention. In the other hand, if TSD’s

saccade hit a point not in the center of the traffic sign image,

the image region that will appear similar will be a region

symmetric to the one learned by TSC. Therefore, the TSC

neurons that will show activation will be those that have

receptive field in regions where the swapped image is

symmetrical to the learned image. A TSC saccade will, then,

move its center of attention to this region. The distances in

the x-axis, h
xd , and y-axis, h

yd , between the current center of

attention (the target of TSC saccade), (xs, ys), and the target

of the TSD saccade, (xc, yc), are computed and saved

(cs
h
x xxd  e cs

h
y yyd ). Considering the symmetrical

appearance of traffic sign images, it is expected that TSC’s

saccade in this step is mostly horizontal (i.e., 0h
yd).

In the third step, the image patch is swapped vertically and

the same procedure is followed. The distances in the x-

axis, v
xd , and y-axis, v

yd , between the current center of

attention (the target of TSC saccade) and the target of the

TSD saccade are computed and saved. In this case, it is

expected that TSC’s saccade is mostly vertical (i.e., 0v
xd).

Actually, if ||2.0|| h
x

h
y dd  and ||2.0|| v

y
v
x dd  , our

system consider that the image patch contains a traffic sign

image and that its center has been found at the point

)
2

,
2

(

v
y

c

h
x

c

d
y

d
x  . In this case, the crop square’s center is

moved to this point and the traffic sign detection process is

considered complete. The traffic sign bounding box can then

be easily computed using this point coordinates and the

current scale factor.

If the first TSC saccade is not mostly horizontal or the

second is not mostly vertical, TSC neurons’ memories are

deleted so that this procedure can be repeated starting from a

point chosen randomly near (xc, yc) and a higher scale factor.

So, while ||2.0|| h
x

h
y dd  and ||2.0|| v

y
v
x dd  and a

maximum number of iterations has not been reached, the

whole process is repeated. If the maximum number of

iterations is reached, our system considers that the image

patch does not contain a traffic sign image. An animation of

the TSC operation is available at

http://youtu.be/SZ9w1XBWJqE.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Experimental Methodology

To evaluate the performance of VG-RAM WNN on traffic

sign detection, we used the German Traffic Sign Detection

Benchmark (GTSDB) (http://benchmark.ini.rub.de) [11].

The GTSDB dataset contains 600 images in the training

dataset and 300 images in the test dataset. All images have a

resolution of 1360×800 pixels. Each image might or might

not contain traffic signs, which are categorized into

prohibitory, danger and mandatory categories that are, in

turn, subcategorized into 12, 15 and 8 subcategories,

respectively.

 training subset (12 samples from 0-299 range)

Bayesian

Inference

Module
TSD

images

ground truth

Inference

Table

terms of Eqs. (10) and (11)

(ImgId, m, si, xc, yc)

validation subset

(300-599 range) images

Figure 6: Flow chart of the validation phase of our system.

Figure 6 shows the flow chart of the validation phase of

our system, which is used for estimating the values of the

terms of the Equations (10) and (11). In this phase, TSD uses

as input a training subset and a validation subset (see Figure

6). The training subset is composed of only 12 traffic sign

images selected from within the first 300 images (0-299

range) of the GTSDB training dataset. These 12 traffic sign

images are randomly taken from those images that contain

traffic signs of the prohibitory category. The validation

subset is composed of the remaining 300 images (300-599

range) of the GTSDB training dataset. We trained TSD with

the 12 traffic sign images of the training subset and tested it

with the whole images of the validation subset. TSD outputs

a (ImgId, m, s, xc, yc) tuple for each test instance, where

ImgId is the image identification number, m is the matching

score, s is the scale factor, and xc and yc are the coordinates

of the saccade target (we used a single saccade for each test

instance). These tuples are fed to the Bayesian Inference

Module, which accumulates these tuples for the whole

validation subset and, after that, using the GTSDB training

dataset ground truth, estimates and stores the terms of

Equations (10) and (11) in the Inference Table.

Figure 7 shows the flow chart of the test phase of our

system. In this phase, TSD uses as input a training subset and

a test subset (see Figure 7). The training subset is composed

of only 12 traffic sign images, the same used in the

validation phase. The test dataset is composed of all 300

images (0-299 range) of the GTSDB test dataset, or the last

300 images (300-599 range) of the GTSDB training dataset.

We trained TSD the same way as in the validation phase and

tested it with the whole images of the test dataset. TSD

output was fed to the Bayesian Inference Module, that, in

this phase, thanks to the Inference Table built in the

validation phase, is able to output a tuple that includes p,

which is a short for p(D = True | M = mi, S = si, X = xi, Y =

yi), and the same members of the tuple it received from TSD

(see Figure 7). If this tuple is above a threshold, it is fed to

TSC, otherwise it is discarded. TSC tries and finds the center

of the traffic signs it receives or discards the tuple as well.

The traffic signs properly centered by TSC are outputted as

bounding boxes in the test image that can be compared with

the GTSDB dataset ground truth.

Bayesian

Inference

Module

TSD

test dataset

(ImgId, m, si, xc, yc)

Inference Table

training subset (12 samples from 0-299 range)

(p, ImgId, m, si, xc, yc)

Threshold TSC
(ImgId, si, xc, yc)

coordinates of

the traffic sign

bounding box

images

images

Figure 7: Flow chart of the test phase of our system.

B. Experimental Results

TSD and TSC architectures have 5 parameters: (i) the

number of neurons, m  n; (ii) the number of synapses per

neuron, |W|; (iii) the size of the network input, u  v; (iv) the

standard deviation, σ, of the two-dimensional Normal

distribution followed by the synaptic interconnection pattern

of the neurons, Ω; and (v) the log-factor, , of the log-polar

function that maps Φ onto N. We have used the following

parameters in our experiments, which were chosen in an ad

hoc manner: (i) number of neurons equal to 65 × 49; (ii)

number of synapses per neuron equal to 256; (iii) size of the

network input equal to 201 × 201; (iv) σ

equal to 5; and (v) 

equal to 2.

We have used 12 different scale factors, which were

chosen in such way that the largest traffic sign in the GTSDB

database (128 × 128 pixels) could fit into the receptive field

of the TSD neurons trained with a value different than zero

in the case of the smaller scale factor; and the smaller traffic

sign image (16 × 16 pixels) could fit in the receptive field of

the TSD neurons in the case of the highest scale factor.

To evaluate the contributions of each module of our traffic

sign detection system, we examined its performance (i)

considering only TSD, (ii) considering TSD and the

Bayesian Inference Module, and (iii) considering the whole

system. Figure 8 shows the performance of our system in a

precision × recall curve for the GTSDB training dataset in

the (i), (ii) and (iii) scenarios, named Matching score,

Probability and Probability+Symmetry scenarios,

respectively.

The graph of Figure 8 has three curves, one for each

scenario. As the graph of Figure 8 shows, the whole system

performs the best (Probability+Symmetry scenario), i.e., the

area under the precision × recall curve is the largest, when

using the whole system. However, the performance of the

system using the scenarios Matching score and Probability

are, at first glance, unexpected.

The graph of Figure 8 shows that the area under the

precision × recall curve for the Probability scenario is

smaller than that of the Matching score scenario and the

reverse would at first be expected. However, this happens

because the Bayesian Inference Module removes most of the

tuples it receives even using a low probability as threshold.

In the Matching score scenario, on the other hand, many

tuples are accepted as valid traffic signs and some of them

end up contributing to the recall of this reduced version of

our system. One may reason that, in spite of that, this version

should be preferred and the whole system should not include

the Bayesian Inference Module. However, this would put a

large burden in the TSC module, since, in the Matching

score scenario, much more tuples would be submitted to it.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,25 0,50 0,75 1,00

Matching score Probability Probability+Symmetry

Figure 8: Performance of our system: precision × recall—

GTSDB training dataset.

The difference in area between the Probability+Symmetry

and the Probability curves demonstrates the benefits of using

the TSC module for performing symmetry correction—most

tuples that would be considered false positives are corrected

by TSC and contributes for the better overall recall shown by

the Probability+Symmetry curve.

We have submitted the results of our system for traffic

sign detection to the GTSDB evaluation webpage on

February 28th, 2013. Our system was ranked between the

first 16 methods for the prohibitory category, showing an

area of 85.12% under the precision × recall curve. The graph

in Figure 9 shows the data we collected from the GTSDB

webpage—red curve with squared data points—together with

the performance of our system with the training dataset

previously shown in Figure 8—blue curve with diamond data

points. As the graph in Figure 9 shows, the performance in

the training set is consistent with the performance in the

testing set.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,25 0,50 0,75 1,00

Validation Test

Figure 9: Performance of our system: precision × recall—

GTSDB test dataset.

We have also measured the performance of our systems in

terms of time. Running in a Dell Alienware Aurora R1

machine, with an Intel Core i7-930 quad-core processor (8M

Cache, 2.8 GHz) and 12 GB of RAM, TSD can be trained in

3.85 seconds (12 traffic signs) and performs a saccade in

0.42 seconds on average, while TSC performs the whole

process required for symmetry detection and correction in

0.18 seconds on average. Therefore, if the whole system

detects a traffic sign in a single TSD saccade, the total

detection time of a traffic sign is 0.60 s = 0.42 s + 0.18 s (the

consumed by the Bayesian Inference Module is negligible).

However, the system may not detect a traffic sign with a

single TSD saccade. Actually, to cover a single image, in our

experiments we performed 780 saccades because we use

several scale factors—for the highest scale factor 162

saccades are necessary. Nevertheless, the system can be used

in fewer and coarser scale factors, say the smallest scale

factor, which requires a total of 6 TSD saccades. In this case,

using current desktop computers, our whole system can

operate at a rate of about one image each 3.6 s. It is

important to mention that our implementation can be

optimized for taking advantage of hardware accelerators,

such as GPU, FPGA or digital signal processors, improving

the time performance figures just mentioned, and, in such

case, we believe it can be used on-line.

C. Discussion

The traffic sign detection performance of our system is the

result of two factors. First, each synapse of TSD and TSC

collects the result of a comparison between two pixels, which

is executed by its corresponding minchinton cell. Our

configurations for both systems have hundreds of synapses

per neuron and thousands of neurons. Therefore, during

testing, hundreds of thousands of such comparisons are

performed on each input image and the results are checked

against equivalent results learned from training images. This

amount of pixel comparisons allows not only for high

discrimination capability but also generalization. Second,

thanks to the synapse interconnection patterns and log-polar

architecture, each neuron of TSD or TSC monitors a specific

region of the traffic sign, which reduces the overall impact of

occlusion, and varying color and illumination conditions on

the performance of these systems.

We believe that our system could show much better traffic

sign detection performance if proper parameter tuning were

employed—we adjusted all system parameters in a ad hoc

manner—and if a large number of training images were

used—we used only 12 traffic sign images in all

experiments. We were unable to perform parameter tuning

tests with more training samples, and tests with other

categories of traffic signs due to time constraints.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new approach for traffic sign

detection based on Virtual Generalizing Random Access

Memory Weightless Neural Networks (VG-RAM WNN).

Our experiments showed that VG-RAM WNN can be

employed for traffic sign detection with good accuracy,

despite a very small number of training samples. The main

advantage of VG-RAM WNN against other neural network

approaches employed for traffic sign recognition is its simple

implementation and fast training and test. For future work,

we plan to tune the parameters of our VG-RAM WNN

architecture and increase the number of training examples,

which can improve its performance even further. We also

would like to evaluate the proposed system on traffic signs of

Brazil’s road environment.

REFERENCES

[1] S. Escalera, X. Baró, O. Pujol, J. Vitrià, and P. Radeva, Traffic Sign

Recognition Systems, Springer Series: SpringerBriefs in Computer

Science, 2011.

[2] D. Gavrila, “Traffic sign recognition revisited”, in Proceedings of the

Mustererkennung 1999, 21. DAGM-Symposium, pp. 86-93,1999.

[3] Y. Li, “Real-time traffic sign detection: an evaluation study”, in

Proceedings of the 20th International Conference on Pattern

Recognition (ICPR), pp. 3033-3036, 2010.

[4] Y.-Y. Nguwi and A. Z. Kouzani, “Detection and classification of road

signs in natural environments”, Neural Computing and Applications,

vol. 17, no. 3, pp. 265-289. 2008.

[5] T. M. Nguyen, S. S. Ahuja, and Q. M. J. Wu, "A real-time ellipse

detection based on edge grouping," IEEE International Conference on

Systems, Man and Cybernetics, pp.3280-3286, 2009.

[6] N. Barnes, A. Zelinsky, and L. S. Fletcher, "Real-time speed sign

detection using the radial symmetry detector," IEEE Transactions on

Intelligent Transportation Systems, vol.9, no.2, pp.322-332, 2008.

[7] Y. Aoyagi and T. Asakura, "A study on traffic sign recognition in

scene image using genetic algorithms and neural networks", in

Proceedings of the 22nd International Conference on Industrial

Electronics, Control, and Instrumentation, pp. 1838-1843, 1996.

[8] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H.

Gomez-Moreno, and F. Lopez-Ferreras, "Road-sign detection and

recognition based on support vector machines," IEEE Transactions on

Intelligent Transportation Systems, vol.8, no.2, pp.264-278, 2007.

[9] X. Baro, S. Escalera, J. Vitria, O. Pujol, and P. Radeva, "Traffic sign

recognition using evolutionary adaboost detection and forest-ECOC

classification", IEEE Transactions on Intelligent Transportation

Systems, vol.10, no.1, pp.113-126, 2009.

[10] I. Aleksander, “From WISARD to MAGNUS: A family of weightless

virtual neural machines”, in RAM-Based Neural Networks, J. Austin,

Ed. Singapore: World Scientific, pp. 18-30, 1998.

[11] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,

“Detection of traffic signs in real-world images: the German Traffic

Sign Detection Benchmark”, in Proceedings of the International Joint

Conference on Neural Networks, 2013 (Submitted).

[12] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural

Science, 4th ed. McGraw-Hill, 2000.

[13] N. Tabareau, D. Bennequin, A. Berthoz, J. Slotine, and B. Girard,

“Geometry of the superior colliculus mapping and efficient oculomotor

computation”, Biological Cybernetics, vol. 97, pp. 279-292, 2007.

[14] R. A. Marino, T. P. Trappenberg, M. Dorris, D. P. Munoz, “Spatial

interactions in the superior colliculus predict saccade behavior in a

neural field model”, Journal of Cognitive Neuroscience, vol. 24, no. 2,

pp. 315-336, 2012.

[15] I. Aleksander, “Self-adaptive universal logic circuits”, IEEE

Electronic Letters, vol. 2, no. 8, pp. 231-232, 1966.

[16] T. B. Ludermir, A. C. P. L. F. Carvalho, A. P. Braga, and M. D. Souto,

“Weightless neural models: a review of current and past works, Neural

Computing Surveys, vol. 2, pp. 41-61, 1999.

[17] R. J. Mitchell, J. M. Bishop, S. K. Box, and J. F. Hawker,

“Comparison of some methods for processing grey level data in

weightless networks”, in RAM-based Neural Networks, J. Austin, Ed.

Singapore: World Scientific, pp. 61-70, 1998.

[18] F. Sebastiani, “Machine learning in automated text categorization”,

ACM Computing Surveys, vol. 34, no. 1, pp. 1-47, 2002.

