Evaluation of Two Parallel Finite Element
I mplementations of the Time-Dependent Advection
Diffusion Problem: GPU versus Cluster Considering
Time and Energy Consumption

Alberto F. De Souzg Lucas Veronese Leonardo M. Lim&, Claudine Badukand
Lucia Catabriga

! Departamento de Inforatica, Universidade Federal do B Santo, Vibria, Brazil
2 Instituto Federal de Educag, CEncia e Tecnologia do Esjio Santo, Vibria, Brazil

Abstract. We analyze two parallel finite element implementations of the 2D
time-dependent advection diffusion problem, one for multi-core clsisted one

for CUDA-enabled GPUs, and compare their performances in terrtimefand
energy consumption. The parallel CUDA-enabled GPU implementatiordesas
rived from the multi-core cluster version. Our experimental resultsvshat a
desktop machine with a single CUDA-enabled GPU can achieve perfeeman
higher than a 24-machine (96 cores) cluster in this class of finite elemaimt p
lems. Also, the CUDA-enabled GPU implementation consumes less than one
twentieth of the energy (Joules) consumed by the multi-core cluster imptame
tion while solving a whole instance of the finite element problem.

1 Introduction

The advances of numerical modeling in the past decades hemed scientists to solve
problems of increasing complexity. Frequently, these |@mis require the solution of
very large systems of equations at each time step and/atider Because of that, a
great effort has been made on the development of more effamehoptimized solution

algorithms. But, along the past few decades, the underlyamgware for running these
algorithms has changed significantly. A recent importanetigment was the advent
of the Compute Unified Device Architecture (CUDA) [12].

CUDA is a new Graphics Processing Unit (GPU) architectueg #flows general
purpose parallel programming through a small extensiomefG programming lan-
guage. The Single Instruction Multiple Thread (SIMT [12]-sitsimilar to SIMD, but
more flexible on the use of resources) architecture of CUbAbéed GPUs allows the
implementation of scalable massively multithreaded garnaurpose C+CUDA code.
Currently, CUDA-enabled GPUs possess arrays of hundredsrek (called stream
processors) and peak performance surpassing 1 Tflop/s.theme200 million CUDA-
enabled GPUs have been sold [10], which makes it the mosessitd high perfor-
mance parallel computing platform in computing history goerhaps, up to this point
in time, one of the most disruptive computing technologiethis century—many rel-
evant programs have been ported to C+CUDA and run orders ghitoae faster in
CUDA-enabled GPUs than in multi-core CPUs.

In this paper, we analyze two parallel finite element impletatons of the 2D
time-dependent advection diffusion problem: one for meitie clusters and one for
CUDA-enabled GPUs [12]. We also compare their performaimtésrms of time and
energy consumption.

The finite element method is one of the most used numerichhigaes for find-
ing approximated solutions of partial differential eqoag (PDE). In this method, the
solution approach is based either on rendering the PDE mtaparoximating system
of ordinary differential equations, which are then numaltcintegrated using standard
techniques, such as the Euler’'s method [6].

The finite element formulation requires the solution of éineystems of equations
involving millions of unknowns that are usually solved byykav space iterative up-
date techniques [13], from which the most used is the GemethMinimum Resid-
ual method (GMRES). One of the most time consuming operatainthis solution
strategy is the matrix-vector product, which can be conghotedata stored according
to global and local schemes. The most well known global sehisnthe compressed
storage row (CSR) [13], while the most well known local sckenare the element-
by-element (EBE) and edge-based data structure (EDS).[Zh4 code for CSR is
easily parallelized in different computer architecturgisis type of implementation is
often preferred to local schemes—matrix-vector productaprded on EBE or EDS
can be memory intensive, needing more operations than on B8kKever, particularly
for large-scale nonlinear problems, EBE and EDS schemes li@en very successful
because they handle large sparse matrices in a simple amghstorward manner.

In this work, we consider the parallel finite element forntigia of the 2D time-
dependent advection diffusion equation. To solve the sysitordinary differential
equations that results from the finite element formulative,employ the well known
implicit predictor/multicorrector scheme [15]. The spatmear system of each time-
step (stored in a Compressed Storage Row (CSR) scheme infyg#mentations) is
solved by the GMRES method.

We implemented one code for multi-core clusters and, froat,tbne code for
CUDA-enabled GPUs, and run them in a 24-machine (96 coras)ezland in a 4-GPU
desktop machine. Both implementations were written in Casalthe MPI library for
inter-core communication. Our simulations show that a tigskomputer with a sin-
gle GPU can outperform a 24-machine (96 cores) cluster odimee generation and
that a 4-GPU desktop can offer more than twice the clustdopeance. Also, with
four GPUs, the CUDA-enabled implementation consumes less one twentieth of
the energy (Joules) consumed by the multi-core clusteramphtation while solving
a whole instance of the finite element problem. These reshitie that, currently, con-
sidering the benefits of shorter executing times, smallergnconsumption, smaller
dimensions and maintenance costs, Multi-GPU desktop mashire better high per-
formance computing platforms than small clusters withoRtUS, even though they are
somewhat harder to program.

2 Governing Equationsand Finite Element Formulation

Let us consider the following time-dependent boundaryairoblem defined in a do-
main {2 € R? with boundaryl™:

% + B.Vu—V.(kVu) = f (time-dependent advection-diffusion equation) (1)
u=g on I, (essential boundary condition) (2)
n.«xVu = h on I}, (natural boundary condition) 3)
u(x,0) = u,(x) on 2 (initial condition) 4)

whereu represents the quantity being transported (e.g. condimtya3 is the velocity
field, andk is the volumetric diffusivity.g andh are known functions ok = (z,y)
andt, n is the unit outward normal vector at the boundary, dndand I}, are the
complementary subsets 6fwhere boundary conditions are prescribed.

Consider a finite element discretization @finto elements(2,, e = 1,...,n,
wheren,; is the number of elements. Let the standard finite elemenbappation be
given as

nnodes
uP (@)= Y Ni(w)us, (5)
=1
wherennodes is the number of nodesgy; is a shape function corresponding to nade
andu; are the nodal values af. Then, applying this approximation on the variational
form of Equation (1), we arrive at a system of ordinary ddfetial equations:

Ma+ Kv=F, (6)

wherev = {uy,us,. .., Unnodes }* iS the vector of nodal values of, a is its time
derivative, M is the “mass” matrix,K is the “stiffness” matrix, andF’ is the “load”
vector [6]. In this work, we approximate the doma®using linear triangular elements.
Thus, the global interpolation of Equation (5) is restritte an element by

3

u(x) = Z Ni(x)u,, @)

i=1

where the superscript means that: is restricted to an element, aid,, N, and N3

are the conventional shape functions [6]. Proceeding irsthedard manner, matrices
M and K and vectorF' are built from element contributions and it is convenient to
identify their terms as:

nel nel nel
M=Am), K=A®K) and F=AI() (8)

whereA is the assembling operator ane®, k° and f¢ are the local contributions.

3 Solution Algorithm

To solve the time-dependent advection diffusion problemmeawically employing the
approach described in the previous section, we just havave the system of ordinary
differential equations stated in Equation (6) towards al finge ¢ ;;,,.;. To do that, we
use the Algorithm 1, which implements the well known imgligiedictor/multicorrec-
tor solution scheme [15]. The algorithm: receives as inpetinitial values ofv anda
(see Equation (6)},tinai, At, the maximum number of multicorrection attempts, .,
and the tolerance of the multicorrection phasend returns the values efanda at
tfinal-

Algorithm 1 Predictor/multicorrector
1: Data:vg andao, tfinu,ly At, Nmaz, €
22t=0,n=0
3 M* =M + aAtK
4: whilet < tfinal do

5 i=0

6: ”5:3-1 =vn + (1 — a)Ata,

7 a,(fj_l =0

8. mnormgq=0)

9: whilei < npaq and||a£3rl | > € X normg do
100 b=F - Ma{), — Ko\,

11 SolveM*d = b

122 el =a, +d

130 o =2+ aAtd

14: t =14 1,normgq = ||d||

15: end while

16: Ant1 = GE;)LI

17: VUntl = ’U,E:il

18 t=t+At,n=n-+1
19: end while

In Algorithm 1, the prediction phase (lines 5 to 8) calcutasm initial guess of
the nodal value®) and a at iterationn + 1, wheren denotes a time step, and the
multicorrection phase (lines 9 to 15) iteratively calcalahew nodal approximations
until a convergence criteria (line 9) is reached. The masetconsuming step of the
algorithm is solving the linear system derived from Equat{6), lines 10 and 11. In
this linear systemM ™ is denoted the effective matrid, is the residual vector, and
d is the correction of the nodal values @ffrom one multicorrection iteration to the
next. Matrix M* is constant in time and is computed in line 3. The residualords,
however, must be computed in every multicorrection steye (1i0).

Apart from the solution of the linear system in line 11, theesttime consuming
operations of the algorithm are the matrix vector producliie 10, and the saxpy
vector update operations of lines 6 (the number of multacion iterations is small,
but one always have to remember the Amdhal’'s Law), 12 and E3sde the linear

system of line 11 using GMRES [13]. The most time consumirgraiions of GMRES
are a matrix vector product per iteration, and several saxmlyvector inner products.
Therefore, the most time consuming operations of the whadiptor/multicorrector
algorithm are matrix vector products, saxpy and vectoriimpneducts. For more on the
predictor/multicorrector algorithm see [15].

4 Parallel Implementations

To solve our problem in parallel, it is necessary to code alrives and vectors in Algo-
rithm 1 in a way that allows parallel access, and to calcufe# most time consuming
operations in parallel. In order to achieved this, we cragiartition of non-overlapping
sets of elementd?.. For that, we discretized the domain into a mesh composdd-of |
ear triangular elements, = (2., where{T1, To,---, T, } represents a partition of the
triangulation in subdomaing, is the number of subdomains, abf_, T, = T and
T, N T; = 0wheni # j. By dividing the computation domain inte subdomains,
it is possible to spread the workload betwegedifferent cores. That is, by partitioning
the matricesM, K and M ™, and the vector®, a andd (see Equation (6) and Algo-
rithm 1) independently over cores (with core working only on subdomaifi ;), one
can spread the workload among thdifferent cores.

We rewrite all matrices and vectors presented in Algorithimtd block matrix and
block vector forms employing the well known Schur completrdstomposition [13],
as suggested by Jimack and Touheed [8]. By doing that, aigemetoru (representing
v, a or d) can be ordered in the following way:

w=(Uy, Uy, Uy, ug) 9)

The nodes of the linear triangular elements of the mesian be classified into interior
nodes, interface nodes and boundary nodes of the domain.

Figure 1 illustrates a mesh with 50 nodes and 74 triangukmehts, where the
domain was partitioned into 4 subdomains to be assignedutociares. In this mesh,
nodes | and J are interior nodes of cores 3 and 4, respectivbile node K is an
interface node of cores 1, 3 and 4.

In Equation (9), the sub-vectar; is associated with the interior nodesTn, i =

1,2,---,p; while ug, in turn, is defined agg = Ulegs(i), an assembly of others
sub-vectors that are associated with the interface nodesaf subdomaii ;, : =
1,2,---,p. That is, each sub-vectar,;) holds the interface nodes df;. Boundary

nodes are not unknowns and need not be representediilso following the approach
suggested by Jimack and Touheed [8], a generic matrid\f, K and M™) can be
written in a block matrix form as:

A1 Bl
A2 BQ

A= : (10)

A
CyCy e Cp Ag

I cor=1 |l core2 [[] core3 [Core4

Fig. 1. Example of the partitioned mesh with 4 subdomains.

where the block-arrowhead structure of the new matrix cofrees the local support
of the finite element basis functions. In Equation (10), thie-shatricesA;, B;, C; and
Ag are sparse matrices that are stored using a CSR data sgructur

The sub-matrix4; stores the contribution of the interior nodes of coren the
interior nodes of coré. The matrixB; stores the contribution of the interior nodes of
core: on the interface nodes of coieThe sub-matrixC; stores the contribution of the
interface nodes of corieon the interior nodes of corie Finally, the sub-matrix4 g, an
assembly of a set of blocks distributed over pheores, is defined ads = | J7_, Ag(iys
where the sub-matrix, ;) stores the contribution of the interface nodes of cooe
the interface nodes of coie

With this approach, each of the sub-vectoyindu,;), and each of the sub-matrix
Ay, By, Cy, Ag;y may be computed entirely by coigfori = 1,2,-- -, p. One can also
observe that corgwill work only on the elements of its own subdomaip. Assuming
that the partitionT is built in such way that each core deals with approximateéy t
same number of elements and the number of vertices lying @pdhtition boundary
is as small as possible, the amount of calculations perfdrioyeeach core will be
balanced and the amount of communication will be minimized.

Following the same procedure explained above for a genedtoru and a generic
matrix A, we rewrite all the matricesMl, K and M ™) and vectors, a or d) of
Algorithm 1 in a block matrix form and execute the most tim@esuming operations
of the whole predictor/multicorrector algorithm—matrixcter product, saxpy vector
update and vector inner product—in parallel.

Using the domain partitioning presented above, a matrotergoroducty = Aw,
can be computed in parallel by computing both expressiongauration (11) below
(see also Equations (9) and (10))

v, = Aju; + Biﬂs(i) and Usi) = As(i)ﬂs(i) + Ciu, (11)

on each coré = 1,2,--- ,p. Also, using the domain partitioning presented, a saxpy
vector updatey = v + Au, can be formulated as

v, =0+ Ay and vy = vy + Ay (12)

fori = 1,2,---,p, where\ is a real number. Finally, using the domain partitioning
presented, a vector inner produetalar = u - v, can be computed on each core as

P
scalar = Z(QZ TVt Uy 'Qs(i)) (13)

i=1

for: = 1,2,--- ,p. It is important to note that this last operation requiresabal
communication because its result is a scalar that alway$ beuknown by all cores.
This communication is a global reduction, which computessiiim of the contributions
to the inner product coming from each core, and then proveédeh core with a copy of
this sum.

In addition to global reductions required by inner producisr Multi-Core Clus-
ter implementation performs core-to-core communicatiefole every matrix vector
product (lines 10 and 11 of Algorithm 1) in order to commutécthe value of the
interface nodes—we u¢PI_send and MPI Recv for that. Thanks to the assembly
presented in Equation 4, the data that needs to be commediisatlearly specified (in-
terface nodes). The partitioning of the work between thes@ made before the whole
computation using METIS [9]. Please refer to our internehtécal report for more de-
tails about our multi-core cluster implementation (httpww.lcad.inf.ufes.brlalberto
ltechrep01-11.pdf).

The CUDA-enabled GPU parallel version was derived from thétiMCore Clus-
ter parallel version and, therefore, follows the same fples described above. It was
implemented in C+CUDA and, as we wanted to run it in multiecdesktop computers
with multiple GPUs (or clusters of multi-core machines eafWwhich with one or more
GPUs), it takes advantage of the multiple cores for distiifguthe domain (or subdo-
mains in the case of a cluster) between multiple GPUs (onémuhin per GPU) and
employs MPI for inter-core communication. We choose to d®whay (i) to avoid large
modifications in the Multi-Core Cluster version in the pregs@f morphing it into the
C+CUDA version, and (i) to transform our multi-core clustede into a code that runs
in clusters of multi-core machines each of which with mui@PUs. For this process,
we basically moved the main functions of the Multi-Core @ussersion into CUDA
kernels and optimized the use of the GPU memaory hierarchy.

The main strategy adopted in the design of the C+CUDA versias (i) to iden-
tify the most time consuming operations of the predictotfioorrector (Figure 1) and
GMRES algorithms, (ii) to parallelize and optimize thesemgpions, and (iii) to try and
avoid data transfer between the CPU and GPU memories as myudssible.

We identified the most time consuming operations of the ptedimulticorrector
and GMRES algorithms—the matrix-vector produet= Aw, and the vector inner
product,scalar = u - v—using gprof. Please refer to our internal technical report
for details about the C+CUDA implementation (http://wwead.inf.ufes.brlalberto
ltechrep01-11.pdf).

5 Experimental Evaluation

The Multi-Core Cluster implementation was run on the Eniega3 cluster of thé.ab-
oratorio de Computa@o de Alto Desempeni@CAD) at UFES. Enterprise 3 is a 24-
node cluster of 24 quad-core Intel 2 Q6600 machines (96 omdth 2.4GHz clock
frequency, 4MB L2 and 4GB of DRAM, interconnected with a 4&t1200G 3COM
Gigabit Ethernet switch. The C+CUDA implementation was amLCAD’s BOXX
Personal Supercomputer, which is a quad-core AMD Phenorf% 8f 2.6GHz, with
2MB L2, 8GB of DRAM, and four GPU NVIDIA Tesla C1060 PCIE boardvith 240
1.3GHz CUDA cores and 4GB DRAM each.

In our experimental evaluation we solved a standard tesi@mofor transient dom-
inated advection flow, named rotating cone problem. Thelprolis described in Fig-
ure 2(a) (see [1] for details). In our experiments, the vigyolteld is 3 = (—y,z)7
and the diffusivity isx = kI, wherek = 1076, The exact solution consists of a rigid
rotation of a cone about the center of the square dorfrains] x [—5, 5]. Figure 2(b)
shows the solution obtained after 7 seconds of simulation.

Flow Direction

(a) Déséription (b) Solution

Fig. 2. Description and solution of the rotating cone problem

To evaluate the performances in terms of time of the macldrasiined on the so-
lution of a large size problem, we consider the rotating quadlem in a regular mesh
of 1024 x 1024 cells, totalizing2, 097, 152 elements], 050, 625 hodes and , 046, 529
unknowns withAt = 1072, thetsina = 7, GMRES and predictor-multicorrector tol-
erances equal t®0~3; and number of restart vectors for GMRES equal to 10. The
observed number of GMRES iterations for each correctionasasnd 15.

Figure 3(a) shows the time it takes to solve this problem thighMulti-Core Cluster
implementation running on the Enterprise 3 configured wjth, B, 12, 16, 24, 32, 48,
64 and 96 cores, while Figure 3(b) shows the speedups otbtaiite 4, 8, 16, 32, 64
and 96 cores. In the graph of Figure 3(a), thaxis is the number of cores, while the
y-axis is the time it takes to solve the problem in seconds.h&sgraph shows, there
is an almost linear reduction of the time it takes to solveptablem as the number of

4200.00

3500.00

2800.00 70

Time in Seconds

210000 A S
B® 50
(93
Q.
140000 1 & 40
30 - : ;
70000 4 R + +
20 - T
et -
0.00 4 10 ‘_**' Multi-Core Cluster == —
’a Ideal --------
1 4 8 12 18 24 32 48 64 99 ¥ T i
10 20 30 40 50 60 70 80 90
Number of GPUs
Cores
(a) Times (b) Speedups

Fig. 3. Enterprise 3 times and Speedups

processors increases from 1 to 8. However, the performaaios gbtained increasing
the number of cores from 8 onwards decreases as the numberesfiocreases. This
can be more easily appreciated by examining the graph off&ig(b). In this graph,
the z-axis is the number of cores, while theaxis is the speedup. As the graph of Fig-
ure 3(b) shows, although the speedup starts augmentiraglynas the number of cores
increases, the speedup levels of—there is no gain as onergoe$4 to 96 cores. This
is to be expected because, as the number of cores incrdasamount of inter-machine
communication increases, while the amount of compute werkcpre decreases. So,
the time spend waiting for data transfer (communicatiorgseup surpassing the time
doing computation.

Figure 4(a) shows the time it takes to solve this problem #iehC+CUDA imple-
mentation running on the BOXX Personal Supercomputer cordaywith 1, 2 and 4
GPUs, while Figure 4(b) shows the speedups obtained withahd?4 GPUs—these
speedups were computed against a single Enterprise 3 core.

In the graph of Figure 4(a), the-axis is the number of GPUs, while theaxis is
the time it takes to solve the problem in seconds. As the gsaplvs, the time it takes
to solve the problem decreases as the number of GPUs insrémgeot linearly. This
is to be expected since the multi GPU C+CUDA implementatisesithe PCI Express
bus to transfer interface nodes data between the multi€Bté and the GPUs and, as
the number of GPUs increases, this bus becomes a bottldrigcike 4(b) presents the
speedups obtained with the BOXX Personal Supercomputdigcoed with different
numbers of GPUs (the reference time is that of a EnterprigsgBescore). In this graph,
thez-axis is the number of GPUs, while thyeaxis is the speedup. As the graph shows,
speedups close to 60 were obtained with C+CUDA.

To better appreciate the benefits of CUDA-enabled GPUs ai@lUDA, we plot on
the graph of Figure 5 the speedups obtained with the BOXXdpatsSupercomputer
against the best performing Enterprise 3 cluster. In thelga Figure 5, ther-axis
is the number of GPUs, while theaxis is the time it takes to solve the problem with

150.00 60.00

12500 5000

10000 4000

7500 3000 4

Time in Seconds
Speed-up

5000 ~ 2000 4

2500 ~ 1000 1

0.00 000 4
1 2 4 1 2 4

Number of GPUs Number of GPUs

(a) Times (b) Speedups

Fig. 4. BOXX Personal Supercomputer times and Speedups.

Enterprise 3 divided by the time it takes to solve the problgth the BOXX Personal
Supercomputer configured with different numbers of GPUsth&sgraph of Figure 5
shows, a desktop machine with a single GPU can outperform-mazhine cluster
(96 cores). Also, a desktop machine with four GPUs can defivere the twice the
performance of a 24-machine cluster (96 cores).

w
=}
S

r
23}
=)

[N}
=)
IS}

Speed-up
Against 96 CPU Cores
o

=}
S

o
n
=1

o
=)
IS}

1 2 4
Number of GPUs

Fig. 5. BOXX Personal Supercomputer speedups: C+CUDA x Multi-Core Qluste

To compare the performance of our Multi-Core Cluster impatation with that
of our C+CUDA implementation in terms of energy consumptiee run the rotating
cone problem in a regular mesh 21§48 x 2048 cells in both machines and measured
the total current drained by each at 10-second intervalggusiDigital Clamp Meter
Minipa, Model ET-3880, while measuring the voltage. Figbishows the measurement
setup employed with each machine (voltage measuremenhoats.

By numerically integrating the current voltage (power in Watts) required by the
machines in the period of time they took to solve the rotatioge problem, we were
able to estimate the total energy (in Joules) consumed byrachine. The amount of
Joules consumed by Enterprise 3 (all 96 cores) was equabim@mately 5,545,530
Joules (45 Amperes 114 \olts x 1,081 Seconds). The amount of Joules consumed
by the BOXX Personal Supercomputer on equivalent circumess (127 Volts, but
different currents and times for each number of GPUs) wassuored for 1, 2 and 4
GPUs. Figure 7 shows the energy consumed by each machinguation.

As Figure 7 shows, the amount of Joules decreases as the nom@Us in-
creases. This is to be expected, since the time to solve tidegon diminishes. Note
that we did not remove the unused GPU boards during theseimes and, even
when not doing useful computation, the GPUs consume a signifamount of energy.
Note also that the energy consumed for the whole machine wasumed in all cases,
and the ratio computation/energy consumption becomeswiath fewer GPUs doing
useful work.

Finally, Figure 8 presents a comparison between the amdieriergy consumed
by Enterprise 3 versus (divided by) the amount of energy wmesl by the BOXX Per-
sonal Supercomputer while solving the rotating cone probiéth 1, 2 and 4 GPUs. As
the graph of Figure 8 shows, the BOXX Personal Supercompotesumes more than
20 times less energy than the Enterprise 3 cluster whilérgpthe same problem. This
result shows that, currently, considering the benefits ofteh executing times, smaller
energy consumption, and smaller size and maintenance &bsits-GPU desktop ma-
chines are better high performance computing platforme #mall clusters without
GPUs such as Enterprise 3, even though they are somewharHargrogram. It is
important to note that our C+CUDA code runs unmodified in teltss of multi-core
machines each of which with multiple GPUs (it is, in fact, aCI3DA+MPI code).

()

Fig. 6. Power (current) measurement setup. (6(a)) Cluster setup: the twteht consumed by
Enterprise 3 was measured on the neutral wire of its power distributioal.p@tb)) BOXX
Personal Supercomputer setup: the total current consumed by ineasured on the neutral
wire of its power cord.

5 00E+05

4 O0E+05

3 00E+05

Joules

2 00E+05

TO0E+0S

0.00E+00 -

1 2 4
Number of GPUs

Fig. 7. Joules consumed while running the rotating cone problem with the BOX>XoR&rSu-
percomputer with 1, 2 and 4 GPUs. The unused GPU boards weremated during the exper-
iments.

3000

2500

2000
1500
1000 |
500 -
000 - . :
1 2 4

Number of GPUs

Energy Consumption Reduction

Fig. 8. Energy reduction observed while solving the rotating cone problem in th&&@ersonal
Supercomputer for 1, 2 and 4 GPUs when compared with the 96-cteepiEise 3 Cluster.

6 Related Work

Since the introduction of CUDA, a number of works have denratsd that the use
of GPUs can accelerate computational fluid dynamics (CFDukitions ([3, 11, 14,
16]). Recently, Jacobsen et al. [7] have exploited someeattvanced features of MPI
and CUDA programming to overlap both GPU data transfer antl ddmmunications
with computations on the GPU. Their results demonstratad riiulti-GPU clusters
can substantially accelerate CFD simulations. In this wekcompared a Multi-Core
Cluster without CUDA-enabled GPUs with a desktop machinth \@ilUDA-enabled
GPUs and showed that the way pointed by the work of Jacobs#naetd others [7] is
perhaps the current only way forward in the high performa@E® simulation field.
Little research has been conducted on the evaluation ofygrmmsumption of
GPUs against that of clusters. Huang et al. [5] analyzed t@valfel implementations

of a biological code that calculates the electrostatic ertigs of molecules—a mul-
tithreaded CPU version (for a single multi-core machine) anGPU version—and
compared their performance in terms of execution time,@neonsumption, and en-
ergy efficiency. Their results showed that the GPU versiagfopas the best in all three
aspects. In this work, we showed that a parallel CUDA-erthPU implementation
consumes considerably less energy (Joules) than a paralléicore cluster imple-
mentation while solving a whole instance of the finite eletpanblem.

7 Conclusions

We used a finite element formulation to solve the 2D time-ddpat advection dif-
fusion equation in Multi-Core Clusters and CUDA-enabledUsPOur experimental
results have shown that a desktop computer with a single Gilbatperform a 24-
machine cluster of the same generation and that a 4-GPUageslah offer more than
twice the cluster performance (performance in terms of timeompute a solution).
Our experimental results have also shown that a 4-GPU deskio consume less than
one twentieth of the energy (Joules) consumed by a 24-madhiister while solving
a whole instance of this relevant finite element problem. fBelniques we employed
for the problem tackled in this paper can be employed in mactdr problems. In fu-
ture works, we will examine multidimensional compressimeblems governed by the
Navier-Stokes equations.

8 Acknowledgments

We thank CNPg-Brazil (grants 552630/2011-0, 309831/20&t4485/2009-0, 309172/
2009-8) and FAPES-Brazil (grant 48511579/2009) for thepysrt to this work.

References

1. AN. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Gialéokmulations for con-
vection dominated flows with particular emphasis on the incompressible Natdkes equa-
tions. Computer Methods in Applied Mechanics and Engineerd2y199-259, 1982.

2. L. Catabriga and A.L.G.A. Coutinho. Implicit SUPG solution of Eulen&tipns using edge-
based data structureSomputer Methods in Applied Mechanics and Engineerd94.:3477—
3490, 2002.

3. Jonathan M. Cohen and M. Jeroen Molemaker. A fast double pred®D code using
CUDA. In Proceedings of the 21st Parallel Computational Fluid Dynamidsnffett Fiel,
California, 2010.

4. A.L.G.A. Coutinho, M.A.D. Martins, J. L. D. Alves, L. Landau,cA. Moraes. Edge-based
finite element techniques for nonlinear solid mechanics problémstnational Journal for
Numerical Methods in Engineerin§0:2053-2068, 2001.

5. S. Huang, S. Xiao, and W. Feng. On the energy efficiency of ggapmocessing units for
scientific computing. IrProceedings of the IEEE International Symposium on Parallel &
Distributed Processingpages 1-8, 2009.

6. T.J.R HughesThe Finite Element Method. Linear Static and Dynamic Finite Element Anal-
ysis Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

7.

10.
11.
12.

13.
14.

15.

16.

Dana A. Jacobsen, Julien C. Thibault, and Inanc Senocak. AnQMBIA implementation
for massively parallel incompressible flow computations on multi-GPUetssInProceed-
ings of the 48th AIAA Aerospace Sciences Meetrtando, Florida, 2010.

. P. K. Jimack and N. Touheed. Developing parallel finite element aoétwsing mpi. In

B.H.V. Topping and L. Lammer, editorsligh Performance Computing for Computational
Mechanicspages 15-38. Saxe-Coburg Publications, 2000.

. G. Karypis and V. Kumar. Multilevel k-way partioning scheme forgutar graphs. Techni-

cal Report 95-064, Department of Computer Science, Universibjiofesota, 1995.

D. B. Kirk and W. W. Hwu. Programming massively parallel processors: a hands-on ap-
proach Elsevier, 2010.

A. Klockner, T. Warburton, J. Bridge, and J.S. Hesthaven. aNdiscontinuous Galerkin
methods on graphics processaisComput. Phys228:7863—-7882, 2009.

NVIDIA. NVIDIA CUDA 3.0 - Programming GuideNVIDIA Corporation, 2010.

Y. Saadlterative Methods for Sparse Linear SystefA8VS Publishing, Boston, 1996.
Inanc Senocak, Julien Thibault, and Matthew Caylor. Rapid-regporban CFD simula-
tions using a GPU computing paradigm on desktop supercomputd?rotieedings of the
Eighth Symposium on the Urban Environmé?tioenix, Arizona, 2009.

T.E. Tezduyar and T.J.R. Hughes. Finite element formulationsdovection dominated
flows with particular emphasis on the compressible Euler equatiofgobeedings of AIAA
21st Aerospace Sciences MeefiAgAA Paper 83-0125, Reno, Nevada, 1983.

Julien C. Thibaultl and Inanc Senocak. CUDA implementation of a N&akes solver
on multi-GPU desktop platforms for incompressible flows Phoceedings of the 7th AIAA
Aerospace Sciences Meeting Including The New Horizons Forum andp®ee Exposition
Orlando, Florida, 2009.

