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Abstract—Virtual Generalizing Random Access Memory
Weightless Neural Networks (VG-RAM WNN) is an effetive
machine learning technique that offers simple implmentation
and fast training and test. We examined the perforrance of
VG-RAM WNN on binocular dense stereo matching usinghe
Middlebury Stereo Datasets. Our experimental result showed
that, even without tackling occlusions and discontiuities in the
stereo image pairs examined, our VG-RAM WNN architeture
for stereo matching was able to rank at 114th posin in the
Middlebury Stereo Evaluation system. This result igpromising,
because the difference in performance among approhes
ranked in distinct positions is very small.
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widely used sensors areLaser Range Scan, or Ligieicbon
And Ranging (LIDAR).

LIDAR sensors employ an opto-mechanical scanning
that makes use of laser beams to measure the aiistdong
straight lines to obstacle points ahead of theckehBuch a
mechanism is not biologically plausible. Also, LIBA
sensors are strongly affected by rain, among otreather
conditions, which limits their applicability in starios that
require outdoor operation. Moreover, they are wasil
detectable from a distance (because of the lasdrich
limits their military applicability.

l. INTRODUCTION

The images projected inside our eyes are constantly
changing due to the movement of the eyes or thg bedca
whole. However, in an apparent paradox, we perctiee
world, depicted in the images captured by the eggstable.
Moreover, the images projected on human retinasveoe
dimensional; however, the brain is able to syntteeai stable
three-dimensional representation from them (whatsee,
Figure 1), with color, shape and depth informatdnout the
objects in the surrounding environment, eliminatitige
effects of the eyes and body movements.

The biological visual system enables our movement Figure 1: Generation, by the brain, of a three-disienal representation
through the three-dimensional environment accuze| from two-dimensional images.
the understanding and modeling of relevant capigsiliof
the biological visual system, such as those tHatvalis to
see in three dimensions, may contribute to the Idpweent

of Simultaneous Localization And Mapping (SLAM) #tid  gypstantially lower cost than LIDAR sensors. Howeve

navigation systems for autonomous vehicles. order to employ digital cameras for solving the SLA
SLAM is perhaps the most fundamental problem ofproblem in real time, it is necessary to process hinge
autonomous robotics. Autonomous vehicles need @vkn gmount of data captured by the cameras in a manner

where they are in their area of operation and Huw (area  equivalent to that in our brain, i.e., it is neeegsto

of operation) is configured so that they can naeigand  gynthesize stable three-dimensional representations

perform their activities of interest. For this, @wmous tyo-dimensional images.

vehicles must use sensors for acquiring sufficient 1o generate a three-dimensional representation finn

information for mapping the environment and lodaliz  dimensional images, it is necessary to localizeesponding
in distinct spatial locations. This problem is knowas the

Digital cameras, on the other hand, are now able to
capture images with millions of pixels and have a



stereo matching problentsing the information about the These neurons operate with binary input values asel
location of corresponding pixels in the severaldes® and RAM as lookup tables: the synapses of each newlhect a
the knowledge of the geometry and positioning othea vector of bits from the network’s inputs that isedsas the
camera, it is possible to solve the problem of gienog the RAM address, and the value stored at this addeghe
world in 3D based on images captured by two or mora@euron’s output. Training can be made in one shmt a

cameras. basically consists of storing the desired outpuh&address
The state-of-the-art stereo matching algorithrhésAD-  associated with the input vector of the neuron.[15]
Census [3]. It calculates the dense disparity mawo main In spite of their remarkable simplicity, RAM-based

steps. In the first step, it initializes the dispes using the neural networks are very effective as pattern reitiogm
AD-Census metric. In the second step, it uses ssdoased tools, offering fast training and test, in additibom easy
cost aggregation algorithm [2] to reduce ambigsitie  implementation [12]. However, if the network inpgsttoo
textureless areas. Other approaches have beenspbpo large, the memory size becomes prohibitive, sitoeuist be
tackle the problem of stereo matching, such asett@sed equal to 2, wheren is the input size. Virtual Generalizing
on belief propagation [4, 5], self organizing néuratworks RAM (VG-RAM) Weightless Neural Networks (WNN) are
[6] and disparity energy models [7]. RAM-based neural networks that only require memory
In our search to understand the brain, we developedapacity to store the data related to the traisieig[16]. In
successful biologically inspired applications, fexample, the neurons of these networks, the memory stoe@mtiut-
face recognition [8], text categorization [9] anepth  output pairs shown during training, instead of dgput. In
estimation using monocular cues [10].Another imgait the test phase, the memory of VG-RAM WNN neurons is
aspect of the human perception of the world is dbpth  searched associatively by comparing the input pteseto
perception via stereopsis [11]. To emulate thisacdp in an  the network with all inputs in the input-output rsalearned.
artificial system, we use a stereo camera and ladigally =~ The output of each VG-RAM WNN neuron is taken frtira
inspired stereo matching algorithm. In fact, in @flthese pair whose input is nearest to the input presentbd—
applications, we use Virtual Generalizing Randontess distance function employed by VG-RAM WNN neurons is
Memory Weightless Neural Networks (VG-RAM WNN) the Hamming distance. If there is more than one gtathe
[12]. The VG-RAM WNN is an effective machine leargi same minimum distance from the input presented, the
technique that offers simple implementation and ti@ining  neuron’s output is chosen randomly among thess.pair
and test. Table 1 shows the lookup table of a VG-RAM WNN
In this paper, we evaluate the performance of VGYRA neuron with three synapses; (X, andXs). This lookup table
WNN on stereo matching. Our approach addresses thmntains three entries (input-output pairs), whigre stored
problem of binocular stereo dense matching, temperates during the training phaseritry #1 entry #2andentry #3.
on two images under known camera geometry and caspu During the test phase, when an input vectoput) is
a dense disparity map that contains a disparitynagt for  presented to the network, the VG-RAM WNN test altyon
each pair of corresponding pixels in the two images calculates the distance between this input veator @ach
To evaluate the performance of VG-RAM WNN on input of the input-output pairs stored in the lopkable. In
stereo matching, we used the Middlebury Stereo dBtda the example of Table 1, the Hamming distance frbom t
(http://vision.middlebury.edu/stereo/data/13, 14]. We inputto entry #1is two, because bofk, andX; bits do not
chose these datasets because we were interested niatch the input vector. The distance entry #2is one,
comparing our experimental resultswith those sulechito  becausk; is the only non-matching bit. The distancestdry
the Middlebury Stereo Evaluation system #3 is three, as the reader may easily verify. Hefmethis
(http://vision.middlebury.edu/stereo/eyalDur experimental input vector, the algorithm evaluates the neuranitput, Y,
results showed that, even without tackling occlusi@nd  asoutput 2 since it is the output value storedeintry #2
discontinuities in the stereo image pairs examied, VG-
RAM WNN architecture for stereo matching was alde t
rank at 114th position in the Middlebury Stereo IHaton

Table 1: VG-RAM WNN neuron lookup table.

system. Lookup table X1 X5 X3 Y
_ This _paper is _organized_ as follows. After this entry #1 1 1 0 output 1
introduction, in Section Il, we introduce VG-RAM WWN
and, in Section 1ll, we describe how we have useuint for entry #2 0 0 1 | output2
stereo matching. In Section IV, we describe ourexpental entry #3 0 1 0 output 3
methodology and, in Section V, we analyze our erpantal 1 1 1 1
results.. Our .conclusmns and directions for futuverk input 1 0 1 output 2
follow in Section VI.

l.  VG-RAMWNN lll.  STEREOMATCHING WITH VG-RAM WNN

RAM-based neural networks, also known as n-tuple
classifiers or weightless neural networks, do ntares
knowledge in their connections but in Random Acces
Memories (RAM) inside the network’s nodes, or nesto

Stereo matching is the problem of localizing
corresponding pixels in multiple images of the s@&Deview
%aptured by cameras in distinct spatial locatidnsmost



camera configurations, finding correspondences ires|La
search in multiple dimensions.However, if the ceaseare
aligned to be epipolar using an image rectificatdgorithm
[17], the search for corresponding pixels is siffgdi to one
dimension (a straight line parallel to the basebiatveen the
cameras), i.e., stereo matching can be made ingéesscan
line. In this paper, we assume that the epipolaxitystraint
is guaranteed.

To compute the disparity map between two stereo
images, the left imagé,, is used to generate the training set
and the right imagel, is used to generate the test set.(A
disparity map is an image where each pixel cornedpdo
the distance in pixels between corresponding pikelthe
left and right images of a stereo image pair [17].)

During the training phase, the pixels lpfare copied to
the VG-RAM WNN's input @. In the first iteration, the

Our VG-RAM WNN architecture for stereo matching hasdisparity valued, is set to zero and afi; neurons’ outputs

a single two-dimensional array afixn neurond\, where
each neurom;j, has a set of synaps@s= (Wy,W,,.. W),
which are connected to the network’s two-dimendionaut,
@, of m x ninputs, g;; (Figure 2). (Note that the network
input, @, has the same size of the neurons ary,The
synaptic interconnection pattern of each neurgrc;; (W),
follows a two-dimensional Normal distribution witiariance
c’centered a; i.e., the coordinatels and| of the elements
of @ to which n;; connects viaW follow the probability
density functions:
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wheresis a parameter of the architecture. This synaptic

interconnection pattern mimics what is observedmiany
classes of biological neurons [18], and is creatbén the
network is built and does not change afterwards.
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Figure 2: Schematic diagram of our VG-RAM WNN atehture for stereo
matching.

are also set ta=0. All neurons are then trained to output
d=0. Remember that the synaptic interconnection awhe
neuronn;; is centered ap; ;). In the second iteratior is
incremented by onal€1) and the array of neurons is shifted
of one column to the right, such that the synaptic
interconnection of each neurom; is now centered at
®ij+a = 9ij+1)- All neurons are then trained to outpistl
(except those in column 1). This process iteratetl al
reaches a maximum pre-defined disparity valuge,
(d=dmay- In this last iteration, the array of neuronskfted

of dnax columns to the right, such that the synaptic
interconnection of each neurow; is centered ap; j,q =
©ijrdmg, )» @nd all neurons are trained to OUtmEHO Ay
(except those in columns 1dg.,).

During testing, the pixels df; are copied tod. Then,
eachn;; neuron output is computed, which is a disparity
estimate for thep;; pixel of Ir. The disparity map is
straightly given by the network output.

IV. EXPERIMENTAL METHODOLOGY

A. Datasets

To evaluate the performance of VG-RAM WNN on
stereo matching, we used the Middlebury Stereo detda
(http://vision.middlebury.edu/stereo/dataf13, 14]. These
datasets are composed of synthetic stereo image wih
hand-labelled ground-truth disparities. In ordecomparing
our resultswith those submitted to the Middlebutgr&o
Evaluation system
(http://vision.middlebury.edu/stereo/eval/), we disehe
following four stereo image pairs of the MiddlebuBtereo
Datasets: “Tsukuba” and “Venus”, from the 2001 dats,
and “Teddy” and “Cones”, from the 2003 datasets.

B. Metric

To examine the performance of VG-RAMWNN on
stereo matching, we used tpercentage of bad matching
pixel420], because it is the metric adopted by the

VG-RAM WNN synapses can only get a single bit fromMiddlebury Stereo Evaluation system. The percentddgead

the input. Thus, in order to allow our VG-RAM WNN t
deal with images, in which a pixel may assume ayeaof
different values, we useminchinton cellgl9]. In the

proposed VG-RAM WNN architecture, each neuron's

synapsew;, forms a minchinton cell with the next,.; (W,
forms a minchinton cell witkv,). The type of the minchinton
cell we have used returns 1 if the synaps®f the cell is
connected to an input elemeni,, whose value is larger
than the value of the elemgpito which the synapse., is

matching pixels is given by:

B= %z(m (de 0 y) = dr (x )| > 84)

whereyy is a disparity error tolerancec is the computed
disparity mapgdy is the ground truth disparity map aNds
the number of pixels. In our experiments, we usgd 1,
since this concides with the Middlebury Stereo Hatibn

connected, i.e.gpx>¢rs otherwise, it returns zero (see the system.

synapsesv; andw, of the neurom,, of Figure 2).



We evaluated treeverage percentage of bad pixdlsat is
given by the average of the percentage of bad rnmgfch
pixels for the whole disparity mapal(), non-occlusion
(nonocg regions and discontinuity regiondigo), i.e., the
object boundaries.

V.

In this section, we present the experiments empldge
evaluate experimentally the performance of VG-RANNMW
on stereo matching.

EXPERIMENTAL RESULTS

The VG-RAM WNN architecture for stereo matching has

two parameters: the number of synapses per nel\ksnand
o (see Section Ill). (Note that the number of nearand the
size of the network input must be equal to the siz¢he
input image.) To tune the parameters of the VG-RAWNN
architecture, we trained it with the right imagéshe stereo
image pairs and tested it with the left images,leviaarying
the number of synapses per neuron and thalue.We tested
networks with number of synapses per neuron equabt
32, 64, 128, 256, 512 and 1024, andqual to 1, 2, 4, 6, 8
and 10.

Figure 3 to Figure 6
experiments we carried out to tune the paramefared/G-
RAM WNN architecture for stereo matching using the
“Tsukuba”, "Venus", "Teddy" and "Cones" stereo imag
pairs, respectively. As Figure 3 to Figure 6 shdhe
performance (in terms of the average percentagbaof
matching pixels) of the VG-RAM WNN architecture
improves witho; however, ass increases, the performance
stabilizes (for “Tsukuba” and "Venus") or even dietates
(for "Teddy" and "Cones)". In the one hand, for Bemeo
values, the synaptic interconnection distributibneurons is
concentrated on a smaller region of the networktimwhich
limits the amount of available information for neos. In the
other hand, for larges values, the synaptic distribution is
dispersed across a larger region of the networlatigmd
neurons may lose discriminative regions. The besl a
simplest (smallest) configuration is reached arourd4,
for all stereo image pairs examined.
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Figure 3: Performance tuning for the “Tsukuba” steimage pair
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Figure 4: Performance tuning for the “Venus” steraage pair.
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Figure 5: Performance tuning for the “Teddy” steireage pair.
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Figure 6: Performance tuning for the “Cones” sténeage pair.

As Figure 3 to Figure 6 also show, fe=4, the
performance of the VG-RAM WNN architecture improves
with the number of synapses per neuron; howevethas
number of synapses increases, the gains in penfmena
decrease towards the maximum performance. For d sma
number of synapses, the number of elements of eheonk
input monitored by neurons is small, which limitset
amount of available information for neurons. Thethend
simplest (smallest number of synapses) configuratias
around 256 synapses, fer4 and for all stereo image pairs
examined.

The best and simplest VG-RAM WNN architecture
configuration 6=4 and 256 synapses) presented a



performance (in terms of the averapercentage of bad
matching pixely of approximately 12%, 13%, 21% a
14.5% for the “Tsukuba”;Venus", "Teddy" and "Cone:
stereo image pairs, respectively.

Figure 7 to Figure 1Ghow the right image d the
disparity map generated by the best -RAM WNN
architecture configuration forthe “Tsukuba”, "Venus",
"Teddy" and "Cones" stereo image pairs, respeg. These » —
disparity maps were submitted to tiMiddlebury Stereo  Figure 10 Right image of the stereo pair and the dispamiap generate
Evaluation system on April 12th022, being ranked at tt by the best VGRAM WNN architecture configuration using the “Cotu
114th position. Figure 1d¢hows the result of this submissi stereo image pa
that was partitioned into Figure (B} andFigure 11(b) for
better readability. In Figure 1tolumn 1 presents the stel

matching algorithm submitted to the Middlebury $te ) Teubuiba Venus
Evaluationsystem (our system was listed he third line); Alorim | Ave. s exund mah
column 2 presents the average rank over the tv mank|mnoce al  dsc |mmocc @t disc
succeeding columns, by which the table is sorteldinens :- v v Y
5 present theercentage of bad matching pi> along with
the rank positionfor the nonocc, all and disc ragi 2DPOCI110]  |108.8| 28825 48038 10520 6.55 115 7.82 115 17.4 104
respectively, for the “Tsukubamage; columns -8, 9-11, Bipartite [73 110.3| 25475 44150 13.6 34| 562 115 7.46 115 18.6 107
1214 present ana|ogous information for the "Ven YOUR METHOD  |113.0/9.18 127 10.7 127 20.3 18| 7.91 115 8.88 118 22.2 113
"Teddy" and "Cones" imagesy respective|y; fina"_y‘e PhaseBased[31] |113.3|4.26 107 6.53 11215.4 103| 6.71 117 8.16 117 26.4 113
column 15 presents the average over all the twaleeeding EIODEM A7) TS 7124 & 43 120 28 1 i2ef A 6T 0 800 3 T
columns. ReqionalSup [38] |114.8|3.99 102 .05 102 14.2 25 [8.14 121 9.68 12236.8 128
IMCT [62 114.8|4.54 102 5.90 107 19.8 17| 3.16 107 3.83 108 23.2 115
SSD+MF [1a] 115.3| 523 112 7.07 11524.1 124| 3.74 111 516 112 1198
S04 117.2|5.08 115 7.22 115 12.2 55| 9.44 124 10.9 124 21.9 112
GANCM [128] 118.8| 4.82 112 6.81 14 16.6 107| 8.07 120 9.54 12036.0 125
Mi-nonpara[85]  |119.3|5.59 115 7.54 121 18.8 114| 7.50 12 8.99 11335.0 123
PhaseDiff[23] 120.5|4.89 114 7.11 117 16.3 105/ 8.34 122 9.76 123 26.0 18
STICA[16 120.8|7.70 125 9.63 12527 8 125/8.19 122 9.58 12140.3 127
Rank+ASW[24] |120.8|6.51 122 8.43 122 19.7 116{10.5 125 12.0 128327 12
CDM+AdaptWat [75]|121.0|5.98 122 7.84 12222 2 122|14.5 127 15.4 127 35.9 124
Infection [10 1223|795 125 9.54 125289 27| 4.41 12 553 11331.7 129
Figure 7: Right image of theeseo pair and the disparity i generated by (a)
the best VG-RAM WNN architecturenfiguration using th“Tsukuba” Mverage percent
stereo image pair. Teddy Conas of bad pixels
erpung fnth Tgung (explanation)
nonoce  all  disc [momocc al  disc
A\ \J
144 12221 111 27.9 184|152 126 22.7 12424 5122 14.7]
16.9 120 24.1 118 30.2 17| 15.1 125 21.8 122 23.0 118 15.4]
136 10224 12286 15| 6.1295 14.7 101 15.8 101 15.0
145 13 231 11225.5 105 10.8 112 20.5 120 21.2 114 15.3
13.2 109 21.3 102.34.5 121/ 6.84 104 16.0 107 19.8 119 16 4|
Figure 8: Rght image of the stereo pair and the disparity generated by 183124267 12432.1 1/ 8.16 110 19.3 118 19.9 1 _ &
the best VGRAM WNN architecture configuration using the “Vefit 18.0 122 231 114353 122) 12.7 120 18.5 11427.9 122 16.3
stereo image pair. 16.5 118 24.8 11332.9 120{ 10.6 117 19.8 11726.3 123 15.7
. 19.9 125 28.2 127 26.3 108|13.0 122 22.8 125 22 3 116 16.6
16.6 119252 12238.7 128| 10.9 12 20.7 12124 .3 121 18.2
17.4 121 25.7 12336.9 123| 10.2 115 19.9 112 22,6 115 18.0]
20.0 126 28.0 126 29.0 118|19.8 127 28.5 127 27.5 124 18.8)
45.8 15 23.2 11537.7 124/ 9.80 112 17.8 111 28.7 12 19.7
457 114 24.1 117 32.8 118 14.1 122231 128 21.7 115 184
20.8 127 27.3 12538.3 125/ 8.90 102 17.2 110 20.0 112 19.5
. : 177 122 25.1 12 44.4 127| 14.3 124 21.3 12238.0 127 207
= - ()

Figure 9 Right image of the stereo pair and the dispamiap generated t
the best VGRAM WNN architecture configuration usirthe “Teddy”
stereo image pair.

Figure 11: Result of theubmission to the Middlebury Stereo Evalua
systenof the disparity maps generated by our-RAM WNN architecture
for stereo matchir.



VI. CONCLUSIONS ANDFUTUREWORK

In this paper, we presented an experimental evatuaf
the performance of Virtual Generalizing Random Asce
Memory Weightless Neural Networks (VG-RAM WNN) on
binocular
performance with the Middlebury Stereo Datasetsr Ou
experimental results showed that our VG-RAM WNN

dense stereo matching. We examined

architecture for stereo matching was able to rankeal14th
position in the Middlebury Stereo Evaluation systérhis
result is promising, because our approach has aukied
occlusions and discontinuities in the stereo imapgés
examined. Also, the difference in performance amongio]
approaches ranked in distinct positions is verylsma

A direction for future work is to perform experimien

with the KITTI Vision Benchmark Suite [21], whicls i
suitable for analysis of disparity maps from reabria
scenes. Other direction for future research is xanmegne
mechanisms for dealing with occlusions and disowities
in stereo image pairs.
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