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Abstract 

We present and evaluate a system for access control 
that uses only facial biometrics as access key. Our system 
first detects a face in an image, then tries to recognize the 
face, and finally decides on grating or not access based on 
a belief computed during the face recognition process. We 
use the Viola-Jones approach for face detection, Virtual 
Generalizing Random Access Memory Weightless Neural 
Networks (VG-RAM WNN) for face recognition, and 
Bayesian inference for access control.  

We simulated the access control to a given resource for 
a universe of 50, 100 and 200 users. For the set of 200 
users, the system was able to correctly authenticate 93.0% 
of the users with a False Acceptance Rate (FAR) of only 
0.8%; for the set of 100 users, 90.3% of the users with a 
FAR of 1.8%; and for the set of 50 users, 93.1% of users 
with a FAR de 4.8%. 
 
Keywords: Access control, facial biometrics, VG-RAM 
weightless neural networks, Bayesian inference 

1. Introduction 

The process of electronic recognition of the identity of 
individuals has become increasingly commonplace. Its use 
goes from the access of garages of buildings via magnetic 
cards to the login into banking sites via identification 
numbers or electronic passwords. Today, at various levels 
of transparency, individuals coexist with automatic 
recognition processes in their day-to-day activities. 

According to Hong and Jain [1], traditional approaches 
for personal recognition are based on “something that you 
know”, such as a personal identification number, or 
“something that you have”, such as an identification card. 
Unfortunately, for many applications, these methods may 
not be secure enough to ensure proper personal 
recognition, because they lack the capability to 
differentiate between a genuine individual and an impostor 
who fraudulently acquires the access privilege. 

Biometric systems—which include devices to capture 
biometric information, such as face images, iris images, 
fingerprints, etc., and databases and software for storage 

and management of this information [2]—perform the 
automatic recognition of individuals based on their 
physiological and/or behavioral characteristics, that is, the 
individuals themselves become the “identification key”, 
which makes the process more transparent and less prone 
to fraud. Due to their wide application in various areas, 
such as public safety, continuous authentication on 
computer networks, access control, etc., biometric systems 
are gaining increasing attention from researchers in 
academia and industry [3, 4, 5]. 

Among the various alternative biometric information 
forms that can now be caught by input devices of personal 
recognition systems, face images are one of the most 
convenient. Video capture devices are non-invasive, 
inexpensive, and easy to use. Moreover, the continuous 
increase of processor performance over the several last 
decades allowed the use of more sophisticated, robust, 
reliable and fast algorithms for face detection and 
recognition. 

In this paper, we evaluate the feasibility of a system for 
access control using only facial biometrics as access key. 
In this case, access control would no longer be based on 
“something that you know” or “something that you have”, 
but on the individual itself. To evaluate the feasibility of an 
access control system based only on facial biometrics, we 
developed a prototype of this system that operates fully 
automatically, being able to detect a face in an image and 
then perform the recognition of that face, with no human 
intervention. We use a well known approach proposed by 
Viola and Jones [6] for face detection and Virtual 
Generalizing Random Access Memory Weightless Neural 
Networks (VG-RAM WNN) for face recognition [7, 8]. 
Lastly, we employed Bayesian inference for the access 
control decision process. 

Many techniques for face recognition have been 
proposed in the literature [4, 5]. However, instead of the 
access control problem, most of them have been employed 
to address: the face identification problem, where the 
system always returns a face that has the most similar 
features to the input face, even though the input face is not 
in the knowledge base; or the face verification problem, 
where the system receives an identification number along 
with facial biometric data and reports whether or not it 
belongs to the claimed identification number. Different 



from the approaches presented in [4, 5], we employ a face 
recognition technique to address the access control 
problem using only facial biometrics as access key; in this 
case, the system receives facial biometric data only and 
reports whether or not it belongs to a user that has access 
to a particular resource or environment.  

Although there are currently face based access control 
systems commercially available, as far as we could 
examine in the literature, the combination of techniques we 
have employed to tackle the problem is unique, and the 
results we have obtained are promising. Using our 
prototype, the access control to a given resource was 
simulated for 50, 100 and 200 users. For the set of 200 
users, the system was able to correctly authenticate 93.0% 
of the users with a False Acceptance Rate (FAR) of only 
0.8%; for the set of 100 users, the system was able to 
correctly authenticate 90.3% of the users with a FAR of 
1.8%; and for the set of 50 users, the system correctly 
authenticated 93.1% of users with a FAR of 4.8%.  

This paper is organized as follows. After this 
introduction, in Section 2 we present our prototype of an 
access control system based only on facial biometrics. In 
Section 3, we describe our experimental methodology, in 
Section 4, we analyze our experimental results and, in 
Section 5, we discuss them. Our conclusions follow in 
Section 6. 

2. Access Control Based on Facial 
Biometrics  

We developed a prototype of an access control system 
based only on facial biometrics. Our system operates fully 
automatically in three steps: (i) detection of a face in an 
image; (ii) recognition of the detected face; and (iii) 
Bayesian inference for determining if the access should be 
granted. In the first step, given an arbitrary image, the 
system determines whether or not there are faces in the 
image and, if so, it returns the image location and extent of 
each face. In the second step, given a detected face, the 
system returns the most similar face, among those enrolled 
in the knowledge base, along with a matching score, that 
quantifies the similarity between the detected face and the 
most similar face in the knowledge base. In the third step, 
given the matching score and using the Bayes’ rule, the 
system computes a probability measure that indicates the 
degree of belief of the system in that the detected face 
belongs to an individual with granted access.  

The system final decision is regulated by a threshold: if 
the degree of belief of the system in that the detected face 
belongs to an individual with granted access is less than 
the threshold, than he/she is rejected as an impostor; 
otherwise, he/she is accepted as an individual with granted 
access (or genuine individual for short). 

In the following, we describe each of these three steps.  

2.1. Face Detection 

We use the well known object detection technique 
proposed by Viola and Jones [6] for the task of face 
detection. This technique uses integral images for fast 
feature extraction, AdaBoost [9] for classification, and a 
method for combining the classifiers in a cascade, which 
allows background regions of the images to be quickly 
discarded while spending more computation on promising 
face-like regions.  

We have used the Viola-Jones approach to detect faces 
and also the eyes within the faces. The knowledge of the 
eyes’ position is important for proper face recognition, 
since it allows a more precise reference for the face 
recognition system to operate. We found the correct 
detection of the eyes hard to obtain in some cases. Because 
of that, our face detection sub-system tries and recognizes 
the cases were it was not possible to correctly detect the 
eyes and, in such cases, approximates their position as a 
previously computed average position. 

2.2. Face Recognition 

We use Virtual Generalizing Random Access Memory 
Weightless Neural Networks (VG-RAM WNN) [10, 11] 
for face recognition. VG-RAM WNN is an effective 
machine learning technique that offers simple 
implementation and fast training and test [10]. In previous 
works [7, 8], we evaluated the performance of VG-RAM 
WNN on face recognition using well known face 
databases. Our experimental results showed that, even 
when training with a single face image per individual, VG-
RAM WNN are robust to various facial expressions, 
occlusions and illumination conditions, showing better 
performance than many well known face recognition 
techniques. This has motivated us to use VG-RAM WNN 
for the face recognition step of our access control system. 

2.2.1. VG-RAM WNN 

RAM-based neural networks, also known as n-tuple 
classifiers or weightless neural networks, do not store 
knowledge in their connections but in Random Access 
Memories (RAM) inside the network’s nodes, or neurons. 
These neurons operate with binary input values and use 
RAM as lookup tables: the synapses of each neuron collect 
a vector of bits from the network’s inputs that is used as 
the RAM address, and the value stored at this address is 
the neuron’s output. Training can be made in one shot and 
basically consists of storing the desired output in the 
address associated with the input vector of the neuron [12].  

In spite of their remarkable simplicity, RAM-based 
neural networks are very effective as pattern recognition 
tools, offering fast training and test, in addition to easy 
implementation [10]. However, if the network input is too 
large, the memory size becomes prohibitive, since it must 
be equal to 2n, where n is the input size. Virtual 
Generalizing RAM (VG-RAM) Weightless Neural 
Networks (WNN) are RAM-based neural networks that 



only require memory capacity to store the data related to 
the training set [11]. In the neurons of these networks, the 
memory stores the input-output pairs shown during 
training, instead of only the output. In the test phase, the 
memory of VG-RAM WNN neurons is searched 
associatively by comparing the input presented to the 
network with all inputs in the input-output pairs learned. 
The output of each VG-RAM WNN neuron is taken from 
the pair whose input is nearest to the input presented—the 
distance function employed by VG-RAM WNN neurons is 
the Hamming distance. If there is more than one pair at the 
same minimum distance from the input presented, the 
neuron’s output is chosen randomly among these pairs. 

Figure 1 shows the lookup table of a VG-RAM WNN 
neuron with three synapses (X1, X2 and X3). This lookup 
table contains three entries (input-output pairs), which 
were stored during the training phase (entry #1, entry #2 
and entry #3). During the test phase, when an input vector 
(input) is presented to the network, the VG-RAM WNN 
test algorithm calculates the distance between this input 
vector and each input of the input-output pairs stored in the 
lookup table. In the example of Figure 1 the Hamming 
distance from the input to entry #1 is two, because both X2 
and X3 bits do not match the input vector. The distance to 
entry #2 is one, because X1 is the only non-matching bit. 
The distance to entry #3 is three, as the reader may easily 
verify. Hence, for this input vector, the algorithm evaluates 
the neuron’s output, Y, as class 2, since it is the output 
value stored in entry #2. 

 
Lookup Table X1 X2 X3 Y 

entry #1 1 1 0 label 1 
entry #2 0 0 1 label 2 
entry #3 0 1 0 label 3 

 ↑ ↑ ↑ ↓ 
input 1 0 1 label 2 

 
Figure 1: VG-RAM WNN neuron lookup table 

2.2.2. Face Recognition with VG-RAM WNN 

Our VG-RAM WNN architecture for face recognition 
has a single bidimensional array of m × n neurons, N, 
where each neuron, ni,j, has a set of synapses, W = 
(w1,w2,...w|w|), which are connected to the network’s 
bidimensional input, Φ, of u × v inputs (see Figure 2 and 
Figure 3). The synaptic interconnection pattern of each 
neuron ni,j follows a bidimensional Normal distribution 

with variance 2σ  centered at φµk,µl
 where m

ui
k

.=µ  and 

n
vj

i
.=µ ; i.e., the coordinates k and l of the elements of Φ 

to which ni,j connects via W follow the probability density 
functions: 
 

2

2

2
2

)(

, 2

1
)( σ

µ

σµ σω
k

k

k

ek
−−

Π
=  

 

  2

2

2
2

)(

, 2

1
)( σ

µ

σµ σω
l

l

l

el
−−

Π
=  

 
where σ is a parameter of the architecture (Figure 2). This 
synaptic interconnection pattern mimics that observed in 
many classes of biological neurons [13], and is created 
when the network is built and does not change afterwards. 
 

  
(a) (b) 

 
(c) 

Figure 2: The synaptic interconnection pattern of our VG-RAM 
WNN architecture for face recognition. (a) Left, input Φ: in 
white, the elements φk,l of the input Φ that are connected to 
neuron n1,1 of N via )(,1,1 WσΩ . Right, neuron array N: in 

white, the neuron n1,1 of N. (b) Left: in white, the elements φk,l 

of Φ connected to
22

, nmn  via )(
,,

22

Wnm σΩ . Right: in white, the 

neuron 
22 , nmn of N. (c) Left: in white, the elements of Φ 

connected to nm,nvia )(,, Wnn σΩ . Right: in white, the neuron 

nm,n. 

VG-RAM WNN synapses can only get a single bit from 
the input. Thus, in order to allow our VG-RAM WNN to 
deal with images, in which a pixel may assume a range of 
different values, we use minchinton cells [14]. In the 
proposed VG-RAM WNN architecture, each neuron's 
synapse, wt, forms a minchinton cell with the next, wt+1 
(w|W| forms a minchinton cell with w1). The type of the 
minchinton cell we have used returns 1 if the synapse wt of 
the cell is connected to an input element, φk,l , whose value 
is larger than the value of the element φr,s to which the 
synapse wt+1 is connected, i.e., φk,l > φr,s; otherwise, it 
returns zero (see the synapses w1 and w2 of the neuron nm,n 
of  Figure 3). 

The input face images, I, of ηξ × pixels (Figure 3) 

must be transformed in order to fit into the network’s 
input, Φ. The images are rotated, scaled, and cropped 
(Figure 4) automatically in three steps: (i) the position of 
the face in the image is found; (ii) based on the face 
position, the positions of the eyes are found (Figure 4(b)); 



and (iii) based on the positions of the face and eyes, the 
image is rotated, scaled and cropped to fit into Φ. Before 
being copied to Φ, the transformed image is filtered by a 
Gaussian filter to smooth out artifacts produced by the 
transformations (Figure 4(c)).  

 

 
Figure 3: Schematic diagram of our VG-RAM WNN 
architecture for face recognition 

 

  

 
 

 

(a) (b) (c) 

Figure 4: Face image and its preprocessing. (a) Original 
image; (b) positions of the face and eyes in the image; and (c) 
rotated, scaled, cropped and filtered image. 

 
During training, the face image Ix of a person p is 

transformed and filtered, its pixels are copied to the VG-
RAM WNN’s input Φ, and all ni,j neurons’ outputs are set 
to the value of the label lp ∈ L={ l1 ,… l |L|} associated with 
the face of the person p (|L| is equal to the number of 
known persons). All neurons are then trained to output this 
label with this input image. This procedure is repeated for 
all images Ix of the person p and, likewise, for all persons 
in the training dataset. During testing, each face image Iy is 
also transformed, filtered, and copied to the VG-RAM 
WNN’s input Φ. Then, all neurons’ outputs are computed 
and the number of neurons outputting each label lp ∈ L={  
l1,… ,l |L|}  is counted. The network output is given by the 
label lp with the largest count along with the percentage of 
neurons that presented lp as output for the face image Iy. 
This percentage is a matching score, ),( py lIf , which 

quantifies the similarity between the face image Iy and the 
most similar one in the knowledge base that is indexed by 
the label lp. 

2.3. Access Control 

We employed Bayesian inference for addressing the 
problem of access control. Given a face image Iy, our 
access control system maps the matching score 

),( py lIf —that quantifies the similarity between the face 

image Iy and the most similar image in the knowledge 
base, indexed by label lp (Section 2.2.2)—into a probability 
measure, which indicates the degree of belief of the system 
in that the face image Iy belongs to a genuine individual. 
The system final decision is regulated by a threshold for 
the probability measure: if the probability measure is 
smaller than the threshold, the user associated with the face 
image Iy is rejected as an impostor; otherwise, the user is 
accepted as a genuine individual. The value of the 
threshold can either be specified by the system operator or 
automatically tuned using a validation dataset (not a part of 
the training dataset or the test dataset [15]), by varying the 
value of the threshold until the performance of the access 
control system is optimized on the validation dataset. The 
probability measure is computed using the Bayes’ rule as 
described in the following. 

The probability measure of interest, p(A|B),  is 
computed as the probability that a given face image, Ix, 
belongs to a genuine individual (p(A)), given that the 
neural network returned a matching score, ),( px lIf , 

within an interval bi ∈ B={b1, …, b|B|}  (p(B)). The random 
variable A may take two values: 1, if the given face image 
Ix belongs to a genuine individual; or 0, if the given face 
image Ix belongs to an impostor. The random variable B 
may take a continuous value within one of the intervals of 
B={b1,… , b|B|}.  

The probability p(A|B) can be computed using the 
Bayes’ rule, i.e.: 
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The probability p(A) can be estimated as the percentage 

of genuine individuals in the training and validation 
datasets. The probability p(B) can be estimated as the 
percentage of times the neural network outputs a matching 
score within each interval of B={b1, …, b|B|} for images in 
the validation dataset.  Finally, the probability p(B|A) can 
be estimated (using the validation dataset) as the 
percentage of matching scores within each interval bi ∈ 
B={b1, …, b|B|}, given that the network returned genuine 
individuals.  
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3. Experimental Methodology 

To evaluate our access control system we have used the 
Color Face Recognition Technology (FERET) database 
(http://face.nist.gov/colorferet). For that, we divided it into 
several datasets and used them to train, validate and test 
the performance of our system according to widely used 
biometric performance metrics. 

3.1. Datasets 

The Color FERET database contains a total of 11,338 
face images with 512 by 768 pixels. They were collected 
by photographing 994 individuals at various angles over 
the course of 15 sessions between the years of 1993 and 
1996. Among 13 different poses available in the database 
(frontal face and head turned from 15 to 75 degrees right 
and left), we considered 2 frontal face images of 991 
individuals: the regular frontal face image, named fa in the 
database, and the alternative frontal face image, fb, taken 
shortly after the corresponding fa image. Figure 5 shows 
the regular frontal face image, fa, and the alternative 
frontal face image, fb, of one individual of the Color 
FERET database. 

 

 
Figure 5: Regular frontal face image, fa, and alternative frontal 
face image, fb, of one individual of the Color FERET database 

We derived three datasets using the frontal face images 
fa and fb of 991 individuals of the FERET database, 
namely CA1, CA2, e CA3.  

3.1.1. CA1 Dataset 

To obtain CA1, we partitioned the full dataset (fa and fb 
of 991 individuals of the FERET database) into 10 subsets 
of 100 individuals (the last subset has only 91 individuals). 
The first of these subsets was further partitioned into 
training and validation subsets—the training subset 
comprises the fa images of the first 50 individuals, while 
the validation subset comprises the fb images of all 100 
individuals. Each of the remaining 9 subsets was 
partitioned into training and test subsets—the training 
subset comprises the fa images of the first 50 individuals, 
and the test subset comprises the fb images of all 100 
individuals of the subset (91 in the last subset).  

3.1.2. CA2 Dataset 

To obtain CA2, we partitioned the full dataset into 5 
subsets of 200 individuals (the last subset has only 191 
individuals). The first of these subsets was partitioned into 
training and validation subsets—the training subset 
comprises the fa images of the first 100 individuals, while 
the validation subset comprises the fb images of all 200 
individuals. Each of the remaining 4 subsets was 
partitioned into training and test subsets—the training 
subset comprises the fa images of the first 100 individuals, 
and the test subset comprises the fb images of all 200 
individuals of the subset (191 in the last subset).  

3.1.3. CA3 Dataset 

To obtain CA3, we partitioned the full dataset into 2 
subsets; the first with 400 individuals and the second with 
591 individuals. The first of these 2 subsets was partitioned 
into training and validation subsets—the training subset 
comprises the fa images of the first 200 individuals, while 
the validation subset comprises the fb images of all 400 
individuals. The second was partitioned into training and 
test subsets—the training subset comprises the fa images 
of the first 200 individuals and the test subset comprises 
the fb images of all remaining individuals in the subset.   

3.2. Metrics 

We evaluated the performance of our access control 
system according to two standard metrics for biometric 
recognition systems [16]: 

• False Acceptance Rate (FAR), which is defined as 
the probability of an impostor being accepted as a 
genuine individual. It can be estimated as the ratio 
between the number of false positives and the total 
number of negatives (true negatives plus false 
positives). 

• False Reject Rate (FRR), which is defined as the 
probability of a genuine individual being rejected 
as an impostor. It can be estimated as the ratio 
between the number of false negatives and the total 
number of positives (true positives plus false 
negatives). 

 
There is a tradeoff between FAR and FRR. A larger 

FAR leads to a smaller FRR, while a larger FRR leads to a 
smaller FAR. In fact, both FAR and FRR are functions of 
the system threshold t. On the one hand, if t is decreased to 
make the system more tolerant, then FAR increases (and 
FRR decreases); on the other hand, if t is increased to 
make the system more secure, then FRR increases (and 
FAR decreases). The tradeoff between FAR and FRR is 
usually depicted in a receiver operating characteristic 
(ROC) curve, which is a plot of FAR against (1 - FRR) for 
various threshold values.  



4. Experimental Results 

In this section, we present the experiments employed to 
evaluate experimentally the performance of our access 
control system with 50, 100 and 200 users. To run these 
experiments, we used the Viola-Jones implementation that 
is part of the OpenCV library 
(http://sourceforge.net/projects/opencvlibrary/) and 
publicly available training datasets for face and eyes 
detection. We have set the parameters of our VG-RAM 
WNN to the best values obtained in previous works [8]. 

In order to use our system, its is necessary to estimate 
the values of the terms of the Bayes’ rule (p(A), p(B) and 
p(B|A)), and to select a threshold for p(A|B) (see Section 
2.3). To estimate the values of the terms of the Bayes’ rule 
and to select a threshold for p(A|B)  for the case of 50 
users, we used the training and validation subsets of the 
first subset of the CA1 dataset.  

In the first subset of the CA1 dataset, the number of 
users (genuine individuals) is equal to the size of the 
training subset: 50 individuals; while the number of non-
users (impostors) is equal to the size of the validation set 
minus the number of users: 100 - 50 = 50 individuals. 
Therefore, p(A) (the probability that a given face image, Ix, 
belongs to a genuine individual) is equal to 0.5 (the 
number of users divided by the total number of 
individuals: 50/100). 

To obtain an estimate of p(B) with the first subset of 
CA1, we train the network with its training set, examine 
the network output with the validation set, and compute the 
percentage of times the neural network outputs a matching 
score within each interval of B={b1, …, b|B|}.  

To estimate p(B|A), we compute the percentage of 
matching scores within each interval bi ∈ B={b1, …, b|B|} 
for which the network returned genuine individuals. 

To select a threshold for p(A|B), we varied its value, 
plotted a ROC curve and chose a threshold that gives 
acceptable values of FAR and FRR. The graph in Figure 6 
shows the ROC curve of the first subset of CA1 for the 
threshold values shown in Table 1. 
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Figure 6: ROC curve of the first subset of CA1 

As the graph in Figure 6 shows, our system can achieve 
a FAR equal to 0% with a FRR of 6% ((1 - FRR) = 0.94) 
for a threshold of 0.70 (see first data line of Table 1). For a 
threshold of 0.50, our system can achieve a FAR equal to 

2% with a FRR of 2% (a rather small Equal Error Rate - 
EER).  

 
Table 1: Effect of threshold on FAR and (1 - FRR) 

Threshold FAR (1 - FRR) 
0.70 0.00 0.94
0.50 0.02 0.98
0.35 0.06 0.98
0.25 0.14 0.98
0.09 0.28 1.00  

 
Figure 7 presents the results in Table 1 in graph form 

(Figure 7(a)), together with equivalent results for CA2 
((Figure 7(b)) and CA3 (Figure 7(c)). As the graphs of 
Figure 7 show, with 50 users, our system presents an ERR 
of ~2%, with 100 users an ERR of ~9%, and with 200 
users an ERR of ~9% as well.  
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Figure 7: FAR and FRR of the first subset of CA1 (a), CA2 (b) 
and CA3 (c). 

Table 2 presents the performance of our system for 50, 
100, and 200 users obtained summarizing the performance 
derived from the 9 pairs of training and test subsets of 
CA1, the 4 pairs of training and test subsets of CA2, and 
the training and test subset of CA3. In order to obtain the 
results of Table 2, we run experiments with the validation 
sets of CA1, CA2 and CA3 to try and find the thresholds 
that favor better (smaller) FAR. In most cases of access 
control, this is the case, i.e., one prefers a smaller false 
acceptance rate even if it increases the false rejection rate 
(or decreases (1 - FRR)). 

 
Table 2: Performance of the access control system for CA1, 

CA2 and CA3 

Data Set Threshold FAR (1 - FRR) 
CA1 0.50 0.048 0.931
CA2 0.25 0.018 0.903
CA3 0.33 0.008 0.930  

 
As Table 2 shows, with 50 users, the system correctly 

authenticated 93.1% of users with a FAR of 4.8%. With 
100 users, the system was able to correctly authenticate 



90.3% of the users with a FAR of 1.8%. Finally, with 200 
users, the system was able to correctly authenticate 93.0% 
of the users with a FAR of only 0.8%. 

5. Discussion 

An important aspect of our system is that, in order to 
select the threshold for p(A|B), it is necessary to use a set 
of impostors. Actually, the ratio between the size of this set 
and the size of the set of genuine individuals affects the 
FAR and FRR of the system. In our experiments we used a 
ratio equal 1, but this ratio must be estimated for each 
possible scenario of use of the system in order to properly 
select a threshold for p(A|B). 

Although currently there are many commercially 
available systems for access control via face recognition, 
we could only find a single paper about the subject in the 
literature, [17]. However, the access control system via 
face recognition proposed by Bryliuk and Starovoitov in 
[17] employs standard weighted multilayer Perceptron 
neural networks, instead of weightless neural networks, 
and train with several image samples per individual. Also, 
they do not use Bayesian inference to decide about grating 
the access. Finally, their best FAR and FRR for EER is 
~12% with a rather smaller face dataset—40 individuals 
(http://www.cam-orl.co.uk/facedatabase.html). 

6. Conclusions and Future Work 

We present a facial access control system based on VG-
RAM weightless neural networks (WNN). Our system uses 
the Viola-Jones approach to detect faces and eyes within 
these faces in images, forward positions of detected faces 
and eyes to VG-RAM WNN for recognition of previously 
trained faces, and employs Bayesian inference for granting 
or not access to a given resource or environment.  

We evaluated our system using the Color FERET 
database in scenarios that simulate the use of our system 
with 50, 100 and 200 enrolled users. Our experimental 
results show that, tuning the system to favor a better 
(smaller) False Acceptance Rates (FAR), in the case of 50 
users, it is able to correctly authenticate 93.1% of users 
with a FAR of 4.8%.  With 100 users it can correctly 
authenticate 90.3% of the users with a FAR of 1.8%, and 
with 200 users it can correctly authenticate 93.0% of them 
with a FAR of only 0.8%. 

As future work we plan to deploy our system in a real 
case scenario and examine its performance using live 
video.  
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