
The Dynamic Block Remapping Cache

Felipe Thomaz Pedroni, Alberto F. De Souza, Claudine Badue

Departamento de Informática
Universidade Federal do Espírito Santo

{fpedroni, alberto, claudine}@lcad.inf.ufes.br

Abstract

In this paper we present a new architecture of Level

2 (L2) cache – the Dynamic Block Remapping Cache
(DBRC). DBRC mimics important characteristics of
virtual memory systems to reduce the impact of L2 in
system performance.

Similar to virtual memory systems, the DBRC uses a
hierarchy of tables to map blocks of L2 cache into
blocks of physical memory. It also uses a Block-TLB to
speedup accesses to previously performed block
translations. We verified that the benefits of fully
associativity and the consequent possibility of
employment of global block replacement algorithms
allow hit rates higher than those of equivalent
standard caches.

We compare DBRC with standard caches in terms
of miss rate, energy consumption and impact on the
instruction-level parallelism (ILP) of a simulated
superscalar processor. Our results show that DBRC
outperforms standard caches in terms of miss rate,
energy consumption and impact on ILP.

1. Introduction

Currently, in standard desktop and laptop
computers, the time it takes to bring data from memory
into the processor registers – the main memory latency
– approaches 500 processor cycles and several levels of
cache memory are used to diminish the impact of that
latency on system performance. Cache memory is
growing in size, particularly the level directly
connected to the main memory (typically, the level two
cache, or L2 for short). These, the size and the latency,
are making the L2 cache-main memory interface, as
seem by the L2 controller, more and more similar to the
main memory-hard disk interface, as seem by virtual
memory systems. In this paper, we present the dynamic
block remapping cache (DBRC), which borrows some
ideas from virtual memory systems to reduce the

impact of the main memory high latency while
reducing L2 energy consumption.

In virtual memory systems, any virtual page can be
allocated into any physical page, which makes the main
memory a fully associative cache of the disk. A fully
associative organization allows sophisticate global
page substitution algorithms, which contributes to
higher hit rates; this is important because the cost of
page faults (in terms of time) is large. Address
translations, once performed, are typically saved in a
small cache called Translation Look-aside Buffer
(TLB, [9]). Later accesses are first directed to the TLB
to check for translations, which allows avoiding the
cost of examining the hierarchy of tables.

Similar to virtual memory systems, which use a
hierarchy of tables to map pages of virtual memory into
pages of physical memory, the DBRC uses a hierarchy
of tables to map blocks of L2 cache into blocks of
physical memory. Most of this hierarchy of tables is
stored in L2 itself and, as in virtual memory systems, a
Block-TLB, or B-TLB, is used to speedup accesses to
previously performed block translations. Thanks to its
hierarchy of tables, the DBRC is fully associative and,
although fresh translations may take more processor
cycles, they are infrequent. Our results show that the
benefits of fully associativity and the consequent
possibility of employment of global block replacement
algorithms allow hit rates significantly higher than
those of equivalent standard caches.

We have performed experiments with many
configurations of DBRC acting as L2 cache of a
Simplescalar based simulated system
(www.simplescalar.com), and compared its
performance with that of standard L2 caches. Our
results show that the DBRC achieves an average miss
rate reduction of 27.71% on the SPEC CPU2000
benchmark suite [14] when compared with an
equivalent (in size) 8-way set associative L2 cache.
This translates into an IPC improvement of 20.34%. In

addition, the DBRC has an energy consumption
80.94% inferior than the standard L2 cache.

This paper is organized as follows. After this
introduction, Section 2 presents the DBRC
architecture. Section 3 describes our experimental
methodology and Section 4 analyzes our experimental
results. Section 5 presents related work. Finally, our
conclusions follow in Section 6.

2. The Dynamic Block Remapping Cache

Figure 1 presents the Dynamic Block Remapping
Cache (DBRC) architecture. It is composed of five
parts: (i) data block array (DBA), (ii) block table
hierarchy (BTH), (iii) data utilization table (DUT), (iv)
tag table (TT), and (v) block translation lookaside
buffer (B-TLB).

L1T

32 entries

Physical Address <32 bits>

DBA

L0 Table L1 Table L2 Table

<16> <5> <5> <6>

L0T

64k entries

L2T

32 entries

16k entries

DUT TT

control

Hierarchical Block
Replacement Algorithm

data (to L1)

512 (64 * 8)

65516

14 (index)

14 (index)

14 (index)

hit/miss

14 (index)

=

26

Offset

TAG INDEX
B-TLB

128 entries

26 (1)

(2)

(3)

(4)
(5)

VBIR

L1T

32 entries

Physical Address <32 bits>

DBA

L0 Table L1 Table L2 Table

<16> <5> <5> <6>

L0T

64k entries

L2T

32 entries

16k entries

DUT TT

control

Hierarchical Block
Replacement Algorithm

data (to L1)

512 (64 * 8)

65516

14 (index)

14 (index)

14 (index)

hit/miss

14 (index)

=

26

Offset

TAG INDEX
B-TLB

128 entries

26 (1)

(2)

(3)

(4)
(5)

VBIR

Figure 1. DBRC architecture

2.1. Data Block Array - DBA

Data or instructions (from now on we will refer to
data or instructions stored in a DBRC simply as data)
stored in a DBRC are organized into blocks of fixed
size (in our experiments, 64 bytes), which correspond
to the pages of a virtual memory system. These blocks
form the data block array (DBA) of the DBRC (see
Figure 1), which is basically static RAM memory.

To check whether a data block is present in the
DBA of a DBRC, its block table, equivalent to the page
table of a virtual memory system, is examined. In fact,
as in current virtual memory systems, this block table is
built as a hierarchy of tables (the block table hierarchy
– BTH – see Figure 1) and can, depending on the
configuration, have three, four or even five levels, as
described below.

2.2. Block Table Hierarchy – BTH

Figure 2 presents a diagram of a five level BTH. As
the figure shows, in order to check if a datum mapped
to a given physical address is present in the DBRC, the
physical address is divided in several parts, and each
part addresses one level of BTH. The number of parts,
or levels of BTH, and their sizes in bits depends on
physical address size (in bits) and DBRC configuration.
We evaluated experimentally DBRCs with BTHs with
three, four and five levels.

 Physical address < 32 bits >

L1T

L2T

L3T

L0T

Data, 6 bitsTable, 5 bits Table, 5 bits Table, 5 bitsTable, 5 bitsTable, 6 bits

L4T

DBA

Figure 2. Five Level Block Table Hierarchy (BTH)

In the DBRC we modeled, the level 0 of BTH (L0T)
is physical, i.e., it is implemented in hardware to allow
low DBRC latency. The other levels (L1T, L2T, L3T
and L4T of Figure 2) are logical and stored in DBA.
The L0T is the first table accessed when BTH is
examined in order to find a data block in DBRC. Each
entry of L0T has a valid bit (V) and an index field (I) to
child tables that may point to any block of DBA. This
block hopefully will contain a L1T table (we describe

DBRC misses further on). The entries of a L1T or any
other level of BTH have the same format as the entries
of L0T. So, to find a data block in DBA, each level of
BTH is examined in sequence until the data block is
reached in DBA.

2.3. Data Utilization Table – DUT

The DUT stores information related to the type and
frequency of reutilization of each DBA block.

For each DBA block there is a DUT entry and each
of those has: a valid (V), dirty (D), and lock (L) bits; a
field that indicates the level of the BTH table
eventually residing in the block (LF); a parent BTH
table valid bit (PV); and a saturated counter that
registers the frequency of reutilization of the block (R).
This information is required by the block replacement
algorithm, which also requires a pointer, stored into the
victim block index register (VBIR – see Figure 1),
which points to the DUT entry (and associated DBA
block) that is the current candidate for replacement. We
describe the global block replacement algorithm further
below.

2.4. Tag Table – TT

The TT holds the main memory physical address tag
of each DBA block and information required by the
global block replacement algorithm. Therefore, as in
the case of DUT, there is a TT entry for each DBA
block. Each TT entry has two fields: TAG field and
parent table field (PT). The TAG field stores the high
order bits of the physical address of the main memory
block stored into the DBA block, and the PT field
stores an index to the block in DBA that holds the BTH
parent table that has the pointer to the DBA block.

The importance of the TT PT field and DUT will
became apparent with the description DBRC accesses.
But, before going into that, let’s briefly present the B-
TLB.

2.5. Block Translation Lookaside Buffer –
B-TLB

Similar to the TLB of virtual memory systems,
which stores translations from virtual page numbers to
physical page numbers, the B-TLB stores translations
from main memory physical addresses to DBA block
indexes. It is a small fully associative cache (128
entries in our experiments) and each one of its entries
has: a TAG field that stores the high order bits of the
main memory physical address, an index (I) to a DBA
block, and a valid bit (V).

B-TLB I fields point to DBA blocks holding data or
BTH tables. As we will see in Section 4, it is more
advantageous to make B-TLB I fields point to tables of
a specific level of BTH instead of data blocks. The best

performing DBRC we have simulated has a five level
BTH and its B-TLB points to BTH level 4 (L3T).

2.6. DBRC Accesses

An access to a DBRC starts with a check if B-TLB
already has a translation from the main memory
physical address to a DBA block index. If it has, the
DBA block indexed by B-TLB is retrieved and,
depending on the level it points to: (i) an entry of a
BTH table is retrieved; or (ii) a data block is delivered
to the requester (typically the L1 cache controller) in
case of a DBRC read, or it is modified in case of a
write. Case (ii) is a DBRC hit, and case (i) may be a hit
or a miss, depending on BTH, which has to be partially
examined in this case.

If a translation is not available in B-TLB (a B-TLB
miss), the level 0 of BTH (L0T) is examined; note that
an access to L0T typically occurs in one processor
cycle and can be done in parallel with the B-TLB
access, which also take one cycle. If the addressed L0T
entry is valid (if its valid bit, V, is set), its index I is
used to access a block of DBA in search for the
corresponding L1T. The L0T index, I, and
corresponding main memory physical address L1T
displacement (see Figure 2) point to a possible L1T
entry in DBA, which is retrieved for examination – this
takes several processor cycles.

The L0T index I is also used to retrieve an entry of
DUT. The R field of this DUT entry is incremented and
the L1T entry is used to access DBA in search for the
next level of BTH; otherwise, it is a DBRC miss. The
accesses to the other levels of BTH follow the same
principles. If there is no miss, this also constitutes a
DBRC hit, although a more expensive one. The
information gathered in the process is used to update
B-TLB, so that it may allow a B-TLB hit next time.

2.7. DBRC Misses

There is a miss in DBRC when it is accessed using a
physical memory address for which there is no
translation to a DBA block index in BTH. In a five-
level BTH, a miss in the first level (L0T) requires
allocation of five blocks of DBA: one for each
remaining levels of BTH and one for the data block.
Misses in lower levels of BTH requires allocation of a
proportionally smaller number of blocks of DBA.

Misses in DBRC caused by misses in a given level
N of BTH are served according to the hierarchical
block replacement algorithm (HBRA), shown in Figure
3 and detailed below.

Select a DBA victim block. To select a DBA block to
serve a miss (a victim block), the DBRC controller uses
DUT’s victim block index register (VBIR). This
register is initialized with zero at system reset, is

incremented during the process of selecting DBA
victim blocks, and points to the current victim block
candidate.

1 b = Select a DBA victim block;
2 Make the BTH entry in level N point to b;
3 if (b’s DUT entry bits V == true and PV == true)
3.1 Invalidate the entry of the BTH table that points to b;
3.2 Invalidate an eventual entry in B-TLB that points to b;
3.3 if (b’s DUT entry LF field indicates that b holds a BTH

table)
3.3.1 Invalidate DUT entries associated with b’s children;
3.4 else if (b’s DUT entry dirty bit D == true)
3.4.1 Save b contents into physical memory;
4 Install block level N+1;
5 N = N + 1; if (N < data block level) goto 1;

Figure 3. Hierarchical block replacement algorithm

So, DBA blocks are victim candidates in a round

robin fashion. However, a victim block may be spared
depending on its DUT R counter (see Section 2.3).

A victim block is selected if it is not locked (DUT L
!= 1) and: (i) its DUT valid bit (V) is equal to zero, in
which case the block does not contain valid data or
BTH table; or (ii) its DUT parent BTH table valid bit
(PV) is equal zero, in which case the block is orphan
because its parent BTH table was removed from DBA;
or (iii) its DUT R counter is equal zero, which indicates
that this block was not reused since the last time it was
a victim candidate (VBIR pointed to it).

If none of these three conditions is true, the R
counter of the DUT entry associated with the victim
block is zeroed and VBIR incremented to point to the
next DBA block. The whole process is repeated until
one of the three conditions occurs or a Maximum
Number of Attempts (MNA) is made, in which case the
block examined with the smaller R counter value is
selected.

Make the BTH entry in level N point to b. A block
needs to be selected because an entry in a table of BTH
was found invalid during a DBRC access (a BTH
miss). Once a block b is selected, the I field of the
invalid BTH table entry is made to point to the selected
block b and its valid bit, V, is set (see Section 2.2).

Invalidate DUT entries associated with b and its
children. If the V and PV bits of the DUT entry of the
victim block b are both set, there is a valid entry of a
BTH table that points to it. The DBRC controller
invalidates it using the parent table field (PT) of TT. In
addition, it invalidates an eventual entry in B-TLB that
points to b using the TAG field of TT.

If b’s DUT entry LF field indicates that it holds a
BTH table, all DUT entries associated with b’s
children have to be invalidated. For that, the DBRC
controller reads b from DBA and uses the I fields of

each one of its valid entries to invalidate the PV bits of
the corresponding DUT entries. This may take several
processor cycles. Note that this does not invalidate b’s
children, which still may be reached via B-TLB; but it
makes then strong victim candidates.

Install block level N+1. If b was selected to receive a
data block from physical memory (a read miss), the
lock bit (L) of the DUT entry associated with it is set.
To set the lock bit is necessary because it takes many
cycles (100s) to bring data from main memory into b.
To allow serving other DBRC misses in the mean time,
a MSHR (Miss Status Holding Register [8, 5]) of the
DBRC controller is filled with the information required
to write the data coming from memory into b when it
(the data) arrives.

If b was selected to receive a data block from L1 (a
L1 writeback), the data is immediately written into b
and the dirty bit (L) of the DUT entry associated with it
is set. If b was selected to hold a new BTH table, the
valid bit (V) of the DUT entry associated with it is
zeroed; in the next loop of HBRA, an entry of the BTH
table it now holds will be properly filled (step 2 of
HBRA – see Figure 3).

This completes the description of DBRC. In the next
sections we describe how we tuned its parameters and
compared it against a standard set associative L2 cache.

3. Methods

To evaluate DBRC, we employed execution driven
simulation based on the CACTI (“An Enhanced Cache
Access and Cycle Time Model” – CACTI [15]) and
Simplescalar (www.simplescalar.com) tools, both
widely used by the research community.

We used CACTI to configure different DBRC and
equivalent standard L2 caches, and to estimate their
access time, and energy consumption. We used
Simplescalar to configure single core systems running
SPEC2000 benchmark programs [14] while employing
DBRC and standard L2 caches, and to estimate the
average number of instructions executed per cycle
(IPC).

3.1. Experimental Setup

In our experiments we have used a version of the
Simplescalar that emulates the Alpha21264 superscalar
processor [4]. We have used this version because it has
been validated against a real Alpha21264
experimentally [3], and because there are precompiled
SPEC2000 benchmark programs and properly set
SPEC2000 workload (the MinneSPEC workload [7])
for it which are widely used by the research
community. With the MinneSPEC workload, each
SPEC2000 benchmark program executes about 2

billion instructions in total (about 1 second in current
machines).

The Alpha21264 processors were set up as shown in
Table 1, and their memory hierarchy for both DBRC
and standard L2 was set up as shown in Table 2 (Table
2 also presents the standard L2 configuration).

Table 1. Alpha21264 setup

Pipeline
7 stages – 4-wide Fetch, Slot, and Map;
6 wide Issue, RegRead, Execute, and
Write-back; and 11-wide Retire.

Functional Units 4 integer and 2 floating-point.

Issue Queues size 20-instrution integer and 15-instruction
floating point.

Number of
Renaming Registers

41 integer, 41 floating-point and 32
memory (load-store queues).

Branch Predictor

Tournament branch predictor with a three
predictors combination: two level local
predictor (1024 10-bit local history),
path-based global predictor (12-bit
history register which points to a table of
4K 2-bit saturating counters) and a
choice predictor with a table of 4K 2-bit
saturating counters.

Processor Clock 3GHz
Technolofy 65ηm

Table 2. Memory hierarchy and standard L2 setup

L1 Instruction
Cache

64KB 2-way set associative (LRU), with
64B blocks and 1-cycle latency.

L1 Data Cache 64KB 2-way set associative (LRU), with
64B blocks and 3-cycle latency.

Standard L2
Cache

1MB 16-way set associative (LRU), with
64B blocks, 9-cycle latency and 32 MSHRs.

Memory Bus 16B-wide, 750MHz.

Main Memory Unlimited, 225-cycle latency, 120-cycle
precharge and 120-cycle pipeline access.

3.2. DBRC Configuration

The DBRC main parameters are: DBA size, DBA
block size, B-TLB size, number of BTH levels, B-TLB
target BTH level, DUT R field size, and the maximum
number of attempts (MNA) to select a victim block.

In our experiments, we used DBRC and standard L2
caches with 1MB for data storage and blocks of 64B
because these sizes are currently used in many Intel and
AMD systems. So, we used DBA size equal to 1MB
and DBA block size equal to 64B. Following the same
reasoning, we used 128-entry fully associative B-TLB
(this is the current TLB configuration on most current
processors).

The number of levels of BTH affects several aspects
of DBRC. Perhaps, the most important one is the size
of BTH’s level 0, L0T, since it is implemented in
hardware instead of residing in DBA, as the other
levels of BTH do. As L0T entries point to DBA blocks
(see Figure 1), to calculate the size of L0T we start
calculating the DBA number of blocks. For a 1MB
DBA with 64B blocks, we have 16K blocks (1M/64).
So, each entry of L0T must have an I field of 14 bits

plus one valid (V) bit (15 bits total), and the same
happens with the other levels of BTH, which, with 64B
blocks, can accommodate only 32 entries each (by
rounding 15 bits to the next power of 2, i.e., 16 bits,
which gives us 2B per entry, or 32 entries for 64B).
Assuming a 32 bits physical address (1GB main
memory), the Table 3 shows how it (the physical
address) can be divided to address each BTH level for
BTHs with hierarchies of 3 (H3L), 4 (H4L) and 5
(H5L) levels (Figure 3 depicts the last line of Table 3),
while Table 4 shows the number of entries of the tables
of each level of these BTHs.

As Table 4 shows, a BTH with a hierarchy of 3
levels (H3L) would require a 64K-entry L0T, which
would require approximately 128KB of storage space.
On the other hand, a H5L BTH would require only a
64-entry L0T (approximately 128 bytes); accesses to a
L0T of this size would be very fast, and larger physical
addresses (i.e., larger main memories) could be easily
accommodated (in the foreseeable future) by increasing
it accordingly without a strong effect on L0T access
time or chip area.

Table 3. Physical address fields

Address Field
BTH

f e d c b a
H3L - - 16 5 5 6
H4L - 11 5 5 5 6
H5L 6 5 5 5 5 6

Table 4. Number of entries on each BTH level

BTH Table BTH
L0T L1T L2T L3T L4T

H3L 64K 32 32 - -
H4L 2K 32 32 32 -
H5L 64 32 32 32 32

But BTHs with deep hierarchies may occupy too

many DBA blocks, hurting DBRC hit rates. To
examine this and to find appropriate values for the
other DBRC parameters (B-TLB target BTH level,
DUT R counter size, and maximum number of attempts
(MNA) to select a victim block) we had to run
experiments.

4. Experiments

To examine the impact of the BTH hierarchy depth
on BTRC miss rate, we run the SPEC2000 benchmarks
in the described experimental framework (Section 3.1).
Figure 4 shows the results (the twof and vpr
benchmarks were omitted because they have very small
miss rates).

In Figure 4, the y-axis is the DBRC miss rate, while
x-axis lists the SPEC2000 benchmarks and the
arithmetic mean (A.M.) of their miss rates for 3 BTH

depths: 3 (H3L), 4 (H4L) and 5 (H5L). As Figure 4
shows, the number of levels of BTH does not affect the
DBRC miss rate significantly; so, for now on, we
consider DBRCs with BTHs of 5 levels only.

Ideally, B-TLB entries would point directly to the
block addressed by the processor; however, a 1MB
DBA of 64B blocks has 16K blocks. So, as the number
of entries of B-TLB is small, hit rates may be low if it
targets DBA blocks. Figure 5 shows B-TLB hit rates
for different B-TLB targets.

In Figure 5, the y-axis is the B-TLB hit rate, while
x-axis lists the SPEC2000 benchmarks and the
arithmetic mean of their hit rates for the following B-
TLB targets: L1T, L2T, L3T, L4T and data blocks in
DBA. As Figure 5 shows, the performance of a 128-
entry B-TLB targeting data blocks is to low. This is to
be expected, since a data block is small and can be
mapped anywhere in the physical memory address
space (remember that, in virtual memory systems,
TLBs target pages of typically 4KB or higher).

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk vortex A.M.

benchmarks

M
is

s
ra

te

H3L H4L H5L

Figure 4. Impact of BTH depth on DBRC miss rates

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk twolf vortex vpr A.M.

benchmarks

H
it

ra
te

L1T L2T L3T L4T DATA BLOCK

Figure 5. B-TLB hit rates for different B-TLB

targets

From the results of Figure 5, we decided to use B-
TLBs that target L3T. This means that, for each DBRC
access, even with a hit in B-TLB, DBA must be
accessed 3 times: one for accessing a L3T entry, one
for accessing a L4T entry and one for accessing the
data block. This increase DBRC hit time and energy
consumption. We will address these concerns later on.

Let’s first examine the other DBRC parameters, DUT
R counter size, and MNA.

The DUT entries R field holds a saturated counter
that registers the frequency of reutilization of the
associated block of DBA. Figure 6 shows the impact of
DUT R counters size on DBRC miss rate, for 1, 5 and
10 bit sizes. As Figure 6 shows, on average, the larger
the R field the better (lower) the average miss rate. So,
we used R counters 10-bit sized.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk vortex M.A.

benchmarks

M
is

s
ra

te

1 2 5 10

Figure 6. Impact of DUT R field size on DBRC

Ideally, the maximum number of attempts (MNA) to
find a victim block in case of a DBRC miss would be 1
because it would be the fastest option. However, in this
case, in case of a DBRC miss, we would remove
valuable DBA blocks, such as high level tables of BTH
or frequently used data blocks. To find a proper value
of MNA, we run the experiments shown in Figure 7.

As Figure 7 shows, a MNA equal 5 or 10 already
provide the protection that valuable blocks need; so, we
used MNA equal 5.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk vortex A.M.

benchmarks

M
is

s
ra

te

5 10

Figure 7. Impact of MNA on DBRC miss rate

After selecting the parameters of DBRC, we
compared its performance with that of the standard L2
cache of Table 2 in terms of miss rate, impact on ILP
and energy consumption. Figure 8 presents the
comparison in terms of miss rate.

As shown in Figure 8, DBRC outperforms a
standard 8-way set associative L2 of equivalent size in
terms of miss rate for a large margin – an average miss
rate reduction of 27.71%. This occurs thanks to DBRC

fully associativity and global block replacement
algorithm.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk vortex A.M.

benchmarks

M
is

s
ra

te

Standard L2 DBRC

Figure 8. DBRC versus Standard L2: miss rate

Figure 9 presents the comparison DBRC versus
standard L2 in terms of ILP, measured as instructions
per cycle (IPC). In order to make this comparison, the
hit and miss access times of DBRC had to be properly
modeled.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk twolf vortex vpr H.M.

benchmarks

IP
C

Standard L2 DBRC

Figure 9. DBRC versus Standard L2: ILP

The hit and miss access times of DBRC are
influenced by the access times of B-TLB, DBA, L0T,
DUT and TT, and, depending on the type of hit (hits
with hit in B-TLB, hits with miss in B-TLB) and miss
(misses in different levels of BTH, which may require a
single or several attempts to get DBA blocks) require
different numbers of cycles (see algorithm of Figure 3).
We have made a careful modeling of all aspects that
contributes to DBRC hit and miss times. Unfortunately,
due to space restrictions, we could not present it here;
nevertheless, it is available in [10]. But an important
aspect of this modeling have to be mentioned: we have
partitioned DBA into 32 banks so that an access to a
BTH table entry does not involve moving an entire 64B
block of DBA to DBRC control. This saves power and
reduces DBA access times, which is very important for
the DBRC impact on ILP and energy consumption.

As Figure 9 shows, DBRC outperforms the standard
L2 cache in terms of impact on ILP – an average

(harmonic mean) IPC increase of 20.34%. This gain
comes from the reduction of miss rates provided by the
fully associativity and global block replacement
algorithm of DBRC, and DBRC’s DBA banking.

Finally, Figure 10 presents the comparison of
DBRC with the standard L2 cache in terms of dynamic
energy consumption. Again, in order to make this
comparison, the energy consumption of DBRC and
standard L2 had to be properly modeled. They depend
on the many details of implementation of each, which
we carefully modeled. Unfortunately, due to space
restrictions, we could not present this modeling here;
nevertheless, it is available in [10].

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

ammp art bzip2 equake gcc gzip mcf mesa parser perlbmk twolf vortex vpr A.M.

benchmarks

E
n

er
g

y
(J

)

Standard L2 DBRC

Figure 10. DBRC versus Standard L2: Energy

To obtain the results shown in Figure 10, we
measured the total amount of Joules consumed by each
cache architecture. For that, we added all tiny ηJ
amounts of energy dynamically consumed by each
peace of each cache architecture in accordance with the
CACTI model. As Figure 10 shows, DBRC consumes
much less energy dynamically than an equivalent L2
cache – 80.94% less. This, yes, is due in part to the
DBRC lower miss rate and DBA banking organization,
but also and mostly due to the energy cost of tag
comparison in the large tag array of standard L2
caches, which DBRC does not have (TT is only
accessed for block invalidation during DBRC misses).

5. Related Work

Puzak [11] proposed the inclusion of extra tags in a
shadow directory to provide feedback to a local
replacement engine in a set-associative cache. Batson
and Vijaykumar [1] proposed the reactive-associative
cache (r-a cache), which provides flexible associativity
by placing most blocks in direct-mapped positions and
reactively displacing only conflicting blocks to set-
associative positions. Prime modulo hashing [6] and
skewed associativity [13], on the other hand, attempt to
distribute memory accesses uniformly across cache sets
by targeting the indexing function. The “Non-uniform
access with Replacement And Placement usIng

Distance associativity” cache, or NuRAPID [2],
leverages sequential tag-data access to decouple data
placement from tag placement. Qureshi et al. [12]
proposed a technique to vary the associativity of a
cache on a per-set basis in response to the demands of
the program, while Zhang [16] proposed a cache design
that allows the accesses to cache sets to be balanced by
using a special block address decoder. All these
approaches are variations of the standard cache design.
DBRC departs from the standard design and tries to
obtain performance mimicking the architecture of
virtual memory systems.

6. Conclusions

In this paper, we proposed and evaluated a new
architecture of Level 2 (L2) cache – the Dynamic
Block Remapping Cache (DBRC). DBRC borrows
some ideas from virtual memory systems to reduce the
impact of L2 on system performance.

Analogous to virtual memory systems, which use a
hierarchy of tables to map pages of virtual memory into
pages of physical memory, the DBRC uses a hierarchy
of tables to map blocks of L2 cache into blocks of
physical memory. Also, as in virtual memory systems, a
B-TLB is used to hold translations from main memory
physical addresses to cache block indexes.

We compared the performance of DBRC with that
of standard L2 caches using Simplescalar to model
single core systems running SPEC2000 benchmarks.
Our results showed that the DBRC achieves 27.71%
reduction on average miss rate, 20.34% improvement
in IPC, and 80.94% reduction on energy consumption
when compared with an equivalent (in size) 8-way set
associative L2 cache.

A direction for future work is to measure the static
energy dissipation instead of using approximations
based on the occupied area. Other direction for further
research is to take into account the energy consumption
and the B-TLB area.

As future work, we will examine the performance of
DBRC in multi-core systems.

7. References

[1] B. Batson, T.N. Vijaykumar, “Reactive-associative
caches”, Proceedings of IEEE International
Conference on Parallel Architectures and Compilation
Techniques, 2001, pp. 49-60.

[2] Z. Chishti, M.D. Powell, and T.N. Vijaykumar,
“Distance associativity for high-performance energy-
efficient non-uniform cache architectures”,
Proceedings of the 36th Annual ACM/IEEE
International Symposium on Microarchitecture, 2003,
pp. 55–66.

[3] R. Desikan, D. Burger, and S.W. Keckler, “Measuring
Experimental Error in Microprocessor Simulation”,
Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001, pp. 226-
277.

[4] Digital Equipment Corporation, “Alpha Architecture
Handbook”, Digital Equipment Corporation, 1992.

[5] K.I. Farkas and N.P. Jouppi, “Complexity/Performance
Tradeoffs with Non-Blocking Loads”, Proceedings of
the 21st International Symposium on Computer
Architecture, 1994, PP. 211-222.

[6] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using
prime numbers for cache indexing to eliminate conflict
miss”, Proceedings of the 10th IEEE International
Symposium on High Performance Computer
Architecture, 2004, pp. 288–299.

[7] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A
New SPEC Benchmark Workload for Simulation-
Based Computer Architecture Research”, Computer
Architecture Letters, vol. 1, 2002.

[8] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch
Cache Organization”, Proceedings of the 8th
International Symposium on Computer Architecture,
1981, pp. 195-201.

[9] D.A. Patterson and J.L. Hennessy, Computer
Architecture: A Quantitative Approach, Third Edition,
Morgan Kaufmann Publishers, Inc., 2003.

[10] F.T. Pedroni, “A Dynamic Block Remapping Cache”,
M.Sc. thesis, Universidade Federal do Espírito Santo,
Departamento de Informática, 2008 (in Portuguese).

[11] T.R. Puzak, “Analysis of cache replacement
algorithms”, Ph.D. thesis, University of Massachusetts,
ECE Department, Amherst, MA., 1985.

[12] M.K. Qureshi, A. Jaleel, Y.N. Patt, S.C. Steely Jr., J.
Emer, “Adaptive Insertion Policies for High
Performance Caching”, Proceedings of the 34th
Annual International Symposium on Computer
Architecture, 2007, pp. 381-391.

[13] A. Seznec, “A case for two-way skewed-associative
caches”, Proceedings of the 20th Annual International
Symposium on Computer Architecture, 1993, pp. 169–
178.

[14] Standard Performance Evaluation Corporation, “SPEC
CPU2000 V1.2”, http://www.spec.org/osg/cpu2000/,
last access in March 2002.

[15] S.J.E. Wilton and N.P. Jouppi, “CACTI: an enhanced
cache access and cycle time model”, IEEE Journal of
Solid-State Circuits, vol. 31, 1996, pp. 677–688.

[16] C. Zhang, “Balanced Cache: Reducing Conflict Misses
of Direct-Mapped Caches through Programmable
Decoders”, Proceedings of the 33rd International
Symposium on Computer Architecture, 2006, pp. 155-
166.

