The Dynamic Block Remapping Cache

Felipe Thomaz Pedroni, Alberto F. De Souza, Claai@iadue
Departamento de Informética
Universidade Federal do Espirito Santo
{fpedroni, alberto, claudine}@Icad.inf.ufes.br

Abstract impact of the main memory high latency while
reducing L2 energy consumption.

In this paper we present a new architecture of Leve In virtual memory systems, any virtual page can be
2 (L2) cache — the Dynamic Block Remapping Cacheallocated into any physical page, which makes taeam
(DBRC). DBRC mimics important characteristics of memory a fully associative cache of the disk. Ayful
virtual memory systems to reduce the impact ofrL2 | associative organization allows sophisticate global
system performance. page substitution algorithms, which contributes to

Similar to virtual memory systems, the DBRC uses ahigher hit rates; this is important because thet obs
hierarchy of tables to map blocks of L2 cache into Page faults (in terms of time) is large. Address
blocks of physical memory. It also uses a Block-Td.B translations, once performed, are typically savea i
speedup accesses to previously performed blocksmall cache called Translation Look-aside Buffer
translations. We verified that the benefits of yfull (TLB, [9]). Later accesses are first directed te TL.B
associativity and the consequent possibility of O check for translations, which allows avoiding th
employment of global block replacement algorithms cost of examining the hierarchy of tables.
allow hit rates higher than those of equivalent Similar to virtual memory systems, which use a
standard caches. hierarchy of tables to map pages of virtual menioiy

We compare DBRC with standard caches in termsPages of physical memory, the DBRC uses a hierarchy
of miss rate, energy consumption and impact on theof tables to map blocks of L2 cache into blocks of
instruction-level parallelism (ILP) of a simulated Physical memory. Most of this hierarchy of tables i
superscalar processor. Our results show that DBRC stored in L2 itself and, as in virtual memory syste a
outperforms standard caches in terms of miss rate, BIock-TLB, or B-TLB, is used to speedup accesses to

energy consumption and impact on ILP. previously performed block translations. Thankst$o
hierarchy of tables, the DBRC is fully associatare,
1. Introduction although fresh translations may take more processor

cycles, they are infrequent. Our results show that
benefits of fully associativity and the consequent
possibility of employment of global block replacerhe
algorithms allow hit rates significantly higher tha
those of equivalent standard caches.

We have performed experiments with many
configurations of DBRC acting as L2 cache of a
Simplescalar based simulated system
(www.simplescalar.com), and compared its
performance with that of standard L2 caches. Our
results show that the DBRC achieves an average miss
rate reduction of 27.71% on the SPEC CPU2000
benchmark suite [14] when compared with an
equivalent (in size) 8-way set associative L2 cache
This translates into an IPC improvement of 20.3#%.

Currently, in standard desktop and laptop
computers, the time it takes to bring data from mgm
into the processor registers — the main memorydgte
— approaches 500 processor cycles and severat lefvel
cache memory are used to diminish the impact df tha
latency on system performance. Cache memory is
growing in size, particularly the level directly
connected to the main memory (typically, the leved
cache, or L2 for short). These, the size and ttendy,
are making the L2 cache-main memory interface, as
seem by the L2 controller, more and more similahto
main memory-hard disk interface, as seem by virtual
memory systems. In this paper, we presentiheamic
block remapping caché€OBRC), which borrows some
ideas from virtual memory systems to reduce the

addition, the DBRC has an energy consumption
80.94% inferior than the standard L2 cache.

This paper is organized as follows. After this
introduction, Section 2 presents the DBRC
architecture. Section 3 describes our experimental
methodology and Section 4 analyzes our experimental
results. Section 5 presents related work. Finalyy,
conclusions follow in Section 6.

2. The Dynamic Block Remapping Cache

Figure 1 presents the Dynamic Block Remapping
Cache (DBRC) architecture. It is composed of five
parts: (i) data block array (DBA), (i) block table
hierarchy (BTH), (iii) data utilization table (DUT{iv)
tag table (TT), and (v) block translation lookaside
buffer (B-TLB).

Physical Address <32 bits>

<16> <5> <5> <6>

LO Table

L1 Table L2 Table Offset
T T

x5

6

B-TLB
TAG __INDEX

¢ [128 entries

]

14 (index)

hit/miss DBA DUT 1T

i
E i :.] :16k entries : :
b v
P LT ///// //A
.
E Le ////// 14 (index)
o
! L2T
e o, J
- i‘l)..é///// 14 (index)
E 32 entries S, @

Hierarchical Block
Replacement Algorithm,

data (to L1)

Figure 1. DBRC architecture

2.1. Data Block Array - DBA

Data or instructions (from now on we will refer to
data or instructions stored in a DBRC simply asajlat
stored in a DBRC are organized into blocks of fixed
size (in our experiments, 64 bytes), which correspo
to the pages of a virtual memory system. ThesekBloc
form the data block array (DBA) of the DBRC (see
Figure 1), which is basically static RAM memory.

To check whether a data block is present in the
DBA of a DBRC, its block table, equivalent to thege
table of a virtual memory system, is examined.dct,f
as in current virtual memory systems, this blodkdas
built as a hierarchy of tables (the block tablerdniehy
— BTH - see Figure 1) and can, depending on the
configuration, have three, four or even five leyels
described below.

2.2. Block Table Hierarchy — BTH

Figure 2 presents a diagram of a five level BTH. As
the figure shows, in order to check if a datum neaspp
to a given physical address is present in the DBRE,
physical address is divided in several parts, aahe
part addresses one level of BTH. The number ofpart
or levels of BTH, and their sizes in bits depends o
physical address size (in bits) and DBRC configarat
We evaluated experimentally DBRCs with BTHs with
three, four and five levels.

Physical address < 32 bits >

Table, 5 bits Table, 5 bits Table, 5 bits Data, 6 bits

Table, 6 bits_| Table, 5 bits

DBA

.
2%,

L3T

L4T

O

Figure 2. Five Level Block Table Hierarchy (BTH)

In the DBRC we modeled, the level 0 of BTH (LOT)
is physical, i.e., it is implemented in hardwareatiow
low DBRC latency. The other levels (L1T, L2T, L3T
and L4T of Figure 2) are logical and stored in DBA.
The LOT is the first table accessed when BTH is
examined in order to find a data block in DBRC. leac
entry of LOT has a valid biM) and an index fieldl} to
child tables that may point to any block of DBA.igh
block hopefully will contain a L1T table (we dedusi

DBRC misses further on). The entries of a L1T oy an
other level of BTH have the same format as theientr
of LOT. So, to find a data block in DBA, each lewél

performing DBRC we have simulated has a five level
BTH and its B-TLB points to BTH level 4 (L3T).

BTH is examined in sequence until the data block is 2.6. DBRC Accesses

reached in DBA.

2.3. Data Utilization Table — DUT

An access to a DBRC starts with a check if B-TLB
already has a translation from the main memory
physical address to a DBA block index. If it hasg t

The DUT stores information related to the type and DBA block indexed by B-TLB is retrieved and,

frequency of reutilization of each DBA block.

depending on the level it points to: (i) an entfyao

For each DBA block there is a DUT entry and each BTH table is retrieved; or (ii) a data block is igeted

of those has: a validvj, dirty (D), and lock [) bits; a
field that indicates the level of the BTH table
eventually residing in the block.F); a parent BTH
table valid bit PV); and a saturated counter that
registers the frequency of reutilization of thedddR).
This information is required by the block replaceine
algorithm, which also requires a pointer, stordd the
victim block index register (VBIR — see Figure 1),
which points to the DUT entry (and associated DBA
block) that is the current candidate for replacetméfe
describe the global block replacement algorithrthier
below.

2.4. Tag Table =TT

to the requester (typically the L1 cache contrdlier
case of a DBRC read, or it is modified in case of a
write. Case (ii) is a DBRC hit, and case (i) mayabait
or a miss, depending on BTH, which has to be dbrtia
examined in this case.

If a translation is not available in B-TLB (a B-TLB
miss), the level 0 of BTH (LOT) is examined; ndtait
an access to LOT typically occurs in one processor
cycle and can be done in parallel with the B-TLB
access, which also take one cycle. If the addrels§&d
entry is valid (if its valid bitV, is set), its index is
used to access a block of DBA in search for the
corresponding L1T. The LOT index,I, and
corresponding main memory physical address L1T
displacement (see Figure 2) point to a possible L1T

The TT holds the main memory physical address tagentry in DBA, which is retrieved for examinatiorthis

of each DBA block and information required by the
global block replacement algorithm. Therefore, @s i
the case of DUT, there is a TT entry for each DBA
block. Each TT entry has two field3'AG field and
parent table fieldKT). The TAG field stores the high
order bits of the physical address of the main mgmo
block stored into the DBA block, and tHeT field
stores an index to the block in DBA that holds BeH
parent table that has the pointer to the DBA block.
The importance of the TPT field and DUT will

takes several processor cycles.

The LOT indexl is also used to retrieve an entry of
DUT. TheR field of this DUT entry is incremented and
the L1T entry is used to access DBA in searchHter t
next level of BTH; otherwise, it is a DBRC miss.€Th
accesses to the other levels of BTH follow the same
principles. If there is no miss, this also constitua
DBRC hit, although a more expensive one. The
information gathered in the process is used to tgpda
B-TLB, so that it may allow a B-TLB hit next time.

became apparent with the description DBRC accesses.

But, before going into that, let’s briefly presehée B-
TLB.

2.5. Block Translation Lookaside Buffer —
B-TLB

Similar to the TLB of virtual memory systems,
which stores translations from virtual page numbers
physical page numbers, the B-TLB stores translation
from main memory physical addresses to DBA block
indexes. It is a small fully associative cache (128
entries in our experiments) and each one of itsemnt
has: aTAG field that stores the high order bits of the
main memory physical address, an indext¢ a DBA
block, and a valid bit\).

B-TLB | fields point to DBA blocks holding data or
BTH tables. As we will see in Section 4, it is more
advantageous to make B-TLHBields point to tables of
a specific level of BTH instead of data blocks. Diest

2.7. DBRC Misses

There is a miss in DBRC when it is accessed using a
physical memory address for which there is no
translation to a DBA block index in BTH. In a five-
level BTH, a miss in the first level (LOT) requires
allocation of five blocks of DBA: one for each
remaining levels of BTH and one for the data block.
Misses in lower levels of BTH requires allocatidhao
proportionally smaller number of blocks of DBA.

Misses in DBRC caused by misses in a given level
N of BTH are served according to the hierarchical
block replacement algorithm (HBRA), shown in Figure
3 and detailed below.

Select a DBA victim block.To select a DBA block to
serve a miss (a victim block), the DBRC controlises
DUT’s victim block index register (VBIR). This
register is initialized with zero at system resist,

incremented during the process of selecting DBA each one of its valid entries to invalidate B bits of

victim blocks, and points to the current victim ¢ho
candidate.

b = Select a DBA victim block;
Make the BTH entry in level NV point to b;
if (&'s DUT entry bits /== true and PV == true)
1 Invalidate the entry of the BTH table that points to 5;
2 Invalidate an eventual entry in B-TLB that points to b;
3 if (U's DUT entry LFfield indicates that 6 holds a BTH
table)
1 Invalidate DUT entries associated with 6% children;
else if (&'s DUT entry dirty bit D == true)
1 Save b contents into physical memory;
Install block level N+1;
N =N +1; if (N < data block level) goto 1;

1
2
3
3.
3.
3.

3.3.
3.4
3.4.
4
5

Figure 3. Hierarchical block replacement algorithm

So, DBA blocks are victim candidates in a round
robin fashion. However, a victim block may be spare
depending on its DUR counter (see Section 2.3).

A victim block is selected if it is not locked (DUT
I= 1) and: (i) its DUT valid bitV) is equal to zero, in

the corresponding DUT entries. This may take sévera
processor cycles. Note that this does not invaditiat
children, which still may be reached via B-TLB; bt
makes then strong victim candidates.

Install block level N+1. If b was selected to receive a
data block from physical memory (a read miss), the
lock bit (L) of the DUT entry associated with it is set.
To set the lock bit is necessary because it takeasym
cycles (100s) to bring data from main memory ibto
To allow serving other DBRC misses in the mean time
a MSHR Miss Status Holding Regist¢8, 5]) of the
DBRC controller is filled with the information remad

to write the data coming from memory inbowhen it
(the data) arrives.

If b was selected to receive a data block from L1 (a
L1 writeback), the data is immediately written irio
and the dirty bitl) of the DUT entry associated with it
is set. Ifb was selected to hold a new BTH table, the
valid bit (V) of the DUT entry associated with it is
zeroed; in the next loop of HBRA, an entry of thEHB

which case the block does not contain valid data ortable it now holds will be properly filled (step &f

BTH table; or (ii) its DUT parent BTH table validtb

(PV) is equal zero, in which case the block is orphan

HBRA — see Figure 3).
This completes the description of DBRC. In the next

because its parent BTH table was removed from DBA; sections we describe how we tuned its parametets an

or (iii) its DUT R counter is equal zero, which indicates
that this block was not reused since the last timeas
a victim candidate (VBIR pointed to it).

If none of these three conditions is true, tRe
counter of the DUT entry associated with the victim
block is zeroed and VBIR incremented to point te th

compared it against a standard set associativatRec

3. Methods

To evaluate DBRC, we employed execution driven
simulation based on the CACTI (“An Enhanced Cache

next DBA block. The whole process is repeated until . ass and Cycle Time Model” — CACTI [15]) and

one of the three conditions occurs or a Maximum Simplescalar

Number of Attempts (MNA) is made, in which case the
block examined with the smallédR counter value is
selected.

Make the BTH entry in level N point to b. A block
needs to be selected because an entry in a taBl€hbf
was found invalid during a DBRC access (a BTH
miss). Once a block is selected, the field of the
invalid BTH table entry is made to point to theestéd
blockb and its valid bity, is set (see Section 2.2).

Invalidate DUT entries associated withb and its
children. If the V andPV bits of the DUT entry of the
victim block b are both set, there is a valid entry of a
BTH table that points to it. The DBRC controller
invalidates it using the parent table fieRITf of TT. In
addition, it invalidates an eventual entry in B-TLtiat
points tob using theTAGfield of TT.

If b's DUT entry LF field indicates that it holds a
BTH table, all DUT entries associated withs

(www.simplescalar.com) tools, both
widely used by the research community.

We used CACTI to configure different DBRC and
equivalent standard L2 caches, and to estimate thei
access time, and energy consumption. We used
Simplescalar to configure single core systems ngni
SPEC2000 benchmark programs [14] while employing
DBRC and standard L2 caches, and to estimate the
average number of instructions executed per cycle

(IPC).

3.1. Experimental Setup

In our experiments we have used a version of the
Simplescalar that emulates the Alpha21264 supenscal
processor [4]. We have used this version becausssit
been validated against a real Alpha21264
experimentally [3], and because there are precaupil
SPEC2000 benchmark programs and properly set
SPEC2000 workload (the MinneSPEC workload [7])
for it which are widely used by the research

children have to be invalidated. For that, the DBRC community. With the MinneSPEC workload, each

controller readd from DBA and uses thé fields of

SPEC2000 benchmark program executes about 2

billion instructions in total (about 1 second inrreunt plus one valid V) bit (15 bits total), and the same
machines). happens with the other levels of BTH, which, widB6
The Alpha21264 processors were set up as shown irblocks, can accommodate only 32 entries each (by
Table 1, and their memory hierarchy for both DBRC rounding 15 bits to the next power of 2, i.e., i8,b
and standard L2 was set up as shown in Table 2¢Tab which gives us 2B per entry, or 32 entries for 64B)

2 also presents the standard L2 configuration). Assuming a 32 bits physical address (1GB main
memory), the Table 3 shows how it (the physical
Table 1. Alpha21264 setup address) can be divided to address each BTH level f
7 stages — 4-wide Fetch, Slot, and Map; BTHs with hierarchies of 3 (H3L), 4 (H4L) and 5
Pipeline 6 wide Issue, RegRead, Execute, and (H5L) levels (Figure 3 depicts the last line of T&aB),

Write-back; and 11-wide Retire.
Functional Units 4 integer and 2 floating-point.
20-instrution integer and 15-instruction

while Table 4 shows the number of entries of thxes
of each level of these BTHs.

Issue Queues size | {aing point. As Table 4 shows, a BTH with a hierarchy of 3
Number of 41 integer, 41 floating-point and 32 levels (H3L) would require a 64K-entry LOT, which
Renaming Registery memory (load-store queues). . would require approximately 128KB of storage space.

;?;J{:fg?g%ﬂg?nﬁig;??\',f,:g),re‘\’,\’glr]o""c;?r“e On the other hand, a H5L BTH would require only a
predictor (1024 10-bit local history), 64-entry LOT (approximately 128 bytes); accessea to
Branch Predictor | Path-based global predictor (12-bit LOT of this size would be very fast, and larger gibgl
Qlftgfgi{es%:tsl}f;tmg'igﬁr?t'gg)tgn%tgb'eCf addresses (i.e., larger main memories) could biyeas
choice predictor with a table of 4K 2-bit accommodated (in the foreseeable future) by ingrgas
— sa;ggtzing counters. it. accordingly without a strong effect on LOT aczes
Tochnolofy 85m time or chip area.

Table 3. Physical address fields

Table 2. Memory hierarchy and standard L2 setup ~ddress Fiold
L1 Instruction | 64KB 2-way set associative (LRU), with BTH
Cache 64B blocks and 1-cycle latency. flel| d c |/ bl a
64KB 2-way set associative (LRU), with H3L - - 16 5 5| 6
L1 Data Cache | ¢15%10cks and 3-cycle latency. HAL - |11 5] 5] 5 6
Standard L2 | 1MB 16-way set associative (LRU), with H5L 6/ 51 5 51 5] 6
Cache 64B blocks, 9-cycle latency and 32 MSHR}s.
Memory Bus Ul‘SIB“_’:"(‘je'ZZf_)OMHIZ-I e Table 4. Number of entries on each BTH level
. nlimited, -cycle latency, 120-cycle
Main Memory precharge and 120-cycle pipeline access. BTH BTH Table
LOT L1T L2T L3T L4AT
. . H3L 64K 32 32 - -
3.2. DBRC Configuration HaL | 2K ED) 32 D)
The DBRC main parameters are: DBA size, DBA HoL | 64 | 32 | 382 | 382 | 32
block size, B-TLB size, number of BTH levels, B-TLB)))
target BTH level, DUTR field size, and the maximum But BTHs with deep hierarchies may occupy too

number of attempts (MNA) to select a victim block. many DBA blocks, hurting DBRC hit rates. To

In our experiments, we used DBRC and standard L2 €Xamine this and to find appropriate values for the
caches with 1MB for data storage and blocks of 648 other DBRC parameters (B-TLB target BTH level,
because these sizes are currently used in marhaide ~ DUT R counter size, and maximum number of attempts
AMD systems. So, we used DBA size equal to 1MB (MNA) to select a victim block) we had to run
and DBA block size equal to 64B. Following the same €Xperiments.
reasoning, we used 128-entry fully associative BBTL
(this is the current TLB configuration on most @ntr 4. Experiments
processors).

The number of levels of BTH affects several aspects Tgo examine the impact of the BTH hierarchy depth
of DBRC. Perhaps, the most important one is the siz on BTRC miss rate, we run the SPEC2000 benchmarks
of BTH's level O, LOT, since it is implemented in in the described experimental framework (Sectidp).3.
hardware instead of residing in DBA, as the other Figure 4 shows the results (the twof and vpr
levels of BTH do. As LOT entries point to DBA black penchmarks were omitted because they have very smal
(see Figure 1), to calculate the size of LOT wetsta miss rates).
calculating the DBA number of blocks. For a 1MB In Figure 4, the y-axis is the DBRC miss rate, whil
DBA with 64B blocks, we have 16K blocks (1M/64). x-axis lists the SPEC2000 benchmarks and the

So, each entry of LOT must have kfield of 14 bits arithmetic mean (A.M.) of their miss rates for 3T

depths: 3 (H3L), 4 (H4L) and 5 (H5L). As Figure 4
shows, the number of levels of BTH does not affeet
DBRC miss rate significantly; so, for now on, we
consider DBRCs with BTHs of 5 levels only.

Ideally, B-TLB entries would point directly to the
block addressed by the processor; however, a 1MB
DBA of 64B blocks has 16K blocks. So, as the number
of entries of B-TLB is small, hit rates may be |dvit
targets DBA blocks. Figure 5 shows B-TLB hit rates
for different B-TLB targets.

In Figure 5, the y-axis is the B-TLB hit rate, véhil
x-axis lists the SPEC2000 benchmarks and the
arithmetic mean of their hit rates for the follogiB-
TLB targets: L1T, L2T, L3T, L4T and data blocks in
DBA. As Figure 5 shows, the performance of a 128-
entry B-TLB targeting data blocks is to low. Thésto

be expected, since a data block is small and can be

mapped anywhere in the physical memory address
space (remember that, in virtual memory systems,
TLBs target pages of typically 4KB or higher).

60,0%

O H3L B H4L OH5L

50,0%

40,0%

@
S
5
S

Miss rate

20,0%

10,0%

1.

bzip2 equake gcc gzip
benchmarks

Figure 4. Impact of BTH depth on DBRC miss rates

i

mef mesa parser perbmk vortex AM.

ammp art

[BLaTm 2T OL8T O LaT W DATA BLOCK]

Hit rate

:

perlbmk twoif

ammp at bzip2 equake gec gzip mef mesa AM

benchmarks

Figure 5. B-TLB hit rates for different B-TLB
targets

parser vortex vpr

From the results of Figure 5, we decided to use B-
TLBs that target L3T. This means that, for each @BR
access, even with a hit in B-TLB, DBA must be
accessed 3 times: one for accessing a L3T entey, on

Let's first examine the other DBRC parameters, DUT
R counter size, and MNA.

The DUT entriesR field holds a saturated counter
that registers the frequency of reutilization ofe th
associated block of DBA. Figure 6 shows the imdict
DUT R counters size on DBRC miss rate, for 1, 5 and
10 hit sizes. As Figure 6 shows, on average,atget
theR field the better (lower) the average miss rate, So
we usedr counters 10-bit sized.

70,0%

01 W2 05 010

60,0%

50,00

2 40,0%
o

@

8
= 0%

|

at

A |

azp

bzip2 equake gec
benchmerks

Figure 6. Impact of DUT R field size on DBRC

Ideally, the maximum number of attempts (MNA) to
find a victim block in case of a DBRC miss would be
because it would be the fastest option. Howevethis
case, in case of a DBRC miss, we would remove
valuable DBA blocks, such as high level tables B
or frequently used data blocks. To find a propduea
of MNA, we run the experiments shown in Figure 7.

As Figure 7 shows, a MNA equal 5 or 10 already
provide the protection that valuable blocks neegdwse
used MNA equal 5.

il

mcf mesa paser perbmk votex MA.

ammp

70,0%
o5 m10

60,0%

50,0%

Miss rate
8 8
g 2

20,0%

10,0%

ammp at bzip2 equake gcc gzip mef AM

benchmarks

Figure 7. Impact of MNA on DBRC miss rate

mesa parser perbmk vortex

After selecting the parameters of DBRQ@ye
compared its performance with that of the standzrd
cache of Table 2 in terms of miss rate, impactldn |
and energy consumption. Figure 8 presents the
comparison in terms of miss rate.

As shown in Figure 8, DBRC outperforms a
standard 8-way set associative L2 of equivalerd iz

for accessing a LAT entry and one for accessing theierms of miss rate for a large margin — an averaigs

data block. This increase DBRC hit time and energy
consumption. We will address these concerns later o

rate reduction of 27.71%. This occurs thanks to BBR

fully associativity and global block replacement (harmonic mean) IPC increase of 20.34%. This gain

algorithm. comes from the reduction of miss rates providedhiey
fully associativity and global block replacement
s00% algorithm of DBRC, and DBRC’s DBA banking.
0061 I Finally, Figure 10 presents the comparison of

DBRC with the standard L2 cache in terms of dynamic
energy consumption. Again, in order to make this
comparison, the energy consumption of DBRC and
' standard L2 had to be properly modeled. They depend
00 on the many details of implementation of each, thic
we carefully modeled. Unfortunately, due to space
restrictions, we could not present this modelingehe
100% nevertheless, it is available in [10].

0,09% +
ammp at bzip2 equake gecc gzp mef mesa parser perbmk \ortex AM.

benchmarks
Figure 8. DBRC versus Standard L2: miss rate '

Miss rate
8
g
f

Figure 9 presents the comparison DBRC versus
standard L2 in terms of ILP, measured as instrostio
per cycle (IPC). In order to make this comparigbe,
hit and miss access times of DBRC had to be prgperl
modeled.

B Standard L2 @ DBRC

ammp art bzip2 equake gcc gzip mcf mesa parser perbmk twolf vortex vpr AM.
12 benchmarks

) Figure 10. DBRC versus Standard L2: Energy

8 oe1 — To obtain the results shown in Figure 10, we
measured the total amount of Joules consumed by eac
cache architecture. For that, we added all tify

amounts of energy dynamically consumed by each

02 peace of each cache architecture in accordancethvth

. CACTI model. As Figure 10 shows, DBRC consumes
O ek oI et o e much less energy dynamically than an equivalent L2
Figure 9. DBRC versus Standard L2: ILP cache — 80.94% less. This, yes, is due in parhéo t

DBRC lower miss rate and DBA banking organization,

The hit and miss access times of DBRC are but also and mostly due to the energy cost of tag
influenced by the access times of B-TLB, DBA, LOT, comparison in the large tag array of standard L2
DUT and TT, and, depending on the type of hit (hits caches, which DBRC does not have (TT is only
with hit in B-TLB, hits with miss in B-TLB) and més accessed for block invalidation during DBRC mi¥ses
(misses in different levels of BTH, which may regua
single or several attempts to get DBA blocks) resjui
different numbers of cycles (see algorithm of Fe8}. 5. Related Work
We have made a careful modeling of all aspects that
contributes to DBRC hit and miss times. Unfortuhate
due to space restrictions, we could not presemerie;
nevertheless, it is available in [10]. But an intpat
aspect of this modeling have to be mentioned: we ha
partitioned DBA into 32 banks so that an accesa to
BTH table entry does not involve moving an entidd6
block of DBA to DBRC control. This saves power and
reduces DBA access times, which is very important f
the DBRC impact on ILP and energy consumption.

As Figure 9 shows, DBRC outperforms the standard
L2 cache in terms of impact on ILP — an average

Puzak [11] proposed the inclusion of extra taga in
shadow directory to provide feedback to a local
replacement engine in a set-associative cacheoBats
and Vijaykumar [1] proposed the reactive-assodativ
cache (r-a cache), which provides flexible assodfpat
by placing most blocks in direct-mapped positiond a
reactively displacing only conflicting blocks totse
associative positions. Prime modulo hashing [6] and
skewed associativity [13], on the other hand, gpteim
distribute memory accesses uniformly across caetse s
by targeting the indexing function. The “Non-unifor
access with Replacement And Placement using

Distance associativity” cache, or NuRAPID [2], [3]
leverages sequential tag-data access to decoufde da
placement from tag placement. Qureshi et al. [12]
proposed a technique to vary the associativity of a
cache on a per-set basis in response to the derménds
the program, while Zhang [16] proposed a cacheydesi (4]
that allows the accesses to cache sets to be ledldnyc

using a special block address decoder. All these[®]
approaches are variations of the standard cacligndes
DBRC departs from the standard design and tries to
obtain performance mimicking the architecture of
virtual memory systems. [6]

6. Conclusions

In this paper, we proposed and evaluated a new[7]
architecture of Level 2 (L2) cache — the Dynamic
Block Remapping Cache (DBRC). DBRC borrows
some ideas from virtual memory systems to reduee th
impact of L2 on system performance. (8]

Analogous to virtual memory systems, which use a
hierarchy of tables to map pages of virtual menioty
pages of physical memory, the DBRC uses a hierarchy
of tables to map blocks of L2 cache into blocks of [9]
physical memory. Also, as in virtual memory systeas
B-TLB is used to hold translations from main memory
physical addresses to cache block indexes. |

We compared the performance of DBRC with that
of standard L2 caches using Simplescalar to model
single core systems running SPEC2000 benchmarks/11]
Our results showed that the DBRC achieves 27.71%
reduction on average miss rate, 20.34% improvement
in IPC, and 80.94% reduction on energy consumption[lz]
when compared with an equivalent (in size) 8-way se
associative L2 cache.

A direction for future work is to measure the stati
energy dissipation instead of using approximations

based on the occupied area. Other direction fahdur [13]
research is to take into account the energy consomp
and the B-TLB area.

As future work, we will examine the performance of 14
DBRC in multi-core systems. [14]
7. References [15]
[1] B. Batson, T.N. Vijaykumar, “Reactive-associati

caches”, Proceedings of |EEE International [16]

Conference on Parallel Architectures and Compilatio
Techniques2001, pp. 49-60.

[2] Z. Chishti, M.D. Powell, and T.N. Vijaykumar,
“Distance associativity for high-performance energy
efficient non-uniform cache architectures”,
Proceedings of the 36th Annual ACM/IEEE
International Symposium on Microarchitectu2003,
pp. 55-66.

R. Desikan, D. Burger, and S.W. Keckler, “Measuring
Experimental Error in Microprocessor Simulation”,
Proceedings of the 28th Annual International
Symposium on Computer Architectue®01, pp. 226-
277.

Digital Equipment Corporation, “Alpha Architecture
Handbook”, Digital Equipment Corporation, 1992.

K.I. Farkas and N.P. Jouppi, “Complexity/Perf@ance
Tradeoffs with Non-Blocking Loads'Proceedings of
the 21st International Symposium on Computer
Architecture 1994, PP. 211-222.

M. Kharbutli, K. Irwin, Y. Solihin, and J. LeéUJsing
prime numbers for cache indexing to eliminate donfl
miss”, Proceedings of the 10th IEEE International
Symposium on High Performance Computer
Architecture 2004, pp. 288-299.

A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A
New SPEC Benchmark Workload for Simulation-
Based Computer Architecture Researclomputer
Architecture Letters, vol.,2002.

D. Kroft, “Lockup-Free Instruction Fetch/Pretbt
Cache Organization”, Proceedings of the 8th
International Symposium on Computer Architecture
1981, pp. 195-201.

D.A. Patterson and J.L. Hennessycomputer
Architecture: A Quantitative Approacfihird Edition,
Morgan Kaufmann Publishers, Inc., 2003.

F.T. Pedroni, “A Dynamic Block Remapping Cathe
M.Sc. thesis, Universidade Federal do Espirito &ant
Departamento de Informatica, 2008 (in Portuguese).
T.R. Puzak, “Analysis of cache replacement
algorithms”, Ph.D. thesis, University of Massaclitsse
ECE Department, Amherst, MA., 1985.

M.K. Qureshi, A. Jaleel, Y.N. Patt, S.C. 3yeér., J.
Emer, “Adaptive Insertion Policies for High
Performance Caching”,Proceedings of the 34th
Annual International Symposium on Computer
Architecture 2007, pp. 381-391.

A. Seznec, “A case for two-way skewed-assogat
caches” Proceedings of the 20th Annual International
Symposium on Computer Architectut®93, pp. 169—
178.

Standard Performance Evaluation Corporati@REC
CPU2000 V1.2", http://www.spec.org/osg/cpu2000/,
last access in March 2002.

S.J.E. Wilton and N.P. Jouppi, “CACTI: an enbed
cacheaccess and cycle time modelEEE Journal of
Solid-State Circuits, vol. 311996, pp. 677—688.

C. Zhang, “Balanced Cache: Reducing Conflidgs$és

of Direct-Mapped Caches through Programmable
Decoders”, Proceedings of the 33rd International
Symposium on Computer Architectu®06, pp. 155-
166.

