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Abstract: In multi-label text categorization, one or more la-
bels (or categories) can be assigned to a single document. In
many such categorization tasks, there can be correlation on
the assignment of subsets of the set of categories. This can
be exploited to improve machine learning techniques devoted
to multi-label text categorization. In this paper, we exam-
ine a Virtual Generalizing Random Access Memory Weightless
Neural Network (VG-RAM WNN) architecture that takes ad-
vantage of the correlation between categories to improve text-
categorization performance. We compare the performance of
this architecture, that we named Data Correlated VG-RAM
WNN (VG-RAM WNN-COR), with that of standard VG-RAM
WNN and ML-KNN categorizers using ten multi-label text cate-
gorization performance metrics. Our experimental results show
that VG-RAM WNN-COR has an overall better performance
than VG-RAM WNN and ML-KNN for the set of metrics con-
sidered.
Keywords: VG-RAM Weighless Neural Networks, machine learn-
ing, multi-label text categorization, label correlation, categorization
of economic activities, multi-label text categorization performance
metrics

I. Introduction

Most works on text categorization in the literature are fo-
cused on single-label text categorization problems, where
each document may only have a single label [16]. How-
ever, in real-world problems, multi-label categorizationis
frequently necessary [15, 5, 4, 17, 3, 6, 13, 20, 21]. From a
theoretical point of view, single-label categorization ismore
general than multi-label, since an algorithm for single-label
categorization can also be used for multi-label categoriza-
tion: one needs only to transform the multi-label catego-
rization problem inton independent single-label problems,
wheren is the number of possible labels (or categories) [16].
However, this equivalence only holds if then categories are
stochastically independent, that is, the association of a cate-
goryci to a document is independent of the association of an-
other category,cj , to the same document, which is frequently
not the case. Fortunately, several techniques for multi-label
categorization have been proposed, such as multi-label de-
cision trees [4], kernel methods [5, 3] or neural networks
[13, 20], and many of them specifically for multi-label text
categorization [15, 17, 6, 13, 20]. Multi-label categorization
systems can take advantage of the correlation between cate-
gories in order to improve their performance.

Virtual Generalizing Random Access Memory Weightless
Neural Networks (VG-RAM WNN for short) is an effec-
tive machine learning technique, which offers fast training
and test, and easy implementation [2, 9]. In this paper, we
present a new VG-RAM WNN architecture that exploits the
correlation between categories. We named this architecture
Data Correlated VG-RAM WNN (VG-RAM WNN-COR).
Different from standard VG-RAM WNN’s neurons, which
can only assign a single category to a document, in VG-RAM
WNN-COR each neuron can assign one or more categories
to a document simultaneously.
We evaluate the performance of VG-RAM WNN-COR on
the categorization of free-text descriptions of economic ac-
tivities. The automation of the categorization of economic
activities of companies from business descriptions in freetext
format is a huge challenge for the Brazilian governmental
administration in the present day. So far, this task has been
carried out by humans, not all of them properly trained for
the job. When this problem is tackled by humans, the sub-
jectivity on their categorization brings a problem: different
human categorizers can give different results when working
on the same business description. This can cause distortions
in the information used for planning, taxation and other gov-
ernmental obligations of the three Brazilian administrative
levels: County, State and Federal. Furthermore, the num-
ber of possible categories considered is very large, more than
1000 in the Brazilian scenario, which makes the categoriza-
tion problem even harder to be solved.
We analyze the performance of VG-RAM WNN-COR us-
ing ten multi-label text categorization performance metrics:
one-error [14], coverage[15], ranking loss[14], average
precision[10], R-precision[10], Hamming loss[14], exact
match[8], precision[10, 16],recall [10, 16], andF1 [10, 16].
We also compare the VG-RAM WNN-COR performance
with that of standard VG-RAM WNN and Multi-Label k-
Nearest Neighbors (ML-KNN) [21] categorizers. Our exper-
imental evaluation shows that VG-RAM WNN-COR has an
overall better performance than VG-RAM WNN and ML-
KNN on the categorization of economic activities for the set
of metrics considered.
This paper is organized as follows. After this introduction,
Section II defines the multi-label text categorization prob-
lem. Section III describes our VG-RAM WNN and VG-
RAM WNN-COR categorizers, and Section IV the ML-KNN
categorizer. Section V presents our experimental methodol-
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ogy, and Section VI our experimental results. Our conclu-
sions follow in Section VII.

II. Multi-Label Text Categorization

Text categorization may be defined as the task of assigning
categories (or labels), from a predefined set of categories,to
documents [16]. In multi-label text categorization, one or
more categories may be assigned to a document.
Let D be the domain of documents,C = {c1, . . . , c|C|} a
set of pre-defined categories, andΩ = {d1, . . . , d|Ω|} an
initial corpus of documents previously categorized manu-
ally by a domain expert into subsets of categories ofC. In
multi-label learning, the training(-and-validation) setTV =
{d1, . . . , d|TV |} is composed of a number of documents,
each associated with a subset of categories ofC. TV is used
to train and validate (actually, to tune eventual parameters
of) a categorization system that associates the appropriate
combination of categories to the characteristics of each doc-
ument in theTV . The test setTe = {d|TV |+1, . . . , d|Ω|},
on the other hand, consists of documents for which the cate-
gories are unknown to the categorization system. After being
trained and tunned onTV , the categorization system is used
to predict the set of categories of each document inTe.
A multi-label categorization system typically implementsa
real-valued function of the formf : D×C → R that returns
a degree of belief for each pair〈dj , ci〉 ∈ D × C, that is, a
number between0 and1 that, roughly speaking, represents
the confidence with which the test documentdj should be
categorized under the categoryci. The real-valued function
f(., .) can be transformed into a ranking functionr(., .), such
that, if f(dj , ci) > f(dj , ck), then r(dj , ci) < r(dj , ck),
and if f(dj , ci) < f(dj , ck), thenr(dj , ci) > r(dj , ck). If
f(dj , ci) = f(dj , ck) we have a tie.
When there are no ties, i.e.,f(dj , ci) 6= f(dj , ck) for all
i 6= k, f(., .) can be transformed into a ranking function
r(., .) that is an one-to-one mapping onto{1, 2, . . . , |C|}.
However, if there are ties (f(dj , ci) = f(dj , ck) for some
i 6= k), the categories can be ranked in many different ways.
In this paper, we adopted the ranking method called ordinal
ranking [18], that assigns distinct ordinal ranking positions
to all categories, including those tied. In this method, the
assignment of distinct ordinal ranking positions to tied cate-
gories is done at random.
Let Cj be the set of pertinent categories of the test document
dj andĈj the set of categories predicted fordj . A success-
ful categorization system will tend to rank categories inCj

higher than those not inCj . Those categoriesci ranked above
a thresholdτi are then predicted to the test documentdj , i.e.,
Ĉτi

j = {ci|f(dj , ci) ≥ τi}.

III. VG-RAM WNN and VG-RAM WNN-COR

RAM-based neural networks [1], also known as weightless
neural networks (WNN), do not store knowledge in their con-
nections but in Random Access Memories (RAM) inside the
network’s nodes, or neurons. In spite of their remarkable
simplicity, WNN are very effective as pattern recognition
tools, offering fast training and test, and easy implementa-
tion [2]. However, if the network input is too large, the mem-

ory size of the neurons of WNN becomes prohibitive, since
it must be equal to2n, wheren is the input size. Virtual Gen-
eralizing RAM (VG-RAM) networks are RAM-based neural
networks that only require memory capacity to store the data
related to the training set [9].

A. VG-RAM WNN Neurons

VG-RAM WNN neurons store the input-output pairs seen
during training, instead of only the output. In the test phase,
the memory of VG-RAM neurons is searched associatively
by comparing the input presented to the network with all in-
puts in the input-output pairs learned. The output of each
VG-RAM neuron is taken from the pair whose input is near-
est to the input presented—the distance function employed
by VG-RAM neurons is the Hamming distance. If there
is more than one pair at the same minimum distance from
the input presented, the neuron’s output is chosen randomly
among these pairs.

Figure. 1: VG-RAM WNN lookup table.

Figure 1 shows the lookup table of a VG-RAM neuron with
three synapses (X1, X2 andX3). This lookup table contains
three entries (input-output pairs), which were stored during
the training phase (entry#1, entry#2 and entry#3). Dur-
ing the test phase, when an input vector (input) is presentedto
the network, the VG-RAM test algorithm computes the dis-
tance between this input vector and each input of the input-
output pairs stored in the lookup table. In the example of
Figure 1, the Hamming distance from the input to entry#1
is two, because bothX2 andX3 bits do not match the input
vector. The distance to entry#2 is one, becauseX1 is the
only non-matching bit. The distance to entry#3 is three,
as the reader may easily verify. Hence, for this input vector,
the algorithm evaluates the neuron’s output,Y , as category
2, since it is the output value stored in entry#2.

B. VG-RAM WNN-COR Neurons

While in VG-RAM WNN each neuron is trained to output
a single category for each input vector, in VG-RAM WNN-
COR each neuron may be trained to output a set of categories
for each input vector.
Figure 2 illustrates the lookup table of a VG-RAM WNN-
COR neuron with three synapses (X1, X2 andX3) and three
entries (input-output pairs) stored during the training phase
(entry #1, entry #2 and entry#3). Similar to VG-RAM
WNN, when an input vector is presented to the network in
the test phase, the VG-RAM WNN COR test algorithm com-
putes the distance between this input vector and each input of
the input-output pairs in the lookup table. In the example of
Figure 2, the Hamming distance from the input to entries#1,
#2, and#3 is two, one, and three, respectively. As the input
of entry #2 is the nearest to the network input, the output
of the VG-RAM WNN COR neuron is given by categories1



and3, i.e. the value ofY represents both categories,1 and3.

Figure. 2: VG-RAM WNN-COR lookup table.

C. Text Categorization with VG-RAM WNN and VG-RAM
WNN-COR

To categorize text documents using VG-RAM WNN, we
represent a document as a multidimensional vectorV =
{v1, . . . , v|V |}, where each elementvi corresponds to a
weight associated to a specific term in the vocabulary
of interest (see Section V-B). We use single layer VG-
RAM WNN (Figure 3) whose neurons’ synapsesX =
{x1, . . . , x|X|} are randomly connected to the network’s in-
putN = {n1, . . . , n|N |}, which has the same size of the vec-
tors representing the documents, i.e.,|N | = |V |. Note that
|X| < |V | (our experiments have shown that|X| < |V | pro-
vides better performance). Each neuron’s synapsexi forms
a minchinton cell with the next,xi+1 (x|X| forms a minch-
inton cell with x1) [11]. The type of the minchinton cell
we have used returns1 if the synapsexi of the cell is con-
nected to an input elementnj whose value is larger than that
of the elementnk to which the synapsexi+1 is connected
(i.e. nj > nk); otherwise, it returns zero.

Figure. 3: VG-RAM WNN and VG-RAM WNN-COR text
categorization setup.

During training, for each document in the training set,
the corresponding vectorV is connected to the VG-
RAM WNN’s input N and the neurons’ outputsO =
{o1, . . . , o|O|} to one of the categories of the document. All
neurons of the VG-RAM WNN are then trained to output this
category with this input vector. The training for this input
vector is repeated for each category associated with the cor-
responding document. During test, for each test document,
the inputs are connected to the corresponding vector and the
number of neurons outputting each category is counted. The
network’s output is computed by dividing the count of each
category by the number of neurons of the network. This out-
put is organized as a vector whose size is equal to the number
of categories. The value of each vector element varies from

0 to 1 and represents the percentage of neurons which pre-
sented the corresponding category as output (the sum of the
values of all elements of this vector is always equal to1). In
this way, the output of the network implements the function
f(., .), defined in Section II.
To categorize text documents using VG-RAM WNN-COR
we use the same setup of the VG-RAM WNN illustrated in
Figure 3. In the training phase, for each document in the
training set, the corresponding vectorV is connected to the
input of the VG-RAM WNN COR,N , and the output of its
neurons,O, to the set of categories assigned to the document.
Each neuron of the VG-RAM WNN-COR is trained to out-
put this set with this input vector. During the test phase, for
each test document, the corresponding vectorV is connected
to the input of the network,N . The functionf(., .) is com-
puted by dividing the number of votes for each category by
the total number of categories outputted by the network. The
number of votes for each category is obtained by counting
their occurrences in all sets outputted by the network.

IV. ML-kNN

The Multi-Label k-Nearest Neighbors (ML-KNN) [21] cate-
gorizer is a version of the k-Nearest Neighbors (KNN) [16]
especially designed for multi-label categorization. In this
categorizer, thek nearest neighbors ofdj are identified in
TV . The Euclidean distance is used to find the nearest neigh-
bors ofdj . Then, for the givenk, the maximum a posteriori
(MAP) principle is employed for determining the belief for
each pair〈dj , ci〉 ∈ D × C using statistical information ob-
tained from the category sets of the neighbors ofdj , i.e., the
number of neighboring documents belonging to each possi-
ble category.
Zhang and Zhou [21] evaluated the performance of ML-
KNN on several multi-label learning problems. In their
experiments, ML-KNN achieved higher performance than
well-established algorithms, such as Boostexter [15], the
multi-label kernel method Rank-SVM [5], and the multi-
label decision tree ADTBoost.MH [4]. This has motivated us
to use ML-KNN as a baseline in the VG-RAM WNN-COR
evaluation.

V. Experimental Methodology

We employed a series of experiments to compare VG-RAM
WWN-COR with VG-RAM WNN and ML-KNN. For that,
we (i) used two data sets composed of textual descriptions of
economic activities of companies categorized manually ac-
cording lawful Brazilian economic activities. We (ii) prepro-
cessed these data sets using standard IR techniques, and used
the resulting data to (iii) tune VG-RAM WNN-COR, VG-
RAM WNN, and ML-KNN categorizers and (iv) perform
experiments for comparing VG-RAM WWN-COR with VG-
RAM WNN and ML-KNN using multi-label text categoriza-
tion performance metrics. The following subsections present
the details of the parts (i), (ii), and (iii) of our experimental
evaluation of VG-RAM WNN-COR. The experimental re-
sults, or part (iv), are presented in the next section.



A. Data Sets

The categorization of companies according to their eco-
nomic activities is an important step of the process of ob-
taining information for statistical analysis of the economy
within a city, state or country. In Brazil, all economic ac-
tivities recognized by law are cataloged in a table called
“Classificaç̃ao Nacional de Atividades Econômicas (CNAE)”
(National Classification of Economic Activities) [7]. Gov-
ernment officials must find the semantic correspondence be-
tween textual descriptions of economic activities of compa-
nies and one or more entries of the CNAE table for each new
company or any that changes its set of economic activities.
To compare the performance of VG-RAM WNN-COR with
that of VG-RAM WNN and ML-KNN on the categorization
of economic activities, we employed two data sets, each of
which composed of textual descriptions of economic activ-
ities of companies categorized into a subset of CNAE cate-
gories by Brazilian government officials trained in this task.
The first data set, called EX100, consists of6911 docu-
ments (textual descriptions) categorized into105 different
economic activities (categories). Each one of these cate-
gories occurs in exactly100 different documents of this data
set, i.e., there are100 instances of documents of each cat-
egory; the average number of categories per document is
roughly 1.52 (standard deviation0.79). The characteristics
of EX100 allows examining the performance of categorizers
in the case where the categories (or labels) are evenly dis-
tributed across the documents. This data set also contains
the official brief description of each one of the105 CNAE
categories and their corresponding code.
The second data set, called AT100, consists of10495 doc-
uments categorized into762 categories. Each category ap-
pears inup to 100 different documents, i.e., there are be-
tween1 and100 instances of documents of each category;
the average number of categories per document is roughly
1.49 (standard deviation0.86). The characteristics of AT100
allows examining the performance of categorizers in the case
where there are rare categories. This data set also contains
the official brief description of each one of the762 CNAE
categories and their corresponding code.
We partitioned EX100 into10 subsets of691 documents (the
last one had692) and AT100 into10 subsets of1049 doc-
uments (the last one had1054) in order to perform 10-fold
cross-validation experiments.

B. Data Preprocessing

We transformed all words in our data sets into their unin-
flected form (term), i.e., the dictionary form of the word
(known as lemma [10]), and then removed all prepositions
using the Diadorim electronic dictionary of the Brazilian Por-
tuguese language [12]. After that, we identified all distinct
terms in each training set,TV , i.e., the vocabulary of in-
terest. Note that, as we are using 10-fold cross-validation,
we have 10 training sets for EX100 and 10 for AT100 and,
therefore, 20 vocabularies of interest. Using the vocabu-
lary of interest associated with each training set, we trans-
formed all documents of the 20 training set/test set pairs
into their corresponding multidimensional vector of weights,
V = {v1, . . . , v|V |}, where|V | is the number of terms that
occurs at least once in the current training set. Each ele-

mentvi corresponds to the weight associated to each wordi

of the vocabulary of interest present in the document. This
weight was computed according to the standard normalized
tfidf weighting function [16].
The average size of the vocabulary of interest is roughly
3609.8 terms (standard deviation21.17) for EX100, and
roughly5377.6 terms (standard deviation19.45) for AT100.
Table V-B shows the sizes of the vocabularies of interest of
EX100 and AT100 for the 20 training set/test set pairs.

Fold
|V |

EX100 AT100
1 3605 5392
2 3614 5404
3 3634 5406
4 3594 5386
5 3600 5363
6 3654 5360
7 3578 5363
8 3612 5386
9 3601 5363
10 3606 5353

Table 1: The size of the vocabulary of interest of each one of
the 20 training set/test set pairs.

C. Categorizers Validation

The VG-RAM WNN-COR, VG-RAM WNN and ML-KNN
categorizers possess parameters that can be optimized for
achieving best performance in a given data set. To tune (or to
validate) these categorizers, we used a single training(-and-
validation) set,TV , for each data set detailed above. We
divided each of these twoTV sets into 10 subsets, and used
the first nine to train and the last one to tune the parameters
of the categorizers for each data set according to theranking
loss [14] metric (see Section VI-A). This metric evaluates
the fraction of category pairs〈ci, ck〉, ci ∈ Cj andck ∈ C̄j ,
that are or may be reversely ordered (f(dj , ci) ≤ f(dj , ck))
in the ranking of categories for the test documentdj of a
given data set. We chose the metricranking lossfor val-
idation because it is not affected by ties, can be used for
evaluating the whole ranking produced by the categoriz-
ers, and is commonly used for evaluating rank-based text-
categorization systems [14, 15, 5, 21].
Figure 4 and Figure 5 present the results of the validation
experiments employed for tuning the number of neurons
and synapses per neuron of the VG-RAM WNN-COR and
VG-RAM WNN, and the parameterk of ML-KNN, for the
EX100 and AT100 data sets, respectively. As Figure 4(a)
shows, for the EX100 data set, the performance of VG-RAM
WNN-COR increases (ranking lossdecreases) with the num-
ber of neurons in the x-axis and with the number of synapses
per neuron represented by each curve, but levels off when the
network have about32×32 (1024) neurons and512 synapses
per neuron; while, for the AT100 data set (Figure 5(a)), the
performance levels off when the network have about32× 32
(1024) neurons and1024 synapses per neuron. Therefore, in
the experimental evaluation of VG-RAM WNN-COR with
EX100 we used32×32 (1024) neurons and512 synapses per
neuron, while with AT100 we used32 × 32 (1024) neurons



and1024 synapses per neuron. Applying the same reasoning
and using the results shown in Figure 4(b) and Figure 5(b),
for VG-RAM WNN we chose|O| = 32 × 32 (1024) and
|X| = 1024 for EX100, and|O| = 32 × 32 (1024) and
|X| = 512 for AT100. Finally, we found that, in the case
of ML-KNN, k equal to100 nearest neighbors produces the
best performance results for both the EX100 and AT100 data
sets (see Figure 4(c) and Figure 5(c)).
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Figure. 4: Results of validation experiments aimed at tuning
the VG-RAM WNN-COR, VG-RAM WNN, and ML-KNN
categorizers for EX100 data set.

VI. Experimental Results

The metrics used in the literature to evaluate text categoriza-
tion performance can roughly be divided into two groups:

(i) Evaluation metrics for ranked sets, which eval-
uate the whole ranking of categories derived from
the real-valued functionf(., .); these includeone-
error [14], coverage[15], ranking loss[14], average
precision[10], andR-precision[10];

(ii) Evaluation metrics for unranked sets, which evaluate
the set of categories predicted for the test documentdj ,
Ĉj (see Section II), among which the most frequent are
Hamming loss[14], exact match[8], precision[10, 16],
recall [10, 16], andFβ [10, 16].
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Figure. 5: Results of validation experiments aimed at tuning
the VG-RAM WNN-COR, VG-RAM WNN, and ML-KNN
categorizers for AT100 data set.

In the following two subsections we present the experiments
we have used to compare the VG-RAM WNN-COR perfor-
mance against that of VG-RAM WNN and ML-KNN.

A. Results with Metrics for Ranked Sets

One-error (one-errorj) evaluates if the top ranked category
is present in the set of pertinent categoriesCj of the test doc-
umentdj :

one-errorj =

{

0 if [arg maxci∈Cf(dj , ci)] ∈ Cj

1 otherwise
(1)

where [arg maxci∈Cf(dj , ci)] returns the top ranked cate-
gory for the test documentdj .
The overall performance is obtained by:

one-error=
1

|Te|

|Te|
∑

j=1

one-errorj (2)

The smaller the value of one-error, the better the performance
of the categorization system. The performance is perfect
whenone-error= 0.
Figure 6 shows the VG-RAM WNN-COR, VG-RAM WNN
and ML-KNN performance in terms ofone-errorfor EX100
and AT100 (the smaller the better). As the figure shows,



VG-RAM WNN-COR has about the same performance of
VG-RAM WNN for EX100, but outperforms it for AT100
(two-tailed paired t-test at5% significance level). This is to
be expected since, when we have enough examples of each
category (EX100), the benefits of data correlation may di-
minish; while, when certain categories are not well repre-
sented in the data set (AT100), data correlation between those
and others in the data set, when captured, may allow bet-
ter categorization performance. Both VG-RAM WNN-COR
and VG-RAM WNN outperform ML-KNN for EX100 and
AT100 (two-tailed paired t-test at5% significance level).
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Figure. 6: One-error(the smaller the better)

Coverage (coveragej) measures how far we need to go down
the ranking of categories for the test documentdj in order to
cover all its pertinent categories:

coveragej = max
ci∈Cj

r(dj , ci) − 1, (3)

wheremaxci∈Cj
r(dj , ci) returns the maximum rank for the

set of pertinent categories ofdj , Cj . The overall performance
is given by:

coverage=
1

|Te|

|Te|
∑

j=1

coveragej . (4)

The smaller the value ofcoverage, the better the performance
of the categorization system. The performance is perfect
whencoverage= 1

|Te|

∑|Te|
j=1

(|Cj | − 1).
Figure 7 shows the VG-RAM WNN-COR, VG-RAM WNN
and ML-KNN performance in terms ofcoveragefor EX100
and AT100 (the smaller the better). As the figure shows, VG-
RAM WNN-COR outperforms VG-RAM WNN for EX100
and AT100 (two-tailed paired t-test at5% significance level).
This happens because data correlation allows VG-RAM
WNN-COR to move pertinent categories up in the rank-
ing, reducing the coverage. Although Figure 7 may sug-
gests that VG-RAM WNN-COR outperforms ML-KNN for

EX100 and AT100, the performance advantage is only sig-
nificant for AT100 (two-tailed paired t-test at5% significance
level). However, it is important to note that, exploring data
correlation, VG-RAM WNN may outperform ML-KNN.
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Figure. 7: Coverage(the smaller the better)

Ranking loss (ranking-lossj) evaluates the fraction of cate-
gory pairs〈ci, ck〉, ci ∈ Cj andck ∈ C̄j , that are reversely
ordered (f(dj , ci) ≤ f(dj , ck)) in the ranking of categories
for the test documentdj :

ranking-lossj =
1

|Cj ||C̄j |
|{(ci, ck)|f(dj , ci) ≤ f(dj , ck),

(ci, ck) ∈ Cj × C̄j}|,

(5)

whereC̄j is the complementary set ofCj in C. The overall
performance is computed as:

ranking-loss=
1

|Te|

|Te|
∑

j=1

ranking-lossj . (6)

The smaller the value ofranking loss, the better the perfor-
mance of the categorizer. The performance is perfect when
ranking-loss= 0.
Figure 8 shows the VG-RAM WNN-COR, VG-RAM WNN
and ML-KNN performance in terms ofranking loss for
EX100 and AT100 (the smaller the better). As the figure
shows, VG-RAM WNN-COR outperforms VG-RAM WNN
for EX100 and AT100 (two-tailed paired t-test at5% signifi-
cance level). VG-RAM WNN-COR exhibits about the same
performance of ML-KNN for EX100, but an inferior perfor-
mance than ML-KNN for AT100 (two-tailed paired t-test at
5% significance level). This happens because, for documents
associated with rare categories, the neural network may not
output any pertinent category, which results in a largerrank-
ing loss—by definition, for any given document ML-KNN
always output a different than zero belief for all categories.
Note that this has an smaller impact in VG-RAM WNN-COR
than in VG-RAM WNN thanks to data correlation.
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Figure. 8: Ranking loss(the smaller the better)

Average precision (avg-precisionj) evaluates the average of
precisions computed truncating the ranking of categories for
the test documentdj after each categoryci ∈ Cj in turn:

avg-precisionj =
1

|Cj |

|Cj |
∑

k=1

|Ĉk
j ∩ Cj |

|Ĉk
j |

, (7)

where|Cj | is the number of pertinent categories of the test
documentdj , andĈk

j is the set of predicted categories that
goes from the top of the ranking until the ranking positionk.
If there is a categoryci ∈ Cj at positionk andf(dj , ci) = 0,
then the precision value obtained forĈk

j in Equation (7) is
taken to be 0.
The overall performance is calculated as:

avg-precision=
1

|Te|

|Te|
∑

j=1

avg-precisionj . (8)

The larger the value ofaverage precision, the better the per-
formance of the categorization system. The performance is
perfect whenavg-precision= 1.
Figure 9 shows the categorizers’ performance in terms ofav-
erage precisionfor EX100 and AT100 (the larger the bet-
ter). As the figure shows, VG-RAM WNN-COR has about
the same performance of VG-RAM WNN for EX100, but
outperforms it for AT100 (two-tailed paired t-test at5% sig-
nificance level). Both VG-RAM WNN-COR and VG-RAM
WNN outperform ML-KNN for EX100 and AT100 (two-
tailed paired t-test at5% significance level). These results
are in line with those ofone-errorand have the same expla-
nations (see above).

R-precision (R-precisionj) evaluates the precision computed
with the|Cj | top ranked categories fordj :

R-precisionj =
|Ĉ

|Cj |
j ∩ Cj |

|Ĉ
|Cj |
j |

, (9)

whereĈ
|Cj |
j is the set of|Cj | top ranked categories. Note

that categoriesci in the set of|Cj | top ranked categories for
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Figure. 9: Average precision(the larger the better)

whichf(dj , ci) = 0 should not be inserted intôC|Cj |
j . In this

case,|Ĉ|Cj |
j | may be smaller than|Cj |.

The overall performance is obtained by:

R-precision=
1

|Te|

|Te|
∑

j=1

R-precisionj . (10)

The larger the value ofR-precision, the better the perfor-
mance of the categorizer. The performance is perfect when
R-precision= 1.
Figure 10 shows the categorizers’ performance in terms of
R-precisionfor EX100 and AT100 (the larger the better).
Similarly to the case ofaverage precision, VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for
EX100, but outperforms it for AT100 (two-tailed paired t-
test at5% significance level). Both VG-RAM WNN-COR
and VG-RAM WNN outperform ML-KNN for EX100 and
AT100 (two-tailed paired t-test at5% significance level).

B. Results with Metrics for Unranked Sets

The metrics examined in this section evaluate the set of cat-
egories predicted for a givendj , Ĉj , instead of a ranking,
as the metrics described in the previous section. Because of
that, we need a means of thresholding the ranking of cate-
gories derived fromf(., .). There are various techniques for
determining the thresholdτi for each categoryci [19, 16].
We evaluate the performance of all categorizers examined
under a perfect thresholding policy; i.e., we choose the car-
dinality of the predicted set of categories fordj , |Ĉj |, to be
equal to|Cj | (or approximately equal to|Cj |). Thus, as we
have done for the metricR-precision(see above), we de-
rive Ĉj from the |Cj | top ranked categories fordj and call

it Ĉ
|Cj |
j .

Hamming loss (Hamming-lossj) evaluates how many times
the test documentdj is misclassified (i.e., a category not be-
longing to the document is predicted or a category belonging
to the document is not predicted), normalized by the total
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Figure. 10: R-precision(the larger the better)

number of categories:

Hamming-lossj =
|Ĉ

|Cj |
j ⊖ Cj |

|C|
, (11)

where⊖ indicates the symmetric difference between the set
of predicted categories,̂C|Cj |

j , and the set of pertinent cate-
gories ofdj , Cj .
The overall performance is calculated as:

Hamming-loss=
1

|Te|

|Te|
∑

j=1

Hamming-lossj . (12)

The smaller the value ofHamming loss, the better the perfor-
mance of the categorizer. The performance is perfect when
Hamming-loss= 0.
Figure 11 shows the categorizers’ performance in terms of
Hamming lossfor EX100 and AT100 (the smaller the bet-
ter). As in the case ofaverage precision(see previous sub-
section), VG-RAM WNN-COR presents the same perfor-
mance of VG-RAM WNN for EX100, but outperforms it
for AT100 (two-tailed paired t-test at5% significance level).
Both VG-RAM WNN-COR and VG-RAM WNN outper-
form ML-KNN for EX100 and AT100 (two-tailed paired t-
test at5% significance level).

Exact match (exact-matchj) evaluates how frequently all
and only all pertinent categories are present in the set of pre-
dicted categories fordj :

exact-matchj =

{

1 if Ĉ
|Cj |
j = Cj ;

0 otherwise.
(13)

The overall performance is obtained by:

exact-match=
1

|Te|

|Te|
∑

j=1

exact-matchj . (14)

The larger the value ofexact match, the better the perfor-
mance of the categorizer. The performance is perfect when
exact-match= 1.
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Figure. 11: Hamming loss(the smaller the better)

Figure 12 shows the categorizers’ performance in terms of
exact matchfor EX100 and AT100 (the larger the better).
As before, VG-RAM WNN-COR presents the same perfor-
mance of VG-RAM WNN for EX100, but outperforms it
for AT100 (two-tailed paired t-test at5% significance level).
Both VG-RAM WNN-COR and VG-RAM WNN outper-
form ML-KNN for EX100 and AT100 (two-tailed paired t-
test at5% significance level).
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Figure. 12: Exact match(the larger the better)

Precision on a per-category basis (precisionc
i ) evaluates the

fraction of test documents categorized under the categoryci

that are truly associated withci, and can be estimated using
the contingency table for the categoryci, shown in Table VI-
B, as:

precisionci =
TPi

TPi + FPi

, (15)

whereFPi (false positives forci) is the number of test doc-



uments that have been incorrectly categorized underci, TNi

(true negatives) is the number of test documents that have
been correctly not categorized underci, TPi (true positives)
is the number of test documents that have been correctly cat-
egorized underci, andFNi (false negatives) is the number
of test documents that have been incorrectly not categorized
underci.

Category Expert judgments
ci YES NO

Categorizer YES TPi FPi

judgments NO FNi TNi

Table 2: The contingency table for the categoryci.

The average ofprecisionci can be computed in two different
ways:

(i) Macroaveraging evaluates the average over the results
for different categories:

macro-precisionc =

∑|C|
i=1

precisionci
|C|

. (16)

(ii) Microaveraging evaluates the sum over all individual
decisions in terms of the contingency table for the cate-
gory ci:

micro-precisionc =

∑|C|
i=1

TPi
∑|C|

i=1
(TPi + FPi)

. (17)

The larger the value of macro-precisionc and
micro-precisionc, the better the performance of
the categorizer. The performance is perfect when
macro-precisionc = 1 andmicro-precisionc = 1.
Figure 13 and Figure 14 show the categorizers’ performance
in terms ofmacro-precisionc andmicro-precisionc, respec-
tively, for EX100 and AT100 (the larger the better). Again,
VG-RAM WNN-COR presents the same performance of
VG-RAM WNN for EX100, but outperforms it for AT100
(two-tailed paired t-test at5% significance level). Both VG-
RAM WNN-COR and VG-RAM WNN outperform ML-
KNN for EX100 and AT100 (two-tailed paired t-test at5%
significance level).

Recall on a per-category basis (recallci ) evaluates the frac-
tion of test documents truly associated with the categoryci

that are categorized underci, and can also be estimated using
the contingency table for the categoryci shown in Table VI-
B, as:

recallci =
TPi

TPi + FNi

. (18)

Estimates ofmacro-recallc andmicro-recallc are calculated
as:

macro-recallc =

∑|C|
i=1

recallci
|C|

; (19)

micro-recallc =

∑|C|
i=1

TPi
∑|C|

i=1
(TPi + FNi)

. (20)

The larger the value ofmacro-recallc andmicro-recallc, the
better the performance of the categorizer. The performance
is perfect whenmacro-recallc = 1 andmicro-recallc = 1.
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Figure. 13: Macro-precisionc (the larger the better)
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Figure. 14: Micro-precisionc (the larger the better)

Figure 15 and Figure 16 show the categorizers’ performance
in terms ofmacro-recallc andmicro-recallc, respectively, for
EX100 and AT100 (the larger the better). VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for
EX100, but outperforms it for AT100 (two-tailed paired t-
test at5% significance level). Both VG-RAM WNN-COR
and VG-RAM WNN outperform ML-KNN for EX100 and
AT100 (two-tailed paired t-test at5% significance level).

Fβ on a per-category basis (Fβ
c
i ) evaluates the weighted

harmonic mean ofprecisionci andrecallci :

Fβ
c
i =

(β2 + 1)precisionci × recallci
β2precisionci + recallci

. (21)

In this formula,β may be seen as the relative degree of im-
portance attributed toprecisionci andrecallci [16]. If β = 0
thenFβ

c
i coincides withprecisionci , whereas ifβ = +∞ then
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Figure. 15: Macro-recallc (the larger the better)
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Figure. 16: Micro-recallc (the larger the better)

Fβ
c
i coincides withrecallci . Usually, a valueβ = 1 is used,

which attributes equal importance toprecisionci andrecallci .
Estimates ofmacro-Fβ

c andmicro-Fβ
c are given by:

macro-Fβ
c =

1

|C|

|C|
∑

i=1

Fβ
c
i ; (22)

micro-Fβ
c =

(β2 + 1)micro-precisionc × micro-recallc

β2micro-precisionc + micro-recallc
.

(23)
The larger the value ofmacro-Fβ

c andmicro-Fβ
c, the bet-

ter the performance of the categorizer. The performance is
perfect whenmacro-Fβ

c = 1 andmicro-Fβ
c = 1.

Figure 17 and Figure 18 show the categorizers’ perfor-
mance in terms ofmacro-Fc

1 andmicro-Fc
1, respectively, for

EX100 and AT100 (the larger the better). VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for

EX100, but outperforms it for AT100 (two-tailed paired t-
test at5% significance level). VG-RAM WNN-COR outper-
forms ML-KNN for EX100 and AT100 (two-tailed paired t-
test at5% significance level).
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Figure. 17: Macro-F1

c (the larger the better)
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Precision on a per-document basis (precisiond
j ) evaluates

the fraction of predicted categories that are pertinent forthe
test documentdj , and can be estimated in terms of the con-
tingency table fordj shown in Table VI-B as:

precisiondj =
TPj

TPj + FPj

, (24)

whereFPj (false positives fordj) is the number of categories
that have been incorrectly predicted fordj ; and TNj (true
negatives),TPj (true positives), andFNj (false negatives) are
defined accordingly.



Document Expert judgments
dj YES NO

Categorizer YES TPj FPj

judgments NO FNj TNj

Table 3: The contingency table for the test documentdj .

The average ofprecisiondj can be computed in two different
ways:

macro-precisiond =

∑|Te|
j=1

precisiondj
|Te|

; (25)

micro-precisiond =

∑|Te|
j=1

TPj

∑|Te|
j=1

(TPj + FPj)
. (26)

The larger the value of macro-precisiond and
micro-precisiond, the better the performance of
the categorizer. The performance is perfect when
macro-precisiond = 1 andmicro-precisiond = 1.
Figure 19 and Figure 20 show the categorizers’ performance
in terms ofmacro-precisiond andmicro-precisiond, respec-
tively, for EX100 and AT100 (the larger the better). VG-
RAM WNN-COR presents the same performance of VG-
RAM WNN for EX100, but outperforms it for AT100. VG-
RAM WNN-COR outperforms ML-KNN for EX100 and
AT100.
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Figure. 19: Macro-precisiond (the larger the better)

Recall on a per-document basis (recalldj ) evaluates the frac-
tion of pertinent categories that are predicted for the testdoc-
umentdj , and can also be estimated in terms of the contin-
gency table fordj shown in Table VI-B as:

recalldj =
TPj

TPj + FNj

. (27)

Estimates ofmacro-recalld andmicro-recalld are calculated
as:

macro-recalld =

∑|Te|
j=1

recalldj
|Te|

; (28)

0.00

0.20

0.40

0.60

0.80

1.00

M
ic

ro
−

pr
ec

is
io

nd

WNN−COR
WNN

ML−KNN

(a) EX100

0.00

0.20

0.40

0.60

0.80

1.00

M
ic

ro
−

pr
ec

is
io

nd

WNN−COR
WNN

ML−KNN

(b) AT100
Figure. 20: Micro-precisiond (the larger the better)

micro-recalld =

∑|Te|
j=1

TPj

∑|Te|
j=1

(TPj + FNj)
. (29)

The larger the value ofmacro-recalld andmicro-recalld, the
better the performance of the categorizer. The performance
is perfect whenmacro-recalld = 1 andmicro-recalld = 1.
Figure 21 and Figure 22 show the categorizers’ performance
in terms ofmacro-recalld andmicro-recalld, respectively, for
EX100 and AT100 (the larger the better). VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for
EX100, but outperforms it for AT100. VG-RAM WNN-COR
outperforms ML-KNN for EX100 and AT100.
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Figure. 21: Macro-recalld (the larger the better)

Fβ on a per-document basis (Fβ
d
j ) evaluates the weighted
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Figure. 22: Micro-recalld (the larger the better)

harmonic mean ofprecisiondj andrecalldj :

Fβ
d
j =

(β2 + 1)precisiondj × recalldj
β2precisiondj + recalldj

. (30)

Estimates ofmacro-Fβ
d andmicro-Fβ

d are given by:

macro-Fβ
d =

1

|Te|

|Te|
∑

j=1

Fβ
d
j ; (31)

micro-Fβ
d =

(β2 + 1)micro-precisiond × micro-recalld

β2micro-precisiond + micro-recalld
.

(32)
The larger the value ofmacro-Fβ

d andmicro-Fβ
d, the bet-

ter the performance of the categorizer. The performance is
perfect whenmacro-Fβ

d = 1 andmicro-Fβ
d = 1.

Figure 23 and Figure 24 show the categorizers’ perfor-
mance in terms ofmacro-Fd

1 andmicro-Fd
1, respectively, for

EX100 and AT100 (the larger the better). VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for
EX100, but outperforms it for AT100. VG-RAM WNN-COR
outperforms ML-KNN for EX100 and AT100.
Note that the microaveraged metrics give an equal result,
independently of being defined on a per-category basis or
on a per-document basis. To understand why this is so,
let FPij = 1 if the categoryci has been incorrectly pre-
dicted for the test documentdj , FPij = 0 otherwise; and
TPij = 1 if ci has been correctly predicted fordj , TPij = 0
otherwise. Estimates of microaveraged precision on a per-
category basis (micro-precisionc) and on a per-document ba-
sis (micro-precisiond) can be obtained, respectively, as:

micro-precisionc =

∑|C|
i=1

TPi
∑|C|

i=1
(TPi + FPi)

(33)

=

∑|C|
i=1

∑|Te|
j=1

TPij

∑|C|
i=1

(
∑|Te|

j=1
TPij +

∑|Te|
j=1

FPij)
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Figure. 23: Macro-F1

d (the larger the better)
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Figure. 24: Micro-F1

d (the larger the better)

micro-precisiond =

∑|Te|
j=1

TPj

∑|Te|
j=1

(TPj + FPj)
(34)

=

∑|Te|
j=1

∑|C|
i=1

TPij

∑|Te|
j=1

(
∑|C|

i=1
TPij +

∑|C|
i=1

FPij)

As one can observe in Equations (33) and (34),
micro-precisionc is equal to micro-precisiond. Analo-
gously, one can show thatmicro-recallc andmicro-Fβ

c are
equal tomicro-recalld andmicro-Fc

β , respectively.

C. Statistical T-Test

To present a clearer view of the relative performance of the
algorithms, a partial order≻ is defined on the set of all com-
paring algorithms for each evaluation metric, where A1≻ A2



means that the performance of algorithm A1 is significantly
better than that of algorithm A2 on the specific metric (two-
tailed paired t-test at5% significance level). If the perfor-
mance is not significantly better, we say A1≡ A2. The par-
tial order on all comparing algorithms in terms of each eval-
uation metric for the EX100 and AT100 data sets is shown in
Table 4 and Table 5, respectively.
It is important to note that it is possible that A1 performs bet-
ter than A2 in terms of some metrics but equivalent or worse
in others. In this case, it is hard to judge which algorithm is
superior. So, in order to give an overall performance assess-
ment of an algorithm, we employed a score that takes into
account its performance against that of the other algorithms
on all metrics. Concretely, for each evaluation metric, if A1
≻ A2 holds, then A1 is rewarded with a positive score+1
and A2 is penalized with a negative score−1. Based on the
accumulated score of each algorithm on all evaluation met-
rics, a total order> is defined on the set of all comparing
algorithms, as shown in the last line of Table 4 and Table 5,
where A1> A2 means that A1 performs better than A2 on
the EX100 and AT100 data sets, respectively. The accumu-
lated score of each algorithm is also shown in the parenthe-
ses. As shown in Table 4 and Table 5, VG-RAM WNN-COR
has an overall better performance than VG-RAM WNN and
ML-KNN on both the EX100 and AT100 databases for the
set of metrics considered.

Evaluation metric WC × WN WC × ML WN × ML
one-error WC ≡ WN WC ≻ ML WN ≻ ML
coverage WC ≻ WN WC ≡ ML WN ≡ ML
ranking-loss WC ≻ WN WC ≡ ML WN ≡ ML
avg-precision WC ≡ WN WC ≻ ML WN ≻ ML
R-precision WC ≡ WN WC ≻ ML WN ≻ ML
hamming-loss WC ≡ WN WC ≻ ML WN ≻ ML
exact-match WC ≡ WN WC ≻ ML WN ≻ ML
macro-precisionc WC ≡ WN WC ≻ ML WN ≻ ML
micro-precisionc WC ≡ WN WC ≻ ML WN ≻ ML
macro-recallc WC ≡ WN WC ≻ ML WN ≻ ML
micro-recallc WC ≡ WN WC ≻ ML WN ≻ ML
macro-Fc

1 WC ≡ WN WC ≻ ML WN ≻ ML
micro-Fc

1 WC ≡ WN WC ≻ ML WN ≻ ML
macro-precisiond WC ≡ WN WC ≻ ML WN ≻ ML
micro-precisiond WC ≡ WN WC ≻ ML WN ≻ ML
macro-recalld WC ≡ WN WC ≻ ML WN ≻ ML
micro-recalld WC ≡ WN WC ≻ ML WN ≻ ML
macro-Fd

1 WC ≡ WN WC ≻ ML WN ≻ ML
micro-Fd

1 WC ≡ WN WC ≻ ML WN ≻ ML
Total Order WC(19) > WN(15) > ML(−34)

Table 4: Results of t-test for EX100.

VII. Conclusions

In this paper, we presented an experimental evaluation of
Data Correlated VG-RAM WNN (VG-RAM WNN-COR)
on multi-label text categorization and compared its perfor-
mance with that of standard VG-RAM WNN and ML-KNN
categorizers. In order to do that, we used two data sets
composed of textual descriptions of economic activities of
companies categorized manually according to lawful Brazil-
ian economic activities. Our experimental results showed

Evaluation metric WC × WN WC × ML WN × ML
one-error WC ≻ WN WC ≻ ML WN ≻ ML
coverage WC ≻ WN WC ≻ ML WN ≻ ML
ranking-loss WC ≻ WN WC ≺ ML WN ≺ ML
avg-precision WC ≻ WN WC ≻ ML WN ≻ ML
R-precision WC ≻ WN WC ≻ ML WN ≻ ML
hamming-loss WC ≻ WN WC ≻ ML WN ≻ ML
exact-match WC ≻ WN WC ≻ ML WN ≻ ML
macro-precisionc WC ≻ WN WC ≻ ML WN ≻ ML
micro-precisionc WC ≻ WN WC ≻ ML WN ≻ ML
macro-recallc WC ≻ WN WC ≻ ML WN ≻ ML
micro-recallc WC ≻ WN WC ≻ ML WN ≻ ML
macro-Fc

1 WC ≻ WN WC ≻ ML WN ≻ ML
micro-Fc

1 WC ≻ WN WC ≻ ML WN ≻ ML
macro-precisiond WC ≻ WN WC ≻ ML WN ≻ ML
micro-precisiond WC ≻ WN WC ≻ ML WN ≻ ML
macro-recalld WC ≻ WN WC ≻ ML WN ≻ ML
micro-recalld WC ≻ WN WC ≻ ML WN ≻ ML
macro-Fd

1 WC ≻ WN WC ≻ ML WN ≻ ML
micro-Fd

1 WC ≻ WN WC ≻ ML WN ≻ ML
Total Order WC(36) > WN(−2) > ML(−34)

Table 5: Results of t-test for AT100.

that VG-RAM WNN-COR has an overall better performance
than VG-RAM WNN and ML-KNN on the two databases for
the set of metrics considered.

VIII. Acknowledgments

We would like to thankReceita Federal do Brasil, Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnoĺogico—
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Computaç̃ao de Alto Desempenho — LCAD (High Perfor-
mance Computing Laboratory) at UFES. Currently, he is pur-
suing his M.Sc. degree in Electrical Engineering at UFES.
His research interests include information retrieval and data
mining.

Dr. Claudine Badue is an Associate
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