Distributed Query Processing Using Partitioned Inverted Rles

Claudine Badue Ricardo Baeza-Yatés
Berthier Ribeiro-Netd Nivio Ziviani*
1.34Computer Science Department 2Computer Science Department
Federal University of Minas Gerais University of Chile
Belo Horizonte, Brazil Santiago, Chile
{claudine,berthier,nivib@dcc.ufmg.br rbaeza@dcc.uchile.cl
Abstract networks of workstations have a huge amount of memory

and very fast processors, both of which sit idle most of the

In this paper, we study query processing in a distributed time. Third, switched networks allow bandwidth to scale
text database. The novelty is a real distributed architec- with the number of processors and low overhead communi-
ture implementation that offers concurrent query service. cation protocols have made it possible to do very fast com-
The distributed system adopts a network of workstationsmunication among workstations.
model and the client-server paradigm. The document col- Two approaches have been proposed in the work pre-
lection is indexed with an inverted file. We adopt two dis- sented in [14] to distribute the index of text collections
tinct strategies of index partitioning in the distributegkss among various computers. Nevertheless, none of these ap-
tem, namely local index partitioning and global index parti proaches have been implemented in related work on a real
tioning. In both strategies, documents are ranked using the case framework aiming at providing to the users concurrent
vector space model along with a document filtering tech- access to the documents in the collection.
nigue for fast ranking. We evaluate and compare the impact In this paper, we study concurrent query processing in a
of the two index partitioning strategies on query procegsin distributed text database by a real case implementatios. Th
performance. Experimental results on retrieval efficiency distributed system uses a network of workstations model
show that, within our framework, the global index parti- and the client-server paradigm. We adopt two distinct types
tioning outperforms the local index partitioning. of inverted file partitions for indexing the text database,
namely local index partitioning and global index partition
ing. In the local index partitioning, the documents in the
text database are distributed among the processors, amd eac
processor generates an inverted file for its documentseln th
global index partitioning, an inverted file is generated for

The number and size of text databases has grown at exall the documents in the text database and the inverted lists
plosive rates. At the same time, there is a rapid increaseare distributed among processors. In both index partition-
in the number of users and consequently, in the number ofing strategies, documents are ranked using the vector space
gueries submitted to information retrieval systems. As$ tex model along with a document filtering technique proposed
collections grows larger, they become more expensive to bein [10] and adapted to the distributed processing in [5]sThi
managed by an information retrieval system. Furthermore,distributed filtering technique preserves retrieval effec
as the number of queries increases, it becomes even moraess with reduction in ranking costs, according to the tesul
important to provide high query processing rates. shown in [3].

A cost-effective solution for this problem is distributed We evaluate and compare the impact of the two in-
computing, which consists of the application of multiple dex partitioning strategies on query processing perfor-
computers connected by a network to solve a single prob-mance. Experimental results on retrieval efficiency show
lem. Some of the advantages of the network of worksta- that, within our framework, the global index partitioning
tions model are as follows [1]. First, network of worksta- outperforms the local index partitioning specially whea th
tions has become extraordinarily powerful and offer a Ibette number of processors exceeds the average number of terms
price-performance than parallel computers. Second, mostn query. The processing time with the global index parti-

1. Introduction

tioning might be twice smaller as that with the local index the following aspects. First, instead of adopting a shared-
partitioning. everything model, we use a shared-nothing architecture.
To the best of our knowledge, this is the first work that Second, instead of adopting the boolean model, we use the
presents experimental results on the performance of a convector space model as ranking strategy. Third, instead of
current query processing system implemented on a real casenodeling the database and the queries, we use the TREC-3
distributed framework. collection. Fourth, instead of deriving results from a sim-
This paper is organized as follows. Section 2 cov- ulation model, we implement and thoroughly evaluate dis-
ers the related work. Section 3 presents the distributedtributed query processing performance on a real case frame-
text database, describing the system architecture, tlexind work. Fifth, instead of considering only a sequential query
structure, the vector space model as ranking strategy andservice, we address a concurrent query service.
the query processing. Section 4 explains the implementa-
tion aspects of the system. Section 5 shows the experimen
tal results, and Section 6 presents the conclusions angfutu
work.

The work in [11] adopts the two index organizations pro-
posed in [14]. The architecture is that of a network of work-
stations, where each machine has its own local memory and
disk (shared-nothing). They adopt the vector space model
as ranking strategy, use the documents and queries in the
2. Related work TREC-3 collection [6], address a concurrent query service,
and derive experimental results from an analytical model

The work in [14] proposes the two basic and distinct coupled with a simulator. Our work differs from that pre-
options for storing the inverted lists, that we already men- sented in [11] in the following way. Instead of studying
tioned. With the local index organization, the documents duery performance using a simulation model, we implement
are evenly partitioned into sets, one for each disk; in eachand thoroughly evaluate concurrent query processing per-
partition, inverted lists are built for the documents thet r formance on a real case framework. Our results show that
side there. In the global index organization, the full lists the global index organization overcomes the local index or-
are evenly spread across all the disks in the system. Thedanization, confirming their simulation model results.
architecture is that of a LAN, where the number of CPUs The work in [9] investigates the two types of index par-

(each CPU has its own local memory), the number of I/O titions proposed in [14]. The search topology is a shared-
controllers per CPU, and the number of disks per controller nothing master/slave top0|ogy_ Documents are searched us-
are varied. The adopted query type is the “boolean and”.ing the probabilistic model. The data used in experiments
The data used are synthetic documents and queries. Expefre part of the documents and queries in the TREC-7 collec-
iments are based on a simulation model. tion [7]. Experiments are based on a real case implemen-
Our work differs from that presented in [14] in the tation. Nevertheless, they address only a sequential query
following aspects. First, while they adopted the boolean service. Our work differs from that presented in [9] in the
model, we adopt the vector space model. Second, whilefgllowing aspects. First, we adopt the vector space model
they model the documents and the queries, we base oufor ranking documents, while they adopt the probabilistic
experimental results on the documents and queries in themodel. Second, we implement a concurrent query service,
TREC-3 collection [6]. Third, we implement and thor- while they address only a sequential query service. Third,
oughly evaluate distributed query processing performanceoyr results show that the global index partitioning is the

on a real case framework, while they derive experimen- pest, while they conclude that within their framework the
tal results from a simulation model, that hardly foresee |ocal index partitioning is a superior choice.
all the factors that influence system performance. Fourth,
while their simulator considers only a sequential query ser
vice, we address a concurrent query service, that provides .
a higher performance than the poor and unrealistic sequen—?" Distributed text database
tial query service. Fifth, while they conclude that within
their framework the local index organization is a prefegabl
choice, our results show that the global index organization In this section, we present the distributed text database.
is the best. First, we characterize the system architecture. Second, we
The work in [8] considers the two different index parti- discuss the index structure and the two strategies toipartit
tioning schemes proposed in [14] for a shared-everythingit across the network. Third, we explain the technique for
multiprocessor machine with multiple disks. The query ranking documents using the vector space model along with
type used is the boolean, the database and query modelthe document filtering technique. Finally, we detail query
are synthetic, and experimental results are derived by sim-processing in the distributed text database, presentiag th
ulation. Our work differs from that presented in [8] in differences between the two index partitioning.

3.1. System architecture 3.2. Index structure

The text database is indexed using the inverted file tech-
The distributed system uses a network of workstations pique [4]. The main advantages of the inverted file are the
model. The workstations are tightly coupled by fast net- yg|atively low cost for building and maintaining it, a seiarc
work switching technology. Each workstation has its own ing strategy based mostly on the vocabulary which usually
local memory and local disk. The advantages of this sharedfits in main memory, and a good retrieval performance.
nothing model are that all communication between proces- ap inverted file is an indexing structure composed of two
sors is done through messages, which eliminates interfergjements: thevocabularyand a set ofnverted lists The
ence from operating system memory control processes, andocabulary contains each tertin the text document col-
that disks are directly accessed by processors without go{ection; the terms are sorted in lexicographical order.r&he
ing through the network. Figure 1 illustrates the network of s gne inverted list for each term consisting of the iden-
workstations model. tifiers of the documents containing the term and, with each
identifierd, the frequencyf,; of t in d. Thus, inverted lists

consist of term entries, that is, pairs<fd, f;; > values.

3.3. Index partitioning

‘Memory 14
Processor 1|

‘Memory Eﬁ
Processor 3

‘Memory q
Processor p|

‘Memory 4J

Processor

We consider two strategies to partition the inverted file
I I I I across the network: local index and global index. Next, we

describe both strategies.
[S— [S— [S— [S—

3.3.1. Local index
Figure 1. Network of workstations model. . _ . .
One possible alternative to partition the text database in-
dex is to have a local inverted file for each subcollection.
The retrieval system adopts the client-server paradigmIn this case, documents are evenly distributed among pro-
that consists of a set of server processes and a designategessors and each processor generates an inverted file for its
broker process, responsible for accepting client quatiss, = documents. The size: (in bytes) of the local subcollections
tributing the queries to the servers, collecting interrageli is approximately given by Equation(1):
results from the servers, combining the intermediate tesul

into the final result and sending the final result to the client sc = — 1)
Each of the server processes and the broker process runs on p
a separate processor. Figure 2 illustrates the clieneserv |, o an is the size (in bytes) of the whole text database col-
paradigm. lection andp is the number of processors. In other words,
each processor holds in its local disk a subcollection whose
size is approximately given bye. The value ofsc is ap-
{ [Client 4 } { [Client 3 } { [Client 3 } { } proximatF()aFc)i, becausgv%e canbr?lgt split a document in tFr)\e text
| | | | database collection. Figure 3 illustrates the local incax p
\ | titioning, considering a network composeddprocessors.
j i Network In the local index partitioning, information on the global

occurrence of terms in the text database is not available. Th

absence of this information slacks the estimates for the in-

verse document frequencigl{) weights used by the vector
Network space model to rank documents in the text database collec-
tion. A solution to this problem is to compute th# for all
index terms and distribute this information to all processo

I} ‘ I} I}
" " "

| | | |
‘ ‘ Swerveﬁ ‘ ‘ ‘ Sfervéﬂ ‘ ‘ ‘ éer\/eﬂ ‘ ‘ _-Server
P3 P,

P A Po

3.3.2. Global index

The other alternative to partition the index is to have
a global inverted file for the whole text database. In this
case, an inverted file is generated for documents in the text

Figure 2. Client-server paradigm.

Documents Documents

1 2|3 415 6|7 8 1 2 3 4 5 6 7 8
A X X X X A X X X X
R
C X X X X C X X X X
D X X X X D X X X X
R
G X X X X X X X X
Terms Terms
H X X X X X X X X
R
N X X X X N X X X X
X X X X (e} X X X X
P
z X X X X VA X X X X
R R R !

Figure 4. Global index partitioning.

Figure 3. Local index partitioning.

vector space model are its term-weighting scheme that im-
proves retrieval performance, its partial matching state
which allows retrieval of documents that approximate the
guery conditions, and its cosine ranking formula that sorts
the documents according to their degree of similarity to the
L query. A large variety of alternative ranking methods have
sl = P () been compared to the vector space model but the consen-
sus seems to be that, in general, the vector space model is
where L is the size of the set of inverted lists in the text either superior or almost as good as other alternatives. Fur
database anglis the number of processors. In other words, thermore, it is simple and fast. For these reasons, thevecto
each processor holds in its local disk a subset whose size ispace model is a popular retrieval model nowadays [4].

database and the inverted lists are evenly distributed gmon
processors. The sizg (in bytes) of the local subset of in-
verted lists is approximately given by Equation(2):

approximately given byl. The value okl is approximated, In the vector space model, documents and user queries
because we cannot Sp“t an inverted list of a term in the teXtare represented as vectors of the We|ght of terms. A docu-
database collection. ment vector is defined @= (wq 1, wqs, ..., wq.,), Where

We consider thatinverted lists are distributed among pro-; is the total number of index terms in the collection and
cessors in lexicographical order. According to this strgte wq,; is the weight of termi for the documend. A query is
one possible partitioning for the global index might be one seen as a small document. We assign the weight to a term
in which processotr holds the inverted lists for all the terms in a document or a query using tHddf scheme [12] The
that start with the letters A, B and C; proces8drolds the yector space model proposes to evaluate the degree of sim-
inverted lists for all the terms that start with the letters D jlarity of the document! with regard to the query as the
E, F and G; and so on, such that each processor holds &orrelation between the vectodsandg, that can be quan-
portion of the global index whose size is approximatély tified by the cosine of the angle between these two vectors.
Figure 4 illustrates the global index partitioning, comsid The standard algorithm for ranking documents using the

ing a network composed byprocessors. vector space model uses a set of accumulators, one accumu-
_ _ lator for each documentin a collection, and a set of inverted
3.4. Ranking with the vector model lists. For each query term the contribution made by the

termt to the degree of similarity between the quergnd
The documents in the text database collection are rankedeach document in the inverted list is added to the docu-
using the vector space model. The main advantages of thanentd’s accumulator’s value. The final result is composed

by the documents with the highest accumulator values. to the server processes, receiving the intermediate sesult
For a large document database, the ranking evaluationreturned by each one of the server processes and combining

cost - volume of main memory, disk traffic and CPU pro- the intermediate results into the final result.

cessing time - can be prohibitively high, because it assigns We do not study how the performance is affected by the

a similarity value to every document containing any of the query arrival rate. Instead, we assume that the arrival rate

query terms. The work in [10] proposes a technique for fil- of queries in the system is high enough to fill a query pro-

tering documents during ranking which allows a significant cessing queue. Hence, we do not compute the actual user

reduction of ranking evaluation costs without degradation response time for a query, but the system time. Next, we

in retrieval effectiveness. The filtering method considers describe the query processing algorithms implemented in

as candidate answers only the documents with high within-the broker, which differ according to the index partitiogin

documentfrequency. The memory usage is reduced becausgtrategy.

having fewer candidates means that fewer accumulators are

required to store information about these candidates. Disk3.5.1. Local index

traffic and CPU processing time are also reduced because,

by ordering inverted lists by decreasing within-document !N the localindex partitioning, an individual query is pro-

frequency, only the first portion of each list containingthig cessed as follows. The broker process sends the query to all

frequencies will be processed, and the rest can be ignored.Server processes. Each server retrieves the documents re-
Unfortunately, this filtering technique, as it states orig- Iat_ed to that query in the local subcollec_tion and ranks them

inally, does not work very well for distributed processing. USing the vector space model along with the document fil-

The reason is that its efficiency is influenced by thresholdst€ring technique; selects a number of documents from the

that are determined as a function of the accumulated partiafoP ©f the ranking; and returns them to the broker as the

similarity of the currently most relevant documeSit oz, local answer set. The broker uses a multiway merge [15]
whose growth in the distributed algorithm during ranking © fuse the local answer sets and produce the final ranked
evaluation differs from that in the sequential algorithm. answer set.

In the local index partitioning, if one of the processors ~ Regarding the selection of a number of documents to
holds only a few high weighted documents, the rising of be returned to the broker, consider that answer precision is
Simas is low: in the global index partitioning, when the pro- evall_Jated through the first documents m_the top of thg
cessors receive only a few terms, the valu,gf, is a frac- ranking. In the worst case, the broker will select the first

tion of that in the sequential algorithm. Consequently, the 7 documents from only one of the local answer sets. This
amount of pruned resources in the distributed algorithm is IMPlies that each server needs to send to the broker at most
smaller than in the sequential algorithm, which might dete- the topr documents of its ranking, in order of guaranteeing
riorate the performance of the former, making it even worse that the final answer precision is not diminished.

than the latter.

The work in [5] proposes a solution to this problem that
previews the rising of thé,,,,, value before query process-
ing. By adopting this adaptation of the filtering technique
to our system, we obtain approximately the same effective-
ness as the standard algorithm of the vector space model, fo
both the local and global index partitioning strategiegrp
significant reductions in ranking evaluation cost - queries
are processed in onl§% of the memory of the standard
algorithm and onlyl0% of all term entries in the inverted
lists are required. More details on how we implemented the
distributed filtering technique in our system and on the re-
trieval effectiveness results we obtained may be foundan th
work presented in [3].

3.5.2. Global index

In the global index partitioning, an individual query is
processed as follows. The broker process determines which
server processes hold inverted lists relative to the query
{erms, breaks the query into subqueries and sends them to
the respective servers. Each subquery is composed by the
terms which are stored in the server it is sent to. Once a
server has received a subquery, it retrieves the documents
related to its subquery and ranks them, using the vector
space model along with the document filtering technique;
selects a number of documents from the top of the ranking;
and returns them to the broker as the local answer set. The
broker adds the weights of the documents which are present
o) in more than one local answer set and do a sort to produce
3.5. Distributed query processing the final ranked answer set.

Regarding the merging of the local answer sets, the bro-

Our concurrent distributed query system consists of a setker cannot use the local rankings generated by individual
of server processes and a designated broker process, ead®rvers because such rankings are based in partial informa-
running on a separate processor, as presented in Section 3.1ion present in the subqueries. In other words, the local an-
The broker process is responsible for scheduling the qaierie swer sets returned by the servers contain partial siméarit

between each document and each term present in the sulterms in query is heavily loaded, while the processor that
query; it is necessary to sum the partial similarities i@ t holds the least frequent query terms stays relatively idle.
global similarity, which expresses the measure of releganc On the other hand, in the local index partitioning, all terms
between each document and the query. of a query are sent to all processors. Consequently, a good

The fact that the local rankings are based in partial infor- load balance level is always provided.
mation complicates the cutting strategy, that consistbef t In the local index partitioning, inverted lists are smaller
selection of a number of documents to be sent to the brokerbecause they contain only the documents from the subcol-
The work in [11] suggests a cutoff factor that depends on thelection assigned to the processor. On the other hand, in the
numberp of servers. The cutoff factor is given lay< p x r, global index partitioning inverted lists are larger, besmau
wherec is a constant and is the number of documents in they contain documents from the whole text database col-
the final answer set. Using such factor foe= 6, we ob- lection.
served no significant variation in the final answer precision In the local index partitioning, local answer sets are
as shown in the results of the work presented in [3]. smaller than in the global index partitioning. The reason is
that in the global index partitioning each processor doés no
have the information on the documents inserted in the set
of accumulators of the others. This implies that the selec-

The local index partitioning and global index partition- tion of documents as answer candidates must be less severe,
ing are compared in the following aspects, as presented inin order of avoiding the elimination of a relevant document
Table 1. that, however, has a low value in the accumulator of a de-
terminate processor.

In the local index partitioning, the local rankings con-
sider the global information related to the query, which al-
lows the number of documents to be sent to the broker being
equal to the number of documents in the final answer. In the
global index partitioning, the local rankings consideryonl

3.5.3. Comparison of strategies

LI Gl
High parallelism High concurrency
More disk seeks Less disk seeks
Better load balance Worse load balance
Smaller inverted lists Larger inverted lists

Smaller local answer set

5 Larger local answer sets

Topr documents are ser|
to the broker

t Top (c - p - r) documents
are sent to the broker

partial information related to the subquery, which implies
that the number of documents to be sent to the broker must

be larger than the number of documents in the final answer.

In the sequel, we investigate how these differences,
which are determinant in query processing performance,
can favor one of the index partitioning strategies in detri-
ment of the other.

Table 1. Comparison between the local and
global index partitioning strategies.

In the local index partitioning, all processors are devoted
to the execution of a single query. Therefore, the local in-
dex partitioning always provides high parallelism. On the
other hand, in the global index partitioning, not all proces
sors might be involved with the processing of a single query. In this section, we describe some details of the system
A scenario that confirms this statement is when the numberimplementation with focus on the issues regarding the con-
of processors is larger than the number of query terms. An-current query service.
other scenario is when many query terms are stored in a We adopt the client/server paradigm. In this scheme,
single processor releasing the others. Therefore, theaplob client processes request services from a server process. A
index partitioning might allow high concurrency. server process normally listens at a known address for ser-

In the local index partitioning, retrievals require more Vvice requests. That is, the server process remains dormant
disk seeking operations, because the processors reckive alintil a connection is requested by a client's connection to
query terms. On the other hand, in the global index parti- the server's address. At such a time, the server process
tioning retrievals require less disk seeking operatiors, b “wakes up” and services the client, performing whatever
cause the processors do not necessarily receive all querpppropriate requested actions.
terms. According to these properties, the server process is a pas-

In the local index partitioning, the load balance level is sive entity, listening for client connections, while thesokt
better than in the global index partitioning. The reason is process is an active entity, initiating a connection when in
that in the global index partitioning, the terms in aquesyar voked. In our model, the service is the processing of a
sent only to the processors which store their inverted. lists query. Clients request service to a central server, called
This implies that the processor that holds the most frequentbroker. In its turn, the broker requests service to the other

4. Implementation aspects

servers in the distributed architecture. When the broker re 5.1. Experimental setup
guests service to a server, it plays the role of a client.

The broker process is constituted by an insertion thread, "€ network of workstations we used in the experiments
a merging thread and different scheduling threads for each’S COmposed by 5 PCs with the same configuration. Each
server process in the network. All these threads run in paral PC is an AMD-K6-2 with a 500MHz processor, 256Mbyte
lel in the broker process. The main data structures shared by?f main memory, 30Gbyte IDE hard disk, and running
the threads are the scheduling queues, one for each serverinux kernel 2.2.14. The workstations are connected by a
process, and the buffer of intermediate results. The s¢thedu 100Mbps fast Ethernet with a 16 port switch.
ing queues contain queries, if the index partitioning is the The data we have used in the experiments comprise the
local one, or subqueries, if the index partitioning is the disks 1 and 2 of the TREC-3 collection [6]. Each of the
global one. The buffer of intermediate results temporarily disks is about 1 gigabyte in size. We used two sets of

contains local answer sets waiting for being merged into fi- queries, namely a TREC query set and an artificial query
nal answer sets. set, that mimics Web-like queries. The TREC query set is

. based on topicd51 to 200 of the ad-hoc task, totalizing
The insertion thread is responsible for inserting a query 50 queries in all. The terms were automatically extracted

(or subquery) in the scheduling queues of the servers thaf,m the topic descriptions, after eliminating SGML tags

must execute that query (or subquery). Each of the schedul 4 stop words. The average number of terms per query is

ing threads is responsible for taking a query (or subquery)sy | the artificial query set, composed BYOO queries,
out of its queue, sending the query (or subquery) 10 itS ¢ terms were randomly chosen from the collection vocab-

server, receiving the local answer set, and storing the Io'ulary, but avoiding stop words [2]. The number of terms per
cal answer set into the buffer of intermediate results. Thequery is2 or 3.

merging thread is responsible for fusing local answer sets
into final answer sets, as soon as all the local answer set
related to a query (or subqguery) are available in the buffer
of intermediate results.

%.2. Retrieval efficiency

In this section, we compare retrieval efficiency between

In this way, these different threads run in parallel and the global and local index partitioning. We discuss the re-
in asynchronous mode to dispatch the several queries tosy|ts for the50 TREC queries, which are longer and force
the different servers, receive the intermediate resultd, & parallelism, and the results for tR600 artificial queries,
merge the intermediate results into the final results. This\yhich are shorter and allow concurrency in our system. The
scheduling scheme increases the system throughput by almetrics used are: (i) processing time, given by the elapsed
lowing the simultaneous processing of more than one querytime in seconds to process a batch of queries ysjmyces-
and by avoiding to the utmost the idleness of processors inggys: (i) speedup, given by the ratio between the process-
the network. ing time for one processor and the processing time with

The interprocess communication between broker andprocessors; and (iii) load imbalance, given by the ratio be-
server processes is socket-based. The data transmissiofiveen the maximum processing time and the average pro-
mechanism is stream-based, which pro\/ides Sequenced, r@GSSing time of the processors. It follows the results and
liable, two-way and connection-based byte streams. Thecorresponding interpretations.
synchronization of the access to shared memory segments
is done with semaphores. The algorithms are implementedd.2.1. TREC queries
with the C programming language and compiled by the
GCC 2.91.66 compiler. We use the C programming lan- Figure 5 shows the time to process GteTREC queries
guage because of its efficiency and its easy integration withas a function of the number of processors in the network, for
operating systems in general. the local and global index partitioning. As it can be seen,
the local index partitioning outperformed the global index
partitioning with a network composed Ryprocessors, but
the global index partitioning outperformed the local index
partitioning with a network composed tyand4 proces-
sors. The interpretation for this result is as follows.

In the global index partitioning, with a network com-

In this section, we present the experimental results onposed by and4 processors, the number of seeks performed
the real case implementation. We compare the performancéocally dropped to the point of counterbalancing the ragkin
impact on query processing of both the local and the globaland communication costs, which are higher than in the lo-
index partitioning strategies. cal index partitioning. However, with a network composed

5. Experimental results

LI ——

processing time (s)

2

1 4
number of processors
Figure 5. Processing time for the 50 TREC

queries.

by only 2 processors, the number of seeks performed lo-
cally did not reduce enough for offsetting those prejudicia
effects.

Figure 6 shows the speedup while processing ibe
TREC queries. We observe that speedup in the global in-
dex partitioning is not that much superior than in the local
index partitioning, as a result of the parallelism constedi
by the length of TREC queries.

1.9

LI ——

18+

1.7+

16 ¢

speedup

15¢

14t~

13%
2

3
number of processors

Figure 6. Speedup for the 50 TREC queries.

Figure 7 shows the load imbalance while processing the
50 TREC queries. In the local index partitioning, load im-
balance is not an issue as for any network configuration it
was found to be just ovdr However, it is perceptibly worse
in the global index partitioning. The interpretation foetie
results is as follows.

In the global index partitioning, the query terms are

routed to the processors which hold the respective inverted

lists. So, if some terms are more frequently requested in

a query, the processor that stores those terms is heavily

1.45

Ll ——-
14+ Gl w5
g 135) -
8 1257
e]
8 115}
1.1+
R
1 : }
2 3 4
number of processors
Figure 7. Load imbalance for the 50 TREC

queries.

local index partitioning, all query terms are sent to all-pro
cessors. This implies that all processors are involved with
the execution of all queries. Consequently, a good level of
load balance is always provided. A modest load imbalance
might occur if a processor holds documents that are more
relevant to the query than other processors. In this sagnari
the cost for reading inverted lists, accumulating document
weights and ranking will be higher in the processors which
hold the most relevant documents.

It is important to note that if the load balance were uni-
form in our system, the global index partitioning would
have a better performance than the local index partitigning
no matter the number of processors in the network, as it
can be seen in Figure 8 and Figure 9 that show the pro-
cessing time and speedup respectively. Also, the relative
performance improvement would increase with the num-
ber of processors, as shown in Table 2. For simulating the
load balanced scenario, we simply averaged by processor
the time taken by the broker to collect the local answer sets,
instead of considering the maximum time associated with
the slowest processor.

Number Gl as percentage of LI (%
of processors
2 80.94
3 74.39
4 73.36

Table 2. Processing time in the load balanced
scenario for the 50 TREC queries: Gl as per-
centage of LI.

loaded; on the contrary, the processor that stores the least

frequent query terms stays relatively idle. Otherwisehin t

z z
]]
£ £
E E
@ @
3] 3]
o e
[oR [oR
25+ x
1 1 20 1 1
1 2 3 4 1 2 3 4
number of processors number of processors
Figure 8. Processing time in the load bal- Figure 10. Processing time for the 2000 artifi-
anced scenario for the 50 TREC queries. cial queries.
26 : Number Gl as percentage of LI (%
'c-;'l T of processors|
247 =t 2 76.93
= 4 58.75
S 2t
o
7y Table 3. Processing time for the 2000 artificial
queries: Gl as percentage of LI.
1.2 :
2 3 4 terms.
number of processors Figure 11 shows the speedup while processin@ e
_ _ artificial queries. As it can be seen, the global index par-
Figure 9. Speedup in the load balanced sce- titioning presented a much superior speedup than the local
nario for the 50 TREC queries. index partitioning, as a result of the higher concurrentrgue

service provided by the first index organization.

Figure 12 shows the load imbalance while processing the
2000 artificial queries. For the local index partitioning, load
imbalance is also found to be just overlike we discussed
for the TREC query set. In the global index partitioning,

Figure 10 shows the time to process 280 artificial .) .
: . . load imbalance was not that much superior than in the lo-
queries as a function of the number of processors in the net-__: o .)
. oo cal index partitioning. This result is due to the method used
work, for the local and global index partitioning. As we

can observe, the global index partitioning consistently ou to generate the artificial queries, by which terms were ran-

performed the local index partitioning. In addition, thé re domly chosen from the collection vocabulary. In this way,

: . . . the probability distribution of terms in the artificial ques
ative performance improvement increases with the number :) .

. : tends to be uniform, which provides a better load balance.
of processors, as shown in Table 3. As it can be seen, the

global index partitioning might be twice as faster than the

5.2.2. Artificial queries

local index partitioning. The reason is as follows. 6. Conclusions and future work
In the local index partitioning, all the processors are
forced to process th2 terms (on average) of each query. In this paper, we study concurrent query processing in a

Otherwise, in the global index partitionin® processors at distributed text database. We have implemented a real dis-
most are involved with the execution of a single query, as tributed architecture and compared the impact of two differ

a result of one of the following events (or a combination ent types of inverted file partitions on system performance.
of them): i) the query terms are held by a single proces- Documents are ranked using the vector space model along
sor, releasing the others to execute another query; ordi) th with a document filtering technique for fast ranking.

number of processors are larger than the number of query Experimental results on retrieval efficiency show that,

2.4
22t GFEe

18 ¢

speedup

1.6
14l 7
12 //
| ‘

2 3 4
number of processors

Figure 11. Speedup for the 2000 artificial
queries.

1.18
1.16 + Gl %~ 1
1.14

1.12 ¢

1.08
1.06

1.04 //
1.02 ¢ 1
2 3 4
number of processors

load imbalance
-
-
X

Figure 12. Load imbalance for the 2000 artifi-
cial queries.

within our framework, the global index partitioning outper
forms the local index partitioning specially when the num-

ber of processors exceeds the average number of terms in

qguery. The processing time with the global index partition-
ing might be twice smaller as that with the local index par-
titioning. The main reason is that the global index pantitio

ing allows the parallelization of the most time consuming

phase of the algorithm - disk seeking. Further, the global

index partitioning provides a high concurrent query sezyic

which is particularly evidenced when the number of proces-

sors exceeds the average number of terms in query.
In future work, we are interested in adding more pro-

cessors to the network. Also, we intend to implement two
types of brokers, one for query scheduling and another for
merging of intermediate results; the merging broker can dy-

namically distribute its task with other processors when th

workload is high. Further, we are interested in making use
of multiprogramming in the server and evaluate the sys-

tem performance while varying the multiprogramming level

(number of simultaneous queries per server).

Other future direction of research is to evaluate the be-
havior of our system while processing Web data. A typical
Web workload comprises very large collections and very
short queries, and we are interested in specifying a query
arrival distribution.

Another direction for future research is to study new
strategies to generate the global index by exploiting usage
statistics and other measures, in order of achieving better
speedup, load balance and retrieval effectiveness. Adso, f
decreasing the index accessing time, we intend to investi-
gate the global index structured in two levels; the first leve
is an index for the most frequent queries stored in main
memory, and the second an index for the remaining of the
gueries stored in secondary memory.

Finally, we intend to study how the caching of query re-
sults and inverted lists proposed in [13] can improve the
performance of our system or favor one of the index parti-
tioning strategies.

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
Now Team. A case for NOW (Networks of Workstations).
IEEE Micro, 15(1):54—-64, February 1995.

[2] M. D. Araujo, G. Navarro, and N. Ziviani. Large text selarc
ing allowing erros. In R. Baeza-Yates, editBroceedings
of the Fourth South American Workshop on String Process-
ing, pages 2-20, Valparaiso, Chile, November 1997. Car-
leton University Press.

[3] C. S. Badue. Distributed query processing using partéd
inverted files. Master’s thesis, Federal University of Mina
Gerais, Belo Horizonte, Minas Gerais, Brazil, March 2001.

[4] R.Baeza-Yates and B. Ribeiro-Neto, editdvodern Infor-
mation Retrieval ACM Press New York, Addison Wesley,
1999.

[5] R. A. Barbosa. Desempenho de consultas em bibliote-
cas digitais fortemente acopladas. Master’s thesis, Beder
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil, May 1998. In Portuguese.

[6] D. Harman. Overview of the third text retrieval confer-
ence. In D. Harman, editoRroceedings of the Third Text
REtrieval Conference (TREC-3)ages 1-19, Gaithersburg,
Maryland, U.S.A., 1994. NIST Special Publication 500-207.

[7] D. Hawking, N. Craswell, and P. Thistlewaite. Overview
of TREC-7 very large collection track. In E. Voorhess
and D.K.Harman, editor®2roceedings of the Seventh Text
Retrieval Conferencepages 257-268, Gaithersburg, Mary-
land, U.S.A., November 1998. NIST Special Publication
500-242.

[8] B.-S. Jeong and E. Omiecinski. Inverted file partitianin
schemes in multiple disk systemdEEE Transactions on
Parallel and Distributed System$(2):142—-153, February
1995.

[9] A. MacFarlane, J. McCann, and S. Robertson. Parallel
search using partitioned inverted files. Pmoceedings of

(10]

(11]

(12]

(13]

(14]

(15]

the 7th International Symposium on String Processing and
Information Retrieval pages 209-220, La Coruna, Spain,
September 2000. IEEE Computer Society.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered docu-
ment retrieval with frequency-sorted indexdsurnal of the
American Society for Information Sciendd(10):749-764,
1996.

B. A. Ribeiro-Neto and R. A. Barbosa. Query performance
for tightly coupled distributed digital libraries. IRro-
ceedings of the third ACM Conference on Digital Libraries
pages 182-190, 1998.

G. Salton and C. Buckley. Term-weighting approaches in
automatic retrieval.Information Processing and Manage-
ment 24(5):513-523, 1988.

P. C. Saraiva, E. S. Moura, N. Ziviani, R. Fonseca, W.rslei
C. Murta, and B. Ribeiro-Neto. Rank-preserving two-level
caching for scalable search engines. Rroceedings of
the 24th ACM SIGIR Conferencllew Orleans, Louisiana,
U.S.A., September 2001 (to appear).

A. Tomasic and H. Garcia-Molina. Performance of ineelrt
indices in shared-nothing distributed text document imfar
tion retrieval systems. IRroceedings of the Second Interna-
tional Conference on Parallel and Distributed Information
Systemgpages 8-17, San Diego, California, U.S.A., 1993.
I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes - Compressing and Indexing Documents and Images
Morgan Kaufmann Publishers, In@% edition, 1999.

