
Distributed Query Processing Using Partitioned Inverted Files

Claudine Badue1 Ricardo Baeza-Yates2
Berthier Ribeiro-Neto3 Nivio Ziviani41;3;4Computer Science Department 2Computer Science Department

Federal University of Minas Gerais University of Chile
Belo Horizonte, Brazil Santiago, Chilefclaudine,berthier,niviog@dcc.ufmg.br rbaeza@dcc.uchile.cl

Abstract

In this paper, we study query processing in a distributed
text database. The novelty is a real distributed architec-
ture implementation that offers concurrent query service.
The distributed system adopts a network of workstations
model and the client-server paradigm. The document col-
lection is indexed with an inverted file. We adopt two dis-
tinct strategies of index partitioning in the distributed sys-
tem, namely local index partitioning and global index parti-
tioning. In both strategies, documents are ranked using the
vector space model along with a document filtering tech-
nique for fast ranking. We evaluate and compare the impact
of the two index partitioning strategies on query processing
performance. Experimental results on retrieval efficiency
show that, within our framework, the global index parti-
tioning outperforms the local index partitioning.

1. Introduction

The number and size of text databases has grown at ex-
plosive rates. At the same time, there is a rapid increase
in the number of users and consequently, in the number of
queries submitted to information retrieval systems. As text
collections grows larger, they become more expensive to be
managed by an information retrieval system. Furthermore,
as the number of queries increases, it becomes even more
important to provide high query processing rates.

A cost-effective solution for this problem is distributed
computing, which consists of the application of multiple
computers connected by a network to solve a single prob-
lem. Some of the advantages of the network of worksta-
tions model are as follows [1]. First, network of worksta-
tions has become extraordinarily powerful and offer a better
price-performance than parallel computers. Second, most

networks of workstations have a huge amount of memory
and very fast processors, both of which sit idle most of the
time. Third, switched networks allow bandwidth to scale
with the number of processors and low overhead communi-
cation protocols have made it possible to do very fast com-
munication among workstations.

Two approaches have been proposed in the work pre-
sented in [14] to distribute the index of text collections
among various computers. Nevertheless, none of these ap-
proaches have been implemented in related work on a real
case framework aiming at providing to the users concurrent
access to the documents in the collection.

In this paper, we study concurrent query processing in a
distributed text database by a real case implementation. The
distributed system uses a network of workstations model
and the client-server paradigm. We adopt two distinct types
of inverted file partitions for indexing the text database,
namely local index partitioning and global index partition-
ing. In the local index partitioning, the documents in the
text database are distributed among the processors, and each
processor generates an inverted file for its documents. In the
global index partitioning, an inverted file is generated for
all the documents in the text database and the inverted lists
are distributed among processors. In both index partition-
ing strategies, documents are ranked using the vector space
model along with a document filtering technique proposed
in [10] and adapted to the distributed processing in [5]. This
distributed filtering technique preserves retrieval effective-
ness with reduction in ranking costs, according to the results
shown in [3].

We evaluate and compare the impact of the two in-
dex partitioning strategies on query processing perfor-
mance. Experimental results on retrieval efficiency show
that, within our framework, the global index partitioning
outperforms the local index partitioning specially when the
number of processors exceeds the average number of terms
in query. The processing time with the global index parti-

tioning might be twice smaller as that with the local index
partitioning.

To the best of our knowledge, this is the first work that
presents experimental results on the performance of a con-
current query processing system implemented on a real case
distributed framework.

This paper is organized as follows. Section 2 cov-
ers the related work. Section 3 presents the distributed
text database, describing the system architecture, the index
structure, the vector space model as ranking strategy and
the query processing. Section 4 explains the implementa-
tion aspects of the system. Section 5 shows the experimen-
tal results, and Section 6 presents the conclusions and future
work.

2. Related work

The work in [14] proposes the two basic and distinct
options for storing the inverted lists, that we already men-
tioned. With the local index organization, the documents
are evenly partitioned into sets, one for each disk; in each
partition, inverted lists are built for the documents that re-
side there. In the global index organization, the full lists
are evenly spread across all the disks in the system. The
architecture is that of a LAN, where the number of CPUs
(each CPU has its own local memory), the number of I/O
controllers per CPU, and the number of disks per controller
are varied. The adopted query type is the “boolean and”.
The data used are synthetic documents and queries. Exper-
iments are based on a simulation model.

Our work differs from that presented in [14] in the
following aspects. First, while they adopted the boolean
model, we adopt the vector space model. Second, while
they model the documents and the queries, we base our
experimental results on the documents and queries in the
TREC-3 collection [6]. Third, we implement and thor-
oughly evaluate distributed query processing performance
on a real case framework, while they derive experimen-
tal results from a simulation model, that hardly foresee
all the factors that influence system performance. Fourth,
while their simulator considers only a sequential query ser-
vice, we address a concurrent query service, that provides
a higher performance than the poor and unrealistic sequen-
tial query service. Fifth, while they conclude that within
their framework the local index organization is a preferable
choice, our results show that the global index organization
is the best.

The work in [8] considers the two different index parti-
tioning schemes proposed in [14] for a shared-everything
multiprocessor machine with multiple disks. The query
type used is the boolean, the database and query models
are synthetic, and experimental results are derived by sim-
ulation. Our work differs from that presented in [8] in

the following aspects. First, instead of adopting a shared-
everything model, we use a shared-nothing architecture.
Second, instead of adopting the boolean model, we use the
vector space model as ranking strategy. Third, instead of
modeling the database and the queries, we use the TREC-3
collection. Fourth, instead of deriving results from a sim-
ulation model, we implement and thoroughly evaluate dis-
tributed query processing performance on a real case frame-
work. Fifth, instead of considering only a sequential query
service, we address a concurrent query service.

The work in [11] adopts the two index organizations pro-
posed in [14]. The architecture is that of a network of work-
stations, where each machine has its own local memory and
disk (shared-nothing). They adopt the vector space model
as ranking strategy, use the documents and queries in the
TREC-3 collection [6], address a concurrent query service,
and derive experimental results from an analytical model
coupled with a simulator. Our work differs from that pre-
sented in [11] in the following way. Instead of studying
query performance using a simulation model, we implement
and thoroughly evaluate concurrent query processing per-
formance on a real case framework. Our results show that
the global index organization overcomes the local index or-
ganization, confirming their simulation model results.

The work in [9] investigates the two types of index par-
titions proposed in [14]. The search topology is a shared-
nothing master/slave topology. Documents are searched us-
ing the probabilistic model. The data used in experiments
are part of the documents and queries in the TREC-7 collec-
tion [7]. Experiments are based on a real case implemen-
tation. Nevertheless, they address only a sequential query
service. Our work differs from that presented in [9] in the
following aspects. First, we adopt the vector space model
for ranking documents, while they adopt the probabilistic
model. Second, we implement a concurrent query service,
while they address only a sequential query service. Third,
our results show that the global index partitioning is the
best, while they conclude that within their framework the
local index partitioning is a superior choice.

3. Distributed text database

In this section, we present the distributed text database.
First, we characterize the system architecture. Second, we
discuss the index structure and the two strategies to partition
it across the network. Third, we explain the technique for
ranking documents using the vector space model along with
the document filtering technique. Finally, we detail query
processing in the distributed text database, presenting the
differences between the two index partitioning.

3.1. System architecture

The distributed system uses a network of workstations
model. The workstations are tightly coupled by fast net-
work switching technology. Each workstation has its own
local memory and local disk. The advantages of this shared
nothing model are that all communication between proces-
sors is done through messages, which eliminates interfer-
ence from operating system memory control processes, and
that disks are directly accessed by processors without go-
ing through the network. Figure 1 illustrates the network of
workstations model.

Processor 2

Memory 2 Memory 3

Processor 3 Processor p

Memory p

Processor 1

Memory 1

Disk 1 Disk 3 Disk pDisk 2

Network Switch

. . .

Figure 1. Network of workstations model.

The retrieval system adopts the client-server paradigm
that consists of a set of server processes and a designated
broker process, responsible for accepting client queries,dis-
tributing the queries to the servers, collecting intermediate
results from the servers, combining the intermediate results
into the final result and sending the final result to the client.
Each of the server processes and the broker process runs on
a separate processor. Figure 2 illustrates the client-server
paradigm.

Network

Network
P1

RjQj

Server

2P Pp

Server

3

Server

P P4

Server

Client 1 Client cClient 2 Client 3

Broker

. . .

. . .

Figure 2. Client-server paradigm.

3.2. Index structure

The text database is indexed using the inverted file tech-
nique [4]. The main advantages of the inverted file are the
relatively low cost for building and maintaining it, a search-
ing strategy based mostly on the vocabulary which usually
fits in main memory, and a good retrieval performance.

An inverted file is an indexing structure composed of two
elements: thevocabularyand a set ofinverted lists. The
vocabulary contains each termt in the text document col-
lection; the terms are sorted in lexicographical order. There
is one inverted list for each termt, consisting of the iden-
tifiers of the documents containing the term and, with each
identifierd, the frequencyfd;t of t in d. Thus, inverted lists
consist of term entries, that is, pairs of< d; fd;t > values.

3.3. Index partitioning

We consider two strategies to partition the inverted file
across the network: local index and global index. Next, we
describe both strategies.

3.3.1. Local index

One possible alternative to partition the text database in-
dex is to have a local inverted file for each subcollection.
In this case, documents are evenly distributed among pro-
cessors and each processor generates an inverted file for its
documents. The sizes
 (in bytes) of the local subcollections
is approximately given by Equation(1):s
 = Np (1)

whereN is the size (in bytes) of the whole text database col-
lection andp is the number of processors. In other words,
each processor holds in its local disk a subcollection whose
size is approximately given bys
. The value ofs
 is ap-
proximated, because we cannot split a document in the text
database collection. Figure 3 illustrates the local index par-
titioning, considering a network composed by4 processors.

In the local index partitioning, information on the global
occurrence of terms in the text database is not available. The
absence of this information slacks the estimates for the in-
verse document frequency (idf) weights used by the vector
space model to rank documents in the text database collec-
tion. A solution to this problem is to compute theidf for all
index terms and distribute this information to all processors.

3.3.2. Global index

The other alternative to partition the index is to have
a global inverted file for the whole text database. In this
case, an inverted file is generated for documents in the text

.

.

.

.

.

.

.

.

.

.

.

.

D

G

H

N

O

A

C

Z

A

x

x

x

x

x

1

x

x

x

2

x

x

x

x

3

x

x

x

x

4

x

x

x

5

x

x

x

x

x

6

x

x

x

x

8

x

x

x

x

7

P1 P3 P4P2

Terms

Documents

Figure 3. Local index partitioning.

database and the inverted lists are evenly distributed among
processors. The sizesl (in bytes) of the local subset of in-
verted lists is approximately given by Equation(2):sl = Lp (2)

whereL is the size of the set of inverted lists in the text
database andp is the number of processors. In other words,
each processor holds in its local disk a subset whose size is
approximately given bysl. The value ofsl is approximated,
because we cannot split an inverted list of a term in the text
database collection.

We consider that inverted lists are distributed among pro-
cessors in lexicographical order. According to this strategy,
one possible partitioning for the global index might be one
in which processor1 holds the inverted lists for all the terms
that start with the letters A, B and C; processor2 holds the
inverted lists for all the terms that start with the letters D,
E, F and G; and so on, such that each processor holds a
portion of the global index whose size is approximatelysl.
Figure 4 illustrates the global index partitioning, consider-
ing a network composed by4 processors.

3.4. Ranking with the vector model

The documents in the text database collection are ranked
using the vector space model. The main advantages of the

.

.

.

.

.

.

.

.

.

.

.

.

D

G

H

N

O

A

C

Z

A

x

x

x

x

x

1

x

x

x

2

x

x

x

x

3

x

x

x

x

4

x

x

x

5

x

x

x

x

x

6

x

x

x

x

7

x

x

x

x

8

P2

P4

P1

P3

Terms

Documents

Figure 4. Global index partitioning.

vector space model are its term-weighting scheme that im-
proves retrieval performance, its partial matching strategy
which allows retrieval of documents that approximate the
query conditions, and its cosine ranking formula that sorts
the documents according to their degree of similarity to the
query. A large variety of alternative ranking methods have
been compared to the vector space model but the consen-
sus seems to be that, in general, the vector space model is
either superior or almost as good as other alternatives. Fur-
thermore, it is simple and fast. For these reasons, the vector
space model is a popular retrieval model nowadays [4].

In the vector space model, documents and user queries
are represented as vectors of the weight of terms. A docu-
ment vector is defined as~d = (wd;1; wd;2; : : : ; wd;v), wherev is the total number of index terms in the collection andwd;i is the weight of termi for the documentd. A query is
seen as a small document. We assign the weight to a term
in a document or a query using thetf-idf scheme [12]. The
vector space model proposes to evaluate the degree of sim-
ilarity of the documentd with regard to the queryq as the
correlation between the vectors~d and~q, that can be quan-
tified by the cosine of the angle between these two vectors.
The standard algorithm for ranking documents using the
vector space model uses a set of accumulators, one accumu-
lator for each document in a collection, and a set of inverted
lists. For each query termt, the contribution made by the
term t to the degree of similarity between the queryq and
each documentd in the inverted list is added to the docu-
mentd’s accumulator’s value. The final result is composed

by the documents with the highest accumulator values.
For a large document database, the ranking evaluation

cost - volume of main memory, disk traffic and CPU pro-
cessing time - can be prohibitively high, because it assigns
a similarity value to every document containing any of the
query terms. The work in [10] proposes a technique for fil-
tering documents during ranking which allows a significant
reduction of ranking evaluation costs without degradation
in retrieval effectiveness. The filtering method considers
as candidate answers only the documents with high within-
document frequency. The memory usage is reduced because
having fewer candidates means that fewer accumulators are
required to store information about these candidates. Disk
traffic and CPU processing time are also reduced because,
by ordering inverted lists by decreasing within-document
frequency, only the first portion of each list containing high
frequencies will be processed, and the rest can be ignored.

Unfortunately, this filtering technique, as it states orig-
inally, does not work very well for distributed processing.
The reason is that its efficiency is influenced by thresholds
that are determined as a function of the accumulated partial
similarity of the currently most relevant documentSmax,
whose growth in the distributed algorithm during ranking
evaluation differs from that in the sequential algorithm.

In the local index partitioning, if one of the processors
holds only a few high weighted documents, the rising ofSmax is low; in the global index partitioning, when the pro-
cessors receive only a few terms, the value ofSmax is a frac-
tion of that in the sequential algorithm. Consequently, the
amount of pruned resources in the distributed algorithm is
smaller than in the sequential algorithm, which might dete-
riorate the performance of the former, making it even worse
than the latter.

The work in [5] proposes a solution to this problem that
previews the rising of theSmax value before query process-
ing. By adopting this adaptation of the filtering technique
to our system, we obtain approximately the same effective-
ness as the standard algorithm of the vector space model, for
both the local and global index partitioning strategies, upon
significant reductions in ranking evaluation cost - queries
are processed in only2% of the memory of the standard
algorithm and only10% of all term entries in the inverted
lists are required. More details on how we implemented the
distributed filtering technique in our system and on the re-
trieval effectiveness results we obtained may be found in the
work presented in [3].

3.5. Distributed query processing

Our concurrent distributed query system consists of a set
of server processes and a designated broker process, each
running on a separate processor, as presented in Section 3.1.
The broker process is responsible for scheduling the queries

to the server processes, receiving the intermediate results
returned by each one of the server processes and combining
the intermediate results into the final result.

We do not study how the performance is affected by the
query arrival rate. Instead, we assume that the arrival rate
of queries in the system is high enough to fill a query pro-
cessing queue. Hence, we do not compute the actual user
response time for a query, but the system time. Next, we
describe the query processing algorithms implemented in
the broker, which differ according to the index partitioning
strategy.

3.5.1. Local index

In the local index partitioning, an individual query is pro-
cessed as follows. The broker process sends the query to all
server processes. Each server retrieves the documents re-
lated to that query in the local subcollection and ranks them,
using the vector space model along with the document fil-
tering technique; selects a number of documents from the
top of the ranking; and returns them to the broker as the
local answer set. The broker uses a multiway merge [15]
to fuse the local answer sets and produce the final ranked
answer set.

Regarding the selection of a number of documents to
be returned to the broker, consider that answer precision is
evaluated through the firstr documents in the top of the
ranking. In the worst case, the broker will select the firstr documents from only one of the local answer sets. This
implies that each server needs to send to the broker at most
the topr documents of its ranking, in order of guaranteeing
that the final answer precision is not diminished.

3.5.2. Global index

In the global index partitioning, an individual query is
processed as follows. The broker process determines which
server processes hold inverted lists relative to the query
terms, breaks the query into subqueries and sends them to
the respective servers. Each subquery is composed by the
terms which are stored in the server it is sent to. Once a
server has received a subquery, it retrieves the documents
related to its subquery and ranks them, using the vector
space model along with the document filtering technique;
selects a number of documents from the top of the ranking;
and returns them to the broker as the local answer set. The
broker adds the weights of the documents which are present
in more than one local answer set and do a sort to produce
the final ranked answer set.

Regarding the merging of the local answer sets, the bro-
ker cannot use the local rankings generated by individual
servers because such rankings are based in partial informa-
tion present in the subqueries. In other words, the local an-
swer sets returned by the servers contain partial similarities

between each document and each term present in the sub-
query; it is necessary to sum the partial similarities into the
global similarity, which expresses the measure of relevance
between each document and the query.

The fact that the local rankings are based in partial infor-
mation complicates the cutting strategy, that consists of the
selection of a number of documents to be sent to the broker.
The work in [11] suggests a cutoff factor that depends on the
numberp of servers. The cutoff factor is given by
�p� r,
where
 is a constant andr is the number of documents in
the final answer set. Using such factor for
 = 6, we ob-
served no significant variation in the final answer precision,
as shown in the results of the work presented in [3].

3.5.3. Comparison of strategies

The local index partitioning and global index partition-
ing are compared in the following aspects, as presented in
Table 1.

LI GI
High parallelism High concurrency
More disk seeks Less disk seeks
Better load balance Worse load balance
Smaller inverted lists Larger inverted lists
Smaller local answer sets Larger local answer sets
Topr documents are sent Top (
 � p � r) documents
to the broker are sent to the broker

Table 1. Comparison between the local and
global index partitioning strategies.

In the local index partitioning, all processors are devoted
to the execution of a single query. Therefore, the local in-
dex partitioning always provides high parallelism. On the
other hand, in the global index partitioning, not all proces-
sors might be involved with the processing of a single query.
A scenario that confirms this statement is when the number
of processors is larger than the number of query terms. An-
other scenario is when many query terms are stored in a
single processor releasing the others. Therefore, the global
index partitioning might allow high concurrency.

In the local index partitioning, retrievals require more
disk seeking operations, because the processors receive all
query terms. On the other hand, in the global index parti-
tioning retrievals require less disk seeking operations, be-
cause the processors do not necessarily receive all query
terms.

In the local index partitioning, the load balance level is
better than in the global index partitioning. The reason is
that in the global index partitioning, the terms in a query are
sent only to the processors which store their inverted lists.
This implies that the processor that holds the most frequent

terms in query is heavily loaded, while the processor that
holds the least frequent query terms stays relatively idle.
On the other hand, in the local index partitioning, all terms
of a query are sent to all processors. Consequently, a good
load balance level is always provided.

In the local index partitioning, inverted lists are smaller,
because they contain only the documents from the subcol-
lection assigned to the processor. On the other hand, in the
global index partitioning inverted lists are larger, because
they contain documents from the whole text database col-
lection.

In the local index partitioning, local answer sets are
smaller than in the global index partitioning. The reason is
that in the global index partitioning each processor does not
have the information on the documents inserted in the set
of accumulators of the others. This implies that the selec-
tion of documents as answer candidates must be less severe,
in order of avoiding the elimination of a relevant document
that, however, has a low value in the accumulator of a de-
terminate processor.

In the local index partitioning, the local rankings con-
sider the global information related to the query, which al-
lows the number of documents to be sent to the broker being
equal to the number of documents in the final answer. In the
global index partitioning, the local rankings consider only
partial information related to the subquery, which implies
that the number of documents to be sent to the broker must
be larger than the number of documents in the final answer.

In the sequel, we investigate how these differences,
which are determinant in query processing performance,
can favor one of the index partitioning strategies in detri-
ment of the other.

4. Implementation aspects

In this section, we describe some details of the system
implementation with focus on the issues regarding the con-
current query service.

We adopt the client/server paradigm. In this scheme,
client processes request services from a server process. A
server process normally listens at a known address for ser-
vice requests. That is, the server process remains dormant
until a connection is requested by a client’s connection to
the server’s address. At such a time, the server process
“wakes up” and services the client, performing whatever
appropriate requested actions.

According to these properties, the server process is a pas-
sive entity, listening for client connections, while the client
process is an active entity, initiating a connection when in-
voked. In our model, the service is the processing of a
query. Clients request service to a central server, called
broker. In its turn, the broker requests service to the other

servers in the distributed architecture. When the broker re-
quests service to a server, it plays the role of a client.

The broker process is constituted by an insertion thread,
a merging thread and different scheduling threads for each
server process in the network. All these threads run in paral-
lel in the broker process. The main data structures shared by
the threads are the scheduling queues, one for each server
process, and the buffer of intermediate results. The schedul-
ing queues contain queries, if the index partitioning is the
local one, or subqueries, if the index partitioning is the
global one. The buffer of intermediate results temporarily
contains local answer sets waiting for being merged into fi-
nal answer sets.

The insertion thread is responsible for inserting a query
(or subquery) in the scheduling queues of the servers that
must execute that query (or subquery). Each of the schedul-
ing threads is responsible for taking a query (or subquery)
out of its queue, sending the query (or subquery) to its
server, receiving the local answer set, and storing the lo-
cal answer set into the buffer of intermediate results. The
merging thread is responsible for fusing local answer sets
into final answer sets, as soon as all the local answer sets
related to a query (or subquery) are available in the buffer
of intermediate results.

In this way, these different threads run in parallel and
in asynchronous mode to dispatch the several queries to
the different servers, receive the intermediate results, and
merge the intermediate results into the final results. This
scheduling scheme increases the system throughput by al-
lowing the simultaneous processing of more than one query
and by avoiding to the utmost the idleness of processors in
the network.

The interprocess communication between broker and
server processes is socket-based. The data transmission
mechanism is stream-based, which provides sequenced, re-
liable, two-way and connection-based byte streams. The
synchronization of the access to shared memory segments
is done with semaphores. The algorithms are implemented
with the C programming language and compiled by the
GCC 2.91.66 compiler. We use the C programming lan-
guage because of its efficiency and its easy integration with
operating systems in general.

5. Experimental results

In this section, we present the experimental results on
the real case implementation. We compare the performance
impact on query processing of both the local and the global
index partitioning strategies.

5.1. Experimental setup

The network of workstations we used in the experiments
is composed by 5 PCs with the same configuration. Each
PC is an AMD-K6-2 with a 500MHz processor, 256Mbyte
of main memory, 30Gbyte IDE hard disk, and running
Linux kernel 2.2.14. The workstations are connected by a
100Mbps fast Ethernet with a 16 port switch.

The data we have used in the experiments comprise the
disks 1 and 2 of the TREC-3 collection [6]. Each of the
disks is about 1 gigabyte in size. We used two sets of
queries, namely a TREC query set and an artificial query
set, that mimics Web-like queries. The TREC query set is
based on topics151 to 200 of the ad-hoc task, totalizing50 queries in all. The terms were automatically extracted
from the topic descriptions, after eliminating SGML tags
and stop words. The average number of terms per query is21. In the artificial query set, composed by2000 queries,
the terms were randomly chosen from the collection vocab-
ulary, but avoiding stop words [2]. The number of terms per
query is2 or 3.

5.2. Retrieval efficiency

In this section, we compare retrieval efficiency between
the global and local index partitioning. We discuss the re-
sults for the50 TREC queries, which are longer and force
parallelism, and the results for the2000 artificial queries,
which are shorter and allow concurrency in our system. The
metrics used are: (i) processing time, given by the elapsed
time in seconds to process a batch of queries usingp proces-
sors; (ii) speedup, given by the ratio between the process-
ing time for one processor and the processing time withp
processors; and (iii) load imbalance, given by the ratio be-
tween the maximum processing time and the average pro-
cessing time of the processors. It follows the results and
corresponding interpretations.

5.2.1. TREC queries

Figure 5 shows the time to process the50 TREC queries
as a function of the number of processors in the network, for
the local and global index partitioning. As it can be seen,
the local index partitioning outperformed the global index
partitioning with a network composed by2 processors, but
the global index partitioning outperformed the local index
partitioning with a network composed by3 and4 proces-
sors. The interpretation for this result is as follows.

In the global index partitioning, with a network com-
posed by3 and4 processors, the number of seeks performed
locally dropped to the point of counterbalancing the ranking
and communication costs, which are higher than in the lo-
cal index partitioning. However, with a network composed

7

8

9

10

11

12

13

14

15

1 2 3 4

pr
oc

es
si

ng
 ti

m
e

(s
)

number of processors

LI
GI

Figure 5. Processing time for the 50 TREC
queries.

by only 2 processors, the number of seeks performed lo-
cally did not reduce enough for offsetting those prejudicial
effects.

Figure 6 shows the speedup while processing the50
TREC queries. We observe that speedup in the global in-
dex partitioning is not that much superior than in the local
index partitioning, as a result of the parallelism constrained
by the length of TREC queries.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 3 4

sp
ee

du
p

number of processors

LI
GI

Figure 6. Speedup for the 50 TREC queries.

Figure 7 shows the load imbalance while processing the50 TREC queries. In the local index partitioning, load im-
balance is not an issue as for any network configuration it
was found to be just over1. However, it is perceptibly worse
in the global index partitioning. The interpretation for these
results is as follows.

In the global index partitioning, the query terms are
routed to the processors which hold the respective inverted
lists. So, if some terms are more frequently requested in
a query, the processor that stores those terms is heavily
loaded; on the contrary, the processor that stores the least
frequent query terms stays relatively idle. Otherwise, in the

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2 3 4

lo
ad

 im
ba

la
nc

e

number of processors

LI
GI

Figure 7. Load imbalance for the 50 TREC
queries.

local index partitioning, all query terms are sent to all pro-
cessors. This implies that all processors are involved with
the execution of all queries. Consequently, a good level of
load balance is always provided. A modest load imbalance
might occur if a processor holds documents that are more
relevant to the query than other processors. In this scenario,
the cost for reading inverted lists, accumulating document
weights and ranking will be higher in the processors which
hold the most relevant documents.

It is important to note that if the load balance were uni-
form in our system, the global index partitioning would
have a better performance than the local index partitioning,
no matter the number of processors in the network, as it
can be seen in Figure 8 and Figure 9 that show the pro-
cessing time and speedup respectively. Also, the relative
performance improvement would increase with the num-
ber of processors, as shown in Table 2. For simulating the
load balanced scenario, we simply averaged by processor
the time taken by the broker to collect the local answer sets,
instead of considering the maximum time associated with
the slowest processor.

Number GI as percentage of LI (%)
of processors

2 80.94
3 74.39
4 73.36

Table 2. Processing time in the load balanced
scenario for the 50 TREC queries: GI as per-
centage of LI.

5
6
7
8
9

10
11
12
13
14
15

1 2 3 4

pr
oc

es
si

ng
 ti

m
e

(s
)

number of processors

LI
GI

Figure 8. Processing time in the load bal-
anced scenario for the 50 TREC queries.

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 3 4

sp
ee

du
p

number of processors

LI
GI

Figure 9. Speedup in the load balanced sce-
nario for the 50 TREC queries.

5.2.2. Artificial queries

Figure 10 shows the time to process the2000 artificial
queries as a function of the number of processors in the net-
work, for the local and global index partitioning. As we
can observe, the global index partitioning consistently out-
performed the local index partitioning. In addition, the rel-
ative performance improvement increases with the number
of processors, as shown in Table 3. As it can be seen, the
global index partitioning might be twice as faster than the
local index partitioning. The reason is as follows.

In the local index partitioning, all the processors are
forced to process the2 terms (on average) of each query.
Otherwise, in the global index partitioning,2 processors at
most are involved with the execution of a single query, as
a result of one of the following events (or a combination
of them): i) the query terms are held by a single proces-
sor, releasing the others to execute another query; or ii) the
number of processors are larger than the number of query

20

25

30

35

40

45

50

55

1 2 3 4

pr
oc

es
si

ng
 ti

m
e

(s
)

number of processors

LI
GI

Figure 10. Processing time for the 2000 artifi-
cial queries.

Number GI as percentage of LI (%)
of processors

2 76.93
3 63.94
4 58.75

Table 3. Processing time for the 2000 artificial
queries: GI as percentage of LI.

terms.
Figure 11 shows the speedup while processing the2000

artificial queries. As it can be seen, the global index par-
titioning presented a much superior speedup than the local
index partitioning, as a result of the higher concurrent query
service provided by the first index organization.

Figure 12 shows the load imbalance while processing the2000 artificial queries. For the local index partitioning, load
imbalance is also found to be just over1, like we discussed
for the TREC query set. In the global index partitioning,
load imbalance was not that much superior than in the lo-
cal index partitioning. This result is due to the method used
to generate the artificial queries, by which terms were ran-
domly chosen from the collection vocabulary. In this way,
the probability distribution of terms in the artificial queries
tends to be uniform, which provides a better load balance.

6. Conclusions and future work

In this paper, we study concurrent query processing in a
distributed text database. We have implemented a real dis-
tributed architecture and compared the impact of two differ-
ent types of inverted file partitions on system performance.
Documents are ranked using the vector space model along
with a document filtering technique for fast ranking.

Experimental results on retrieval efficiency show that,

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4

sp
ee

du
p

number of processors

LI
GI

Figure 11. Speedup for the 2000 artificial
queries.

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

2 3 4

lo
ad

 im
ba

la
nc

e

number of processors

LI
GI

Figure 12. Load imbalance for the 2000 artifi-
cial queries.

within our framework, the global index partitioning outper-
forms the local index partitioning specially when the num-
ber of processors exceeds the average number of terms in
query. The processing time with the global index partition-
ing might be twice smaller as that with the local index par-
titioning. The main reason is that the global index partition-
ing allows the parallelization of the most time consuming
phase of the algorithm - disk seeking. Further, the global
index partitioning provides a high concurrent query service,
which is particularly evidenced when the number of proces-
sors exceeds the average number of terms in query.

In future work, we are interested in adding more pro-
cessors to the network. Also, we intend to implement two
types of brokers, one for query scheduling and another for
merging of intermediate results; the merging broker can dy-
namically distribute its task with other processors when the
workload is high. Further, we are interested in making use
of multiprogramming in the server and evaluate the sys-
tem performance while varying the multiprogramming level

(number of simultaneous queries per server).
Other future direction of research is to evaluate the be-

havior of our system while processing Web data. A typical
Web workload comprises very large collections and very
short queries, and we are interested in specifying a query
arrival distribution.

Another direction for future research is to study new
strategies to generate the global index by exploiting usage
statistics and other measures, in order of achieving better
speedup, load balance and retrieval effectiveness. Also, for
decreasing the index accessing time, we intend to investi-
gate the global index structured in two levels; the first level
is an index for the most frequent queries stored in main
memory, and the second an index for the remaining of the
queries stored in secondary memory.

Finally, we intend to study how the caching of query re-
sults and inverted lists proposed in [13] can improve the
performance of our system or favor one of the index parti-
tioning strategies.

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
Now Team. A case for NOW (Networks of Workstations).
IEEE Micro, 15(1):54–64, February 1995.

[2] M. D. Araujo, G. Navarro, and N. Ziviani. Large text search-
ing allowing erros. In R. Baeza-Yates, editor,Proceedings
of the Fourth South American Workshop on String Process-
ing, pages 2–20, Valparaiso, Chile, November 1997. Car-
leton University Press.

[3] C. S. Badue. Distributed query processing using partitioned
inverted files. Master’s thesis, Federal University of Minas
Gerais, Belo Horizonte, Minas Gerais, Brazil, March 2001.

[4] R. Baeza-Yates and B. Ribeiro-Neto, editors.Modern Infor-
mation Retrieval. ACM Press New York, Addison Wesley,
1999.

[5] R. A. Barbosa. Desempenho de consultas em bibliote-
cas digitais fortemente acopladas. Master’s thesis, Federal
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil, May 1998. In Portuguese.

[6] D. Harman. Overview of the third text retrieval confer-
ence. In D. Harman, editor,Proceedings of the Third Text
REtrieval Conference (TREC-3), pages 1–19, Gaithersburg,
Maryland, U.S.A., 1994. NIST Special Publication 500-207.

[7] D. Hawking, N. Craswell, and P. Thistlewaite. Overview
of TREC-7 very large collection track. In E. Voorhess
and D.K.Harman, editors,Proceedings of the Seventh Text
Retrieval Conference, pages 257–268, Gaithersburg, Mary-
land, U.S.A., November 1998. NIST Special Publication
500-242.

[8] B.-S. Jeong and E. Omiecinski. Inverted file partitioning
schemes in multiple disk systems.IEEE Transactions on
Parallel and Distributed Systems, 6(2):142–153, February
1995.

[9] A. MacFarlane, J. McCann, and S. Robertson. Parallel
search using partitioned inverted files. InProceedings of

the 7th International Symposium on String Processing and
Information Retrieval, pages 209–220, La Coruna, Spain,
September 2000. IEEE Computer Society.

[10] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered docu-
ment retrieval with frequency-sorted indexes.Journal of the
American Society for Information Science, 47(10):749–764,
1996.

[11] B. A. Ribeiro-Neto and R. A. Barbosa. Query performance
for tightly coupled distributed digital libraries. InPro-
ceedings of the third ACM Conference on Digital Libraries,
pages 182–190, 1998.

[12] G. Salton and C. Buckley. Term-weighting approaches in
automatic retrieval.Information Processing and Manage-
ment, 24(5):513–523, 1988.

[13] P. C. Saraiva, E. S. Moura, N. Ziviani, R. Fonseca, W. Meira,
C. Murta, and B. Ribeiro-Neto. Rank-preserving two-level
caching for scalable search engines. InProceedings of
the 24th ACM SIGIR Conference, New Orleans, Louisiana,
U.S.A., September 2001 (to appear).

[14] A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in shared-nothing distributed text document informa-
tion retrieval systems. InProceedings of the Second Interna-
tional Conference on Parallel and Distributed Information
Systems, pages 8–17, San Diego, California, U.S.A., 1993.

[15] I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes - Compressing and Indexing Documents and Images.
Morgan Kaufmann Publishers, Inc.,2a edition, 1999.

