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Abstract 
This paper discusses the implementation of a numerical 

algorithm for simulating incompressible fluid flows based on 
the finite difference method and designed for parallel 
computing platforms with distributed-memory, particularly 
for clusters of workstations. The solution algorithm for the 
Navier-Stokes equations utilizes an explicit scheme for 
pressure and an implicit scheme for velocities, i. e., the 
velocity field at a new time step can be computed once the 
corresponding pressure is known. The parallel 
implementation is based on domain decomposition, where the 
original calculation domain is decomposed into several blocks, 
each of which given to a separate processing node. All nodes 
then execute computations in parallel, each node on its 
associated sub-domain. The parallel computations include 
initialization, coefficient generation, linear solution on the sub-
domain, and inter-node communication. The exchange of 
information across the sub-domains, or processors, is achieved 
using the message passing interface standard, MPI. The use of 
MPI ensures portability across different computing platforms 
ranging from massively parallel machines to clusters of 
workstations. The execution time and speed-up are evaluated 
through comparing the performance of different numbers of 
processors. The results indicate that the parallel code can 
significantly improve prediction capability and efficiency for 
large-scale simulations. 

Keywords Parallel Processing, Finite Difference Method, 
Navier-Stokes, MPI. 

I. INTRODUCTION 

In this paper, we study the parallel implementation of 
the numerical discretization of the Navier-Stokes equations 
based on the finite difference method suggested by Griebel, 
Dornseifer and Neunhoeffer [1]. This method was strongly 
influenced by the marker-and-cell (MAC) technique of 
Harlow et al. from the Los Alamos National Laboratory [2]. 
It consists of an implicit scheme for pressure, which uses 
successive overrelaxation (SOR) iterations, and an explicit 
scheme for velocities with a first-order time discretization. 

Despite its simplicity, this method is surprisingly flexible 
and relatively efficient, and may be applied to a variety of 
transient problems with fixed and free boundary domains 
[3, 4]. In addition, improvements to this algorithm can be 
attained by using multigrid methods to solve the pressure 
equations, by treating the momentum equations (semi) 
implicitly, or by employing higher order methods. Such 
techniques applied before parallelization increases 
efficiency. However, in this work we focus on the 
parallelization of the finite difference scheme. We are 
interested on improving prediction capability and efficiency 
for large-scale simulations using parallel computations. Our 
goal is to reduce the total computing time by dividing the 
computational work between several processors, which 
perform their calculations concurrently. To avoid the cost 
limitations imposed by supercomputers, our code was 
mainly developed for clusters of workstations.  

Rapid increase of microprocessor and network 
performance has enabled the implementation of clusters of 
workstations with high levels of computing power for a 
small fraction of the price of supercomputers. However, the 
use of clusters of workstation requires different 
programming paradigms since the system architecture is 
based on a distributed-memory model, which differs 
considerably from the shared-memory mode widely used in 
the last decades. We have used the domain decomposition 
coordinate bisection technique [5] for implementing our 
parallel algorithm for cluster of workstations. In this 
technique, the number of points is equally divided between 
processors, but no attempt is made to obtain a domain 
division that minimizes communications between 
processors. The parallel computations include initialization, 
coefficient generation, linear solution on the sub-domain, 
and inter-node communication. The exchange of 
information across sub-domains, or processors, is achieved 
using the message passing interface standard, MPI. The use 
of MPI ensures portability across different computing 



platforms, ranging from massively parallel machines to 
clusters of workstations.  

The frequency at which the communication between 
processors occurs within each SOR iteration was also 
investigated. Griebel et al. [1] proposed that a 
communication step should be performed after each SOR 
iteration, so that the values at the boundaries are updated at 
every SOR iteration. This procedure introduces a 
significant amount of communication, which, according to 
our experiments, slows down the computation. An 
alternative procedure that we have used is to perform a few 
SOR iterations prior to communication. This reduces the 
amount of communication without slowing down the 
convergence rate. In addition, the communication steps 
were performed in three different ways: all-to-all, master-
slave and binary-tree. In order to assess the parallel 
performance of the algorithm and to evaluate all different 
parallelization strategies we have used, simulations with 1, 
2, 4, 8, 16, 32, 48 and 64 processors were performed  and 
the execution time, speed-up and parallel efficiency were 
measured. The results indicated that, for more than 32 
processors, the binary-tree approach outperformed the 
others by a large margin.  

The outline of the paper is as follows. First, we present 
the class of governing equations under investigation and 
briefly the finite difference formulation. Then, we discuss 
the parallelization strategy adopted for the solution 
algorithm. In Section 4 we present the main conclusions. 

II. GOVERNING EQUATIONS AND THE FINITE 
DIFFERENCE FORMULATION 

We consider the stationary and transient flow of a 
viscous incompressible fluid as described by the 
two-dimensional Navier-Stokes equations 
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where u and v are the horizontal and vertical components of 
the velocity, p is the pressure, gx and gy are body forces, 
Re=(ρ∞u∞L)/µ is the dimensionless Reynolds number, ρ∞, 
u∞ and L are given scalar constants (namely, fluid density, 
characteristic velocity and characteristic length, 
respectively) and µ is the dynamic viscosity. To complete 
the mathematical statement of the problem, we need initial 
and boundary conditions. We consider velocities or flux 
boundary conditions. 

The numerical treatment of the Navier-Stokes equations 
is based on the finite difference scheme suggested by 
Griebel, Dornseifer and Neunhoeffer in [1]. In the usual 
way, the flow domain is discretized into imax cells of equal 
sizes in the x-direction and jmax cells in the y-direction. The 
region is discretized using a staggered grid, in which the 
pressure p is located in the cell centers, the horizontal 
velocity u in the midpoints of the vertical cell edges, and 
the vertical velocity v in the midpoints of the horizontal cell 
edges. This staggered arrangement of the unknowns 
prevents possible pressure oscillations, which could occur 
had we evaluated all three unknown values u, v and p at the 
same grid points. 

The discretization of the spatial derivatives requires a 
mixture of central differences and donor-cell discretization 
to maintain stability for strongly convective problems. 
Because the convective terms xu ∂∂ )( 2 , yuv ∂∂ )( , 

xuv ∂∂ )(  and yv ∂∂ )( 2  in the momentum equations 
become dominant at high Reynolds numbers or high 
velocities, stability problems may occur when the grid 
spacing is chosen too coarse. To avoid stability problems, 
these convective terms are treated using a weighted average 
of central difference and donor-cell scheme as suggested by 
(Hirt et al., 1975). The first order spatial derivatives xu ∂∂ , 

yv ∂∂  and the second order derivatives 22 xu ∂∂ , 22 yu ∂∂ , 
22 xv ∂∂ and 22 yv ∂∂ , forming the so-called diffusive 

terms, may be replaced by central differences using half the 
mesh width. Details of the spatial discretization can be 
found in (Griebel et al., 1998). To obtain the time 
discretization of the momentum equations (1) and (2), we 
discretize the time derivatives tu ∂∂  and tv ∂∂  using the 
Euler's method. Introducing the functions 
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where the superscript n denotes the time level, we have the 
fully discrete momentum equations 
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which may be characterized as being explicit in the 
velocities and implicit in the pressure; i.e., the velocity field 



at time step tn+1 can be computed once the corresponding 
pressure is known. Substituting the equations (6) and (7) 
for the velocity field into the continuity equation (3), we 
obtain the Poisson equation for the pressure p(n+1) at time 
tn+1 
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  max,...,1 ii =    1,...,1 max −= jj   (8) 
  

which requires boundary values for the pressure. We 
assume p0,j = p1,j , pimax+1,j = pimax,j , pi,0 = pi,1 , pi,jmax+1 = 
pi,jmax , with i = 1,…, imax and j = 1,…, jmax. In addition, we 
need values of F and G at the boundary to compute the 
right-hand side of (8). We set F0,j = u0,j , Fimax,j = uimax,j , Gi,0 
= vi,0 and Gi,jmax = vi,jmax , with i = 1,…, imax and j = 1,…, 
jmax. 

As a result, we have to solve a linear system of 
equations (8) containing imax jmax unknowns pi,j , i = 1,…, 
imax and j = 1,…, jmax. In this work, we obtain approximate 
solutions for the pressure using the SOR method. To avoid 
generating oscillations, an adaptive stepsize control based 
on the famous Courant-Friedrichs-Lewy (CFL) conditions 
is used in order to ensure stability of the numerical 
algorithm [6]. The new time-step size is given by 
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where the factor τ ∈ (0, 1] is a safety factor. In summary, 
the entire procedure consists of the steps outlined in Fig. 1. 
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Fig. 1 – Algorithm for the Navier-Stokes equations. 

 

III. PARALLELIZATION STRATEGY 

While for shared-memory parallelism is mainly directed 
to execute an identical set of operations in parallel on the 
same data structure (do-loop parallelization), parallelism in 
distributed-memory systems is mainly directed to sub-
divide the data structures into sub-domains and assign each 
sub-domain to one processor. In this case, the same code 
runs on all processors with its own set of data.  

Fig. 2a shows a schematic representation of a mesh, for 
the simulation of the backward facing step problem, 
containing 2400 nodal points. By dividing the 
computational domain into four sub-domains (Fig. 2b), it is 
possible to spread the workload between four different 
processors. However, it is important to note that, in order to 
compute the variables for each nodal point, the variables at 
its neighboring points are required. Thus, in order to 
calculate the variables at the points close to the interface 
between sub-domains, one processor will require 
information stored in the memory of a neighboring 
processor. This requires communication at regular 
intervals, which may slow down the computation. 

In general, the computation procedure involves three 
steps (1) partitioning of the solution domain; (2) 
performing computations on each processor to update its 
own data set; (3) communicating data between processors. 
This technique is called domain decomposition. The key for 
an efficient computation is to maintain the communications 
between processors to a minimum level, as well as, to 
divide the workload equally between processors. 

 

  
(a) 

   
(b) 

 
Fig. 2 - (a) Schematic representation of a mesh for the 

simulation of the backward facing step problem and (b) its 
decomposition in 4 sub-domains. 

 
In this work, domain decomposition coordinate 

bisection is used [5]. This method divides the number of 
points equally between processors, but makes no attempt to 
obtain a domain division that minimizes the communication 
between processors, i.e., a division with the smallest 
number of nodal points in boundaries between sub-
domains. Therefore, coordinate bisection may produce sub-
domains with long interfaces that will lead to a large 
amount of communication. This can be partly overcome by 
recursive application of alternate x, y (and in 3D, z) 
bisections. The grid is first divided into 2 grids using 
bisection of the x-length of the calculation domain. Then to 



each of the resulting domains, y-bisection is applied, 
resulting in four blocks (or sub-domains). The procedure 
can be continued to obtain eight blocks, sixteen blocks, 
thirty two blocks, etc. 

Once a multi-block domain has been established, 
calculations on each block can begin in parallel if the 
boundary conditions of these blocks are known. This may 
be either a physical boundary condition or an internal 
boundary condition generated as a consequence of the 
domain decomposition. The physical boundary data of each 
block, if any, are provided by the user, while the internal 
boundary data must be received from neighboring blocks, 
which may reside on different processors. Internal 
boundary data are hold by buffers on the boundary of each 
block as shown in Fig. 3, which illustrates a calculation 
sub-domain and the buffer cells used to store the overlap 
data. Once the buffer data has been received from all sides 
of a block, the computation of this block can start, using the 
sequential algorithm. On completion of the solution for the 
block, the data at its boundaries is sent to the neighboring 
blocks. Calculation in this block then waits for the buffer 
update provided by this block’s neighbors, after which the 
next computation cycle can start. 

 

Buffer data  to 
be refreshed by
sub-domain 3

Buffer data  to 
be refreshed by 
sub-domain 4

Buffer data  to be refreshed
 by sub-domain 1

Buffer data  to be refreshed
 by sub-domain 2

1 4

2 3

 
Fig. 3 – Schematic representation of a calculation sub-

domain divided into four sub-domains, indicating the buffer 
cells used to store the internal boundaries data 

 
Fig. 4 shows the sequence of operations involved in the 

computation. Each processor performs the computation on 
its own sub-domain, which includes the initialization of the 
values of velocities and pressure, and time-step size 
calculations. Since each processor calculates a local value 
for the time-step size based on its own local data (eq.9), 
some communication is required to choose a time-step to be 
used in all calculation sub-domains. This is required 
because all processors need to advance to the next time-
step using the same values of δt in the present solution 
algorithm. The time-step chosen has to attend the CFL 

criterion (eq. 9) for all sub-domains, as such the smallest 
time-step size is selected. After that, the values of F and G 
are determined, and the coefficients of the linear set of 
equations for pressure are calculated. Then, each block 
individually deals with the solution of the pressure equation 
for the nodal points at its sub-domain, solving the linear 
system of equations using SOR iterations. Once pressure 
values are calculated for each block, the pressure values at 
each block boundary are communicated to its neighbors. 
This procedure is repeated until convergence is reached, 
which is checked comparing the values in the buffers prior 
and after communication. We assume convergence if the 
perceptual difference is less than 0.1%. Velocity 
components are then calculated on each sub-domain, and 
their values at each block boundary communicated to its 
neighbors. This iterative process is continued until the 
whole process reaches convergence.  

The information exchange across sub-domains is 
performed using the message passing interface standard, 
MPI. The use of MPI ensures portability across different 
computing platforms, ranging from massively parallel 
machines to clusters of workstations.  
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Fig. 4 – Parallel algorithm for the Navier-Stokes 
 
It is important to note that there are 4 different 

communication steps during the calculation procedure: (1) 
one required by the selection of the minimum δt; (2) one 
involving the communication of the pressure for the 
neighboring blocks, (3) one required for convergence 
checking and (4) another one involving the communication 
of the velocities for the neighboring blocks. The 
communication steps (2) and (3) are the most critical to the 



efficiency of the computation, since they occur several 
times during the calculations, while the steps (1) and (4) 
occur only once per time-step. The communication step (2) 
only requires communication between neighboring 
processors. On the other hand, step (3) requires 
communications between all processors to check if all sub-
domains have reached convergence. This can be performed 
using two different approaches: (a) each processor 
communicates its error value to all other processors and 
each processor check if the convergence was reached or 
not; or (b) each processor communicates its error value to a 
leader processor, which checks if convergence has been 
reached or not, and then communicates it to all other 
processors. The number of messages involved in the 
approach (b) is far less than that of approach (a), especially 
when the number of processors grows. However, (b) 
requires two communication cycles (all send to one and one 
send to all), while (a) requires only one cycle (all send to 
all). This is very important for clusters of workstations, 
since most of the network technology used in clusters of 
workstations suffers from high latency. Thus, the time 
required to perform two communication cycles can be more 
important than the total number of messages. Here, both 
approaches are implemented and the performance of each 
one measured, the results are discussed in the next section. 

IV. RESULTS AND DISCUSSION 

In order to assess the parallel performance of the 
algorithm and to evaluate different parallelization 
strategies, simulations with 1, 2, 4, 8, 16, 32, 48 and 64 
processors were performed. The experiments were run on 
the cluster of the Laboratório de Computação de Alto 
Desempenho of the Departamento de Informática – UFES 
(www.inf.ufes.br/~lcad). This cluster has 64 processors 
(Athlon 1800+, 128k cache L1, 512k cache L2, 256 Mb 
RAM) and uses Fast-Ethernet network technology 
(100MB/s).  

A typical CFD application was simulated – “The lid 
driven cavity problem” – that consists of a square container 
(whose sides length are equal to 1.0 m) filled with a fluid. 
The lid of the container moves at a given constant velocity, 
thereby setting the fluid in motion. No-slip conditions are 
imposed on all four segments of the boundary except for 
the upper boundary, along which the velocity u in the x-
direction is equal to the given lid velocity u0, in order to 
simulate the moving lid. 

 It is important to emphasize that the simulation 
performed with 1 processor is, in fact, slightly different 
from those performed with two or more processors, since a 
truly sequential code was utilized in the 1 processor case. 
In this way, it was possible to evaluate the real performance 
gain of using parallel instead of sequential computing.  

The algorithm analyses are divided into three different 
sections. The first section analyses the speed-up obtained 
with the use of additional processors and the impact of the 

problem size on the performance. The second and third 
sections deal with the evaluation of the impact of the inter-
processor communication strategies used. As discussed 
previously, there are two stages of the computational 
procedure: one that requires communication between all 
processors, the convergence check after a SOR iteration; 
and the determination of the value of δt for the next time 
iteration. The communication required for convergence 
check can be performed using at least three different 
mechanisms: (i) an all-to-all communication, i.e., a 
broadcast operation between all processors; (ii) a master-
slave communication, where every processor sends a value 
to a single processor (the master), which, after some 
computation, sends the data back to all processors; and (iii) 
a binary-tree, where communications are combined pair-
wise to yield a single value, which is sent back to all 
processor using the same binary tree. In the second section 
is studied the impact of the different communication 
strategies used to communicate the data necessary to the 
convergence check. In the third section, the frequency at 
which the communication between processors should occur 
is evaluated. Griebel et al. [1] proposed that a 
communication step should be performed after each SOR 
iteration, so that the values at the boundaries get an update 
at every SOR iteration. This procedure may introduce a 
significant amount of communication, which may slow 
down the computation. An alternative procedure is to 
perform a few SOR iterations prior to communication. The 
results presented below show that this can considerably 
reduce the amount of communication without slowing 
down the convergence rate.  

A.1 Speed-up results  

The performance evaluation was based on the execution 
time and the speed-up provided by the increase of the 
number of processors used in the computations. Fig. 5a 
presents the execution time for simulations with 3 different 
meshes: 256×256, 512×512 and 1024×1024, which 
represents approximately 65×103, 260×103 and 1×106 nodal 
points, respectively. It is possible to note a considerable 
reduction in the execution time for all 3 meshes as the 
number of processors increases (the execution time axis is 
in a logarithmic scale).  

Fig. 5b compares the speed-up results with the ideal 
speed-up, which represents a linear reduction of the 
computation time as the number of processors increases. It 
is possible to note that the speed-up obtained for the 
256×256 mesh is far from the ideal speed-up. When two or 
four processors are used, there is a significant gain in 
performance, but not a linear gain. As the number of 
processors increases this difference between achieved and 
ideal speed-ups becomes more evident. This happens 
because, when the number of processors increases, the 
block size decreases. Although the number of nodal points 
is divided equally among processors, when the block size is 



small, the nodal points of each block that require 
communication represent a large proportion of the total 
number of nodal points in each block. Since the network 
throughput is limited, each processor spends a significant 
amount of time waiting for information coming from others 
in this case. The smaller the number of nodal points on a 
sub-domain, the faster a processor is able to perform the 
do-loops operations assigned to it, so that the amount of 
time spent on communication becomes more significant. 
This fact is even more noticeable when the number of 
processors is increased and the proportion of nodal points 
of each computation block requiring communication 
becomes larger. As shown in Fig. 5a, the computing time of 
the 256x256 mesh with 48 processors is slightly larger than 
that with 32 processors – this tendency is more pronounced 
for smaller meshes. Thus, larger meshes tend to present 
larger speed-ups and a more efficient use of the additional 
processors in the system.  
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Fig. 5 – (a) Execution times and (b) speed-up’s obtained for 
meshes of 256×256, 512×512 and 1024×1024 nodal points, 

with simulations running on 1, 2, 4, 8, 16, 32, 48 and 64 
processors. 

A.2 Communication strategy 

As described earlier, there are two stages in the 
computational procedure that require communication 
between all processors. For instance, in the computation of 
the time step size for the next time iteration, every 
processor calculates it own maximum allowed local time 
step size (eq. 9); however, the time step value used for the 
next time iteration needs to be the smallest value among all 
processors. As such, this operation can be performed at 
least in 3 different manners. In the first, every processor 
communicates its time step size to any other processor in 
the system and, then, each processor calculates the smallest 
value and selects it as the global time step size for the next 
time iteration. This approach requires all-to-all or broadcast 
communication, which might cause network contention, 
since n(n-1) messages should be sent (where n is the 
number of processors involved in the computation). In the 
second, every processor sends its time step size to a master 
processor, which selects the smallest value and broadcast it 
back to all processors. This procedure involves a 

considerable reduction on the number of messages sent 
(2n), but has to be performed in two stages, which may 
cause some slow down due to the latency of the network. 
This procedure will be referred to as master-slave. In the 
third approach, the MPI “all-reduce” function is used. This 
performs all communications required using a binary tree, 
i.e., communications are combined pair-wise to yield a 
single corresponding result of the operation in the binary 
tree root processor receive buffer, which is then forwarded 
back to all processors using the same binary tree. The use 
of the all-reduce function slightly decreases the number of 
messages to 2(n-1); however, avoiding network contention, 
and distributing the computation of the smallest value 
among all processors. Nevertheless, since a binary tree 
communication algorithm is used, the number of 
communication stages is equal log2n, i.e., a 32 processor 
all-reduce operation will be carried out using 5 
communication steps. 
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 Fig. 6 – (a) Speed-up and (b) parallel efficiency obtained 
for communication: master-slave, all-to-all and all-reduce, 

with simulations running on 1, 2, 4, 8, 16, 32, 48 and 64 
processors. 

 
Thus it is important to verify which procedure is more 

efficient on the computations of this class of problem. Fig. 
6 shows the speed-up and parallel efficiency obtained for 
master-slave, all-reduce and all-to-all with simulations 
running on 1, 2, 4, 8, 16, 32, 48 and 64 processors for a 
512×512 mesh. The results indicate that there is no 
significant difference between implementations for 
simulations running on less than 32 processors. In fact, the 
results for the all-reduce implementation displays a 
marginally lower efficiency for 16 processors, which may 
be related to the increased number of communication steps 
required to perform the communication. However, as the 
number of processors reaches 32, the advantage of an all-
reduce implementation is quite noticeable. As the number 
of sub-domains in the computation increases, the number of 
messages becomes an important limiting factor and tends to 
slow down the computation.  It can be noted that an all-to-
all exhibits the worst marks of parallel efficiency for large 



number of processors, while the master-slave 
implementation obtains middling results.    

A.3 Frequency of communication 

As stated previously, Griebel et al. [1] proposed that, 
after each SOR iteration, a communication step should be 
performed, so that the values at the boundary get an update 
at every SOR iteration. Although this procedure ensures a 
fast convergence rate, due to a strong coupling between 
sub-domains, this may also introduce a significant amount 
of communication, which may slow down the computation.  

Alternatively, one could perform a few SOR iterations 
prior to each communication, reducing the amount of 
communication during computation. However, the 
reduction of the frequency in communication reduces the 
coupling between sub-domains, which may reduce the 
convergence rate yielding to a larger number of global 
iterations. Thus, the choice of the communication 
frequency is a compromise between the coupling of the 
solution of the sub-domains and the network contention 
due to the high volume of messages. In fact, one wishes to 
communicate as often as possible to ensure a fast 
convergence but without causing network overload.  

In order to evaluate the frequency at which the 
communication between processors should occur, the 
parallel performance was measured as the number of SOR 
iterations prior to communication was varied. Fig. 7 shows 
the speed-up and parallel efficiency obtained by various 
communication frequencies, with simulations running on 1, 
2, 4, 8, 16, 32, 48 and 64 processors for a 512×512 mesh. 
The number of SOR iterations between communications 
was varied from 1 to the extreme case where complete 
convergence of the SOR procedure was reached on a sub-
domain prior to communication. It is important to note that, 
on this test, the communication step is performed if a 
maximum iteration count is reached or if local convergence 
on a sub-domain is reached. 
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Fig. 7 – (a) Speed-up and (b) parallel efficiency obtained 
for various communication frequencies, setting the number 
of SOR iterations between communications to 1, 5, 10 SOR 

iterations or until local convergence is reached, i.e., no 
iteration count limit. 

 
The results indicate a significant reduction of the 

execution time by reducing the communication frequency, 
especially for larger numbers of processors. For instance, 
by using 64 processors a speed-up of approximately 40 was 
obtained by performing 10 SOR iterations prior to 
communication, while, for the simulation where a 
communication step was performed for each SOR iteration, 
the speed-up obtained was close to 12. For the simulation 
where no limit for the number of SOR iterations prior to 
communication was set, it possible to note that the speed-
up obtained is only marginally better than the speed-up for 
the simulation where a communication step was performed 
for each SOR iteration.  

One interesting feature of the speed-up and parallel 
efficiency curves obtained is that the speed-up for the 
simulation performing 5 and 10 SOR iterations prior to 
communication for 2 and 4 processors was slightly superior 
to the ideal speed-up, yielding to a parallel efficiency larger 
than one. This is probably related to a more efficient use of 
the processor cache. Although there is a tendency for a 
slow down of the computation due to communication, the 
memory size required for the computation of each block 
was considerably smaller. Thus, dividing the 512×512 
mesh into 2 or 4 blocks, enables a more efficient use of the 
processor L2 cache, reducing the number of cache misses. 
Since the access time of the cache memory is 5 to 10 times 
faster that that of the conventional memory, each processor 
performs the computation on its own sub-domain slightly 
faster, reducing the total computing time. However, as the 
domain is further divided, the increase of performance 
provided by the more efficient use of the processor's 
memory hierarchy is not sufficient to avoid the 
performance degradation due to communication.  

The larger the number of SOR iterations prior to 
communication, the larger is the cache hit ratio during the 
computation, and thus, larger is the MFLOPS produced by 
the machine’s processors. However, it is important to note 
that the relationship between execution time and MFLOPS 
achieved is not straightforward. An increase in the number 
of SOR iterations prior to communication will result in an 
increase in the MFLOPS achieved, but also in a reduction 
of the coupling between sub-domains. For instance, a 
simulation performed with 10 SOR iterations prior to 
communication has reached a sustained performance of 2.4 
GFLOPS on 32 processors, while a simulation performed 
with 100 SOR iterations prior to communication has 
reached a sustained performance of 3.4 GFLOPS on 32 
processors. In spite of the smaller number of GFLOPS, the 
simulation with 10 SOR iterations prior to communication 
obtained a smaller execution time (656s for 10 SOR 
iterations vs. 2915s for 100 SOR iterations), since the 
number of global iterations per time step was smaller. 



V. CONCLUSION 

A numerical algorithm for simulating incompressible 
fluid flows was presented. The algorithm was based on the 
finite difference method and was designed for parallel 
computing platforms with distributed-memory, particularly 
for clusters of workstations.  

In order to assess the parallel performance of the 
algorithm and to evaluate different parallelization 
strategies, simulations with 1, 2, 4, 8, 16, 32, 48 and 64 
processors were performed. Where communication 
between all processors was required, three communication 
strategies were evaluated to deal with the communication 
stages: (i) an all-to-all communication, i.e., a broadcast 
operation between all processors, (ii) a master-slave 
communication, where every processor sends a value to a 
single processor (the master), which, after some 
computation, sends the data back to all processors, and (iii) 
a binary-tree, where communications are combined pair-
wise to yield a single value, which is the sent back to all 
processor using the same binary tree. The results indicated 
that there is no significant difference between 
implementations for simulations running on less than 32 
processors. Nevertheless, the binary-tree approach, 
implemented via the MPI function “all-reduce” 
outperformed the other methodologies by a large margin as 
the processor number increases.  

The frequency at which the communication between 
processors should occur was also investigated. In the 
simulations performed, the best results where obtained for a 
limit of 10 SOR iterations prior to communication. 
However, it is the authors’ opinion that the optimum 
number is a function of the nature of the problem studied, 
and further investigation is required on this subject to 
automatically identify optimum parameters for each class 
of problem. 

REFERENCES 
 
[1] Griebel, M., Dornseifer, T. & Neunhoeffer, T., 1998, 

Numerical Simulation in Fluid Dynamics – A Pratical 
Introduction, SIAM, Philadelphia.  

 
[2]  Harlow, F. & Welch, J., 1965, Numerical calculation of time-

dependent viscous incompressible flow of fluid with free 
surface, Phys. Fluids, vol. 8, pp. 2182-2189. 

 
[3]  Reis Jr., N. C., Griffiths, R. F., Roberts, E. P. L. , 1998, 

Finite Volume Method to Solve Free-Surface Fluid Flow 
Problems, Numerical Methods on Computational Fluid 
Dynamics VI, Oxford, p.475 – 483. 

 
[4] Hirt, C., Nicolas, B., & Romero, N., 1975, SOLA – A 

Numerical Solution Algorithm for Transient Fluid Flows, 
Technical report LA-5852, Los Alamos, NM: Los Alamos 
National Lab. 

 

[5] Streng, M., 1996, Load Balancing for Computational Fluid 
Dynamics Calculations, in High Performance Computing 
Fluid Dynamics, ed. P. Wesseling, Kluwer Academic 
Publishers.  

 
[6] Anderson  Jr., J. D., Computational Fluid Dynamics – The 

Basics with Applications, McGraw Hill Inc., 1995. 


