
Finite Difference Simulations of the
Navier-Stokes Equations using Parallel

Distributed Computing

João Paulo De Angeli1, Andrea M. P. Valli1, Neyval C. Reis Jr.2, Alberto F. De Souza1
1Departamento de Informática, Centro Tecnológico – UFES

Av. Fernando Ferrari, s/n, 29.060-970 – Vitória – ES
{jpda@inf.ufes.br, avalli@inf.ufes.br, alberto@inf.ufes.br}

2Departamento de Engenharia Ambiental, Centro Tecnológico – UFES
Av. Fernando Ferrari, s/n, 29.060-970 – Vitória – ES

{neyval@inf.ufes.br}

Abstract
This paper discusses the implementation of a numerical

algorithm for simulating incompressible fluid flows based on
the finite difference method and designed for parallel
computing platforms with distributed-memory, particularly
for clusters of workstations. The solution algorithm for the
Navier-Stokes equations utilizes an explicit scheme for
pressure and an implicit scheme for velocities, i. e., the
velocity field at a new time step can be computed once the
corresponding pressure is known. The parallel
implementation is based on domain decomposition, where the
original calculation domain is decomposed into several blocks,
each of which given to a separate processing node. All nodes
then execute computations in parallel, each node on its
associated sub-domain. The parallel computations include
initialization, coefficient generation, linear solution on the sub-
domain, and inter-node communication. The exchange of
information across the sub-domains, or processors, is achieved
using the message passing interface standard, MPI. The use of
MPI ensures portability across different computing platforms
ranging from massively parallel machines to clusters of
workstations. The execution time and speed-up are evaluated
through comparing the performance of different numbers of
processors. The results indicate that the parallel code can
significantly improve prediction capability and efficiency for
large-scale simulations.

Keywords Parallel Processing, Finite Difference Method,
Navier-Stokes, MPI.

I. INTRODUCTION

In this paper, we study the parallel implementation of
the numerical discretization of the Navier-Stokes equations
based on the finite difference method suggested by Griebel,
Dornseifer and Neunhoeffer [1]. This method was strongly
influenced by the marker-and-cell (MAC) technique of
Harlow et al. from the Los Alamos National Laboratory [2].
It consists of an implicit scheme for pressure, which uses
successive overrelaxation (SOR) iterations, and an explicit
scheme for velocities with a first-order time discretization.

Despite its simplicity, this method is surprisingly flexible
and relatively efficient, and may be applied to a variety of
transient problems with fixed and free boundary domains
[3, 4]. In addition, improvements to this algorithm can be
attained by using multigrid methods to solve the pressure
equations, by treating the momentum equations (semi)
implicitly, or by employing higher order methods. Such
techniques applied before parallelization increases
efficiency. However, in this work we focus on the
parallelization of the finite difference scheme. We are
interested on improving prediction capability and efficiency
for large-scale simulations using parallel computations. Our
goal is to reduce the total computing time by dividing the
computational work between several processors, which
perform their calculations concurrently. To avoid the cost
limitations imposed by supercomputers, our code was
mainly developed for clusters of workstations.

Rapid increase of microprocessor and network
performance has enabled the implementation of clusters of
workstations with high levels of computing power for a
small fraction of the price of supercomputers. However, the
use of clusters of workstation requires different
programming paradigms since the system architecture is
based on a distributed-memory model, which differs
considerably from the shared-memory mode widely used in
the last decades. We have used the domain decomposition
coordinate bisection technique [5] for implementing our
parallel algorithm for cluster of workstations. In this
technique, the number of points is equally divided between
processors, but no attempt is made to obtain a domain
division that minimizes communications between
processors. The parallel computations include initialization,
coefficient generation, linear solution on the sub-domain,
and inter-node communication. The exchange of
information across sub-domains, or processors, is achieved
using the message passing interface standard, MPI. The use
of MPI ensures portability across different computing

platforms, ranging from massively parallel machines to
clusters of workstations.

The frequency at which the communication between
processors occurs within each SOR iteration was also
investigated. Griebel et al. [1] proposed that a
communication step should be performed after each SOR
iteration, so that the values at the boundaries are updated at
every SOR iteration. This procedure introduces a
significant amount of communication, which, according to
our experiments, slows down the computation. An
alternative procedure that we have used is to perform a few
SOR iterations prior to communication. This reduces the
amount of communication without slowing down the
convergence rate. In addition, the communication steps
were performed in three different ways: all-to-all, master-
slave and binary-tree. In order to assess the parallel
performance of the algorithm and to evaluate all different
parallelization strategies we have used, simulations with 1,
2, 4, 8, 16, 32, 48 and 64 processors were performed and
the execution time, speed-up and parallel efficiency were
measured. The results indicated that, for more than 32
processors, the binary-tree approach outperformed the
others by a large margin.

The outline of the paper is as follows. First, we present
the class of governing equations under investigation and
briefly the finite difference formulation. Then, we discuss
the parallelization strategy adopted for the solution
algorithm. In Section 4 we present the main conclusions.

II. GOVERNING EQUATIONS AND THE FINITE
DIFFERENCE FORMULATION

We consider the stationary and transient flow of a
viscous incompressible fluid as described by the
two-dimensional Navier-Stokes equations

() ()
xg

y
uv

x
u

y
u

x
u

x
p

t
u

+
∂

∂
−

∂
∂

−







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ 2

2

2

2

2

Re
1 (1)

() ()
yg

y
v

x
uv

y
v

x
v

y
p

t
v

+
∂

∂
−

∂
∂

−







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ 2

2

2

2

2

Re
1 (2)

0=
∂
∂

+
∂
∂

y
v

x
u (3)

where u and v are the horizontal and vertical components of
the velocity, p is the pressure, gx and gy are body forces,
Re=(ρ∞u∞L)/µ is the dimensionless Reynolds number, ρ∞,
u∞ and L are given scalar constants (namely, fluid density,
characteristic velocity and characteristic length,
respectively) and µ is the dynamic viscosity. To complete
the mathematical statement of the problem, we need initial
and boundary conditions. We consider velocities or flux
boundary conditions.

The numerical treatment of the Navier-Stokes equations
is based on the finite difference scheme suggested by
Griebel, Dornseifer and Neunhoeffer in [1]. In the usual
way, the flow domain is discretized into imax cells of equal
sizes in the x-direction and jmax cells in the y-direction. The
region is discretized using a staggered grid, in which the
pressure p is located in the cell centers, the horizontal
velocity u in the midpoints of the vertical cell edges, and
the vertical velocity v in the midpoints of the horizontal cell
edges. This staggered arrangement of the unknowns
prevents possible pressure oscillations, which could occur
had we evaluated all three unknown values u, v and p at the
same grid points.

The discretization of the spatial derivatives requires a
mixture of central differences and donor-cell discretization
to maintain stability for strongly convective problems.
Because the convective terms xu ∂∂)(2 , yuv ∂∂)(,

xuv ∂∂)(and yv ∂∂)(2 in the momentum equations
become dominant at high Reynolds numbers or high
velocities, stability problems may occur when the grid
spacing is chosen too coarse. To avoid stability problems,
these convective terms are treated using a weighted average
of central difference and donor-cell scheme as suggested by
(Hirt et al., 1975). The first order spatial derivatives xu ∂∂ ,

yv ∂∂ and the second order derivatives 22 xu ∂∂ , 22 yu ∂∂ ,
22 xv ∂∂ and 22 yv ∂∂ , forming the so-called diffusive

terms, may be replaced by central differences using half the
mesh width. Details of the spatial discretization can be
found in (Griebel et al., 1998). To obtain the time
discretization of the momentum equations (1) and (2), we
discretize the time derivatives tu ∂∂ and tv ∂∂ using the
Euler's method. Introducing the functions

() () () ()
()n

x
nn g

y
uv

x
u

y
u

x
utuF












+

∂
∂

−
∂

∂
−








∂
∂

+
∂
∂

+=
2

2

2

2

2

Re
1δ (4)

() () () () ()n

y
nn g

y
v

x
uv

y
v

x
vtvG












+

∂
∂

−
∂

∂
−








∂
∂

+
∂
∂

+=
2

2

2

2

2

Re
1δ (5)

where the superscript n denotes the time level, we have the
fully discrete momentum equations

() () () ()()1

,
1
,1,

1
,

++
+

+ −−= n
ji

n
ji

n
ji

n
ji pp

x
tFu

δ
δ

1,...,1 max −= ii max,...,1 jj = (6)

() () () ()()1
,

1
1,,

1
,

++
+

+ −−= n
ji

n
ji

n
ji

n
ji pp

y
tGv

δ
δ

max,...,1 ii = 1,...,1 max −= jj (7)

which may be characterized as being explicit in the
velocities and implicit in the pressure; i.e., the velocity field

at time step tn+1 can be computed once the corresponding
pressure is known. Substituting the equations (6) and (7)
for the velocity field into the continuity equation (3), we
obtain the Poisson equation for the pressure p(n+1) at time
tn+1

() () ()

()

() () ()

()
() () () ()










 −
+

−

=
+−

+
+−

−−

+
−

++
+

+
−

++
+

y
GG

x
FF

t

y
ppp

x
ppp

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

δδδ

δδ

1,,,1,

2

1
1,

1
,

1
1,

2

1
,1

1
,

1
,1

1

22

 max,...,1 ii = 1,...,1 max −= jj (8)

which requires boundary values for the pressure. We
assume p0,j = p1,j , pimax+1,j = pimax,j , pi,0 = pi,1 , pi,jmax+1 =
pi,jmax , with i = 1,…, imax and j = 1,…, jmax. In addition, we
need values of F and G at the boundary to compute the
right-hand side of (8). We set F0,j = u0,j , Fimax,j = uimax,j , Gi,0
= vi,0 and Gi,jmax = vi,jmax , with i = 1,…, imax and j = 1,…,
jmax.

As a result, we have to solve a linear system of
equations (8) containing imax jmax unknowns pi,j , i = 1,…,
imax and j = 1,…, jmax. In this work, we obtain approximate
solutions for the pressure using the SOR method. To avoid
generating oscillations, an adaptive stepsize control based
on the famous Courant-Friedrichs-Lewy (CFL) conditions
is used in order to ensure stability of the numerical
algorithm [6]. The new time-step size is given by




















+=

−

maxmax

1

22 ,,11
2

Remin
v

y
u

x
yx

t δδ
δδ

τδ (9)

where the factor τ ∈ (0, 1] is a safety factor. In summary,
the entire procedure consists of the steps outlined in Fig. 1.

End

yes

no

Set = 0, = 0t n

Assign initial values to u, v, p

Set boundary values to u, v

Select according to eq.(9)δt

Compute values of (,) according to eqs.(4) and (5)F G() ()n n

Solve the poisson equation (8) for p()n+1

Compute values of (,) according to eqs.(6) and (7), using u v p() ()n+1 n+1 (n+1)

t t t n n = + , = + 1δ

If > t tend

Fig. 1 – Algorithm for the Navier-Stokes equations.

III. PARALLELIZATION STRATEGY

While for shared-memory parallelism is mainly directed
to execute an identical set of operations in parallel on the
same data structure (do-loop parallelization), parallelism in
distributed-memory systems is mainly directed to sub-
divide the data structures into sub-domains and assign each
sub-domain to one processor. In this case, the same code
runs on all processors with its own set of data.

Fig. 2a shows a schematic representation of a mesh, for
the simulation of the backward facing step problem,
containing 2400 nodal points. By dividing the
computational domain into four sub-domains (Fig. 2b), it is
possible to spread the workload between four different
processors. However, it is important to note that, in order to
compute the variables for each nodal point, the variables at
its neighboring points are required. Thus, in order to
calculate the variables at the points close to the interface
between sub-domains, one processor will require
information stored in the memory of a neighboring
processor. This requires communication at regular
intervals, which may slow down the computation.

In general, the computation procedure involves three
steps (1) partitioning of the solution domain; (2)
performing computations on each processor to update its
own data set; (3) communicating data between processors.
This technique is called domain decomposition. The key for
an efficient computation is to maintain the communications
between processors to a minimum level, as well as, to
divide the workload equally between processors.

(a)

(b)

Fig. 2 - (a) Schematic representation of a mesh for the

simulation of the backward facing step problem and (b) its
decomposition in 4 sub-domains.

In this work, domain decomposition coordinate

bisection is used [5]. This method divides the number of
points equally between processors, but makes no attempt to
obtain a domain division that minimizes the communication
between processors, i.e., a division with the smallest
number of nodal points in boundaries between sub-
domains. Therefore, coordinate bisection may produce sub-
domains with long interfaces that will lead to a large
amount of communication. This can be partly overcome by
recursive application of alternate x, y (and in 3D, z)
bisections. The grid is first divided into 2 grids using
bisection of the x-length of the calculation domain. Then to

each of the resulting domains, y-bisection is applied,
resulting in four blocks (or sub-domains). The procedure
can be continued to obtain eight blocks, sixteen blocks,
thirty two blocks, etc.

Once a multi-block domain has been established,
calculations on each block can begin in parallel if the
boundary conditions of these blocks are known. This may
be either a physical boundary condition or an internal
boundary condition generated as a consequence of the
domain decomposition. The physical boundary data of each
block, if any, are provided by the user, while the internal
boundary data must be received from neighboring blocks,
which may reside on different processors. Internal
boundary data are hold by buffers on the boundary of each
block as shown in Fig. 3, which illustrates a calculation
sub-domain and the buffer cells used to store the overlap
data. Once the buffer data has been received from all sides
of a block, the computation of this block can start, using the
sequential algorithm. On completion of the solution for the
block, the data at its boundaries is sent to the neighboring
blocks. Calculation in this block then waits for the buffer
update provided by this block’s neighbors, after which the
next computation cycle can start.

Buffer data to
be refreshed by
sub-domain 3

Buffer data to
be refreshed by
sub-domain 4

Buffer data to be refreshed
 by sub-domain 1

Buffer data to be refreshed
 by sub-domain 2

1 4

2 3

Fig. 3 – Schematic representation of a calculation sub-

domain divided into four sub-domains, indicating the buffer
cells used to store the internal boundaries data

Fig. 4 shows the sequence of operations involved in the

computation. Each processor performs the computation on
its own sub-domain, which includes the initialization of the
values of velocities and pressure, and time-step size
calculations. Since each processor calculates a local value
for the time-step size based on its own local data (eq.9),
some communication is required to choose a time-step to be
used in all calculation sub-domains. This is required
because all processors need to advance to the next time-
step using the same values of δt in the present solution
algorithm. The time-step chosen has to attend the CFL

criterion (eq. 9) for all sub-domains, as such the smallest
time-step size is selected. After that, the values of F and G
are determined, and the coefficients of the linear set of
equations for pressure are calculated. Then, each block
individually deals with the solution of the pressure equation
for the nodal points at its sub-domain, solving the linear
system of equations using SOR iterations. Once pressure
values are calculated for each block, the pressure values at
each block boundary are communicated to its neighbors.
This procedure is repeated until convergence is reached,
which is checked comparing the values in the buffers prior
and after communication. We assume convergence if the
perceptual difference is less than 0.1%. Velocity
components are then calculated on each sub-domain, and
their values at each block boundary communicated to its
neighbors. This iterative process is continued until the
whole process reaches convergence.

The information exchange across sub-domains is
performed using the message passing interface standard,
MPI. The use of MPI ensures portability across different
computing platforms, ranging from massively parallel
machines to clusters of workstations.

End

yes

yes

no

no

Set = 0, = 0t n

Assign initial values to u, v, p

Set boundary values to u, v

Each processor computes the local value according to eq.(9)δt

Compute values of (,) according to eqs.(4) and (5)F G() ()n n

Solve the poisson equation (8) for p()n+1

Comunicate the values between neighboring processorsp() n+1

Comunicate the values (,) between neighboring processorsu v() ()n+1 n+1

Comunicate between processors to select the minimum value of δt

Compute values of (,) according to eqs.(6) and (7), using u v p() ()n+1 n+1 (n+1)

t t t n n = + , = + 1δ

If > t tend

Convergence?

Fig. 4 – Parallel algorithm for the Navier-Stokes

It is important to note that there are 4 different

communication steps during the calculation procedure: (1)
one required by the selection of the minimum δt; (2) one
involving the communication of the pressure for the
neighboring blocks, (3) one required for convergence
checking and (4) another one involving the communication
of the velocities for the neighboring blocks. The
communication steps (2) and (3) are the most critical to the

efficiency of the computation, since they occur several
times during the calculations, while the steps (1) and (4)
occur only once per time-step. The communication step (2)
only requires communication between neighboring
processors. On the other hand, step (3) requires
communications between all processors to check if all sub-
domains have reached convergence. This can be performed
using two different approaches: (a) each processor
communicates its error value to all other processors and
each processor check if the convergence was reached or
not; or (b) each processor communicates its error value to a
leader processor, which checks if convergence has been
reached or not, and then communicates it to all other
processors. The number of messages involved in the
approach (b) is far less than that of approach (a), especially
when the number of processors grows. However, (b)
requires two communication cycles (all send to one and one
send to all), while (a) requires only one cycle (all send to
all). This is very important for clusters of workstations,
since most of the network technology used in clusters of
workstations suffers from high latency. Thus, the time
required to perform two communication cycles can be more
important than the total number of messages. Here, both
approaches are implemented and the performance of each
one measured, the results are discussed in the next section.

IV. RESULTS AND DISCUSSION

In order to assess the parallel performance of the
algorithm and to evaluate different parallelization
strategies, simulations with 1, 2, 4, 8, 16, 32, 48 and 64
processors were performed. The experiments were run on
the cluster of the Laboratório de Computação de Alto
Desempenho of the Departamento de Informática – UFES
(www.inf.ufes.br/~lcad). This cluster has 64 processors
(Athlon 1800+, 128k cache L1, 512k cache L2, 256 Mb
RAM) and uses Fast-Ethernet network technology
(100MB/s).

A typical CFD application was simulated – “The lid
driven cavity problem” – that consists of a square container
(whose sides length are equal to 1.0 m) filled with a fluid.
The lid of the container moves at a given constant velocity,
thereby setting the fluid in motion. No-slip conditions are
imposed on all four segments of the boundary except for
the upper boundary, along which the velocity u in the x-
direction is equal to the given lid velocity u0, in order to
simulate the moving lid.

 It is important to emphasize that the simulation
performed with 1 processor is, in fact, slightly different
from those performed with two or more processors, since a
truly sequential code was utilized in the 1 processor case.
In this way, it was possible to evaluate the real performance
gain of using parallel instead of sequential computing.

The algorithm analyses are divided into three different
sections. The first section analyses the speed-up obtained
with the use of additional processors and the impact of the

problem size on the performance. The second and third
sections deal with the evaluation of the impact of the inter-
processor communication strategies used. As discussed
previously, there are two stages of the computational
procedure: one that requires communication between all
processors, the convergence check after a SOR iteration;
and the determination of the value of δt for the next time
iteration. The communication required for convergence
check can be performed using at least three different
mechanisms: (i) an all-to-all communication, i.e., a
broadcast operation between all processors; (ii) a master-
slave communication, where every processor sends a value
to a single processor (the master), which, after some
computation, sends the data back to all processors; and (iii)
a binary-tree, where communications are combined pair-
wise to yield a single value, which is sent back to all
processor using the same binary tree. In the second section
is studied the impact of the different communication
strategies used to communicate the data necessary to the
convergence check. In the third section, the frequency at
which the communication between processors should occur
is evaluated. Griebel et al. [1] proposed that a
communication step should be performed after each SOR
iteration, so that the values at the boundaries get an update
at every SOR iteration. This procedure may introduce a
significant amount of communication, which may slow
down the computation. An alternative procedure is to
perform a few SOR iterations prior to communication. The
results presented below show that this can considerably
reduce the amount of communication without slowing
down the convergence rate.

A.1 Speed-up results

The performance evaluation was based on the execution
time and the speed-up provided by the increase of the
number of processors used in the computations. Fig. 5a
presents the execution time for simulations with 3 different
meshes: 256×256, 512×512 and 1024×1024, which
represents approximately 65×103, 260×103 and 1×106 nodal
points, respectively. It is possible to note a considerable
reduction in the execution time for all 3 meshes as the
number of processors increases (the execution time axis is
in a logarithmic scale).

Fig. 5b compares the speed-up results with the ideal
speed-up, which represents a linear reduction of the
computation time as the number of processors increases. It
is possible to note that the speed-up obtained for the
256×256 mesh is far from the ideal speed-up. When two or
four processors are used, there is a significant gain in
performance, but not a linear gain. As the number of
processors increases this difference between achieved and
ideal speed-ups becomes more evident. This happens
because, when the number of processors increases, the
block size decreases. Although the number of nodal points
is divided equally among processors, when the block size is

small, the nodal points of each block that require
communication represent a large proportion of the total
number of nodal points in each block. Since the network
throughput is limited, each processor spends a significant
amount of time waiting for information coming from others
in this case. The smaller the number of nodal points on a
sub-domain, the faster a processor is able to perform the
do-loops operations assigned to it, so that the amount of
time spent on communication becomes more significant.
This fact is even more noticeable when the number of
processors is increased and the proportion of nodal points
of each computation block requiring communication
becomes larger. As shown in Fig. 5a, the computing time of
the 256x256 mesh with 48 processors is slightly larger than
that with 32 processors – this tendency is more pronounced
for smaller meshes. Thus, larger meshes tend to present
larger speed-ups and a more efficient use of the additional
processors in the system.

0 8 16 24 32 40 48 56 64

N. Procs.

100

1000

10000

100000

1E+006

Ex
ec

ut
io

n
Ti

m
e

[s
]

256x256
512x512
1024x1024

0 8 16 24 32 40 48 56 64

N. Procs.

0

8

16

24

32

40

48

56

64

Sp
ee

d-
up

(a) (b)
Fig. 5 – (a) Execution times and (b) speed-up’s obtained for
meshes of 256×256, 512×512 and 1024×1024 nodal points,

with simulations running on 1, 2, 4, 8, 16, 32, 48 and 64
processors.

A.2 Communication strategy

As described earlier, there are two stages in the
computational procedure that require communication
between all processors. For instance, in the computation of
the time step size for the next time iteration, every
processor calculates it own maximum allowed local time
step size (eq. 9); however, the time step value used for the
next time iteration needs to be the smallest value among all
processors. As such, this operation can be performed at
least in 3 different manners. In the first, every processor
communicates its time step size to any other processor in
the system and, then, each processor calculates the smallest
value and selects it as the global time step size for the next
time iteration. This approach requires all-to-all or broadcast
communication, which might cause network contention,
since n(n-1) messages should be sent (where n is the
number of processors involved in the computation). In the
second, every processor sends its time step size to a master
processor, which selects the smallest value and broadcast it
back to all processors. This procedure involves a

considerable reduction on the number of messages sent
(2n), but has to be performed in two stages, which may
cause some slow down due to the latency of the network.
This procedure will be referred to as master-slave. In the
third approach, the MPI “all-reduce” function is used. This
performs all communications required using a binary tree,
i.e., communications are combined pair-wise to yield a
single corresponding result of the operation in the binary
tree root processor receive buffer, which is then forwarded
back to all processors using the same binary tree. The use
of the all-reduce function slightly decreases the number of
messages to 2(n-1); however, avoiding network contention,
and distributing the computation of the smallest value
among all processors. Nevertheless, since a binary tree
communication algorithm is used, the number of
communication stages is equal log2n, i.e., a 32 processor
all-reduce operation will be carried out using 5
communication steps.

0 8 16 24 32 40 48 56 64

N. Procs.

0

0.2

0.4

0.6

0.8

1

Pa
ra

lle
l E

fic
ie

nc
y

master-slave
all-reduce
all-to-all

0 8 16 24 32 40 48 56 64

N. Procs.

0

8

16

24

32

40

48

56

64

Sp
ee

d-
up

(a) (b)

 Fig. 6 – (a) Speed-up and (b) parallel efficiency obtained
for communication: master-slave, all-to-all and all-reduce,

with simulations running on 1, 2, 4, 8, 16, 32, 48 and 64
processors.

Thus it is important to verify which procedure is more

efficient on the computations of this class of problem. Fig.
6 shows the speed-up and parallel efficiency obtained for
master-slave, all-reduce and all-to-all with simulations
running on 1, 2, 4, 8, 16, 32, 48 and 64 processors for a
512×512 mesh. The results indicate that there is no
significant difference between implementations for
simulations running on less than 32 processors. In fact, the
results for the all-reduce implementation displays a
marginally lower efficiency for 16 processors, which may
be related to the increased number of communication steps
required to perform the communication. However, as the
number of processors reaches 32, the advantage of an all-
reduce implementation is quite noticeable. As the number
of sub-domains in the computation increases, the number of
messages becomes an important limiting factor and tends to
slow down the computation. It can be noted that an all-to-
all exhibits the worst marks of parallel efficiency for large

number of processors, while the master-slave
implementation obtains middling results.

A.3 Frequency of communication

As stated previously, Griebel et al. [1] proposed that,
after each SOR iteration, a communication step should be
performed, so that the values at the boundary get an update
at every SOR iteration. Although this procedure ensures a
fast convergence rate, due to a strong coupling between
sub-domains, this may also introduce a significant amount
of communication, which may slow down the computation.

Alternatively, one could perform a few SOR iterations
prior to each communication, reducing the amount of
communication during computation. However, the
reduction of the frequency in communication reduces the
coupling between sub-domains, which may reduce the
convergence rate yielding to a larger number of global
iterations. Thus, the choice of the communication
frequency is a compromise between the coupling of the
solution of the sub-domains and the network contention
due to the high volume of messages. In fact, one wishes to
communicate as often as possible to ensure a fast
convergence but without causing network overload.

In order to evaluate the frequency at which the
communication between processors should occur, the
parallel performance was measured as the number of SOR
iterations prior to communication was varied. Fig. 7 shows
the speed-up and parallel efficiency obtained by various
communication frequencies, with simulations running on 1,
2, 4, 8, 16, 32, 48 and 64 processors for a 512×512 mesh.
The number of SOR iterations between communications
was varied from 1 to the extreme case where complete
convergence of the SOR procedure was reached on a sub-
domain prior to communication. It is important to note that,
on this test, the communication step is performed if a
maximum iteration count is reached or if local convergence
on a sub-domain is reached.

0 8 16 24 32 40 48 56 64

N. Procs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pa
ra

lle
l E

fic
ie

nc
y

max it = 1
max it = 5
max it = 10
max it = no limit

0 8 16 24 32 40 48 56 64

N. Procs.

0

8

16

24

32

40

48

56

64

Sp
ee

d-
up

(a) (b)

Fig. 7 – (a) Speed-up and (b) parallel efficiency obtained
for various communication frequencies, setting the number
of SOR iterations between communications to 1, 5, 10 SOR

iterations or until local convergence is reached, i.e., no
iteration count limit.

The results indicate a significant reduction of the

execution time by reducing the communication frequency,
especially for larger numbers of processors. For instance,
by using 64 processors a speed-up of approximately 40 was
obtained by performing 10 SOR iterations prior to
communication, while, for the simulation where a
communication step was performed for each SOR iteration,
the speed-up obtained was close to 12. For the simulation
where no limit for the number of SOR iterations prior to
communication was set, it possible to note that the speed-
up obtained is only marginally better than the speed-up for
the simulation where a communication step was performed
for each SOR iteration.

One interesting feature of the speed-up and parallel
efficiency curves obtained is that the speed-up for the
simulation performing 5 and 10 SOR iterations prior to
communication for 2 and 4 processors was slightly superior
to the ideal speed-up, yielding to a parallel efficiency larger
than one. This is probably related to a more efficient use of
the processor cache. Although there is a tendency for a
slow down of the computation due to communication, the
memory size required for the computation of each block
was considerably smaller. Thus, dividing the 512×512
mesh into 2 or 4 blocks, enables a more efficient use of the
processor L2 cache, reducing the number of cache misses.
Since the access time of the cache memory is 5 to 10 times
faster that that of the conventional memory, each processor
performs the computation on its own sub-domain slightly
faster, reducing the total computing time. However, as the
domain is further divided, the increase of performance
provided by the more efficient use of the processor's
memory hierarchy is not sufficient to avoid the
performance degradation due to communication.

The larger the number of SOR iterations prior to
communication, the larger is the cache hit ratio during the
computation, and thus, larger is the MFLOPS produced by
the machine’s processors. However, it is important to note
that the relationship between execution time and MFLOPS
achieved is not straightforward. An increase in the number
of SOR iterations prior to communication will result in an
increase in the MFLOPS achieved, but also in a reduction
of the coupling between sub-domains. For instance, a
simulation performed with 10 SOR iterations prior to
communication has reached a sustained performance of 2.4
GFLOPS on 32 processors, while a simulation performed
with 100 SOR iterations prior to communication has
reached a sustained performance of 3.4 GFLOPS on 32
processors. In spite of the smaller number of GFLOPS, the
simulation with 10 SOR iterations prior to communication
obtained a smaller execution time (656s for 10 SOR
iterations vs. 2915s for 100 SOR iterations), since the
number of global iterations per time step was smaller.

V. CONCLUSION

A numerical algorithm for simulating incompressible
fluid flows was presented. The algorithm was based on the
finite difference method and was designed for parallel
computing platforms with distributed-memory, particularly
for clusters of workstations.

In order to assess the parallel performance of the
algorithm and to evaluate different parallelization
strategies, simulations with 1, 2, 4, 8, 16, 32, 48 and 64
processors were performed. Where communication
between all processors was required, three communication
strategies were evaluated to deal with the communication
stages: (i) an all-to-all communication, i.e., a broadcast
operation between all processors, (ii) a master-slave
communication, where every processor sends a value to a
single processor (the master), which, after some
computation, sends the data back to all processors, and (iii)
a binary-tree, where communications are combined pair-
wise to yield a single value, which is the sent back to all
processor using the same binary tree. The results indicated
that there is no significant difference between
implementations for simulations running on less than 32
processors. Nevertheless, the binary-tree approach,
implemented via the MPI function “all-reduce”
outperformed the other methodologies by a large margin as
the processor number increases.

The frequency at which the communication between
processors should occur was also investigated. In the
simulations performed, the best results where obtained for a
limit of 10 SOR iterations prior to communication.
However, it is the authors’ opinion that the optimum
number is a function of the nature of the problem studied,
and further investigation is required on this subject to
automatically identify optimum parameters for each class
of problem.

REFERENCES

[1] Griebel, M., Dornseifer, T. & Neunhoeffer, T., 1998,

Numerical Simulation in Fluid Dynamics – A Pratical
Introduction, SIAM, Philadelphia.

[2] Harlow, F. & Welch, J., 1965, Numerical calculation of time-

dependent viscous incompressible flow of fluid with free
surface, Phys. Fluids, vol. 8, pp. 2182-2189.

[3] Reis Jr., N. C., Griffiths, R. F., Roberts, E. P. L. , 1998,

Finite Volume Method to Solve Free-Surface Fluid Flow
Problems, Numerical Methods on Computational Fluid
Dynamics VI, Oxford, p.475 – 483.

[4] Hirt, C., Nicolas, B., & Romero, N., 1975, SOLA – A

Numerical Solution Algorithm for Transient Fluid Flows,
Technical report LA-5852, Los Alamos, NM: Los Alamos
National Lab.

[5] Streng, M., 1996, Load Balancing for Computational Fluid
Dynamics Calculations, in High Performance Computing
Fluid Dynamics, ed. P. Wesseling, Kluwer Academic
Publishers.

[6] Anderson Jr., J. D., Computational Fluid Dynamics – The

Basics with Applications, McGraw Hill Inc., 1995.

