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http://www.compunity.org
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“Using OpenMP”
Portable Shared Memory 
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, October 2007

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

List price: 35 $US

All examples available soon!

(also plan to start a forum
on www.openmp.org)
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❑ De-facto standard API for writing shared memory parallel 

applications in C, C++, and Fortran

❑ Consists of:

● Compiler directives
● Run time routines
● Environment variables

❑ Specification maintained by the OpenMP 
Architecture Review Board (http://www.openmp.org)

❑ Version 3.0 has been released May 2008

http://www.openmp.org/
Alberto
Nota
Versão 4.0 lançada em julho de 2013
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❑ The compiler may not be able to do the parallelization in 

the way you like to see it:

● It can not find the parallelism
✔ The data dependence analysis is not able to 

determine whether it is safe to parallelize or not
● The granularity is not high enough

✔ The compiler lacks information to parallelize at the 
highest possible level

❑ This is when explicit parallelization through OpenMP 
directives comes into the picture
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❑ Good performance and scalability

● If you do it right ....
❑ De-facto and mature standard

❑ An OpenMP program is portable

● Supported by a large number of compilers
❑ Requires little programming effort

❑ Allows the program to be parallelized incrementally
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OpenMP is ideally suited for multicore 
architectures

Memory and threading model map naturally

Lightweight

Mature

Widely available and used
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T
private

T
private

T
private

T
private

T

private

Shared
Memory

✔ All threads have access to the 
same, globally shared, memory

✔ Data can be shared or private

✔ Shared data is accessible by all 
threads

✔ Private data can only be 
accessed by the thread that 
owns it

✔ Data transfer is transparent to 
the programmer

✔ Synchronization takes place, 
but it is mostly implicit
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❑ In an OpenMP program, data needs to be “labelled”

❑ Essentially there are two basic types:

● Shared
✔ There is only instance of the data
✔ All threads can read and write the data simultaneously, 

unless protected through a specific OpenMP construct
✔ All changes made are visible to all threads

But not necessarily immediately, unless enforced ......
● Private

✔ Each thread has a copy of the data
✔ No other thread can access this data
✔ Changes only visible to the thread owning the data
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Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization
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  for (int i=0; i<n; i++) 
    c[i] = a[i] + b[i];

For-loop with independent 
iterations

% cc -xopenmp source.c
% setenv OMP_NUM_THREADS 5
% a.out

#pragma omp parallel for 
for (int i=0; i<n; i++) 
    c[i] = a[i] + b[i];

For-loop parallelized using 
an OpenMP pragma

Alberto
Nota
gcc -fopenmp source.c
export OMP_NUM_THREADS=5
./a.out
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Directives Runtime

environment
Environment

variables
 Number of threads

 Scheduling type

 Dynamic thread 
adjustment

 Nested parallelism

 Parallel region

 Worksharing

 Synchronization

 Data-sharing 
attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

 Number of threads

 Thread ID

 Dynamic thread 
adjustment

 Nested parallelism

 Wallclock timer

 Locking
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TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum

sum = Σ  b[i=0][j]*c[j] sum = Σ  b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum

sum = Σ  b[i=1][j]*c[j] sum = Σ  b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
   sum = 0.0;
   for (j=0; j<n; j++)
     sum += b[i][j]*c[j];
   a[i] = sum;

  }

 #pragma omp parallel for default(none) \
             private(i,j,sum) shared(m,n,a,b,c)

= *

j

i
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*) With the IF-clause in OpenMP this performance 
degradation can be avoided

scales



18

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 A more elaborate example

for (i=0; i<n; i++)
   z[i] = x[i] + y[i];

      ....
scale = sum(a,0,n) + sum(z,0,n) + f;
      ....

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work is distributed)

Statement is executed 
by all threads

f = 1.0; Statement is executed 
by all threads

#pragma omp for nowait

parallel loop
(work is distributed)

#pragma omp parallel if (n>limit) default(none) \
        shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
arallel reg

io
n

for (i=0; i<n; i++)
   a[i] = b[i] + c[i];
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OpenMP In Some More Detail
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❑ OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all 
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a 
parallel region

☞ Parallel regions can be nested, but support for this is 
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case 
the condition evaluates to "false", the code is executed serially

❑ A work-sharing construct divides the execution of the 
enclosed code region among the members of the team; 
in other words: they split the work
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✔ Only execute in parallel if 
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
        shared(n,x,y) private(i)
  {
    #pragma omp for
     for (i=0; i<n; i++)
        x[i] += y[i];
  } /*-- End of parallel region --*/
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Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
   a[i] = b[i] + c[i];

for (i=0; i < N; i++)
   d[i] = a[i] + b[i];
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We need to have updated all of a[ ] first, before using a[ ] *

for (i=0; i < N; i++)
   a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue 
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
   d[i] = a[i] + b[i];

*) If there is the guarantee that the mapping of iterations onto threads 
is identical for both loops, there will not be a data race in this case
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time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:
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❑ To minimize synchronization, some OpenMP directives/

pragmas support the optional nowait clause

❑ If present, threads do not synchronize/wait at the end 
of that particular construct

❑ In Fortran the nowait clause is appended at the closing 
part of the construct

❑ In C, it is one of the clauses on the pragma

!$omp do 
       :
       :
!$omp end do nowait

#pragma omp for nowait
{ 
       :
}
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!$omp parallel [clause[[,] clause] ...]

   "this is executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
   "this is executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple 
threads simultaneously



27

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless 

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{
   ....
}

!$OMP DO
   ....
!$OMP END DO

#pragma omp sections
{
      ....
}

!$OMP SECTIONS
      ....
!$OMP END SECTIONS

#pragma omp single
{
      ....
}

!$OMP SINGLE
      ....
!$OMP END SINGLE
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Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

    <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
    A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT
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!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct
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#pragma omp parallel default(none)\
        shared(n,a,b,c,d) private(i)
  {
    #pragma omp for nowait
     

    
    #pragma omp for nowait
     
  
  

  } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
    d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
    b[i] = (a[i] + a[i+1])/2;
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!$omp sections [clause(s)]
!$omp section

<code block1>
!$omp section

<code block2>
!$omp section
           :
!$omp end sections [nowait]

The individual code blocks are distributed over the threads

private firstprivate
lastprivate reduction
nowait

Clauses supported:

#pragma omp sections [clause(s)]
{
#pragma omp section

<code block1>
#pragma omp section

<code block2>
#pragma omp section
           :
}

Note: The SECTION directive must be within the lexical extent of 
the SECTIONS/END SECTIONS pair
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#pragma omp parallel default(none)\
        shared(n,a,b,c,d) private(i)
  {
    #pragma omp sections nowait
    {
      #pragma omp section
       

      
      #pragma omp section
       

    
    } /*-- End of sections --*/

  } /*-- End of parallel region --*/

for (i=0; i<n; i++)
    d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
    b[i] = (a[i] + a[i+1])/2;
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#pragma omp parallel
#pragma omp for
   for (...)

!$omp parallel do
        ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel 
!$omp sections
        ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
        ...
!$omp end parallel sections

#pragma omp parallel sections 
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
        ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
        ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
        ...
!$omp end do
!$omp end parallel

Single PARALLEL loop
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#pragma omp parallel
{
     .....

   "read a[0..N-1]";

     .....
}

     .....
   "read a[0..N-1]";
     .....

Single processor region/1

This construct is ideally suited for I/O or initializations

Original Code

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel Version

May have to insert a 
barrier here
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❑ Usually, there is a barrier at the end of the region

❑ Might therefore be a scalability bottleneck (Amdahl's 
law)

time

single processor 
region

Threads wait 
in the barrier
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!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [private][firstprivate] \
                   [copyprivate][nowait]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied 

barrier on entry or 
exit !
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for (i=0; i < N; i++){
     .....
   sum += a[i];
     .....
}

Critical Region/1

If sum is a shared variable, this loop can not run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){
     .....
   sum += a[i];
     .....
}
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❑ Useful to avoid a race condition, or to perform I/O (but 

that still has random order)

❑ Be aware that there is a cost associated with a critical 
region

time

critical region
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!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

Critical: All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>} There is no implied 

barrier on entry or 
exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

Atomic: only the loads and store are atomic .... 

This is a lightweight, special 
form of a critical section

#pragma omp atomic
    a[indx[i]] += b[i];



40

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

Why The Excitement About OpenMP 3.0 ?

Support for TASKS !

With this new feature, a wider range of 
applications can now be parallelized
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         ........

   while(my_pointer) {
     

         (void) do_independent_work (my_pointer);
   
     my_pointer = my_pointer->next ;
   } // End of while loop

         ........
     

Hard to do before OpenMP 3.0:
First count  number of iterations, then 
convert while loop to for loop
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   my_pointer = listhead;

   #pragma omp parallel
   {
      #pragma omp single nowait
      {
         while(my_pointer) {
           #pragma omp task firstprivate(my_pointer)
           {
               (void) do_independent_work (my_pointer);
           }
           my_pointer = my_pointer->next ;
         }
      } // End of single - no implied barrier (nowait)
   } // End of parallel region - implied barrier

OpenMP Task is specified 
here

(executed in parallel)
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Case Study
A Neural Network
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Neural Network application*

*) Program was said not to scale on a Sun SMP system....

Excl. User CPU  Incl. User  Excl. Wall   Name  
  sec.      %   CPU sec.      sec.        
120.710 100.0   120.710     128.310      <Total> 
116.960  96.9   116.960     122.610      calc_r_loop_on_neighbours 
  0.900   0.7   118.630       0.920      calc_r 
  0.590   0.5     1.380       0.590      _doprnt 
  0.410   0.3     1.030       0.430      init_visual_input_on_V1 
  0.280   0.2     0.280       1.900      _write 
  0.200   0.2     0.200       0.200      round_coord_cyclic 
  0.130   0.1     0.130       0.140      __arint_set_n 
  0.130   0.1     0.550       0.140      __k_double_to_decimal 
  0.090   0.1     1.180       0.090      fprintf 

Performance Analyzer Output

Attr. User  Excl. User  Incl. User  Name  
CPU sec.    CPU sec.    CPU sec.      
116.960       0.900     118.630      calc_r 
116.960     116.960     116.960       *calc_r_loop_on_neighbours 

Callers-callees fragment:
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Source line information
     struct cell{
       double x; double y; double r; double I; 
      };                    
                         ......

      struct cell V1[NPOSITIONS_Y][NPOSITIONS_X];
      double       h[NPOSITIONS][NPOSITIONS];
                         ......
   Excl. User CPU  Excl. Wall  
     sec.     %      sec.                             
                            1040. void
                            1041. calc_r_loop_on_neighbours
                                        (int y1, int x1)
     0.080   0.1     0.080  1042. {
                            1043. struct interaction_structure *next_p;
                            1044. 
     0.130   0.1     0.130  1045. for (next_p = JJ[y1][x1].next;
     0.460   0.4     0.470  1046.      next_p != NULL;
                            1047.      next_p = next_p->next) {
## 116.290  96.3   121.930  1048.     h[y1][x1] += next_p->strength * 
                                       V1[next_p->y][next_p->x].r;
                            1049.   
                            1052.   }
                            1053. }

What is the
problem ?

96% of the time spent in 
this single statement 
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Data structure problem
❑ We only use 1/4 of a cache line !

❑ For sufficiently large problems this will:

● Generate additional memory traffic
✔ Higher interconnect pressure

● Waste data cache capacity
✔ Reduces temporal locality

❑ The above negatively affects both serial 
and parallel performance

❑ Fix: split the structure into two parts

● One contains the "r" values only
● The other one contains the {x,y,I} sets

x

y

r

I

x

y

r

I

x
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Fragment of modified code

double V1_R[NPOSITIONS_Y][NPOSITIONS_X];  

void
calc_r_loop_on_neighbours(int y1, int x1)
{
  struct interaction_structure *next_p;

  double sum = h[y1][x1];

  for (next_p = JJ[y1][x1].next;
       next_p != NULL;
       next_p = next_p->next) {
       sum += next_p->strength * V1_R[next_p->y][next_p->x];
  }
  h[y1][x1] = sum;
}  
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Parallelization with OpenMP

void calc_r(int t)
{

#include <omp.h>

#pragma omp parallel for default(none)  \
        private(y1,x1) shared(h,V1,g,T,beta_inv,beta)

  for (y1 = 0; y1 < NPOSITIONS_Y; y1++) {
    for (x1 = 0; x1 < NPOSITIONS_X; x1++) {

      calc_r_loop_on_neighbours(y1,x1);
      h[y1][x1] += V1[y1][x1].I; 

  <statements deleted> 
      
    }
  } 

/*-- End of OpenMP parallel for --*/

Can be executed 
in parallel
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That's It

Thank You and ..... Stay Tuned !

Ruud van der Pas
ruud.vanderpas@sun.com
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