
1

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

An Overview of OpenMP

Ruud van der Pas

Senior Staff Engineer
Technical Developer Tools

Sun Microsystems, Menlo Park, CA, USA

Nanyang Technological University
Singapore

Wednesday January 14, 2009

2

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Outline
❑ A Guided Tour of OpenMP

❑ Case Study

❑ Wrap-Up

3

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

http://www.openmp.org

http://www.compunity.org

4

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

http://www.openmp.org

5

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Shameless Plug - “Using OpenMP”

“Using OpenMP”
Portable Shared Memory
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, October 2007

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

List price: 35 $US

All examples available soon!

(also plan to start a forum
on www.openmp.org)

6

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 What is OpenMP?
❑ De-facto standard API for writing shared memory parallel

applications in C, C++, and Fortran

❑ Consists of:

● Compiler directives
● Run time routines
● Environment variables

❑ Specification maintained by the OpenMP
Architecture Review Board (http://www.openmp.org)

❑ Version 3.0 has been released May 2008

http://www.openmp.org/
Alberto
Nota
Versão 4.0 lançada em julho de 2013

7

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 When to consider OpenMP?
❑ The compiler may not be able to do the parallelization in

the way you like to see it:

● It can not find the parallelism
✔ The data dependence analysis is not able to

determine whether it is safe to parallelize or not
● The granularity is not high enough

✔ The compiler lacks information to parallelize at the
highest possible level

❑ This is when explicit parallelization through OpenMP
directives comes into the picture

8

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Advantages of OpenMP
❑ Good performance and scalability

● If you do it right
❑ De-facto and mature standard

❑ An OpenMP program is portable

● Supported by a large number of compilers
❑ Requires little programming effort

❑ Allows the program to be parallelized incrementally

9

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 OpenMP and Multicore

OpenMP is ideally suited for multicore
architectures

Memory and threading model map naturally

Lightweight

Mature

Widely available and used

10

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The OpenMP Memory Model

T
private

T
private

T
private

T
private

T

private

Shared
Memory

✔ All threads have access to the
same, globally shared, memory

✔ Data can be shared or private

✔ Shared data is accessible by all
threads

✔ Private data can only be
accessed by the thread that
owns it

✔ Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

11

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Data-Sharing Attributes
❑ In an OpenMP program, data needs to be “labelled”

❑ Essentially there are two basic types:

● Shared
✔ There is only instance of the data
✔ All threads can read and write the data simultaneously,

unless protected through a specific OpenMP construct
✔ All changes made are visible to all threads

But not necessarily immediately, unless enforced
● Private

✔ Each thread has a copy of the data
✔ No other thread can access this data
✔ Changes only visible to the thread owning the data

12

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The OpenMP Execution Model

Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization

13

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 A first OpenMP example

 for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop with independent
iterations

% cc -xopenmp source.c
% setenv OMP_NUM_THREADS 5
% a.out

#pragma omp parallel for
for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop parallelized using
an OpenMP pragma

Alberto
Nota
gcc -fopenmp source.c
export OMP_NUM_THREADS=5
./a.out

14

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Example parallel execution

Thread 0

i=0-199

+

=

Thread 1

i=200-399

Thread 2

i=400-599

Thread 3

i=600-799

Thread 4

i=800-999

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

15

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Components of OpenMP 2.5
Directives Runtime

environment
Environment

variables
 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

 Parallel region

 Worksharing

 Synchronization

 Data-sharing
attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Wallclock timer

 Locking

16

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum

sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum

sum = Σ b[i=1][j]*c[j] sum = Σ b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

17

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600
OpenMP - 1 CPU
OpenMP - 2 CPUs
OpenMP - 4 CPUs

OpenMP performance

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too
small *

*) With the IF-clause in OpenMP this performance
degradation can be avoided

scales

18

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 A more elaborate example

for (i=0; i<n; i++)
 z[i] = x[i] + y[i];

scale = sum(a,0,n) + sum(z,0,n) + f;

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work is distributed)

Statement is executed
by all threads

f = 1.0; Statement is executed
by all threads

#pragma omp for nowait

parallel loop
(work is distributed)

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
arallel reg

io
n

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

19

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

OpenMP In Some More Detail

20

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Terminology and behavior
❑ OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a
parallel region

☞ Parallel regions can be nested, but support for this is
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

❑ A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

21

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The if/private/shared clauses

✔ Only execute in parallel if
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
 shared(n,x,y) private(i)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
 } /*-- End of parallel region --*/

22

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

23

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Barrier/2

We need to have updated all of a[] first, before using a[] *

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

*) If there is the guarantee that the mapping of iterations onto threads
is identical for both loops, there will not be a data race in this case

24

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Barrier/3

time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:

25

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The nowait clause
❑ To minimize synchronization, some OpenMP directives/

pragmas support the optional nowait clause

❑ If present, threads do not synchronize/wait at the end
of that particular construct

❑ In Fortran the nowait clause is appended at the closing
part of the construct

❑ In C, it is one of the clauses on the pragma

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

26

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The Parallel Region

!$omp parallel [clause[[,] clause] ...]

 "this is executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
 "this is executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously

27

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

28

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The workshare construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

29

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The omp for/do directive

!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct

30

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The omp for directive - Example

#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

31

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The sections directive

!$omp sections [clause(s)]
!$omp section

<code block1>
!$omp section

<code block2>
!$omp section
 :
!$omp end sections [nowait]

The individual code blocks are distributed over the threads

private firstprivate
lastprivate reduction
nowait

Clauses supported:

#pragma omp sections [clause(s)]
{
#pragma omp section

<code block1>
#pragma omp section

<code block2>
#pragma omp section
 :
}

Note: The SECTION directive must be within the lexical extent of
the SECTIONS/END SECTIONS pair

32

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 The sections directive - Example
#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section

 #pragma omp section

 } /*-- End of sections --*/

 } /*-- End of parallel region --*/

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

33

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Combined work-sharing constructs
#pragma omp parallel
#pragma omp for
 for (...)

!$omp parallel do
 ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel
!$omp sections
 ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
 ...
!$omp end parallel sections

#pragma omp parallel sections
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
 ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
 ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
 ...
!$omp end do
!$omp end parallel

Single PARALLEL loop

34

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

#pragma omp parallel
{

 "read a[0..N-1]";

}

 "read a[0..N-1]";

Single processor region/1

This construct is ideally suited for I/O or initializations

Original Code

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel Version

May have to insert a
barrier here

35

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Single processor region/2
❑ Usually, there is a barrier at the end of the region

❑ Might therefore be a scalability bottleneck (Amdahl's
law)

time

single processor
region

Threads wait
in the barrier

36

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 SINGLE and MASTER construct

!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [private][firstprivate] \
 [copyprivate][nowait]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied

barrier on entry or
exit !

37

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

for (i=0; i < N; i++){

 sum += a[i];

}

Critical Region/1

If sum is a shared variable, this loop can not run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){

 sum += a[i];

}

38

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Critical Region/2
❑ Useful to avoid a race condition, or to perform I/O (but

that still has random order)

❑ Be aware that there is a cost associated with a critical
region

time

critical region

39

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Critical and Atomic constructs

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

Critical: All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>} There is no implied

barrier on entry or
exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

Atomic: only the loads and store are atomic

This is a lightweight, special
form of a critical section

#pragma omp atomic
 a[indx[i]] += b[i];

40

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

Why The Excitement About OpenMP 3.0 ?

Support for TASKS !

With this new feature, a wider range of
applications can now be parallelized

41

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;
 } // End of while loop

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

42

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009 Example - A Linked List With Tasking

 my_pointer = listhead;

 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
 } // End of parallel region - implied barrier

OpenMP Task is specified
here

(executed in parallel)

43

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Case Study
A Neural Network

44

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Neural Network application*

*) Program was said not to scale on a Sun SMP system....

Excl. User CPU Incl. User Excl. Wall Name
 sec. % CPU sec. sec.
120.710 100.0 120.710 128.310 <Total>
116.960 96.9 116.960 122.610 calc_r_loop_on_neighbours
 0.900 0.7 118.630 0.920 calc_r
 0.590 0.5 1.380 0.590 _doprnt
 0.410 0.3 1.030 0.430 init_visual_input_on_V1
 0.280 0.2 0.280 1.900 _write
 0.200 0.2 0.200 0.200 round_coord_cyclic
 0.130 0.1 0.130 0.140 __arint_set_n
 0.130 0.1 0.550 0.140 __k_double_to_decimal
 0.090 0.1 1.180 0.090 fprintf

Performance Analyzer Output

Attr. User Excl. User Incl. User Name
CPU sec. CPU sec. CPU sec.
116.960 0.900 118.630 calc_r
116.960 116.960 116.960 *calc_r_loop_on_neighbours

Callers-callees fragment:

45

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Source line information
 struct cell{
 double x; double y; double r; double I;
 };

 struct cell V1[NPOSITIONS_Y][NPOSITIONS_X];
 double h[NPOSITIONS][NPOSITIONS];

 Excl. User CPU Excl. Wall
 sec. % sec.
 1040. void
 1041. calc_r_loop_on_neighbours
 (int y1, int x1)
 0.080 0.1 0.080 1042. {
 1043. struct interaction_structure *next_p;
 1044.
 0.130 0.1 0.130 1045. for (next_p = JJ[y1][x1].next;
 0.460 0.4 0.470 1046. next_p != NULL;
 1047. next_p = next_p->next) {
116.290 96.3 121.930 1048. h[y1][x1] += next_p->strength *
 V1[next_p->y][next_p->x].r;
 1049.
 1052. }
 1053. }

What is the
problem ?

96% of the time spent in
this single statement

46

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Data structure problem
❑ We only use 1/4 of a cache line !

❑ For sufficiently large problems this will:

● Generate additional memory traffic
✔ Higher interconnect pressure

● Waste data cache capacity
✔ Reduces temporal locality

❑ The above negatively affects both serial
and parallel performance

❑ Fix: split the structure into two parts

● One contains the "r" values only
● The other one contains the {x,y,I} sets

x

y

r

I

x

y

r

I

x

47

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Fragment of modified code

double V1_R[NPOSITIONS_Y][NPOSITIONS_X];

void
calc_r_loop_on_neighbours(int y1, int x1)
{
 struct interaction_structure *next_p;

 double sum = h[y1][x1];

 for (next_p = JJ[y1][x1].next;
 next_p != NULL;
 next_p = next_p->next) {
 sum += next_p->strength * V1_R[next_p->y][next_p->x];
 }
 h[y1][x1] = sum;
}

48

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

Parallelization with OpenMP

void calc_r(int t)
{

#include <omp.h>

#pragma omp parallel for default(none) \
 private(y1,x1) shared(h,V1,g,T,beta_inv,beta)

 for (y1 = 0; y1 < NPOSITIONS_Y; y1++) {
 for (x1 = 0; x1 < NPOSITIONS_X; x1++) {

 calc_r_loop_on_neighbours(y1,x1);
 h[y1][x1] += V1[y1][x1].I;

 <statements deleted>

 }
 }

/*-- End of OpenMP parallel for --*/

Can be executed
in parallel

49

RvdP/V4.2

V4-11

Sun Application
Tuning Seminar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.OpenMP and Performance

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.031.03

1.14
1.19

1.30

1.48

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

1 2

14

26

42

56

1 2

13

22

33

39

Scalability results

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

Number of threads

T(baseline)/T(modified)

Number of threads

P
ar

al
le

l S
p

ee
d

-u
p

Baseline
version

Modified
version

T(One proc)/T(P procs)

Linear
speed-up

Note:
Single processor run time is 5001 seconds for the
baseline version (4847 for the modified version)

50

RvdP/V1 An Overview of OpenMP

NTU Talk
January 14

2009

That's It

Thank You and Stay Tuned !

Ruud van der Pas
ruud.vanderpas@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

