
 1

A Comparative Analysis Between EPIC Static
Instruction Scheduling and DTSVLIW Dynamic

Instruction Scheduling
Sandro C. Santana1, Alberto F. De Souza1, and Peter Rounce2

1 Departamento de Informática, Universidade Federal do Espírito Santo
Av. Fernando Ferrari, S/N, 29060-970 – Vitória – ES – Brazil

{camata, alberto}@inf.ufes.br
2 Department of Computer Science, University College London

Gower Street, London WC1E 6BT - UK
p.rounce@cs.ucl.ac.uk

Abstract
To achieve performance, Explicitly Parallel Instruction

Computing (EPIC) systems take the responsibility of
extracting instruction-level parallelism (ILP) from the
hardware and give it to the compiler. They expose a large part
of the hardware control at the conventional machine level.
Dynamically Trace Scheduled VLIW (DTSVLIW) systems, on
the other hand, leave the responsibility of extracting ILP to
the hardware and use conventional compilers. Their hardware
uses a simple hardware implemented scheduling algorithm –
executed dynamically – to exploit ILP and achieve
performance. This work examines three compiler/EPIC
architecture combinations (SGI PRO64 C++ Compiler/IA64,
Intel C++ Compiler 5.0.1/IA64 and Trimaran 2.0/HPL-PD)
and compares these with a compiler/DTSVLIW architecture
combination (gcc/Alpha-DTSVLIW). Our experiments show
that, on average, the DTSVLIW architecture achieves better
performance than EPIC because its dynamic scheduler,
although much simpler, harnesses more ILP due to its
exploitation of execution-time information invisible to the
EPIC compiler’s scheduler.

I. INTRODUCTION

A large and steady increase in microprocessor systems
performance has been achieved in recent years, largely without
rewriting programs in parallel form, changing algorithms or
languages, and mostly without recompiling programs. The
Superscalar architecture of recent microprocessors [1] has
played a part in this by its exploitation of the instruction-level
parallelism (ILP) available in existing programs. However, this
has been at the expense of a considerable increase in hardware
complexity, which may restrict further performance gains. To
resolve this problem many architectures have been proposed,
including the Explicitly Parallel Instruction Computing (EPIC)
[2] and the Dynamically Trace Scheduled VLIW (DTSVLIW)
[3] architectures.

The EPIC architecture is a more elaborated form of Very
Long Instruction Word (VLIW) architecture [4] that moves the
responsibility of detecting and extracting ILP out of the

hardware into the compiler while improving the hardware to
exploit the available ILP better. With EPIC, the compiler is
responsible for scheduling the sequential code specified by the
programmer into parallel EPIC instructions.

DTSVLIW architectures execute programs in two phases:
one sequential, the other parallel. The first occurs when a
fragment of code is first seen during execution, the second
when the same fragment of code needs to be re-executed. In
the sequential phase, the instructions are fetched from the
instruction cache and executed by a simple pipelined
processor. Concurrently, these instructions are scheduled into
VLIW instructions and saved in blocks in a VLIW cache. In
the parallel phase, the scheduled VLIW instructions are
fetched from the VLIW cache and executed by a VLIW
processor.

In this work, we compare the performance of the complex
static schedulers used by the EPIC compilers with the simple
dynamic and hardware-implemented scheduler of the
DTSVLIW architecture. We report studies of the performance
of programs compiled by three EPIC compilers: IA64 SGI
PRO64 C++ Compiler version 0.13, IA64 Intel C++ Compiler
5.0.1 for Linux beta version build 20010418, and HPL-PD
Trimaran 2.0 Compiler. SPECInt95 programs have been
compiled by these for two different EPIC instruction set
architectures (ISAs), HPL-PD [5] and IA64 [6], and have been
executed in instrumented execution-driven EPIC simulators.
The best performance measurements have been compared with
similar ones made on an execution-driven DTSVLIW
simulator configured with hardware equivalent to that of the
EPIC machines and running the same programs, but compiled
with the gcc compiler.

Our results show that the Intel (compiler)/IA64 (ISA)
combination has a performance 19.1% better than the
SGI/IA64, while the combination Trimaran/HPL-PD with
equivalent hardware has a much poorer performance than the
others. However, the Trimaran/HPL-PD combination with
unlimited hardware resources achieved performance 37.7%
better than the Intel/IA64 on average. Comparing the best
EPIC results with the DTSVLIW results we observed that the

 2

DTSVLIW achieves performance at least 37.6% better than
any EPIC combination with equivalent hardware resources and
breaks even with EPIC combinations with unlimited resources.
The evidence shows that the DTSVLIW achieves better
performance because its scheduler, although much simpler
than EPIC’s, has access to dynamic information, not available
to static compilers, allowing exploitation of more ILP.

II. VLIW AND EPIC ARCHITECTURES

A VLIW machine has multiple functional units executing
in parallel and controlled by a single long instruction, holding
a sub-instruction for each functional unit. Often operations
cannot be found for all units and “nop” sub-instructions must
be inserted, increasing code size. When a long instruction is
fetched, its sub-instructions are directly sent for execution
without dependency checks: the VLIW compiler has sole
responsibility for detecting ILP and scheduling instructions.
This reduces the hardware making VLIW machines simpler
and faster. However, a program compiled for a specific VLIW
machine must be recompiled to run on another with different
functional units either in type or number. This is known as the
VLIW code compatibility problem.

The EPIC architecture is an evolution from VLIW. It can
execute several instructions concurrently, with the compiler
identifying and exploiting the ILP available in programs.
However, unlike VLIWs, the EPIC hardware is responsible for
binding instructions to functional units. This allows the same
program to be executed by EPIC machines with different
levels of parallelism, solving the code compatibility problem
while keeping most of the positive characteristics of VLIWs.

A. Static Scheduling

Compiler performance is vital for VLIW and EPIC
systems. This scheduling of program code into groups of
instructions for concurrent execution can be done over the
whole program and operates after traditional compiler
optimization techniques (loop invariant motion, common
subexpression elimination, induction variable simplification,
inline, loop unrolling, etc. [7]).

To facilitate scheduling, instructions are usually grouped in
basic blocks1, and a graph constructed with basic blocks as
vertices and the control path between them as edges. Basic
blocks are often small – 5 to 20 instructions on average [8] –
which strongly limits the ILP inside them.

To exploit ILP beyond basic blocks limits, Trace
Scheduling [9] uses heuristics or profiling to select the most
probable path through the program’s graph. The basic blocks
belonging to this “trace” form a new unique block and their
instructions are scheduled as if they belonged to a single basic
block, so instructions can be moved outside the limits of their
basic blocks. This scheduling generally ignores conditional
branches, and compensation code must be inserted in all edges
leaving or leading to the trace to ensure correct program

1 a group of instructions with a single entry at the beginning and
no conditional branches except at the end

execution (book-keeping [9]). The compiler repeats this
scheduling process on all other traces in the program’s graph in
the order of their probability of execution.

To alleviate book-keeping operations pressure, which
increases object code size, the Superblock Scheduling
technique [10] builds superblocks. These are traces with no
side entrances, where control can only lead to the first
instruction. A superblock is built from an ordinary trace via
tail duplication, which copies instructions of the trace from the
side entrance to the end of the trace, and redirects the side
entrance to this new trace. Hyperblock Scheduling produces
hyperblocks that are essentially superblocks but which may
contain predicated instructions [11] and, therefore, may
contain instructions belonging to more then one control path.

 All the above are global scheduling techniques that can be
applied to acyclic segments of code. Although they can be
applied to cyclic code (loops), they cannot exploit the ILP
available in loops efficiently. Software Pipelining [12] and
loop unrolling [13] are designed to do this. A software
pipelining compiler intercalates instructions belonging to
different loop iterations so that the ILP available in the loop
can be exposed to the hardware.

These static scheduling techniques, and others, e.g.
Enhanced Pipeline Percolation Scheduling [14], have been
used in compilers for both VLIW and EPIC machines.

B. The EPIC HPL-PD and IA64 ISAs

An EPIC ISA must provide the compiler with facilities for
expressing the parallel execution plan of the programs.
However, it must leave to the hardware the task of binding
instructions to resources. It must implement mechanisms to
check, at execution time, the legality of execution of
instructions moved by the compiler across basic block limits.
Here we present two EPIC ISAs that do this.

In 1994, Hewlett Packard (HP) published the specification
of the HP Laboratories PlayDoh (HPL-PD) EPIC architecture
[5]. This is a generic parameterized experimental EPIC of 32
bits. It provides speculative versions of all instructions except
branches and stores. Exceptions during speculative execution
are not signaled immediately, only later, if a non-speculative
instruction uses a result that is invalid because of an exception.
Load instructions can be speculatively moved above stores
with the compiler scheduling a check instruction after the store
to identify address aliasing, in which case the hardware re-
executes the load. A branch instruction can be split into sub-
instructions to allow the earlier execution of parts of the
branch to improve ILP and to give static prediction
information to allow the prefetch of instructions from the
computed target address. Rotating registers [15] are provided
for the support of Software Pipelining.

127 87 86 46 45 5 4 0

slot 2 slot 1 slot 0 template
41 41 41 5

Fig. 1: bundle format

 3

The IA64 EPIC ISA is a result of an alliance between HP
and Intel [2]. It incorporates all HPL-PD characteristics
previously described. Its compiler must group instructions into
128-bit bundles of three instructions, each 41 bits, and a 5-bit
bundle template (Figure 1).

This template informs the hardware of the functional units
used by the instructions and of instruction dependencies. The
possible dependencies are encoded by the identification of
stops between instructions. A stop between instruction
specifies that these instructions must be executed in separate
cycles. Thus, there are bundles that require a minimum of three
clocks to execute; however, two or more bundles may execute
in a single cycle if there are no stops within and between them.

An IA64 machine can send several bundles for execution
simultaneously and the hardware is responsible for dispatching
instructions in the bundles to appropriate functional units. This
ISA, while taking advantage of VLIW characteristics, allows
for code compatibility; but does require part of the complex
dispatch and issue hardware of Superscalars [1].

III. THE DTSVLIW ARCHITECTURE

The DTSVLIW architecture provides an alternative
solution to the VLIW code compatibility and backward
compatibility problems. The symbolic diagram of a DTSVLIW
machine (Figure 2) has two caches for instructions and two
processing engines. The Instruction Cache stores fragments of
the original compiled code while the VLIW Cache stores
blocks of long instructions. The Primary Processor executes
the original code first, and the code trace this produces is
scheduled by the Scheduler Unit into blocks of long
instructions that are saved in the VLIW Cache. The VLIW
Engine executes these long instructions if an already scheduled
code fragment is re-executed.

While the Primary Processor is executing the code, the
Fetch Unit (Figure 2) issues different addresses to the
Instruction Cache and the VLIW Cache. The program counter
(PC) content is issued to the former, while the address of the
instruction in the execute stage of the Primary Processor is
issued to the latter (dashed arrow in Figure 2). The machine
uses this address because at this point it knows that this
instruction must be executed. If this instruction has been
executed before, there may be a block with its address in the
VLIW Cache. On a VLIW Cache hit, the VLIW Engine takes
over execution. The block being constructed by the Scheduler
Unit is flushed to the VLIW Cache – this block is tagged to
point at the hit block. The contents of all but the write back
pipeline stage of the Primary Processor are annulled and the
PC receives the memory address that hit the VLIW Cache. In
subsequent cycles, the VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor resumes
execution, fetching from the last PC value computed by the
VLIW Engine. The Fetch Unit does not issue fetches to the
VLIW Cache again until an instruction arrives at the execute
stage of the Primary Processor. At this point, the Scheduler
Unit starts scheduling a new block, the address of which will
be the last address produced by the VLIW Engine when

executing the previous block. This connects these blocks
forming a block chain. In steady state, the VLIW Cache
contains all most frequently executed traces.

VLIW
Cache

Fetch

Execute

Write
Back

Long Instructions

Instruction
Cache

Instructions

Fetch

Execute

Write
Back

Decode

Scheduling List

Decoded
Instructions

Primary
Processor

VLIW
Engine

Scheduler
Unit

Scheduler
Engine

Fetch
Unit

Insert
Save

Move up

Move up

Move up

Move up

Fig. 2 A DTSVLIW Machine

The DTSVLIW architecture is a variant of the DIF
architecture of Nair and Hopkins [16]. The DTSVLIW
achieves similar or better performance to the DIF, but with a
simpler architecture [17]. Our results further demonstrate the
effectiveness of the DTSVLIW scheduling algorithm, which
shows no significant reduction in performance over the DIF
algorithm, even though the latter is expected to be much more
difficult to implement [18].

In our current DTSVLIW implementation, the Primary
Processor executes Alpha code, while the VLIW Engine
executes a sub-set. The VLIW Engine has a simple fetch –
dispatch – execute – write-back pipeline. Multicycle
instructions execute in pipelined functional units. There is no
decode stage as decoded instructions are saved in the VLIW
Cache, which is a simple set-associative cache, where a block
of long instructions occupies a single cache block. Individual
long instructions are the unit of communication between the
VLIW Cache and the rest of the DTSVLIW. We have
previously presented details on dealing with exceptions,
memory aliasing (disambiguation), and the execution of
particular instructions [19].

A. DTSVLIW dynamic scheduling

The DTSVLIW Scheduler Engine performs superblock
scheduling dynamically. In VLIW and EPIC compilation
systems, superblocks are built in two steps. First, traces are

 4

selected using heuristics or profiling. Second, tail duplication
is applied to the traces (see Section II). In a DTSVLIW
machine, the trace for scheduling is dynamically produced by
the Primary Processor executing the original sequential
program, and it is this trace that is scheduled, as it is produced,
by the Scheduler unit into VLIW blocks. Each block of long
instructions may encompass many basic blocks. The
scheduling allows any branch inside any block to branch
outside its block without side effects, due to register renaming
and memory disambiguation. The unique entry point of each
block is its first instruction. Therefore, if a path in the program
leads to an instruction inside an existent block, or a branch
inside a block follows a path different to that followed during
scheduling, these paths will cause the scheduling of new
blocks. This is equivalent to tail duplication. Compilers, when
performing superblock scheduling, select traces statically and
these traces must be suitable for all a program’s input data sets.
In contrast, a DTSVLIW machine performs dynamic trace
selection, which adjusts to the input data set and restricts the
data set’s impact on the machine’s performance.

B. The Scheduling Algorithm

The Scheduler Unit implements in hardware a simplified
version of the First Come First Served (FCFS) algorithm,
which historically has been used to statically schedule
microcode [20]. This algorithm was chosen for three reasons
[17]. First, it operates with one instruction at a time and
considers instructions in the strict order that they appear during
program execution, perfectly fitting the DTSVLIW mode of
operation. Second, the FCFS algorithm produces optimum or
near-optimum scheduling [20]. Finally, the FCFS algorithm is
easy to implement in hardware in a pipelined fashion [17].

A broad overview of the DTSVLIW scheduling algorithm
is that a valid instruction in the decode pipeline stage of the
Primary Processor is inserted at the end of the scheduling list
on the next clock cycle (Figure 2). On each subsequent cycle,
it can move up to the next higher element in the list if: it is not
at the head of the list; there is space for it in the next element;
there is not a dependency with instructions in the next element.

An instruction inserted into the scheduling list in a clock
cycle is a candidate for moving up the list on subsequent clock
cycles. There can only ever be a single candidate instruction in
a long instruction, but each long instruction in the list may
have a candidate for promotion – there is a pipeline of
candidates for promotion. If an instruction cannot move up, it
is installed into its current long instruction.

Below there are move up and install examples on a 2x2
scheduling list (the shaded instruction is a candidate instruction
and the destination register is the rightmost):

sub r1, r2, r3 move up ⇒ sub r1, r2, r3 add r4, r5, r6
add r4, r5, r6

Install example (the instruction is not moved up):

sub r1, r2, r3 install ⇒ sub r1, r2, r3
add r3, r4, r5 add r3, r4, r5

If there is a control, output, or anti dependency on a
candidate instruction, it can still move up but has to be split.
The split is done by renaming the candidate instruction’s
output, moving up the renamed instruction, and by inserting a
copy instruction permanently in the long instruction slot
previously occupied by the candidate instruction. This copy
instruction copies the renaming register content to the
instruction’s original destination. Example:

sub r1, r2, r3 split ⇒ sub r1, r2, r3 add r4, r5, r32
beq r3, 1000 add r4, r5, r3 beq r3, 1000 COPY r32, r3

Conditional and indirect branches do not move up. They

are installed when placed in the scheduling list and establish a
tag for their long instruction. Subsequent instructions installed
in this long instruction receive the last established tag. When,
during VLIW execution, the VLIW Engine evaluates a branch,
it validates its tag if it executes the same as when scheduled.
Only instructions with valid tags have their results written in
the machine state. Thus, the copy instruction in the example is
only executed in VLIW mode if the conditional branch (beq)
follows the same direction observed during scheduling.

When there is no space for an incoming instruction, the list
is flushed to the VLIW Cache and the incoming instruction is
inserted into an empty list as the first instruction of a new
block. The list is saved as a block, on a pipelined basis, one
long instruction per cycle. Insertion of further incoming
instructions overlaps the saving of the old block [19]. A VLIW
block is tagged in the cache with the address of its first
installed instruction and with that of the following block.

Load and store instructions can also be split, which can
cause memory aliasing [4] and exceptions. We have previously
presented details on how the DTSVLIW deals with these
situations [17]. We have also proved that the core operations
performed by the DTSVLIW’s scheduling algorithm have the
complexity of an integer adder and, as such, should not
increase the clock cycle time [17]. Multicyle instructions
impact upon the operation and performance of the architecture.
Their scheduling has to respect dependencies in any of their
cycles [21]. This can restrict the packing of instructions into
long instructions limiting parallelism.

IV. A COMPARISON BETWEEN THE EPIC STATIC

INSTRUCTION SCHEDULING AND THE DTSVLIW DYNAMIC

INSTRUCTION SCHEDULING

To compare the EPIC static scheduling with the
DTSVLIW dynamic scheduling, we have used three
execution-driven machine simulators: the SKI [22] and the
Trimaran HPL-PD [23] EPIC simulators, and our DTSVLIW
simulator.

The SKI simulator interprets IA64 ISA code. At the end of
program execution, this simulator presents the number of
executed instructions (including nop's) and the number of stops
found. The simulator considers that the latency of all
instructions is one, and that there is no limitation of resources
(the number of slots in a long instruction and the number of
functional units). Then, the number of stops reported by the

 5

SKI simulator represents the smallest number of cycles that
would be required for the execution of the interpreted program.
In a silicon interpretation, besides limited resources, the
latency of the instructions would not all be one cycle and there
would be cache misses, branch mispredictions, etc., that would
require a much larger number of cycles. However the cycle
count of the SKI simulator does display the performance of the
compiler scheduler, which is why we have used it.

The Trimaran HPL-PD simulator interprets the set of
instructions defined in the HPL-PD [5] specification. This
simulator is parameterized and one can choose the number of
registers and functional units, latency of the instructions, etc.

The DTSVLIW simulator interprets Alpha ISA [24] code.
It receives as input any programs compiled for the OSF-1
operating system and faithfully executes them according to the
DTSVLIW architecture model described in Section III. The
simulated DTSVLIW machine also incorporates the block
compaction mechanisms described in [25]. The simulator is
parameterized and one can choose the number of registers and
functional units, latency of the instructions, etc.

All simulators interpret only the code that executes in user
mode, including the code of libraries linked into the program.
Operating system calls are detected, converted to calls to the
host operating system and executed there, with results being
copied back into the execution context.

TABLE 2
PROGRAMS AND PARAMETERS USED

Programs SPECInt95 Parameters
099.go 9 9

124.m88ksim dcrand.lit
129.compress95 30000 q 2131

130.li queens 7
132.ijpeg vigo.ppm.fast –GO
134.perl Primes.pl

147.vortex vortex.in

In all our experiments, we have used the programs of

SPECInt95 (except gcc, because its SPEC95 source is not 64-
bit compatible, thus impossible to compile with the available
EPIC compilers). The programs and the inputs used are listed
in Table 2. EPIC executable code has been generated by the
compilers: IA64 SGI PRO64 C++ Compiler version 0.13, the
IA64 Intel C++ Compiler 5.0.1 for Linux beta version build
20010418, and the HPL-PD 2.0 Trimaran Compiler. The gcc
2.7.2 compiler has been used for compiling to the Alpha ISA
code.

A. Simulation Parameters

A.1 Compilers

Although it is not mentioned in the documentation of the
Intel EPIC compiler, we believe that it uses trace scheduling or
one of its variations (hyperblock scheduling, for example). Its
flag –O2 turns on all classic optimizations (global register
allocation, register variable detection, common subexpression
elimination, etc) and software pipelining. The flag –O3,
provides the same optimizations as flag –O2, but also turns on:

prefetching, scalar replacement and loop transformation. The
flag -ip turns on optimizations between procedures
(interprocedural optimizations) such as inline function
expansion and interprocedural constant propagation. We have
used two compiler configurations: one, referred to as Intel–
O2.IP, uses flags –O2 and –ip; the other, referred to as Intel–
O3.IP, uses flags –O3 and –ip. When compiling with both
configurations, we used profiling information collected from
previous runs of each program with the same inputs. This gave
us the best performance.

TABLE 3
DTSVLIW PARAMETERS

Primary Processor • 4-stage (fetch, decode, execute, writeback)
pipeline

• no branch prediction hardware
• taken branches cause a 2-cycle pipeline bubble

Decoded Instruction Size 6 bytes
Instructions Latency 1 cycle
VLIW Cache Four way set associative, blocks of 15x16

instructions, 3072-Kbyte
Instruction Cache perfect (no miss penalty)
Data Cache perfect (no miss penalty)
Number of renaming regs. 128

The SGI compiler was modified to use more functional

units (15 of each type) than that available in the Intel Itanium
processor and to have latency of 1 for all instructions. The –O2
flag turns on the majority of this compiler’s optimizations. The
optimizations in this level are conservative, in the sense that
they are always beneficial, providing improvements
proportional to the time spent on compilation. The flag –O3,
on the other hand, turns on more aggressive optimizations than
flag –O2. These are generally beneficial, but can compromise
performance in some cases. Our configuration, SGI–O2, uses
flag–O2, while SGI–O3 uses flag –O3.

We have set the HPL-PD 2.0 Trimaran Compiler to
generate code for a Trimaran HPL-PD machine with infinite
resources by activating the unlimited resources option and
deactivating all the register restriction options. Two
configurations were parameterized for different block
formation – superblock and hyperblock. These two
configurations are referred to as MAX SB and MAX HB.
Another two HPL-PD 2.0 Trimaran Compiler configurations
were set (again with Superblock or Hyperblock scheduling) to
generate code for a Trimaran HPL-PD machine with 15
functional units of each existing type (integer, floating point,
memory and branch) and 128 registers of each existing type
(general purpose, floating-point, predicate and branch target).
These configurations are referred to as the T15 SB and T15
HB. These configurations are very optimistic from the point of
view of implementation.

Flags –O3 and –unrolloops had been used with the gcc to
generate the code for the Apha ISA.

A.2 Machine Simulators

It was not necessary to set any parameter for the SKI
simulator.

 6

The Trimaran HPL-PD was set with: (i) unlimited registers
and functional units, for the compiler configurations MAX SB
and MAX HB, and (ii) 15 functional units of each existing
type and 128 registers of each existing type, for the compiler
configurations T15 SB and T15 HB. The latency was set to 1
for all instructions.

For the DTSVLIW simulator, we have used the parameters
shown in Table 3. The count of instructions executed given for
the DTSVLIW includes only the instructions that would be
executed in a scalar machine, i.e., nops and copy instructions
added to long instructions during scheduling are not counted
(to count these instructions would erroneously inflate the ILP
achieved by the DTSVLIW). Instructions executed and cycles
spent in the Primary Processor during scheduling are, of
course, counted.

The instructions and data caches of all machines studied
were specified as ideal (without miss penalty and with single
cycle access). All parameters used were chosen in order to
isolate the subject of study: the quality of the scheduling of the
sets of compiler/ISA/machine architecture.

B. Experiments

In this section we show performance measurements for
each individual benchmark running on each configuration
studied and average performances also. Jacob and Mudge [26],
and Giladi and Ahituv [27] have discussed which average
should be used when dealing with computer performance
indices and have suggested the use of the harmonic mean for
indices like IPC and the arithmetic mean for indices directly
related to the execution time like number of instructions
executed and cycle count. Therefore, when appropriate, we use
either the harmonic mean or the arithmetic mean.

B.1 Intel x SGI x Trimaran Compiler

Figure 3 shows the count of instructions executed for each
SPECInt95 program on the different EPIC simulators with the
compiler configurations: Intel–O2.IP, Intel-O3.IP, SGI–O2,
SGI–O3, T15 SB, THB, MAX SB, MAX HB. The arithmetic
mean (A.M.) of the instructions executed is also shown.

Figure 3 shows that the Intel and SGI compilers produce
little variation in the instructions executed as a function of the
level of optimization. However, in most cases, the instruction
count is larger when the optimization is more aggressive. For
the Trimaran configurations we cannot actually distinguish
between more or less aggressive, but only different
optimizations. With limited resources, T15 SB and T15 HB,
hyperblock scheduling generates programs that execute less
instructions in the majority of the cases compared to
superblock, although this trend is not confirmed in the cases of
go and xlisp, possibly due to the use of predication in code
fragments that are not good candidates for this technique. For
Trimaran with unlimited resources, MAX SB and MAX HB,
we see a more uniform behavior, where the formation of
hyperblocks always leads to the same or fewer instructions
executed. Comparing compilers, we can see that the Intel

compiler always generates code that results in less executed
instructions than the SGI compiler and that the Trimaran
compiler with limited resources produces, on average, results
between Intel and SGI or, with unlimited resources, code that
results in the execution of less instructions than these two.

0

100

200

300

400

500

600

700

compress go ijpeg m88ksim perl vortex xlisp A.M.

In
s

tr
u

ct
io

n
s

 E
xe

cu
te

d
 (

m
ill

io
n

s
)

Intel-O2.IP Intel-O3.IP SGI-O2 SGI-O3 15SB 15HB MAX SB MAX HB

Fig. 3 EPIC: Instructions executed

221 410

0

20

40

60

80

100

120

140

160

180

compress go ijpeg m88ksim perl vortex xlisp A.M.

C
yc

le
s

 (
m

ill
io

n
s

)
Intel-O2.IP Intel-O3.IP SGI-O2 SGI-O3 15SB 15HB MAX SB MAX HB

Fig. 4 EPIC: Required Cycles

Figure 4 shows the count of execution cycles for the
SPECInt95 programs with the same configurations as Figure 3.
The cycle count represents the best measure of performance,
since it indicates the execution time of each program. From
Figure 4, we can perceive that the Intel–O2.IP configuration
gave, on average, a slightly better performance than Intel–
O3.IP (about 2.3%). This shows that more aggressive
optimizations do not always results in performance gains
(please note that the Intel–O3.IP configuration may perform
better than Intel–O2.IP if memory latencies are considered).
The Intel configurations show, on average, a better
performance than the SGI configurations (about 19 %). The
SGI–O3 configuration gave, on average, a slightly better
performance than the SGI–O2 (about 3.3% better). The
Trimaran configurations with limited resources, T15 SB and
T15 HB, show the worse performance, where the instruction
count for the programs go and xlisp has a strong negative
impact on the average performance. As expected, Trimaran
MAX SB and MAX HB obtained the best performance in all
programs on average, about 37.7% better than Intel–O2.IP, the
runner up. However, perhaps surprisingly, the configuration

 7

with superblock scheduling generated programs that require
less cycles than that with hyperblock scheduling for all
programs except m88ksim and xlisp, although not by much.

0

1

2

3

4

5

6

compress go ijpeg m88ksim perl vortex xlisp H.M.

In
s

tr
u

ct
io

n
s

 p
e

r
C

yc
le

Intel-O2.IP Intel-O3.IP SGI-O2 SGI-O3 15SB 15HB MAX SB MAX HB

Fig. 5 EPIC: Instructions per Cycle

Figure 5 shows the average instructions per cycle executed
for the SPECInt95 programs, along with their harmonic mean
(H.M.) for the same configurations of Figure 3. These figures
indicate the degree of ILP achieved. As Figure 5 show, the
Intel and SGI compilers do not obtain ILP much larger than
three – the size of the IA64 ISA bundle – instructions per
cycle. The T15 SB and T15 HB configurations show worse
ILP for all programs with the exception of compress with T15
SB. Again MAX SB and MAX HB achieve the best results on
average, with the advantage to the MAX SB configuration.

B.2 DTSVLIW x EPIC

In order to compare the EPIC scheduling with that of the
DTSVLIW, we have selected the best performing EPIC
configurations for each compiler: Intel– O2.IP, SGI–O3 and
MAX SB. Figure 6 presents the instruction execution count for
each of these configurations (results from Figure 3) plus those
for the DTSVLIW. The gcc compiler produces programs that
always result in the execution of fewer instructions than that
generated by the Intel and SGI compilers. This is expected.
The facilities for conditional execution in the Alpha ISA are
represented only by a few conditional move instructions little
used by the gcc compiler, while the IA64 ISA has ample
mechanisms for conditional execution, intensively used by the
compilers, which leads to the execution of many extra
instructions. In addition, compilers for the IA64 ISA generate
many nop instructions due to the restrictions imposed by the
template field for valid bundle formation. Programs generated
by gcc have, on average, the same instruction count as those
from the Trimaran with unlimited resources. The Trimaran
does not generate nops; thus, as our results show, at least with
unlimited resources it is possible to make good use of
predication for executing fewer instructions.

Figure 7 shows the cycle count for the execution of each
SPECInt95 program. The combination gcc/DTSVLIW
surpasses the combinations Intel-compiler/IA64 and SGI-
compiler/IA64 by a wide margin on average. The DTSVLIW
only loses in one program, go, for the Intel/IA64 combination,
but by a small margin. Compared with the Trimaran/HPL-PD

combination, however, the gcc/DTSVLIW only wins in
m88ksim and xlisp; however, on average the gcc/DTSVLIW
performance is equivalent to Trimaran/HPL-PD.

0

50

100

150

200

250

300

350

400

450

500

compress go ijpeg m88ksim perl vortex xlisp A.M.

In
s

tr
u

ct
io

n
s

 E
xe

cu
te

d
 (

m
ill

io
n

s
)

Intel-O2.IP SGI-O3 MAX SB DTSVLIW

Fig. 6 DTSVLIWxEPIC: Instructions Executed

0

20

40

60

80

100

120

140

compress go ijpeg m88ksim perl vortex xlisp A.M.

C
yc

le
s

 (
m

ill
io

n
s

)

Intel-O2.IP SGI-O3 MAX SB DTSVLIW

Fig. 7 DTSVLIWxEPIC: Required Cycles

0

1

2

3

4

5

6

compress go ijpeg m88ksim perl vortex xlisp H.M.

In
s

tr
u

ct
io

n
s

 p
e

r
C

yc
le

Intel-O2.IP SGI-O3 MAX SB DTSVLIW

Fig. 8 DTSVLIWxEPIC: Instructions per Cycle

 Figure 8 shows the instructions per cycle for each

combination under study. The combination gcc/DTSVLIW has
been able to explore parallelism levels only inferior to the ones
achieved with an EPIC compiler compiling for an unlimited
machine and being executed in a machine with unlimited
resources. The single exception is again the go benchmark.
This benchmark has many hard to predict branches. These
branches force the DTSVLIW to reschedule many blocks,
which results in less ILP.

 8

The DTSVLIW machine configuration used in the
experiments is optimistic, but much less optimistic than the
EPIC machine emulated by the SKI simulator and even less so
than that emulated by the Trimaran simulator. Our results show
that the DTSVLIW needed, on average, practically the same
number of cycles, had only 4.4% inferior ILP and executed
1.5% more instructions than the Trimaran MAX SB. But
compared to the Intel–O2.IP configuration, which achieves
better results than the SGI–O3, the DTSVLIW, on average,
needed 37.6% fewer cycles, achieved a 23.4% larger ILP and
executed 19.5% fewer instructions.

V. CONCLUSION

We have presented an experimental comparative analysis
between static EPIC scheduling and dynamic DTSVLIW
scheduling. In our experiments, the DTSVLIW scheduling
obtained, on average, practically the same performance
achieved with the Trimaran EPIC compiler configured with
unlimited resources, which had the best results among the
EPIC compilers used. However, the DTSVLIW machine
obtained its performance using a configuration significantly
less optimistic than the EPIC machines. Thus, it is likely that
the DTSVLIW obtained the demonstrated performance
because its scheduling hardware makes good use of dynamic
information, not available to the compilers, regarding the
execution of the test programs. The static schedulers of the
EPIC compilers have access only to averaged information
obtained via profiling.

It is important to note that the DTSVLIW architecture may
had been disfavored because the code executed by the
DTSVLIW simulator was generated by a compiler not specific
for this architecture, while for the EPIC architecture specific
compilers have been used. Moreover, the existing differences
between the EPIC ISAs and the Alpha ISA have not been
considered. These questions should be clarified with future
analyses of the performance of the DTSVLIW architecture
running EPIC code and/or running code generated by a
compiler specific for the DTSVLIW.

REFERENCES

[1] JOHNSON, M. Superscalar Microprocessor Design.
Prentice-Hall, 1991.

[2] GWENNAP, L. Intel, HP make EPIC Disclosure.
Microprocessor Report, Vol. 11, No. 14, pp. 1-9, October
27, 1997.

[3] DE SOUZA, A. F.; ROUNCE, P. A.. Dynamically Trace
Scheduled VLIW Architectures. Proc. of the HPCN’98,
in Lecture Notes on Computer Science, Vol. 1401, pp.
993-995, 1998.

[4] FISHER, Joseph. The VLIW Machine: A multiprocessor
for Compiling Scientific Code. IEEE Computer, pp. 45-
53, Jul 1984.

[5] KATHAIL, Vinod; SCHLANSKER, Michael; RAU, B.
Ramakrishna. HPL-PD Architecture Specification:

Version 1.0. HPL-93-80, Feb 1994.

[6] INTEL Corporation. IA64 Application Developer's
Architecture Guide, 1999.

[7] AHO, A.; SETHI, R.; ULLMAN, J. D.. Compilers -
Principles Techniques and Tools. Addison-Wesley
Publishing Company, USA, 1986.

[8] PATTERSON, D. A.; HENNESSY, J. L.. Computer
Architecture: A Quantitative Approach, Second Edition.
Morgan Kaufmann Publishers, Inc., 1996.

[9] FISHER Joseph. Trace Scheduling: A Technique for
Global Microcode Compaction. IEEE Transactions on
Computers, v. C-30, n.7, pp. 478-490, Jul 1981.

[10] HWU, Wen-mei W.; et al. The Superblock: An Effective
Technique for VLIW and Superscalar Compilation. The
Journal of Supercomputing, v.7, pp. 229-248, 1993.

[11] PARK, J. R. H.; SCHLANSKER, M. S. On Predicated
Execution. Technical Report HPL-91-58, HP
Laboratories, Palo Alto, CA, May 1991.

[12] ALLAN, V. H.; JONES, R. B.; LEE, R. M.; ALLAN, S.
J. Software Pipeline. ACM Computing Surveys, Vol. 27,
No. 3, September 1995.

[13] RAU, B. R. FISHER, J. A. Instruction-Level
Parallelism: History, Overview, and Perspective. The
Journal of Supercomputing, Vol. 7, pp. 9-50, 1993.

[14] NAKATANI, T.; EBCIOGLU, K. Making Compaction-
Based Parallelization Affordable. IEEE Transactions on
Parallel and Distributed Systems, Vol. 4, No. 9, pp. 1014-
1029, 1993.

[15] SCHLANSKER, Michael; RAU, B. Ramakrishna;
MAHLKE, Scott; KATHAIL, Vinod. Achieving High
Levels of Instruction-Level Parallelism with Reduced
Hardware Complexity. HPL-96-120, Nov 1994.

[16] NAIR, R.; HOPKINS, M. E.. Exploiting Instructions
Level Parallelism in Processors by Caching Scheduled
Groups. Proceedings of the 24th Annual International
Symposium on Computer Architecture, pp.13-25, 1997.

[17] DE SOUZA, A. F.; ROUNCE, P. A. Dynamically
Scheduling VLIW Instructions. Journal of Parallel and
Distributed Computing, n.60, pp.1480-1511, 2000.

[18] DE SOUZA, A. F.; ROUNCE, P. A. On the Scheduling
Algorithm of the Dynamically Trace Scheduled VLIW
Architecture. Proc. of the International Parallel and
Distributed Processing Symposium - IPDPS'2000, pp.
565-572, 2000.

[19] DE SOUZA, A. F.. Integer Performance Evaluation of
the Dynamically Trace Scheduled VLIW Architecture,
PhD Thesis, Department of Computer Science,
University College London, 1999.

[20] Davidson, S.; et al. Some Experiments in Local
Microcode Compaction for Horizontal Machines. IEEE
Trans. on Computers, Vol. C-30, No. 7, pp. 460-477,

 9

1981.

[21] DE SOUZA, A. F.; ROUNCE, P. Effect of Multicycle
Instructions on the Integer Performance of the
Dynamically Trace Scheduled VLIW Architecture. Proc.
of the HPCN’99, in Lecture Notes on Computer Science,
Vol. 1593, pp. 1203-1206, 1999.

[22] HP Laboratories. Ski IA64 Simulator Reference Manual.
Ver 1.0L, Apr 2000.

[23] HP Laboratories; New York University, ReaCT-ILP
Group; University of Illinois, IMPACT Group. Trimaran:
An Infrastructure for Compiler Research in Instruction
Level Parallelism, 1998.

[24] Digital Equipment Corporation. Alpha Architecture
Handbook. Digital Equipment Corporation, 1992.

[25] DE SOUZA, A. F. Improving the DTSVLIW
Performance via Block Compaction. Proc. of the 13th
Symp. on Computer Architecture and High Performance
Computing, pp. 98-105, 2001.

[26] JACOB, B.; MUDGE, T. “Notes on Calculating
Computer Performance”, Technical Report CSE-TR-231-
95, Department of Electrical Engineering and Computer
Science, University of Michigan, USA, March 1995.

[27] GILADI, R.; AHITUV, N. “SPEC as a Performance
Evaluation Measure”, IEEE Computer, pp. 33-42, August
1995.

