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Abstract 
To achieve performance, Explicitly Parallel Instruction 

Computing (EPIC) systems take the responsibility of 
extracting instruction-level parallelism (ILP) from the 
hardware and give it to the compiler. They expose a large part 
of the hardware control at the conventional machine level. 
Dynamically Trace Scheduled VLIW (DTSVLIW) systems, on 
the other hand, leave the responsibility of extracting ILP to 
the hardware and use conventional compilers. Their hardware 
uses a simple hardware implemented scheduling algorithm – 
executed dynamically – to exploit ILP and achieve 
performance. This work examines three compiler/EPIC 
architecture combinations (SGI PRO64 C++ Compiler/IA64, 
Intel C++ Compiler 5.0.1/IA64 and Trimaran 2.0/HPL-PD) 
and compares these with a compiler/DTSVLIW architecture 
combination (gcc/Alpha-DTSVLIW). Our experiments show 
that, on average, the DTSVLIW architecture achieves better 
performance than EPIC because its dynamic scheduler, 
although much simpler, harnesses more ILP due to its 
exploitation of execution-time information invisible to the 
EPIC compiler’s scheduler. 

I. INTRODUCTION 

A large and steady increase in microprocessor systems 
performance has been achieved in recent years, largely without 
rewriting programs in parallel form, changing algorithms or 
languages, and mostly without recompiling programs. The 
Superscalar architecture of recent microprocessors [1] has 
played a part in this by its exploitation of  the instruction-level 
parallelism (ILP) available in existing programs. However, this 
has been at the expense of a considerable increase in hardware 
complexity, which may restrict  further performance gains. To 
resolve this problem many architectures have been proposed, 
including the Explicitly Parallel Instruction Computing (EPIC) 
[2] and the Dynamically Trace Scheduled VLIW (DTSVLIW) 
[3] architectures. 

The EPIC architecture is a more elaborated form of Very 
Long Instruction Word (VLIW) architecture [4] that moves the 
responsibility of detecting and extracting ILP out of the 

hardware into the compiler while improving the hardware to 
exploit the available ILP better. With EPIC, the compiler is 
responsible for scheduling the sequential code specified by the 
programmer into parallel EPIC instructions. 

DTSVLIW architectures execute programs in two phases: 
one sequential, the other parallel. The first occurs when a 
fragment of code is first seen during execution, the second 
when the same fragment of code needs to be re-executed. In 
the sequential phase, the instructions are fetched from the 
instruction cache and executed by a simple pipelined 
processor. Concurrently, these instructions are scheduled into 
VLIW instructions and saved in blocks in a VLIW cache. In 
the parallel phase, the scheduled VLIW instructions are 
fetched from the VLIW cache and executed by a VLIW 
processor. 

In this work, we compare the performance of the complex 
static schedulers used by the EPIC compilers with the simple 
dynamic and hardware-implemented scheduler of the 
DTSVLIW architecture. We report studies of the performance 
of programs compiled by three EPIC compilers: IA64 SGI 
PRO64 C++ Compiler version 0.13, IA64 Intel C++ Compiler 
5.0.1 for Linux beta version build 20010418, and HPL-PD 
Trimaran 2.0 Compiler. SPECInt95 programs have been 
compiled by these for two different EPIC instruction set 
architectures (ISAs), HPL-PD [5] and IA64 [6],  and have been 
executed in instrumented execution-driven EPIC simulators. 
The best performance measurements have been compared with 
similar ones made on an execution-driven DTSVLIW 
simulator configured with hardware equivalent to that of the 
EPIC machines and running the same programs, but compiled 
with the gcc compiler.  

Our results show that the Intel (compiler)/IA64 (ISA) 
combination has a performance 19.1% better than the 
SGI/IA64, while the combination Trimaran/HPL-PD with 
equivalent hardware has a much poorer performance than the 
others. However, the Trimaran/HPL-PD combination with 
unlimited hardware resources achieved performance 37.7% 
better than the Intel/IA64 on average. Comparing the best 
EPIC results with the DTSVLIW results we observed that the 
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DTSVLIW achieves performance at least 37.6% better than 
any EPIC combination with equivalent hardware resources and 
breaks even with EPIC combinations with unlimited resources. 
The evidence shows that the DTSVLIW achieves better 
performance because its scheduler, although much simpler 
than EPIC’s, has access to dynamic information, not available 
to static compilers, allowing exploitation of more ILP. 

II. VLIW AND EPIC ARCHITECTURES 

A VLIW machine has multiple functional units executing 
in parallel and controlled by a single long instruction, holding 
a sub-instruction for each functional unit. Often operations 
cannot be found for all units and “nop” sub-instructions must 
be inserted, increasing code size. When a long instruction is 
fetched, its sub-instructions are directly sent for execution 
without dependency checks: the VLIW compiler has sole 
responsibility for detecting ILP and scheduling instructions. 
This reduces the hardware making VLIW machines simpler 
and faster. However, a program compiled for a specific VLIW 
machine must be recompiled to run on another with different 
functional units either in type or number. This is known as the 
VLIW code compatibility problem.  

The EPIC architecture is an evolution from VLIW. It can 
execute several instructions concurrently, with the compiler 
identifying and exploiting the ILP available in programs. 
However, unlike VLIWs, the EPIC hardware is responsible for 
binding instructions to functional units. This allows the same 
program to be executed by EPIC machines with different 
levels of parallelism, solving the code compatibility problem 
while keeping most of the positive characteristics of VLIWs.  

A. Static Scheduling 

Compiler performance is vital for VLIW and EPIC 
systems. This scheduling of program code into groups of 
instructions for concurrent execution can be done over the 
whole program and operates after traditional compiler 
optimization techniques (loop invariant motion, common 
subexpression elimination, induction variable simplification, 
inline, loop unrolling, etc. [7]). 

To facilitate scheduling, instructions are usually grouped in 
basic blocks1, and a graph constructed with basic blocks as 
vertices and the control path between them as edges. Basic 
blocks are often small – 5 to 20 instructions on average [8] – 
which strongly limits the ILP inside them.  

To exploit ILP beyond basic blocks limits, Trace 
Scheduling [9] uses heuristics or profiling to select the most 
probable path through the program’s graph. The basic blocks 
belonging to this “trace” form a new unique block and their 
instructions are scheduled as if they belonged to a single basic 
block, so instructions can be moved outside the limits of their 
basic blocks. This scheduling generally ignores conditional 
branches, and compensation code must be inserted in all edges 
leaving or leading to the trace to ensure correct program 

                                                           
1 a group of instructions with a single entry at the beginning and 
no conditional branches except at the end  

execution (book-keeping [9]). The compiler repeats this 
scheduling process on all other traces in the program’s graph in 
the order of their probability of execution.  

To alleviate book-keeping operations pressure, which 
increases object code size, the Superblock Scheduling 
technique [10] builds superblocks. These are traces with no 
side entrances, where control can only lead to the first 
instruction. A superblock is built from an ordinary trace via 
tail duplication, which copies instructions of the trace from the 
side entrance to the end of the trace, and redirects the side 
entrance to this new trace.  Hyperblock Scheduling  produces 
hyperblocks that are essentially superblocks but which may 
contain predicated instructions [11] and, therefore, may 
contain instructions belonging to more then one control path. 

 All the above are global scheduling techniques that can be 
applied to acyclic segments of code. Although they can be 
applied to cyclic code (loops), they cannot exploit the ILP 
available in loops efficiently. Software Pipelining [12] and 
loop unrolling [13] are designed to do this. A software 
pipelining compiler intercalates instructions belonging to 
different loop iterations so that the ILP available in the loop 
can be exposed to the hardware.  

These static scheduling techniques, and others, e.g. 
Enhanced Pipeline Percolation Scheduling [14], have been 
used in compilers for both VLIW and EPIC machines. 

B. The EPIC HPL-PD and IA64 ISAs 

An EPIC ISA must provide the compiler with facilities for 
expressing the parallel execution plan of the programs. 
However, it must leave to the hardware the task of binding 
instructions to resources. It must implement mechanisms to 
check, at execution time, the legality of execution of 
instructions moved by the compiler across basic block limits. 
Here we present two EPIC ISAs that do this. 

In 1994, Hewlett Packard (HP) published the specification 
of the HP Laboratories PlayDoh (HPL-PD) EPIC architecture 
[5]. This is a generic parameterized experimental EPIC of 32 
bits. It provides speculative versions of all instructions except 
branches and stores. Exceptions during speculative execution 
are not signaled immediately, only later, if a non-speculative 
instruction uses a result that is invalid because of an exception. 
Load instructions can be speculatively moved above stores 
with the compiler scheduling a check instruction after the store 
to identify address aliasing, in which case the hardware re-
executes the load. A branch instruction can be split into sub-
instructions to allow the earlier execution of parts of the 
branch to improve ILP and to give static prediction 
information to allow the prefetch of instructions from the 
computed target address. Rotating registers [15] are provided 
for the support of Software Pipelining. 
 
127                          87 86                           46 45                             5 4                 0 

slot 2 slot 1 slot 0 template 
41 41 41 5 

Fig. 1: bundle format 
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The IA64 EPIC ISA is a result of an alliance between HP 
and Intel [2]. It incorporates all HPL-PD characteristics 
previously described. Its compiler must group instructions into 
128-bit bundles of three instructions, each 41 bits, and a  5-bit 
bundle template (Figure 1).  

This template informs the hardware of the functional units 
used by the instructions and of instruction dependencies. The 
possible dependencies are encoded by the identification of 
stops between instructions. A stop between instruction 
specifies that these instructions must be executed in separate 
cycles. Thus, there are bundles that require a minimum of three 
clocks to execute; however, two or more bundles may execute 
in a single cycle if there are no stops within and between them. 

An IA64 machine can send several bundles for execution 
simultaneously and the hardware is responsible for dispatching 
instructions in the bundles to appropriate functional units. This 
ISA, while taking advantage of VLIW characteristics, allows 
for code compatibility; but does require part of the complex 
dispatch and issue hardware of Superscalars [1]. 

III. THE DTSVLIW ARCHITECTURE 

The DTSVLIW architecture provides an alternative 
solution to the VLIW code compatibility and backward 
compatibility problems. The symbolic diagram of a DTSVLIW 
machine (Figure 2) has two caches for instructions and two 
processing engines. The Instruction Cache stores fragments of 
the original compiled code while the VLIW Cache stores 
blocks of long instructions. The Primary Processor executes 
the original code first, and the code trace this produces is 
scheduled by the Scheduler Unit into blocks of long 
instructions that are saved in the VLIW Cache. The VLIW 
Engine executes these long instructions if an already scheduled 
code fragment is re-executed. 

While the Primary Processor is executing the code, the 
Fetch Unit (Figure 2) issues different addresses to the 
Instruction Cache and the VLIW Cache. The program counter 
(PC) content is issued to the former, while the address of the 
instruction in the execute stage of the Primary Processor is 
issued to the latter (dashed arrow in Figure 2). The machine 
uses this address because at this point it knows that this 
instruction must be executed. If this instruction has been 
executed before, there may be a block with its address in the 
VLIW Cache. On a VLIW Cache hit, the VLIW Engine takes 
over execution. The block being constructed by the Scheduler 
Unit is flushed to the VLIW Cache – this block is tagged to 
point at the hit block. The contents of all but the write back 
pipeline stage of the Primary Processor are annulled and the 
PC receives the memory address that hit the VLIW Cache. In 
subsequent cycles, the VLIW Engine controls the PC. 

On a VLIW Cache miss, the Primary Processor resumes 
execution, fetching from the last PC value computed by the 
VLIW Engine. The Fetch Unit does not issue fetches to the 
VLIW Cache again until an instruction arrives at the execute 
stage of the Primary Processor. At this point, the Scheduler 
Unit starts scheduling a new block, the address of which will 
be the last address produced by the VLIW Engine when 

executing the previous block. This connects these blocks 
forming a block chain. In steady state, the VLIW Cache 
contains all most frequently executed traces. 
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Fig. 2 A DTSVLIW Machine 
 

The DTSVLIW architecture is a variant of the DIF 
architecture of Nair and Hopkins [16]. The DTSVLIW 
achieves similar or better performance to the DIF, but with a 
simpler architecture [17]. Our results further demonstrate the 
effectiveness of the DTSVLIW scheduling algorithm, which 
shows no significant reduction in performance over the DIF 
algorithm, even though the latter is expected to be much more 
difficult to implement [18]. 

In our current DTSVLIW implementation, the Primary 
Processor executes Alpha code, while the VLIW Engine 
executes a sub-set. The VLIW Engine has a simple fetch – 
dispatch – execute – write-back pipeline. Multicycle 
instructions execute in pipelined functional units. There is no 
decode stage as decoded instructions are saved in the VLIW 
Cache, which is a simple set-associative cache, where a block 
of long instructions occupies a single cache block. Individual 
long instructions are the unit of communication between the 
VLIW Cache and the rest of the DTSVLIW. We have 
previously presented details on dealing with exceptions, 
memory aliasing (disambiguation), and the execution of 
particular instructions [19]. 

A. DTSVLIW dynamic scheduling 

The DTSVLIW Scheduler Engine performs superblock 
scheduling dynamically. In VLIW and EPIC compilation 
systems, superblocks are built in two steps. First, traces are 
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selected using heuristics or profiling. Second, tail duplication 
is applied to the traces (see Section II). In a DTSVLIW 
machine, the trace for scheduling is dynamically produced by 
the Primary Processor executing the original sequential 
program, and it is this trace that is scheduled, as it is produced, 
by the Scheduler unit into VLIW blocks. Each block of long 
instructions may encompass many basic blocks. The 
scheduling allows any branch inside any block to branch 
outside its block without side effects, due to register renaming 
and memory disambiguation. The unique entry point of each 
block is its first instruction. Therefore, if a path in the program 
leads to an instruction inside an existent block, or a branch 
inside a block follows a path different to that followed during 
scheduling, these paths will cause the scheduling of new 
blocks. This is equivalent to tail duplication. Compilers, when 
performing superblock scheduling, select traces statically and 
these traces must be suitable for all a program’s input data sets. 
In contrast, a DTSVLIW machine performs dynamic trace 
selection, which adjusts to the input data set and restricts the 
data set’s impact on the machine’s performance. 

B. The Scheduling Algorithm 

The Scheduler Unit implements in hardware a simplified 
version of the First Come First Served (FCFS) algorithm, 
which historically has been used to statically schedule 
microcode [20]. This algorithm was chosen for three reasons 
[17]. First, it operates with one instruction at a time and 
considers instructions in the strict order that they appear during 
program execution, perfectly fitting the DTSVLIW mode of 
operation. Second, the FCFS algorithm produces optimum or 
near-optimum scheduling [20]. Finally, the FCFS algorithm is 
easy to implement in hardware in a pipelined fashion [17]. 

A broad overview of the DTSVLIW scheduling algorithm 
is that a valid instruction in the decode pipeline stage of the 
Primary Processor is inserted at the end of the scheduling list 
on the next clock cycle (Figure 2). On each subsequent cycle, 
it can move up to the next higher element in the list if: it is not 
at the head of the list; there is space for it in the next element; 
there is not a dependency with instructions in the next element.  

An instruction inserted into the scheduling list in a clock 
cycle is a candidate for moving up the list on subsequent clock 
cycles. There can only ever be a single candidate instruction in 
a long instruction, but each long instruction in the list may 
have a candidate for promotion – there is a pipeline of 
candidates for promotion. If an instruction cannot move up, it 
is installed into its current long instruction.  

Below there are move up and install examples on a 2x2 
scheduling list (the shaded instruction is a candidate instruction 
and the destination register is the rightmost): 

 
sub r1, r2, r3  move up ⇒ sub r1, r2, r3 add r4, r5, r6 
add r4, r5, r6     

 
Install example (the instruction is not moved up): 
 

sub r1, r2, r3  install ⇒ sub r1, r2, r3  
add r3, r4, r5   add r3, r4, r5  

If there is a control, output, or anti dependency on a 
candidate instruction, it can still move up but has to be split. 
The split is done by renaming the candidate instruction’s 
output, moving up the renamed instruction, and by inserting a 
copy instruction permanently in the long instruction slot 
previously occupied by the candidate instruction. This copy 
instruction copies the renaming register content to the 
instruction’s original destination. Example: 

 
sub r1, r2, r3  split ⇒ sub r1, r2, r3 add r4, r5, r32 
beq r3, 1000 add r4, r5, r3  beq r3, 1000 COPY r32, r3 

 
Conditional and indirect branches do not move up. They 

are installed when placed in the scheduling list and establish a 
tag for their long instruction. Subsequent instructions installed 
in this long instruction receive the last established tag. When, 
during VLIW execution, the VLIW Engine evaluates a branch, 
it validates its tag if it executes the same as when scheduled. 
Only instructions with valid tags have their results written in 
the machine state. Thus, the copy instruction in the example is 
only executed in VLIW mode if the conditional branch (beq) 
follows the same direction observed during scheduling. 

When there is no space for an incoming instruction, the list 
is flushed to the VLIW Cache and the incoming instruction is 
inserted into an empty list as the first instruction of a new 
block. The list is saved as a block, on a pipelined basis, one 
long instruction per cycle. Insertion of further incoming 
instructions overlaps the saving of the old block [19]. A VLIW 
block is tagged in the cache with the address of its first 
installed instruction and with that of the following block.  

Load and store instructions can also be split, which can 
cause memory aliasing [4] and exceptions. We have previously 
presented details on how the DTSVLIW deals with these 
situations [17]. We have also  proved that the core operations 
performed by the DTSVLIW’s scheduling algorithm have the 
complexity of an integer adder and, as such, should not 
increase the clock cycle time [17]. Multicyle instructions 
impact upon the operation and performance of the architecture. 
Their scheduling has to respect dependencies in any of their 
cycles [21]. This can restrict the packing of instructions into 
long instructions limiting parallelism.  

IV. A COMPARISON BETWEEN THE EPIC STATIC 

INSTRUCTION SCHEDULING AND THE DTSVLIW DYNAMIC 

INSTRUCTION SCHEDULING 

To compare the EPIC static scheduling with the 
DTSVLIW dynamic scheduling, we have used three 
execution-driven machine simulators: the SKI [22] and the 
Trimaran HPL-PD [23] EPIC simulators, and our DTSVLIW 
simulator. 

The SKI simulator interprets IA64 ISA code. At the end of 
program execution, this simulator presents the number of 
executed instructions (including nop's) and the number of stops 
found. The simulator considers that the latency of all 
instructions is one, and that there is no limitation of resources 
(the number of slots in a long instruction and the number of 
functional units). Then, the number of stops reported by the 
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SKI simulator represents the smallest number of cycles that 
would be required for the execution of the interpreted program. 
In a silicon interpretation, besides limited resources, the 
latency of the instructions would not all be one cycle and there 
would be cache misses, branch mispredictions, etc., that would 
require a much larger number of cycles. However the cycle 
count of the SKI simulator does display the performance of the 
compiler scheduler, which is why we have used it. 

The Trimaran HPL-PD simulator interprets the set of 
instructions defined in the HPL-PD [5] specification. This 
simulator is parameterized and one can choose the number of 
registers and functional units, latency of the instructions, etc.  

The DTSVLIW simulator interprets Alpha ISA [24] code. 
It receives as input any programs compiled for the OSF-1 
operating system and faithfully executes them according to the 
DTSVLIW architecture model described in Section III. The 
simulated DTSVLIW machine also incorporates the block 
compaction mechanisms described in [25]. The simulator is 
parameterized and one can choose the number of registers and 
functional units, latency of the instructions, etc. 

All simulators interpret only the code that executes in user 
mode, including the code of libraries linked into the program. 
Operating system calls are detected, converted to calls to the 
host operating system and executed there, with results being 
copied back into the execution context. 

TABLE 2 
PROGRAMS AND PARAMETERS USED  

Programs SPECInt95 Parameters 
099.go 9   9 

124.m88ksim dcrand.lit 
129.compress95 30000 q 2131 

130.li queens 7 
132.ijpeg vigo.ppm.fast –GO 
134.perl Primes.pl 

147.vortex vortex.in 

 
In all our experiments, we have used the programs of 

SPECInt95 (except gcc, because its SPEC95 source is not 64-
bit compatible, thus impossible to compile with the available 
EPIC compilers). The programs and the inputs used are listed 
in Table 2. EPIC executable code has been generated by the 
compilers: IA64 SGI PRO64 C++ Compiler version 0.13, the 
IA64 Intel C++ Compiler 5.0.1 for Linux beta version build 
20010418, and the HPL-PD 2.0 Trimaran Compiler. The gcc 
2.7.2 compiler has been used for compiling to the Alpha ISA 
code. 

A. Simulation Parameters 

A.1 Compilers 

Although it is not mentioned in the documentation of the 
Intel EPIC compiler, we believe that it uses trace scheduling or 
one of its variations (hyperblock scheduling, for example). Its 
flag –O2 turns on all classic optimizations (global register 
allocation, register variable detection, common subexpression 
elimination, etc) and software pipelining. The flag –O3, 
provides the same optimizations as flag –O2, but also turns on: 

prefetching, scalar replacement and loop transformation. The 
flag -ip turns on optimizations between procedures 
(interprocedural optimizations) such as inline function 
expansion and interprocedural constant propagation. We have 
used two compiler configurations: one, referred to as Intel–
O2.IP, uses flags –O2 and –ip; the other, referred to as Intel–
O3.IP, uses flags –O3 and –ip. When compiling with both 
configurations, we used profiling information collected from 
previous runs of each program with the same inputs. This gave 
us the best performance. 

TABLE 3 
DTSVLIW PARAMETERS 

Primary Processor • 4-stage (fetch, decode, execute,  writeback) 
pipeline 

• no branch prediction hardware 
• taken branches cause a 2-cycle pipeline bubble  

Decoded Instruction Size 6 bytes 
Instructions Latency  1 cycle 
VLIW Cache  Four way set associative, blocks of 15x16 

instructions, 3072-Kbyte 
Instruction Cache  perfect (no miss penalty) 
Data Cache  perfect (no miss penalty) 
Number of renaming regs. 128 

 
The SGI compiler was modified to use more functional 

units (15 of each type) than that available in the Intel Itanium 
processor and to have latency of 1 for all instructions. The –O2 
flag turns on the majority of this compiler’s optimizations. The 
optimizations in this level are conservative, in the sense that 
they are always beneficial, providing improvements 
proportional to the time spent on compilation. The flag –O3, 
on the other hand, turns on more aggressive optimizations than 
flag –O2. These are generally beneficial, but can compromise 
performance in some cases. Our configuration, SGI–O2, uses 
flag–O2, while SGI–O3 uses flag –O3.  

We have set the HPL-PD 2.0 Trimaran Compiler to 
generate code for a Trimaran HPL-PD machine with infinite 
resources by activating the unlimited resources option and 
deactivating all the register restriction options. Two 
configurations were parameterized for different block 
formation – superblock and hyperblock. These two 
configurations are referred to as MAX SB and MAX HB. 
Another two HPL-PD 2.0 Trimaran Compiler configurations 
were set (again with Superblock or Hyperblock scheduling) to 
generate code for a Trimaran HPL-PD machine with 15 
functional units of each existing type (integer, floating point, 
memory and branch) and 128 registers of each existing type 
(general purpose, floating-point, predicate and branch target). 
These configurations are referred to as the T15 SB and T15 
HB. These configurations are very optimistic from the point of 
view of implementation. 

Flags –O3 and –unrolloops had been used with the gcc to 
generate the code for the Apha ISA. 

A.2 Machine Simulators 

It was not necessary to set any parameter for the SKI 
simulator.  
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The Trimaran HPL-PD was set with: (i) unlimited registers 
and functional units, for the compiler configurations MAX SB 
and MAX HB, and (ii) 15 functional units of each existing 
type and 128 registers of each existing type, for the compiler 
configurations T15 SB and T15 HB. The latency was set to 1 
for all instructions. 

For the DTSVLIW simulator, we have used the parameters 
shown in Table 3. The count of instructions executed given for 
the DTSVLIW includes only the instructions that would be 
executed in a scalar machine, i.e., nops and copy instructions 
added to long instructions during scheduling are not counted 
(to count these instructions would erroneously inflate the ILP 
achieved by the DTSVLIW). Instructions executed and cycles 
spent in the Primary Processor during scheduling are, of 
course, counted. 

The instructions and data caches of all machines studied 
were specified as ideal (without miss penalty and with single 
cycle access). All parameters used were chosen in order to 
isolate the subject of study: the quality of the scheduling of the 
sets of compiler/ISA/machine architecture. 

B. Experiments 

In this section we show performance measurements for 
each individual benchmark running on each configuration 
studied and average performances also. Jacob and Mudge [26], 
and Giladi and Ahituv [27] have discussed which average 
should be used when dealing with computer performance 
indices and have suggested the use of the harmonic mean for 
indices like IPC and the arithmetic mean for indices directly 
related to the execution time like number of instructions 
executed and cycle count. Therefore, when appropriate, we use 
either the harmonic mean or the arithmetic mean. 

 
B.1 Intel x SGI x Trimaran Compiler 

Figure 3 shows the count of instructions executed for each 
SPECInt95 program on the different EPIC simulators with the 
compiler configurations: Intel–O2.IP, Intel-O3.IP, SGI–O2, 
SGI–O3, T15 SB, THB, MAX SB, MAX HB. The arithmetic 
mean (A.M.) of the instructions executed is also shown. 

Figure 3 shows that the Intel and SGI compilers produce 
little variation in the instructions executed as a function of the 
level of optimization. However, in most cases, the instruction 
count is larger when the optimization is more aggressive. For 
the Trimaran configurations we cannot actually distinguish 
between more or less aggressive, but only different 
optimizations. With limited resources, T15 SB and T15 HB, 
hyperblock scheduling generates programs that execute less 
instructions in the majority of the cases compared to 
superblock, although this trend is not confirmed in the cases of 
go and xlisp, possibly due to the use of predication in code 
fragments that are not good candidates for this technique. For 
Trimaran with unlimited resources, MAX SB and MAX HB, 
we see a more uniform behavior, where the formation of 
hyperblocks always leads to the same or fewer instructions 
executed. Comparing compilers, we can see that the Intel 

compiler always generates code that results in less executed 
instructions than the SGI compiler and that the Trimaran 
compiler with limited resources produces, on average, results 
between Intel and SGI or, with unlimited resources, code that 
results in the execution of less instructions than these two. 
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Fig. 3 EPIC: Instructions executed 
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Fig. 4 EPIC: Required Cycles 
 

Figure 4 shows the count of execution cycles for the 
SPECInt95 programs with the same configurations as Figure 3. 
The cycle count represents the best measure of performance, 
since it indicates the execution time of each program. From 
Figure 4, we can perceive that the Intel–O2.IP configuration 
gave, on average, a slightly better performance than Intel–
O3.IP (about 2.3%). This shows that more aggressive 
optimizations do not always results in performance gains 
(please note that the Intel–O3.IP configuration may perform 
better than Intel–O2.IP if memory latencies are considered). 
The Intel configurations show, on average, a better 
performance than the SGI configurations (about 19 %). The 
SGI–O3 configuration gave, on average, a slightly better 
performance than the SGI–O2 (about 3.3% better). The 
Trimaran configurations with limited resources, T15 SB and 
T15 HB, show the worse performance, where the instruction 
count for the programs go and xlisp has a strong negative 
impact on the average performance. As expected, Trimaran 
MAX SB and MAX HB obtained the best performance in all 
programs on average, about 37.7% better than Intel–O2.IP, the 
runner up. However, perhaps surprisingly, the configuration 
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with superblock scheduling generated programs that require 
less cycles than that with hyperblock scheduling for all 
programs except m88ksim and xlisp, although not by much.  
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Fig. 5 EPIC: Instructions per Cycle 

Figure 5 shows the average instructions per cycle executed 
for the SPECInt95 programs, along with their harmonic mean 
(H.M.) for the same configurations of Figure 3. These figures 
indicate the degree of ILP achieved. As Figure 5 show, the 
Intel and SGI compilers do not obtain ILP much larger than 
three – the size of the IA64 ISA bundle – instructions per 
cycle. The T15 SB and T15 HB configurations show worse 
ILP for all programs with the exception of compress with T15 
SB. Again MAX SB and MAX HB achieve the best results on 
average, with the advantage to the MAX SB configuration. 

B.2 DTSVLIW x EPIC 

In order to compare the EPIC scheduling with that of the 
DTSVLIW, we have selected the best performing EPIC 
configurations for each compiler: Intel– O2.IP, SGI–O3 and 
MAX SB. Figure 6 presents the instruction execution count for 
each of these configurations (results from Figure 3) plus those 
for the DTSVLIW. The gcc compiler produces programs that 
always result in the execution of fewer instructions than that 
generated by the Intel and SGI compilers. This is expected. 
The facilities for conditional execution in the Alpha ISA are 
represented only by a few conditional move instructions little 
used by the gcc compiler, while the IA64 ISA has ample 
mechanisms for conditional execution, intensively used by the 
compilers, which leads to the execution of many extra 
instructions. In addition, compilers for the IA64 ISA generate 
many nop instructions due to the restrictions imposed by the 
template field for valid bundle formation. Programs generated 
by gcc have, on average, the same instruction count as those 
from the Trimaran with unlimited resources. The Trimaran 
does not generate nops; thus, as our results show, at least with 
unlimited resources it is possible to make good use of 
predication for executing fewer instructions. 

Figure 7 shows the cycle count for the execution of each 
SPECInt95 program. The combination gcc/DTSVLIW 
surpasses the combinations Intel-compiler/IA64 and SGI-
compiler/IA64 by a wide margin on average. The DTSVLIW 
only loses in one program, go, for the Intel/IA64 combination, 
but by a small margin. Compared with the Trimaran/HPL-PD 

combination, however, the gcc/DTSVLIW only wins in 
m88ksim and xlisp; however, on average the gcc/DTSVLIW 
performance is equivalent to Trimaran/HPL-PD. 
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Fig. 6 DTSVLIWxEPIC: Instructions Executed  
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Fig. 7 DTSVLIWxEPIC: Required Cycles 
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Fig. 8 DTSVLIWxEPIC: Instructions per Cycle 
 
 Figure 8 shows the instructions per cycle for each 

combination under study. The combination gcc/DTSVLIW has 
been able to explore parallelism levels only inferior to the ones 
achieved with an EPIC compiler compiling for an unlimited 
machine and being executed in a machine with unlimited 
resources. The single exception is again the go benchmark. 
This benchmark has many hard to predict branches. These 
branches force the DTSVLIW to reschedule many blocks, 
which results in less ILP.  
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The DTSVLIW machine configuration used in the 
experiments is optimistic, but much less optimistic than the 
EPIC machine emulated by the SKI simulator and even less so 
than that emulated by the Trimaran simulator. Our results show 
that the DTSVLIW needed, on average, practically the same 
number of cycles, had only 4.4% inferior ILP and executed 
1.5% more instructions than the Trimaran MAX SB. But 
compared to the Intel–O2.IP configuration, which achieves 
better results than the SGI–O3, the DTSVLIW, on average, 
needed 37.6% fewer cycles, achieved a 23.4% larger ILP and 
executed 19.5% fewer instructions. 

V. CONCLUSION 

We have presented an experimental comparative analysis 
between static EPIC scheduling and dynamic DTSVLIW 
scheduling. In our experiments, the DTSVLIW scheduling 
obtained, on average, practically the same performance 
achieved with the Trimaran EPIC compiler configured with 
unlimited resources, which had the best results among the 
EPIC compilers used. However, the DTSVLIW machine 
obtained its performance using a configuration significantly 
less optimistic than the EPIC machines. Thus, it is likely that 
the DTSVLIW obtained the demonstrated performance 
because its scheduling hardware makes good use of dynamic 
information, not available to the compilers, regarding the 
execution of the test programs. The static schedulers of the 
EPIC compilers have access only to averaged information 
obtained via profiling. 

It is important to note that the DTSVLIW architecture may 
had been disfavored because the code executed by the 
DTSVLIW simulator was generated by a compiler not specific 
for this architecture, while for the EPIC architecture specific 
compilers have been used. Moreover, the existing differences 
between the EPIC ISAs and the Alpha ISA have not been 
considered. These questions should be clarified with future 
analyses of the performance of the DTSVLIW architecture 
running EPIC code and/or running code generated by a 
compiler specific for the DTSVLIW. 
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