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Abstract 
VLIW machines possibly provide the most direct way to 

exploit instruction level parallelism; however, they 
cannot be used to emulate current general-purpose 
instruction set architectures. Programs scheduled for a 
particular implementation of a VLIW model cannot be 
guaranteed to be binary compatible with other 
implementations of the same machine model with different 
number of functional-units. This paper describes an 
architecture, named dynamically trace scheduled VLIW 
(DTSVLIW), which can be used to implement machines 
that execute code of current RISC or CISC instruction set 
architectures in a VLIW fashion, with backward code 
compatibility. Some preliminary performance 
measurements of the DTSVLIW, obtained with an 
execution-driven simulator running the SPECint95 
benchmark suite, are also presented. 

 

1. Introduction 

Very Long Instruction Word  (VLIW) machines can 
execute several scalar operations in a single clock cycle [1]. 
They have long instructions (hundreds to thousands of 
bits), with fields to control each of their many functional 
units. These long instructions are fetched from memory, 
one per processor clock cycle, and issued to functional 
units that operate in parallel. In VLIW machines, the 
compiler has complete responsibility for creating a package 
of operations that can be simultaneously issued. The 
hardware does not dynamically make any decisions about 
multiple operation issue, and thus the VLIW hardware is 
simple and fast. However, the assumptions built into the 
object code by the compiler about this hardware prevent 
object code compatibility between different 
implementations of the same VLIW instruction set 
architecture (ISA). VLIW processors with different levels 
of parallelism require recompilation of the source code. 
This problem, known as the VLIW object code 
compatibility problem, has made VLIW machines of 
limited commercial interest [7]. Furthermore, it is not 

possible to implement current RISC or CISC general-
purpose machines as a standard VLIW architecture.  

This paper presents an architecture, implementing a 
concept first proposed by Nair and Hopkins [9], that has 
the potential to overcome the VLIW drawbacks and 
preserve its advantages. This architecture, named 
dynamically trace scheduled VLIW (DTSVLIW) [2], has 
two execution engines: the Scheduler Engine and the 
VLIW Engine, and two instruction caches: the Instruction 
Cache and the VLIW Cache. A block diagram of the 
DTSVLIW architecture is shown in Figure 1. The Scheduler 
Engine fetches instructions from the Instruction Cache and 
executes them singly the first time using simple pipelined 
hardware. In addition, it dynamically  schedules the trace 
produced during execution into VLIW instructions, placing 
them as blocks of VLIW instructions in the VLIW Cache. If 
the same code is executed again, it is fetched by the VLIW 
Engine from this cache and executed in VLIW fashion. In a 
DTSVLIW machine, the Scheduler Engine provides for 
object-code compatibility, and the VLIW Engine provides 
VLIW performance and simplicity. 

In order to evaluate the DTSVLIW architecture, a 
parametric simulator has been implemented and execution-
driven simulation performed using the SPEC95 benchmark 
suite. Experimental results presented here show that the 
DTSVLIW executes VLIW instructions on almost 90% of 
the cycles on average and achieves significant Instruction 
Level Parallelism (ILP). 

This paper is organised as follows. In the next section, 
related work is discussed. The DTSVLIW machine is fully 
described in Section 3. In Section 4, the experimental 
methodology and the results of the experiments carried out 
to evaluate the DTSVLIW architecture are presented. 
Section 5 contains the conclusions and proposals for 
future work. 

2. Related Work 

Existing techniques to get over the VLIW code 
compatibility problem can be divided into software [3, 4, 5, 
6] and hardware [7, 8, 9] techniques. The simplest software 
technique is off-line recompilation of source programs. The 
drawbacks of this approach are that it is awkward to use 



and the source code may not always be available. Binary 
translation [3] is a variant of this technique that can be 
performed without the source code, but is also awkward to 
use. Alternatively, interpreters can be used to emulate 
different architectures at run-time; however, this approach 
usually suffers from poor performance. Binary translation 
and emulation can be combined [4]. Dynamic 
Rescheduling, proposed by Conte and Sathaye [5], is 
another software technique. When a program is invoked in 
a system that implements dynamic rescheduling, the 
operating system reschedules the first program page and 
saves it in a new page, which is compatible with the system 
hardware. This process is repeated each time a new page 
fault occurs. Ebcioglu and Altman [6], with their DAISY 
machine, extended the concept of dynamic rescheduling to 
dynamic compilation, in order to use a generic ISA. 
Dynamic rescheduling and dynamic compilation rely on the 
ability of the operating system to translate code rapidly 
and on the reusability of this code. However, since it is 
implemented in software, the cost of the translation is high.  

Rau [7] presented a new type of VLIW machine, named 
dynamically scheduled VLIW (DSVLIW), which tackles the 
software compatibility problem at the hardware level. A 
DSVLIW machine splits each instruction member of a long 
instruction (the term used in this paper to refer to a VLIW 
instruction) into two components: phase1 and phase2. The 
phase1 component is the original instruction with its 
destination renamed, while phase2 is a copy instruction 
copying the phase2 result to the original destination. Both 
instruction components can be issued simultaneously to 
functional units’ reservation stations. Once execution of 
phase1 finishes, the reservation station with phase2 
receives the result. The execution of each original 
instruction is completed after the execution of phase2, 
which can be done in just one more cycle.  

Despite the ability to implement a family of VLIW 
machines with different functional units’ latency and the 
same ISA, the DSVLIW concept cannot be used to 
implement an existent sequential ISA. In addition, it 
requires dynamic scheduling hardware in the main data 
path of the machine, which can have a negative effect on 
the clock period.  

Franklin and Smotherman [8] proposed the use of a fill 
unit [10] to compact a dynamic stream of scalar 
instructions into long instructions: the fill unit accepts 
decoded instructions from the machine decoder, compacts 
them into a long instruction, and saves the long instruction 
in the shadow cache. At the same time, the fill unit sends 
the long instruction to the functional units for execution. 
Fetch accesses that hit in the shadow cache provide long 
instructions directly to the functional units. The fill unit 
does not rename registers, resulting in a reduction in the 
capacity to deal with output data dependencies, and works 
within a window of only one long instruction. For these 
reasons it cannot exploit ILP extensively. 

Nair and Hopkins [9] suggested a VLIW based 
architecture named DIF (Dynamic Instruction Formatting), 
which is an improvement of the Franklin and Smotherman 
proposal. The DIF architecture incorporates two engines: 
the VLIW Engine and the primary engine. The latter is a 

simple processor, less aggressive in exploiting parallelism, 
which executes instructions when first fetched. 
Simultaneously with the execution of a code sequence, this 
engine reformats the code, generating groups of long 
instructions as opposed to a single long instruction. 
Groups are saved in a special cache – the DIF Cache. 
Following accesses to the same sequence will hit the DIF 
Cache and the long instructions fetched will be executed 
for the VLIW Engine. 

The DTSVLIW architecture is similar to the DIF and was 
developed shortly after it, but without knowledge of its 
existence. This was beneficial because permitted a 
significantly different implementation. The differences 
between then are detailed in Section 3.12. 

The DTSVLIW long instruction resembles the tree 
instruction introduced by Nakatani and Ebcioglu [11]. 
However, the DTSVLIW long instruction is particularly 
suitable for a VLIW machine that executes scheduled trace 
code, while the tree instruction was proposed to hold 
VLIW code produced by VLIW compilers. The DTSVLIW 
long instruction can be viewed as a special case of the tree 
instruction, although it has not been derived from this 
approach.  

A core scheduling operation performed by the 
DTSVLIW, the move up operation (see Section 3.2), is 
similar to the move-op with renaming operation of the 
enhanced pipeline percolation scheduling technique [11]. 
However, their application is different, reflecting their 

different purposes: move-op was designed for scheduling 
during compile time, and move up was designed for 
scheduling during execution time. The move-op operation 
is applied in a sequential fashion by the compiler; in 
contrast, the move up operation is applied here in a 
pipelined parallel fashion by the hardware.  

Figure 1: The Dynamically Trace Scheduled VLIW Machine. 

3. A DTSVLIW Machine 

In this section, an implementation of the DTSVLIW 
architecture is presented. This implementation executes 
SPARC Version 7 ISA [12] code. 

3.1 The Scheduler Engine  

The Scheduler Engine is composed of the Primary 
Processor plus the Scheduler Unit (Figure 1). The Primary 
Processor is a simple pipelined processor that is capable of 
executing all instructions defined in the SPARC ISA. When 
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an instruction completes execution, the Primary Processor 
sends it to the Scheduler Unit. The Scheduler Unit 
implements in hardware a simplified version of the First 
Come First Served (FCFS) algorithm, which historically has 
been used to statically schedule microcode [13]. We have 
chosen this algorithm for three reasons. First, it operates 
with one instruction at a time and considers instructions in 
the strict order that they appear during program execution, 
which perfectly fits the DTSVLIW mode of operation. 
Second, the FCFS algorithm produces optimum or near-
optimum scheduling [13]. Finally, the FCFS algorithm is 
easy to implement in hardware in a pipelined fashion in the 
form it is presented here (see Section 3.5).  

 
for (sum = 0, i = 0; i < x; i++)
{

sum = a[i] + sum;
}

(a)

or r0, 0, r9 # r9 = sum
sethi hi(56), r8 # r8 = temp
or r8, 8, r11 # r11 = *a
or r0, 0, r10 # r10 = 4*i

loop: ld [r10+r11], r8
add r9, r8, r9
add r10, 4, r10
subcc r10, 4*x-1, r0
ble loop
or r0, 0, r0 #nop

(b)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

 

slh-> or r0, 0, r9 sethi hi(56), r8  
slt-> or r8, 8, r11   
    
    

 

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10 
 or r8, 8, r11   
 ld [r10+r11], 

r8 
add r10, 4, r10  

slt -> add r9, r8, r9 subcc r10, 4*x-
1, r0 

 

 

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10 
 or r8, 8, r11 add r10, 4, r32  
 ld [r10+r11], 

r8 
COPY r32, r10 subcc r32, 

4*x-1, r0 
slt -> add r9, r8, r9 ble loop  

 

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10 
 or r8, 8, r11 add r10, 4, r32  
 ld [r10+r11], 

r8 
COPY r32, r10 subcc r32, 

4*x-1, r0 
slt -> add r9, r8, r9 ble loop ld [r10+r11], 

r8 
(c) 

Figure 2: Scheduling algorithm running example. (a) C code 
segment. (b) Assembly language version of the C code (c) 
Four snapshots of a three instructions wide and four long 
instructions deep scheduling list, filled with instructions 
coming from the Primary Processor after 3, 8, 9, and 11 
cycles of the completion of the first instruction. The shaded 
instructions in each snapshot are also candidate 
instructions. 

3.2 The Scheduling Algorithm 

The implemented version of the FCFS algorithm acts on 

a list, the scheduling list. This list has a limited number of 
elements, each containing one long instruction and a 
candidate instruction, which holds an instruction for 
scheduling into the long instruction. A broad overview of 
the algorithm is that an instruction completing execution 
by the Primary Processor is placed at the end of the 
scheduling list on the next clock cycle. On each 
subsequent cycle it can move up to the next higher element 
in the list if: it has not reached the head of the list; there is 
space for it in the next element; there is not a dependency 
with instructions in next element. Figure 2 shows an 
example of the algorithm scheduling a simple segment of 
code that adds all elements of a vector. In Figure 2, slh and 
slt stand for scheduling list head and tail, respectively, and 
the destination register of the instructions is the rightmost. 
The scheduling algorithm ignores the nop instruction. The 
details of the algorithm’s operation follow.  

An instruction finishing execution in the Primary 
Processor in one cycle can be inserted into the list in the 
next, by placing a copy of it in a candidate instruction and 
also in a suitable slot of the corresponding long 
instruction. The copy in the long instruction slot is called 
the companion instruction and its position in the long 
instruction (the slot number) is recorded in the candidate 
instruction. If there is no data, control, or resource 
dependencies on any instruction in the list’s tail element, 
the incoming instruction becomes a candidate instruction 
in the list’s tail element; otherwise, the incoming 
instruction becomes a candidate instruction in a new tail 
element added to the list. In Figure 2b, instructions 1 and 2 
are inserted in the first way, while instruction 3 is inserted 
in the second way due to a flow dependency on r8 (there is 
a flow dependency on instruction i if it reads from any 
position written by any instruction j before i). 

On clock cycles following the insertion of an instruction 
into the end of the list, the instruction and its companion 
are moved up as far they can go in the list of long 
instructions. An instruction can move up from long 
instruction i to long instruction i - 1 if it is not flow 
dependent on any instruction in the long instruction i - 1 
and there is a suitable slot available. If the instruction 
cannot move up, it is installed in long instruction i by 
invalidating the candidate instruction and leaving its 
companion in long instruction i. In Figure 2, instruction 3 is 
installed in the fourth cycle, while instruction 8 is moved 
up in the ninth cycle. 

The candidate instruction in i can be placed in long 
instruction i - 1 even if there is an output dependency on 
any instruction in i - 1 (there is an instruction in i - 1 that 
writes in a storage position written by the candidate 
instruction in i), or an anti dependency on any instruction 
in i (there is an instruction in i that reads from a storage 
position written by the candidate instruction in i), or a 
control dependency on any instruction in i (there is an 
conditional branch or indirect branch in i). However, in 
such cases, the candidate instruction has to be split. The 
split is done by renaming the candidate instruction’s 
output that has caused the anti or output dependency, or 
all outputs if there is a control dependency, and by 
transforming the companion instruction into a copy 



instruction and leaving it permanently in the slot it 
occupies in long instruction i. This copy instruction 
performs the copy of the renaming register (or the 
renaming registers) content to the instruction’s original 
output (or instruction’s original outputs). In Figure 2, 
instruction 7 is split in the ninth cycle. 

When there is no free element for an incoming 
instruction, the scheduling list is flushed to the VLIW 
Cache as a block  and the incoming instruction is inserted 
into an empty list as the first instruction of a new block. 
The list is saved as a block, but on a one long instruction 
per cycle basis; nevertheless, instructions can be 
continuously inserted into the new block at the same time 
as the old block is being saved. This is achieved by making 
the scheduling list circular, and by using three registers to 
handle it: the scheduling list head register, the scheduling 
list tail register, and the output long instruction pointer 
register. The scheduling list tail register together with the 
scheduling list head register delimits the active elements of 
the scheduling list. The output long instruction pointer 
register is used to flush the list to the VLIW Cache. All 
three are zeroed after the DTSVLIW is reset. 

The scheduling list tail register is incremented when 
new entries are added to the scheduling list. If the number 
of valid elements in the list exceed the block size (a 
hardware constant), the list is full. When the list is found 
full on inserting a new instruction, the content of the 
scheduling list tail register is copied to the scheduling list 
head register, which makes the last different from the 
output long instruction pointer register and the list empty. 
When the output long instruction pointer and the 
scheduling list head registers are different at the start of a 
cycle, the long instruction that is pointed at by the output 
long instruction pointer is sent to the VLIW Cache and the 
output long instruction pointer is incremented. These 
repeats until the output long instruction pointer register 
becomes equal to the scheduling list head register again 
and the block has been flushed. As instructions are 
inserted into the list at the maximum rate of one instruction 
per clock cycle, one action does not interfere with the 
other.  

3.3 Long Instruction Addresses Generation 

Each element in the scheduling list contains two stores 
to hold the current and the next long instruction addresses: 
the long instruction address store, and the next long 
instruction address store. Each of these has an address 
field to hold a SPARC ISA address and a line index field to 
record the position of the element in the list. When an 
instruction is inserted into an empty scheduling list, its 
original memory address is copied to the address field of 
the element, while the line index field of this long 
instruction is zeroed. When instruction insertion causes a 
new element to be added to the list, the long instruction 
address store of this element receives a copy of the long 
instruction address store of the previous tail element with 
the line index field incremented modulo of the scheduling 
list size. The next long instruction address store of the 
previous tail element also receives this long instruction 

address. The overall effect of this is that the next long 
instruction address store of the last long instruction of a 
block points to the first long instruction of the fall-through 
block, which happens when inserting an instruction in an 
empty list to create the fall-through block. The content of 
the long instruction address and next long instruction 
address stores are not saved into the VLIW Cache; 
instead, a unique next block address is saved for each 
block, as detailed next. 

3.4 The VLIW Cache  

The VLIW Cache is a set associative cache with line 
size equal to one block of long instructions. It is tagged 
with the SPARC ISA address of the first instruction placed 
in the block by the Scheduler Unit. In the VLIW Cache, 
each long instruction can be accessed directly by using 
addresses in the long instruction address format, with the 
line index field of the address choosing the specific long 
instruction in the block. An additional feature associated 
with each cache line is a next block address (nba) store 
with the same format as the long instruction address. The 
nba store prevents redundancy of information in the VLIW 
Cache. When a long instruction is saved, the address field 
of its next long instruction address store is saved in the 
address field of nba and the line index field of its long 
instruction address store is saved in the line index field of 
nba. Thus, each nba store ends up with the address field of 
the next long instruction address store of the last long 
instruction saved in each block – the address of the fall-
through block – and with the order of the last long 
instruction of this block (in the nba line index field). The 
nba value is used in the VLIW Engine fetch, as described 
next. 

3.5 The VLIW Engine  

The VLIW Engine of the DTSVLIW has a simple fetch-
execute-write back pipeline (multicycle instructions can 
have more than one execute stage) for each functional unit. 
A decode stage is not necessary as decoded instructions 
are saved in the VLIW Cache. Its program counter (PC) has 
the long instruction address format – on a fetch from the 
VLIW Cache, the line index field of PC is incremented, 
while its address field is left unchanged. On a long 
instruction fetch, the nba value associated with the cache 
line is fetched as well. If the line index field of PC is equal 
to the line index of nba, then, at the end of the cycle, the 
content of the address field of nba is copied to the address 
field of PC and the line index field of PC is zeroed. These 
actions cause the fetch of the first long instruction of the 
fall-through block in the following cycle without causing 
pipeline bubbles. 

All conditional and indirect branches are resolved in the 
execute stage of the VLIW Engine. The direction taken by 
them during the scheduling, recorded in the VLIW Cache, 
is used during the execution to determine a possible 
misprediction. If a target is different from that recorded, the 
current VLIW fetch is annulled and the address field of PC 
receives the new target with its line index being zeroed, 



causing a one cycle deep bubble in the VLIW Engine 
pipeline. 

3.6 DTSVLIW Program Execution Paradigm 

In a DTSVLIW machine, the VLIW Engine and the 
Primary Processor never operate at the same time and no 
machine state has to be transferred between them, as they 
share the DTSVLIW machine state. This simplifies the 
design of both, even allowing the VLIW Engine to share 
register file and data cache’s ports with the Primary 
Processor. The cost in cycles of swapping between them is 
equal to the sum of a number of pipeline stages of both 
processors only (the pipeline stages discarded in one 
processor plus the pipeline stages refilled in the other). 

While the Primary Processor is executing the code, the 
Fetch Unit (Figure 1) issues different addresses to the 
Instruction Cache and the VLIW Cache. To the Instruction 
Cache is issued the PC contents. To the VLIW Cache is 
issued the address of the instruction in the execute stage 
of the Primary Processor: if this instruction has executed 
before, there may be a block in the VLIW cache. On a 
VLIW Cache hit, the VLIW Engine takes over execution. 
The block being constructed by the Scheduler Unit is 
flushed to the VLIW Cache – this block is made to point at 
the hit block. The contents of all but the write back pipeline 
stage of the Primary Processor are annulled and PC 
receives the memory address that hit the VLIW Cache. In 
subsequent cycles, the VLIW Engine controls the PC.  

On a VLIW Cache miss, the Primary Processor takes 
over execution, fetching from the last PC value computed 
by the VLIW Engine. The Fetch Unit does not issue 
fetches to the VLIW Cache again until an instruction 
arrives at the execute stage of the Primary Processor. At 
this point, the Scheduler Unit restarts to schedule a new 
block, the address of which will be the last address 
produced by the VLIW Engine when executing the 
previous block. This connects these blocks forming a 
block chain. In steady state, the VLIW Cache contains all 
most frequently executed traces. 

Figure 3: Scheduler Unit pipeline. 

Figure 4: Scheduling list. Rd(i), Td(i), Od(i), Ad(i), and Cd(i) 
stand for resource dependency, true data dependency, output 
data dependency, anti data dependency, and control 
dependency on candidate instruction i, respectively. CRd(i), 
CTd(i) and COd(i) stand for resource dependency, true data 
dependency and output data dependency on candidate 
instruction i caused only by the candidate instruction in 
long instruction i - 1, respectively.  

3.7 Scheduler Unit Implementation 

The Scheduler Unit can be implemented in a pipelined 
fashion as depicted in Figure 3. One or more pipeline 
stages can be used for inserting instructions into the 
scheduling list, each scheduling list entry can be made a 
pipeline stage, and none, one or more pipeline stages can 
be used for saving the scheduled long instructions into the 
VLIW Cache.  

The checking operations required on the scheduling list 
on each clock cycle are just comparison operations 
between each candidate instruction and the instructions in 
the current and next element of the list. Each check 
operation is independent. However, the decision to install, 
split, or move up a candidate instruction may depend on a 
chain of decisions as long as the scheduling list. 
Nevertheless, the information necessary to each one can 
be gathered in a way similar to carry propagation in carry-
lookahead adders, and the logic required can be made as 
fast as an and-or gate delay. It can be proved with the help 
of Figure 4.  

In Figure 4, the value of CRd(i), CTd(i), COd(i), Rd(i), 
Td(i), Od(i), Ad(i), and Cd(i) for each element i of the list (0 
< i < block size – 1) is available at the beginning of each 
clock cycle after the comparators delay (xor gate delay). 
Invalid candidate instructions never produce CRd(i), 
CTd(i), or COd(i) signals. Valid candidate instructions 
could influence the Rd(i), Td(i), Od(i), and Ad(i) signal 
values; for this reason, their companion position is used 
for disabling the comparators associated with the slot 
where the companion instruction is. CRd(i) is also disabled 
if there is more than one slot available in i - 1 for candidate 
instruction i. 

Let us analyse the installing case first. A valid 
candidate instruction must be installed on true 
dependencies or resource dependencies. So, if Td(i) is true 
there is an instruction already installed in long instruction i 
- 1 causing a true dependency on the candidate instruction 
i. In this case, the candidate instruction in i must be 
installed. If only CTd(i) is true one cannot tell whether or 
not the candidate instruction should be installed, because 
the candidate instruction in i – 1 might move up in this 
cycle. The same can be said about Rd(i) and CRd(i) signals. 
Nevertheless, using the position of the candidate 
instruction in the list, which is recorded in the line index 
field of the long instruction address store of the long 
instruction, an install signal can be computed for each 
candidate instruction in the scheduling list as follows: 

 
install signal =  
(i⊗0)+ 
(i⊗1).(Td(1)+Rd(1)+CTd(1)+CRd(1))+ 
(i⊗2).(Td(2)+Rd(2)+{CTd(2)+CRd(2)}.{Td(1)+Rd(1)+CTd(1)+CRd(1)})+ 
(i⊗3).(Td(3)+Rd(3)+{CTd(3)+CRd(3)}. 

  {Td(2)+Rd(2)+[CTd(2)+CRd(2)].[Td(1)+Rd(1)+CTd(1)+CRd(1)]}) 
 
The equation above represents the logic necessary to 

compute the install signal for a DTSVLIW machine with a 
block size equals 4. The rule to produce equations for 
bigger blocks is easily deduced by visual inspection. The 
operator “⊗” means binary vector comparison: (i⊗x) 
evaluates to true if i is equal to x. The operator “+” means 
logic or, and the operator “.” means logic and.  

When the line index field of the list element containing 
the candidate instruction i is equal to zero, the first line of 
the equation evaluates to true and, consequently, the 
install signal becomes true. This implements the first rule 

op in out op in out op in outop in out …

scheduling list entrycandidate instruction

Td(i)
comparators

Od(i)

Ad( i)

long
inst. i

CTd(i)

COd(i)

Rd(i)CRd(i)

Cd(i)



for installing a candidate instruction, i.e., if the candidate 
instruction is in the head of the scheduling list it is 
installed. If i is equal to 1, only the second line of the 
equation can evaluate as true. In this case, i will be 
installed if there is an true dependency on any instruction 
installed in long instruction i - 1 (the head of the list), or 
there is not a slot available in this long instruction, or there 
is a true dependency or resource dependency on a valid 
candidate instruction in this long instruction. For i greater 
than 1, the information from lower order list elements is 
added to each equation line as shown.  

A split signal can be computed for each candidate 
instruction in the scheduling list of a DTSVLIW machine 
with a block size equals 4 as follows: 

 
split signal =  
(i⊗1).(Od(1)+Ad(1)+Cd(1)+COd(1))+ 
(i⊗2).(Od(2)+Ad(2)+Cd(2)+COd(2).{Td(1)+Rd(1)+CTd(1)+CRd(1)}) 
(i⊗3).(Od(3)+Ad(3)+Cd(3)+COd(3).{Td(2)+Rd(2)+[CTd(2)+CRd(2)]. 

  [Td(1)+Rd(1)+CTd(1)+CRd(1)]}) 
 
Again, the rule to produce equations for bigger blocks 

is easily deduced by visual inspection. It is important to 
observe that part of this equation comes from the previous 
one. This is so because an output dependency caused by 
COd(i) generates a split signal only if the candidate 
instruction in element i - 1 of the scheduling list is going to 
be installed. 

If the install and the split signals are both true the 
respective candidate instruction is only installed. If the 
candidate instruction is not going to be installed or split, it 
is moved up. 

The install and split signal generation is the most 
complex operation performed by the Scheduler Unit, and its 
complexity is governed by the block size. Since the logic 
necessary for generating these signals is equivalent in 
complexity to the logic for an adder and a block of 32 long 
instructions is a large block, the Scheduler Unit design 
does not pose constraints on the cycle time of a 32-bit or 
more DTSVLIW machine. 

3.8 Control-Transfer Ins tructions Handling 

During scheduling, one or more control-transfer 
instructions can be placed in a single long instruction, but 
they cannot move up (their order is preserved). Control 
dependencies are caused only by conditional and indirect 
branch (subroutine return is a special case of this) and 
they do not impede scheduling beyond basic blocks. 
Instructions can cross basic block limits imposed by 
conditional and indirect branches via splitting. 

The VLIW Engine can only execute instructions placed 
in a long instruction that already has conditional or indirect 
branches if these branches follow the direction observed 
during scheduling. A tag system is used to make this 
possible. When such a branch is placed it establishes a 
branch tag. New instructions placed in the same long 
instruction receive this tag. If a new conditional or indirect 
branch is placed in the same long instruction, it receives 
the old tag and establishes a new one for following 
instructions. During execution, the VLIW Engine evaluates 

the conditional and indirect branches of the long 
instructions and validates their tags. Only instructions 
with valid tags have their results written in the machine 
state. 

Speculative execution is implemented by splitting 
instructions and moving up their first part past conditional 
or indirect branches, leaving the copy part behind. If a 
conditional or indirect branch does not follow the same 
direction during execution the copy part of the split 
instruction will not be executed, not committing the 
corresponding instruction. To avoid the generation of 
exceptions from not-committed instructions, exception 
information is saved in the renaming registers and 
considered only at the execution of the copy instructions. 

Conditional branch instructions read the conditional 
code register (the flags), which is written by many different 
instructions. Output and anti data dependencies caused by 
this register are tackled as other dependencies of these 
kinds. The VLIW Engine has many conditional code 
registers; therefore, instruction splitting can be used to 
avoid these dependencies. 

3.9 Specifics of  Instruction Handling 

No-operation and Unconditional branch instructions are 
ignored and not placed in the scheduling list. 

Load and store instructions can be split and moved up 
by the scheduling algorithm without restrictions with the 
following dependency testing: memory addresses are 
compared with addresses of other load/store instructions, 
but only registers of other instructions. Memory renaming 
registers provide for the renaming of memory positions. 
Load/store address aliasing is discussed in Section 3.10. 

Save and restore instructions, which deal with the 
register windows of the SPARC ISA [12], are scheduled as 
any other integer instruction. To make it possible, the 
value of the cwp (current window pointer) register, which 
is used for computing the address of the physical integer 
registers, accompany the instructions to the scheduling list 
and VLIW Cache. 

Non-schedulable instructions are a number of 
instructions of the SPARC ISA that are not executable by 
the VLIW Engine, but must always be executed by the 
Primary Processor because they are too complex for the 
VLIW Engine handle. When such an instruction is sent to 
the Scheduling Unit, it flushes the scheduling list to the 
VLIW cache. Thus trap, return  from trap, co-processor 
handling, and load/store instructions that perform I/O 
operations or provide support for cache coherence and 
multiprocessing are non-schedulable instructions.  

Multicycle instructions require more than one cycle for 
their execution and are scheduled in a particular way by the 
Scheduler Unit. The scheduling of multicycle instructions 
is not described here due to space constraints but has 
been publis hed elsewhere [14].  

3.10 Memory Aliasing Detection 

Memory aliasing [1] can occur, as the memory address 
observed during scheduling is not necessarily the same 



during VLIW execution. To detect memory aliasing and 
generate memory aliasing exceptions during VLIW 
execution, load and store instructions receive two extra 
fields when they are scheduled: the order and the cross bit 
fields. The order field receives the load/store insertion 
order, which is copied from the load/store order counter. 
This counter is zeroed every time the scheduling list is 
found empty and is incremented every time a load/store is 
inserted into the scheduling list. The cross bit field is set in 
the load/store when it is placed in a long instruction 
containing a store or a memory copy instruction generated 
from a store split.  

The VLIW Engine keeps a store list and a load list. 
During VLIW execution, loads and stores with cross bit set 
have their addresses and order fields stored in these lists. 
Load instructions executed in VLIW mode have their 
addresses associatively compared with the store addresses 
in their long instruction and all store addresses in the store 
list. On an address match, if the order field of the load is 
smaller than the order field of the corresponding store, an 
aliasing exception is signalled. The store instructions 
executed in VLIW mode have their addresses associatively 
compared with the load and store addresses in the same 
long instruction and all load and store addresses in the 
load and store lists. On an address match, if the order field 
of the store is smaller than the order field of the 
corresponding load/store, an aliasing exception is 
signalled. 

3.11 Exception Handling 

The DTSVLIW implementation presented here uses the 
Checkpointing exception handling mechanism, proposed 
by Hwu and Patt [15]. Checkpointing occurs at the 
beginning of the execution of each block of long 
instructions, when all registers that make up the SPARC 
ISA state are saved in shadow registers. Store instructions 
executed in the block cause the data they overwrite in the 
Data Cache to be saved in the checkpoint recovery store 
list. This list contains the address, data overwritten, and 
data type.  

If the VLIW Engine detects an exception during the 
execution of a block, the Scheduler Engine enters a 
recovery mode of execution. In this mode, registers receive 
the values stored in the shadow registers, each entry of the 
checkpoint recovery store list is written back into the Data 
Cache, and the load and store lists are emptied. If the 
exception detected is an aliasing exception, the VLIW 
Cache entry containing the block that caused the exception 
is invalidated. Execution is then resumed. 

For an aliasing exception, execution resumes in normal 
trace mode and the block that has caused it is scheduled in 
a way that prevents new aliasing exceptions: data 
dependencies keep load/stores in a new order inside the 
block, different from before. For other exceptions, 
execution resumes in exception mode until the exception 
repeats, from which point the operating system handles the 
exception. In exception mode only the Primary Processor 
operates. 

The scheme described for dealing with store 

instructions is not the only one that would work with the 
DTSVLIW. An alternative scheme make the stores write 
into a data store list as oppose to the Data Cache, and the 
checkpoint recovery store list is not used. The data store 
list contains the address, data, data type, and the order 
field of store instructions. This list works as a queue for 
incoming store data. Nevertheless, the order field can be 
used to transfer this data to the Data Cache in order, which 
can be useful when using the DTSVLIW for applications 
requiring intensive in order memory or I/O writing – in the 
previous scheme the Primary Processor has to handle in 
order data store. Data is only transferred from the data 
store list after the block containing the respective store 
instructions have finished without exceptions. In case of 
an exception, data generated in the block where the 
exception is detected is annulled. Load instructions read 
from the Data Cache and from the data store list at the 
same time, and use the last data stored in the list on a list 
hit. This scheme has not been used as it is much harder to 
implement in a simulator, and its advantages need to be 
identified through further research. 

3.12 Differences Between DTSVLIW and DIF 

The DTSVLIW architecture differs from the DIF 
architecture in the organisation of the cache used by the 
VLIW Engine, in its scheduling algorithm, in its register 
renaming, and in the VLIW Engine register access 
mechanism. 

The unit of communication between the DIF cache and 
its VLIW Engine is an entire block of long instructions, 
whereas the DTSVLIW machine accesses one long 
instruction per VLIW Cache access. It is believed that this 
should simplify the VLIW Cache implementation.  

A DIF machine schedules instructions using a hardware 
table, which has as many entries as resources in the 
machine and records the earlier long instruction in which 
each resource is available. Its proposed scheduler 
implements the greedy algorithm, by checking all resources 
necessary for each new instruction against this table, and 
scheduling the instruction in the earliest long instruction 
possible. The DTSVLIW uses a simplified pipelined 
version of the First Come First Served Algorithm, which 
operates over a list of long instructions. An instruction has 
only to be checked for dependencies against other 
instructions in its current and next position in the list, as 
opposed to all resources available in the machine.  

A DIF machine has a number of instances of each ISA 
register and extra bits are added to each register specifier 
to specify the register being used during VLIW execution. 
A register-mapping table is used to access the current ISA 
register set. Register renaming is implemented by 
specifying the extra bits during scheduling and by copying 
the new register mapping (the exit map) to the table every 
time the execution leaves a block. Each exit point of a block 
(all branches and the final VLIW instruction) has to carry 
its own exit map, consuming a significant amount of DIF 
Cache space. The DTSVLIW splits instructions with the 
purpose of renaming registers to overcome data and 
control dependencies. The copy instructions generated are 



simpler to handle than mapping tables and do not use extra 
VLIW Cache space. 

The DIF VLIW Engine accesses its register file 
differently to the DTSVLIW. It has to translate each 
register specifier to access the register file during VLIW 
execution because of its renaming mechanism – this 
translation is in the data path of the DIF VLIW Engine. A 
DTSVLIW machine does not have to do this as it accesses 
the register file directly. 

Table 1: Fixed Parameters  

Primary Processor • four-stage (fetch, decode, execute, and 
write back) pipeline 

• no branch prediction hardware 
• not-taken branches cause a 3 cycle bubble 

in the pipeline 
• instructions following a load, requiring 

the data loaded cause a one-cycle bubble 
in the pipeline 

Decoded Instruction Size  6 bytes 
Instruction Latency 1 cycle 
VLIW Engine List Sizes load = store = checkpoint recovery store = 

unlimited 
N. of Renaming Registers  integer = f.p. = memory = flags = unlimited 
Scheduler Unit Pipe inserting/splitting and moving up/saving = 

1/block size/1 stages 

Table 2 Benchmark programs 

Benchmark Input  

compress 400000  e 2231 
gcc -O3 jump.i  
go 40 19 null.in 
ijpeg vigo.ppm –GO 
m88ksim dhry.big 
perl primes.pl 
vortex vortex.in 
xlisp queens 7  

 

4. DTSVLIW Experimental Evaluation 

A simulator of the DTSVLIW has been implemented in 
C (21K lines of code), and execution-driven simulation 
performed to produce the results reported here. All results 
were produced with the simulator running in test mode in 
order to guarantee correct simulation. Test mode puts two 
machines to run together: the DTSVLIW and a test 
machine with the same characteristics of the Primary 
Processor of the DTSVLIW. The DTSVLIW starts first, and 
every time an instruction or a block of long instructions is 
completed, the simulator switches to the test machine, 
which runs until its PC becomes equal to the DTSVLIW 
PC. The SPARC ISA state of both machines is compared 
and, if not equal, an error is signalled and the simulation 
interrupted. The test mode has been very useful for 
experimental evaluation, because in this mode it is possible 
to measure the precise number of instructions necessary 
for the sequential execution of a program, which the test 
machine can provide. A DTSVLIW simulator alone cannot 

provide this number due to copy instructions and 
instructions executed speculatively. 

The simulator receives as input binary executable 
programs generated by the gcc compiler and faithfully 
models the execution performed by the DTSVLIW machine 
described. Model parameters that are invariant for 
simulations are shown in Table 1, while the benchmark 
programs used in the experiments – the SPECint95 
benchmark suite – and their input sets are shown in Table 
2. Each program was run for 50 million or more instructions 
each experiment, as counted by the test machine.  

Figure 5: Variation of parallelism with the block size and 
geometry 

4.1 Effect of the Block Size and Geometry 

Figure 5 shows the effect of the block size (in number of 
instructions) and block geometry (instructions per long 
instruction (width) versus long instructions per block 
(height)) on performance. To ensure the absence of 
extraneous effects, the experiments leading to the results in 
this figure were performed with perfect instruction and data 
caches (no miss penalty), large VLIW Cache (3072-Kbyte), 
and no next long instruction miss penalty. The numbers in 
the legend are instructions per long instruction and long 
instructions per block, respectively. The instruction per 
cycle performance measurement index used in Figure 5 and 

throughout this section has been produced dividing the 
number of instructions necessary to execute the program, 
as counted by the test machine, by the number of cycles 
consumed by DTSVLIW execution. 

As the graph shows, the performance of machines with 
the same block sizes and different geometry is significantly 
different. For example, the performance of a machine with 
4x8 configuration is lower than the machine with 8x4 
configuration for all benchmark programs. The block width 
and height affect the cost of implementing a DTSVLIW 
machine in different ways. Large long instructions imply 
many functional units, data cache ports, and register file 
ports. Large numbers of long instructions in a block imply 
many renaming registers, and long load/store and 
checkpoint recovery store lists. To increase just the width 
or just the height of the block does not appear to be the 
best approach to achieve cost/effective performance – a 
DTSVLIW with 8x8-block geometry performs better than 
machines with 4x16 and 16x4 geometry in the majority of 
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the SPECint95 benchmarks. The DTSVLIW benefits from 
large block sizes but not linearly. A 16-fold increase in the 
number of instructions of a block (from 4x4 to 16x16) does 
not quite double its performance.  

The performance of the 16x16 configuration on the ijpeg 
benchmark is extraordinary and has been investigated. 
This benchmark spends most of its execution in one loop. 
With a large enough block size, more than one iteration of 
the loop can be scheduled into a single VLIW block, 
allowing instructions from these iterations to be 
overlapped, extracting much greater parallelism. 

Figure 6: Variation of the parallelism with the VLIW Cache 
size  

4.2 Effect of VLIW Cache Size  

The results of Figure 5 represent the highest achievable 
SPECint95 performance of this DTSVLIW implementation. 
When the VLIW Cache is smaller the performance is 
expected to be lower because of premature flushing of 
useful scheduled blocks by replacement blocks, leading to 
the need to rebuild flushed blocks, which requires the 
Primary Processor to run, reducing parallelism. Figure 6 
shows the impact of different VLIW Cache sizes (in 
Kbytes) on the performance of a DTSVLIW machine with 
8x8 geometry. The associativity is the same for all sizes and 
equal to 4. As the graph shows, some benchmark programs 
do not demand a large VLIW Cache size in order to exploit 
the performance of the DTSVLIW. The benchmarks 
compress, ijpeg, and xlisp have small instruction working 
sets, and thus, they are very insensitive to the VLIW 
Cache size, achieving the same performance for a wide 
range of sizes. However, go, which has a large working set, 
would appear to benefit from a VLIW Cache larger than 
3072-Kbyte.  

Figure 7: Variation of parallelism with VLIW Cache 
associativity 

4.3 Effect of VLIW Cache Associativity 

Figure 7 shows the effect of the VLIW Cache 
associativity on the performance of the DTSVLIW. Two 
cache sizes are presented: 96-Kbyte and 384-Kbyte, and 
the associativity is varied from 1 to 8. The figure shows 
that ijpeg is insensitive to the VLIW Cache associativity in 

this range; however, m88ksim, perl, xlisp, and compress (for 
the 96-Kbyte cache) benefit from extra associativity. From 
Figure 6 and Figure 7 it is possible to infer that a two- or 
four-way set-associative 384-Kbyte cache appears to be a 
cost/effective solution for a DTSVLIW with 8x8-block 
geometry. 

Figure 8: Performance of a feasible DTSVLIW machine 

4.4 A Feasible DTSVLIW Implementation 

As presented here, the DTSVLIW architecture permits 
straightforward implementation using current VLSI 
technology if reasonable design parameters are used. So 
far, the results presented have been produced under ideal 
assumptions to allow appreciation of individual 
architecture parameters. The graph in Figure 8 presents the 
performance of a DTSVLIW machine with a set of 
parameters closer to an implementation using available 
technology. These are a 32-Kbyte 4-way set-associative 

Instruction Cache and a 32-Kbyte direct-mapped Data 
Cache both with 1 cycle access and 8 cycle miss latency. 
The second level cache is considered to be perfect. The 
VLIW Cache is a 192-Kbyte 4-way set-associative cache 
with 1 cycle access. The VLIW Engine has 1 cycle next 
long instruction miss penalty and ten non-homogeneous 
functional units: 4 integer, 2 load/store, 2 floating-point, 
and 2 branch units. All functional units have 1 cycle 
latency, which is a low latency for load/store and floating-
point functional units (the SPARC 7 ISA does not have 
integer divide or multiply, but multiply-step only). 
However, this latency was used for this experiment 
because the benchmarks are integer and the Data Cache is 
direct-mapped. The number of entries of the VLIW Engine 
lists (load, store, and checkpoint recovery store) and the 
number of renaming registers were left unlimited, since the 
present version of the simulator does not put constraints 

Table 3: Performance and resource consumption of a feasible DTSVLIW machine 

compress gcc go ijpeg m88ksim perl vortex xlisp Average 

Instructions per Cycle 2.05 1.69 1.53 2.94 2.61 2.58 2.20 2.28 2.24 
Integer Renaming Registers 13 17 17 12 15 14 16 13 14.63 
F. P. Renaming Registers 6 4 1 0 0 5 0 0 2.00 
Flag Renaming Registers 8 13 11 7 9 9 9 9 9.38 
Memory Renaming Registers 6 6 6 3 4 5 7 4 5.13 
Load List Size 6 8 8 4 8 6 8 6 6.75 
Store List Size 8 8 9 4 7 8 8 7 7.38 
Checkpoint Rec. Store List 
Size 

16 24 21 10 13 24 24 18 18.75 

Aliasing Exceptions 0 0 1 0 1 8 0 0 1.25 
VLIW Engine Execution 
Cycles 

99.95% 65.40% 71.51% 99.97% 98.77% 92.99% 79.69% 99.24% 88.44% 
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on their growth. Nevertheless, the maximum numbers 
required during the simulation were measured and are 
shown in Table 3 together with other information.  

As the graph in Figure 8 shows, the shortage of slots in 
long instructions, Data Cache misses, and next long 
instruction misses are the principal contributors to the 
reduction of this DTSVLIW machine performance. 
Instruction Cache misses impose low impact on the 
performance, thus, this cache could be made smaller than 
described. Table 3 shows that the number of renaming 
registers are within a range that does not cause significant 
cycle time increase due to register file size. The lists 
maintained by the VLIW Engine do not reach unacceptable 
sizes either, and can be implemented without imposing 
extra penalty on the cycle time. However, as the number of 
aliasing exceptions is very low, a cheaper aliasing 
exception detection and recovery mechanism is advisable. 
The percentage of valid instructions inserted into the 
blocks saved in the VLIW Cache was measured. As 
depicted in Table 3, the Scheduler Unit takes up only 33% 
of the slots available on average. This results in poor 
utilisation of the VLIW Cache. The use of multicycle long 
instructions is a possible way to overcome this problem. 

An average performance of 2.24 instructions per cycle 
for a machine with 10 functional units appear to be low; 
however, experiments with the PowerPC 620, an aggressive 
superscalar machine with 6 functional units, have shown 
an average of 1.2 instructions per cycle only [16]. Taking in 
consideration that a DTSVLIW can be implemented with 
high-speed clock due to its VLIW-like simplicity, it appears 
to be worth a DTSVLIW implementation. Simple machines 
with fast clock have proved to be more powerful than their 
more complex counterparts [17]. 

Figure 9: Comparison between DTSVLIW and DIF 

4.5 Comparison between DTSVLIW and DIF 

Figure 9 shows a comparison between a DTSVLIW and 
a DIF machine. The performance data of the DIF machine 
and the parameters used for both machines have been 
collected from [9]. The parameters were: 2 branch units 
plus four homogeneous functional units; 2-way set-
associative Instruction Cache with 128-byte lines and 16 
lines per set (4-Kbyte), 2 cycle miss penalty; a direct-
mapped Data Cache with 128 lines each of length 32 bytes 
(4-Kbyte), and a 2-cycle miss penalty; a two way set 
associative VLIW Cache with 512x2 blocks; and a block 
size of 6 long instructions of 6 instructions each. 
Assuming an instruction size of 6 bytes for both machines, 
the DTSVLIW VLIW Cache size becomes 216-Kbyte and 
the DIF VLIW cache size 463-Kbyte. The DIF VLIW cache 
is bigger due to the DIF register renaming system; for each 
block exit point (there is one exit point for each branch in 
the block and one in the end of the block) the DIF machine 
requires 19-byte for the exit map [9]. The number of 
renaming registers is different for the same reason. Four 
instances of each integer and floating point registers were 

required in the DIF simulation, or 96 integer and 96 floating 
point extra registers for renaming, while the maximum 
number of integer and floating point renaming registers 
required for the DTSVLIW was 18 and 6. 

As the graph in Figure 9 shows, the average 
performance of the two machines is similar: 2.4 instructions 
per cycle for the DTSVLIW and 2.2 for DIF; a difference of 
approximately 9% in favour of DTSVLIW. DIF performs 
better in compress and xlisp, while DTSVLIW performs 
better in the remaining benchmarks. These results must be 
seen with caution though, because the experiments carried 
out with the DIF implementation have used a trace 
simulator based in the PowerPC ISA, running the 
benchmarks with possibly different inputs and compiled 
with different compiler with possibly different compiler 
flags. Nevertheless, a similar performance between the two 
machines was expected, since both implement the same 
concept, although in different ways.  

5. Conclusion and Future Work 

This paper presents an implementation of an 
architecture named the dynamically trace scheduled VLIW 
(DTSVLIW). This can be used to implement machines that 
execute code of current RISC or CISC ISA in a VLIW 
fashion, delivering instruction level parallelism with 
backward code compatibility. The architecture takes 
advantage of the repetitive and localised pattern of 
instruction fetch addresses in current programs. Using the 
proposed architecture, the first time that a code segment is 
executed, it is scheduled into long instructions and saved 
in a VLIW Cache. In subsequent executions, a VLIW 
Engine executes it in a VLIW fashion. 

A DTSVLIW simulator has been implemented, 
parameterised, and instrumented. The effect of some 
architectural parameters on its performance has been 
evaluated using this execution-driven simulator running 
the SPECint95 benchmark suit. The DTSVLIW performance 
is basically similar to that of the DIF, but it is achieved with 
fewer hardware resources: 18 integer and 6 FP renaming 
registers in the DTSVLIW simulation, 96 integer and 96 FP 
in the DIF; 216-Kbyte DTSVLIW VLIW Cache, 463-Kbyte 
DIF VLIW cache. As detailed in Section 3.7, the core logic 
of the Scheduler Engine is straightforwardly to implement, 
being comparable to an adder, and as such seems to be 
much more feasible than that of the DIF.  

The Primary Processor and the VLIW Engine in the 
DTSVLIW can have high clock rates. The simplicity of the 
scheduling algorithm in the DTSVLIW means that a similar 
high clock rate should be achieved in an implementation of 
the Scheduler Unit, leading to an overall clocking rate 
similar to, if not higher than, high clock rate superscalar 
architectures, but achieving much higher ILP. 

The DTSVLIW architecture opens several new avenues 
of research. Next long instruction prediction, new VLIW 
Cache organisations and new exception handling 
mechanisms are just a few examples that will be 
investigated in future work. 

6. References 

0

0.5

1

1.5

2

2.5

3
3.5

4

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
n

s 
p

er
 C

yc
le FU Cost

Inst Cache Cost

Data Cache Cost

Next LI Miss Cost

ILP



 
[1] J. A. Fisher, “The VLIW Machine: A Multiprocessor for 
Compiling Scientific Code,” IEEE Computer, pp. 45-53, July 
1984. 
[2] A. F. de Souza and P. Rounce, “Dynamically Trace Scheduled 
VLIW Architectures,” Lecture Notes on Computer Science, Vol. 
1401, pp. 993-995, April 1998. 
[3] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. 
Robinson, “Binary Translation,” Communications of ACM, Vol. 
36, pp. 69-81, February 1993. 
[4] J. Turley, “Alpha Runs x86 Code with fx!32,” 
Microprocessor Report, Vol. 10, March 1996. 
[5] T. M. Conte and S. W. Sathaye, “Dynamic Rescheduling: A 
Technique for Object Code Compatibility in VLIW 
Architectures,” Proc. of the 28th Ann. Int. Symp. on 
Microarchitecture, pp. 208-218, 1995.  
[6] K. Ebcioglu and E. R. Altman, “DAISY: Dynamic 
Compilation for 100% Architectural Compatibility,” Proc. of the 
24th Ann. Int. Symp. on Computer Architecture, pp. 26-37, 1997. 
[7] B. R. Rau, “Dynamically Scheduled VLIW Processors,” Proc. 
of the 26th Ann. Int. Symp. on Microarchitecture, pp. 80-92,  
1993. 
[8] M. Franklin and M. Smotherman, “A Fill-Unit Approach to 
Multiple Instruction Issue,” Proc. of the 27th Ann. Int. Symp. on 
Microarchitecture, pp. 162-171, December 1994. 
[9] R. Nair and M. E. Hopkins, “Exploiting Instructions Level 
Parallelism in Processors by Caching Scheduled Groups,” Proc. 
of the 24th Ann. Int. Symp. on Computer Architecture, pp. 13-25, 
1997. 
[10] S. Melvin, M. Shebanow, and Y. Patt, “Hardware Support 
for Large Atomic Units in Dynamic Scheduled Machines,” Proc. 
of the 21st Ann. Int. Symp. on Microarchitecture, pp. 60-66, 
1988. 
[11] T. Nakatani and K. Ebcioglu, “Making Compaction-Based 
Parallelization Affordable,” IEEE Transactions on Parallel and 
Distributed Systems, Vol. 4, No. 9, pp. 1014-1029, 1993. 
[12] Sun Microsystems, “The Sparc Architecture Manual – 
Version 7,” Sun Microsystems Inc., 1987. 
[13] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, 
“Some Experiments in Local Microcode Compaction for 
Horizontal Machines,” IEEE Transactions on Computers, Vol. 
C-30, No. 7, pp. 460-477, July 1981. 
[14] A. F. de Souza and P. Rounce, “Effect of Multicycle 
Instructions on the Integer Performance of the Dynamically 
Trace Scheduled VLIW Architecture,” to be published in the 
Proceedings of High-Performance Computing and Networking’ 
99 – HPCN’99, 1999. 
[15] W. W. Hwu, and Y. N. Patt, “Checkpoint Repair for Out-
of-order Execution Machines,” Proc. of the 14th Ann. Int. Symp. 
on Computer Architecture, pp. 18-26, 1987. 
[16] D.A Patterson, and J. L Hennessy, “Computer Architecture: 
A Quantitative Approach, Second Edition,” Morgan Kaufmann 
Publishers Inc., 1996. 
[17] J. E. Smith, and S. Weiss, “PowerPC 601 and Alpha 21064: 
A Tale of Two RISCs,” IEEE Computer, June 1994. 


