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Abstract. Dynamically trace scheduled VLIW (DTSVLIW) architectures can be used to implement machines that 
execute code of current RISC or CISC instruction set architectures in a VLIW fashion, delivering instruction level 
parallelism with backward code compatibility. This paper presents preliminary SPECint95 performance 
mesuraments of the DTSVLIW architecture, obtained with a simulator which has been implemented in C.  

1. Introduction 
Object code compatibility is a problem for Very Long Instruction Word (VLIW) 

architectures: mapping a VLIW instruction set architecture (ISA) to implementations with different 
hardware latencies and varying levels of parallelism is not generally possible. To get over this, a 
dynamically scheduled VLIW (DSVLIW) was presented by Rau [1]. However, despite the ability 
to implement a family of VLIW machines with different functional units’ latency and the same ISA, 
this concept cannot be used to implement an existent sequential ISA. Ebcioglu and Altman [2] with 
their DAISY machine can translate dynamically from the object code of an existing ISA architecture 
to the object code of a VLIW using a Virtual Machine Monitor (VMM) implemented in software. 
The DAISY machine concept relies on the ability of the VMM to translate code fast, and in the 
reusability of this code. Since the VMM is implemented in software, the cost of the translation is 
necessarily high. Although code reusability is probably appreciable, a hardware translation is possibly 
advantageous.  

The Dynamic Instruction Formatting (DIF) concept (Nair and Hopkins [3]) performs 
hardware re-formatting of the fetched code. The original code is executed on a primary engine (a 
simple processor, less aggressive in exploiting parallelism) and, at the same time, re-formatted into 
the DIF VLIW cache for execution by a VLIW engine. This paper describes an architecture 
organisation that implements the DIF concept, named dynamically trace scheduled VLIW 
(DTSVLIW) [4]. In order to evaluate the DTSVLIW architecture, a parametric simulator was 
implemented and execution driven simulation was performed using the SPECint95 benchmark suite. 
Experimental results presented here show that the DTSVLIW can achieve instruction level 
parallelism (ILP) higher than 4 instructions per cycle with some machine configurations. 

This paper is organised as follows. In the next section, the DTSVLIW architecure is 
described. In Section 3, the experimental methodology and the results of the experiments carried out 
to evaluate the DTSVLIW architecture are presented. Section 4 contains the conclusions and future 
work. 

2. The DTSVLIW Architecture 
The DTSVLIW has two execution engines: the Scheduler Engine and the VLIW Engine; and 

two caches for instructions: the Instruction Cache and the VLIW Cache. The Scheduler Engine 
fetches instructions from the Instruction Cache and executes the original code for the first time using 
simple pipelined hardware. In addition, the Scheduler Engine dynamically schedules the trace 
produced during the execution into VLIW instructions and saves them as blocks of VLIW 
instructions into the VLIW Cache. If the same code is executed again, it is fetched by the VLIW 
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Engine and executed in a VLIW fashion. A block diagram of the DTSVLIW is presented in Figure 
1.  

The Scheduler Engine of the DTSVLIW consists of the Trace Processor and the Scheduler 
Unit. The Trace Processor of the DTSVLIW presented in this paper is a simple pipelined scalar 
Sparc processor. As this implementation executes Sparc-7 ISA [5] code, the Trace Processor is 
capable of executing all instructions of this ISA. The Scheduler Unit uses a pipelined implementation 
of the FCFS (Fist Come First Served) scheduling algorithm, traditionally used in microcode 
compaction [6].  

The FCFS algorithm has been chosen as the scheduling algorithm of the DTSVLIW for three 
reasons. First, as its name states, it operates with one instruction at a time and considers instructions 
in the strict order that they appear during program execution, which perfectly fits the DTSVLIW 
mode of operation. Second, the FCFS algorithm produces optimum or near-optimum scheduling [6]. 
Finally, the FCFS algorithm is easy to implement in hardware in a pipelined fashion. The 
implemented version of the FCFS algorithm runs over a circular list that was named scheduling list.  

The scheduling list has a fixed number of long instructions, one per element of the list. Each 
element of the list has also a candidate instruction. A valid candidate instruction is scheduled into a 
list element in the preceding clock cycle, and is an aspirant member of the long instruction in the 
element. A valid candidate instruction still may be moved to a higher position in the list. An instruction 
with execution finished in the Trace Processor in one cycle can be inserted in the scheduling list in 
the subsequent cycle. If the scheduling list is not empty and depending on dependencies, the 
incoming instruction becomes a candidate instruction either in the tail element of the list or in a new 
entry added to the list. In the latter case, if there are no spare list elements, the list is made empty, the 
instruction is inserted in the empty list, and the whole previous list content is sent to the VLIW Cache 
as a block . 

The VLIW Cache is set associative with set size equal to one block of long instructions of 
scheduling list size. In the VLIW Cache, each long instruction can be accessed directly. The VLIW 
Engine fetches VLIW instructions from the VLIW Cache and has a simple two-stage fetch-execute 
pipeline. A decode stage is not necessary since the long instructions are saved in the VLIW Cache 
already decoded. All conditional and indirect branches are resolved in the execute stage of the 
VLIW Engine. The direction taken during scheduling, and recorded into the VLIW Cache, is used 
during execution to determine a possible misprediction. If a conditional or indirect branch target is 
different than that observed while scheduling during VLIW execution, the current fetch is annulled 
and the program counter receives the new target. Consequently, a branch misprediction causes a one 
cycle deep bubble in the pipeline. 
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Figure 1: The DTSVLIW architecture. 



3. DTSVLIW Experimental Evaluation 
A simulator of the DTSVLIW has been implemented in C (19K lines of code), and execution 

driven simulation performed to produce the results reported here. The simulator receives as input 
binary executable programs generated by the gcc compiler and faithfully models the execution 
performed by the DTSVLIW. Model parameters that are invariant for simulations are shown in 
Table 1.  

The benchmark programs used in the experiments were the SPECint95 set. All benchmarks 
were compiled with optimisation flags –O –mflat. Each benchmark program was allowed to run 50 
million or more instructions on each experiment.  

 
Trace Processor • four-stage (fetch, decode, execute, and write back) pipeline 

• no branch prediction: not-taken branches cause a 3 cycle bubble in the pipeline 
• instructions following a load requiring the data loaded cause a one-cycle bubble  

Instruction & Data Caches  perfect 
VLIW Cache Associativity  4 way 
Decoded Instructions Size  6 bytes 
VLIW Engine homogeneous: functional units can execute any instruction 
Instructions Latency  1 cycle 
VLIW Engine Lists Size load = store = checkpoint recovery store = (long instruction size * block size)  entries 
Number of Renaming Registers  integer = f.p. = memory = flags = 256 registers 
Scheduler Unit Pipe inserting/splitting and moving up/saving = 1/block size/1 stages 

Table 1: Fixed Parameters 

Figure 2 shows the effect of the block geometry on the performance of the DTSVLIW. To 
ensure the absence of extraneous effects, the experiments leading to the results in this figure were 
performed with perfect instruction and data caches (no miss penalty), large VLIW Cache (3072-
Kbyte), and no next long instruction miss penalty. The numbers in the legend are instructions in a long 
instruction and long instructions in a block, respectively.  

As the graph in the figure shows, the performance grows with both long instruction size and 
block size. However, the performance of blocks with the same number of instructions but different 
geometry is significantly different. For example, the performance of a machine configuration with 4 
instructions per long instruction and 8 long instructions per block is lower than a configuration with 8 
instructions per long instructions and 4 long instructions per block. The DTSVLIW architecture 
benefits from large long instruction and block sizes, but not linearly. A sixteen-fold increase in the 
number of instructions in a block (from 4x4 to 16x16) does not double the performance of this 

implementation on any benchmark.  

Figure 2: The DTSVLIW performance versus block geometry 
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The results presented in Figure 2, represents the highest achievable SPECint95 performance 
of this DTSVLIW implementation. When the VLIW Cache is smaller the performance of the 
DTSVLIW is expected to be lower because premature flushing of useful scheduled blocks due to 
replacement by new blocks. Figure 3 shows the impact of different VLIW Cache sizes on the 
performance of a DTSVLIW machine with 8 instructions per long instruction and 8 long instructions 
per block. As the graph shows, some benchmark programs do not demand a large VLIW Cache 
size in order to exploit the performance of the DTSVLIW. Compress and ijpeg appear to be very 
insensitive to the VLIW Cache size, achieving the same performance for a wide range of sizes. From 
the graph of Figure 3 it is possible to infer that a VLIW Cache of 384-Kbyte is suitable for a 
DTSVLIW machine with the specified parameters.  

Figure 3: The DTSVLIW performance versus the VLIW Cache size in Kbytes  

4. Conclusion and Future Work 
This paper presents preliminary ILP performance mesuraments of the DTSVLIW architecture. 

The DTSVLIW architecture can be used to implement machines that execute code of current RISC 
or CISC ISA in a VLIW fashion, delivering ILP with backward code compatibility. This architecture 
takes advantage of the repetitive and localised pattern of instruction fetch addresses in current 
programs. The first time that program segments are executed, they are scheduled into long 
instructions and saved in a VLIW Cache; in the following executions, a VLIW Engine executes them 
in a VLIW fashion. 

A DTSVLIW simulator has been implemented, parameterised, and instrumented. The effect of 
some parameters of the architecture on its performance has been evaluated using this execution 
driven simulator running the SPECint95 benchmark suit. The results show that ILP of more than 4 
instructions per cycle can be achieved with the DTSVLIW. 

The DTSVLIW architecture opens several new avenues of research. Next long instruction 
prediction, new VLIW Cache organisations, and new exception handling mechanisms are just a few 
examples. 
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