SPECint95 Performance of an | mplementation of the
Dynamically Trace Scheduled VLIW Architecture

Alberto Ferreira de Souza and Peter Rounce
Department of Computer Science
Universty College London
Gower Street, London WCIE 6BT - UK
a.souza@cs.ucl.ac.uk, p.rounce@cs.ucl.ac.uk

Abstract. Dynamically trace scheduled VLIW (DTSVLIW) architectures can be used to implement machines that
execute code of current RISC or CISC instruction set architecturesin aVLIW fashion, delivering instruction level
paralelism with backward code compatibility. This paper presents preliminary SPECint95 performance
mesuraments of the DTSVLIW architecture, obtained with asimulator which has been implemented in C.

1. Introduction

Object code compatibility is a problem for Very Long Instruction Word (VLIW)
architectures: mapping a VLIW instruction set architecture (1SA) to implementations with different
hardware latencies and varying levels of pardldism is not generdly possible. To get over this, a
dynamically scheduled VLIW (DSVLIW) was presented by Rau [1]. However, despite the ability
to implement a family of VLIW machines with different functiond units latency and the same ISA,
this concept cannat be used to implement an existent sequentia 1SA. Ebcioglu and Altman [2] with
their DAISY machine can trandate dynamicaly from the object code of an exigting ISA architecture
to the object code of a VLIW using a Virtua Machine Monitor (VMM) implemented in software.
The DAISY machine concept rdies on the ability of the VMM to trandate code fast, and in the
reusability of this code. Since the VMM is implemented in software, the cogt of the trandation is
necessarily high. Although code reusability is probably appreciable, a hardware trandation is possibly
advantageous.

The Dynamic Ingruction Formatting (DIF) concept (Nair and Hopkins [3]) performs
hardware re-formatting of the fetched code. The origina code is executed on a primary engine (a
ample processor, less aggressive in exploiting paralelism) and, at the same time, re-formatted into
the DIF VLIW cache for execution by a VLIW engine. This paper describes an architecture
organisation that implements the DIF concept, named dynamically trace scheduled VLIW
(DTSVLIW) [4]. In order to evaluate the DTSVLIW architecture, a parametric smulator was
implemented and execution driven smulation was performed using the SPECint95 benchmark suite.
Experimental results presented here show that the DTSVLIW can achieve instruction level
parallelism (ILP) higher than 4 ingtructions per cycle with some machine configurations.

This paper is organised as follows. In the next section, the DTSVLIW architecure is
described. In Section 3, the experimental methodology and the results of the experiments carried out
to evauate the DTSVLIW architecture are presented. Section 4 contains the conclusions and future
work.

2. TheDTSVLIW Architecture

The DTSVLIW has two execution engines. the Scheduler Engine and the VLIW Engine and
two caches for ingructions: the Ingtruction Cache and the VLIW Cache. The Scheduler Engine
fetches ingructions from the Instruction Cache and executes the origind code for the first time using
sample pipeined hardware. In addition, the Scheduler Exgine dynamically schedules the trace
produced during the execution into VLIW indructions and saves them as blocks of VLIW
indructions into the VLIW Cache. If the same code is executed again, it is fetched by the VLIW

1Spons;ored by CAPES (Brazilian Government Agency).

> Instruction > VLIW
Cache Cache
| » Fetch Unit N
| A A |
&hmuler ; * ... Y : *
Engine Trace — VLIW
~ Processor |—» Scheduler L] — Engine
H Unit
H Y A
: Scheduling
TOIFTOM oo oo mereess eeess esesemes e et e eressers sners List oo
Memory Y
< > Data <
Cache

Figurel: The DTSVLIW architecture.

Engine and executed in a VLIW fashion. A block diagram of the DTSVLIW is presented in Figure
1

The Scheduler Engine of the DTSVLIW consists of the Trace Processor and the Scheduler
Unit. The Trace Processor of the DTSVLIW presented in this paper is a Smple pipdined scdar
Sparc processor. As this implementation executes Sparc-7 I1SA [5] code, the Trace Processor is
cgpable of executing dl ingructions of this 1SA. The Scheduler Unit uses a pipelined implementation
of the FCFS (Fist Come First Served) scheduling agorithm, traditionaly used in microcode
compaction [6].

The FCFS agorithm has been chosen as the scheduling agorithm of the DTSVLIW for three
reasons. Fird, as its name dates, it operates with one ingtruction a a time and consdersingructions
in the drict order that they appear during program execution, which perfectly fits the DTSVLIW
mode of operation. Second, the FCFS agorithm produces optimum or near- optimum scheduling [6].
Findly, the FCFS dgorithm is essy to implement in hardware in a pipeined fashion. The
implemented version of the FCFS agorithm runs over acircular list that was named scheduling list.

The scheduling ligt has a fixed number of long indructions, one per dement of the list. Each
dement of the lig has aso a candidateinstruction. A vaid candidate ingruction is scheduled into a
lig dement in the preceding clock cyde, and is an aspirant member of the long ingtruction in the
eement. A vaid candidate ingtruction gtill may be moved to a higher postion in the list. Aningruction
with execution finished in the Trace Processor in one cycle can be inserted in the scheduling ligt in
the subsequent cycle. If the scheduling ligt is not empty and depending on dependencies, the
incoming ingdruction becomes a candidate ingtruction ether in the tail dement of the list or in a new
entry added to theligt. In the latter case, if there are no spare list dements, the list is made empty, the
ingruction isinserted in the empty list, and the whole previous list content is sent to the VLIW Cache
asablock.

The VLIW Cache is set associative with set size equa to one block of long ingtructions of
scheduling ligt sze. In the VLIW Cache, each long ingtruction can be accessed directly. The VLIW
Engine fetches VLIW ingructions from the VLIW Cache and has a smple two- sage fetch-execute
pipeine. A decode stage is not necessary since the long ingtructions are saved in the VLIW Cache
dready decoded. All conditiond and indirect branches are resolved in the execute gage of the
VLIW Engine. The direction taken during scheduling, and recorded into the VLIW Cache, is used
during execution to determine a possble misprediction. If a conditiona or indirect branch target is
different than that observed while scheduling duing VLIW execution, the current fetch is annulled
and the program counter receives the new target. Consequently, a branch misprediction causes aone
cycle deep bubblein the pipeline.

3. DTSVLIW Experimental Evaluation

A smulator of the DTSVLIW has been implemented in C (19K lines of code), and execution
driven smulation performed to produce the results reported here. The smulator receives as input
binary executable programs generated by the gec compiler and faithfully modes the execution
performed by the DTSVLIW. Modd parameters that are invariant for simulations are shown in
Table 1.

The benchmark programs used in the experiments were the SPECint95 set. All benchmarks
were compiled with optimisation flags O —nlat. Each benchmark program was alowed to run 50
million or more indructions on each experiment.

Trace Processor - four-stage (fetch, decode, execute, and write back) pipeline
no branch prediction: not-taken branches cause a 3 cycle bubble in the pipeline
instructions following aload requiring the data loaded cause a one-cyclebubble
Instruction & Data Caches perfect
VLIW Cache Associativity 4 way
Decoded Instructions Size 6 bytes
VLIW Engine homogeneous: functional units can execute any instruction
Instructions L atency 1cycle
VLIW EngineLists Size load = store = checkpoint recovery store = (long instruction size * block size) entries
Number of Renaming Registers | integer = f.p. = memory = flags = 256 registers
Scheduler Unit Pipe inserting/splitting and moving up/saving = 1/block size/1 stages

Table 1: Fixed Parameters

Figure 2 shows the effect of the block geometry on the performance of the DTSVLIW. To
ensure the absence of extraneous effects, the experiments leading to the results in this figure were
performed with perfect instruction and data caches (no miss pendlty), large VLIW Cache (3072
Kbyte), and no next long ingtruction miss pendty. The numbersin the legend are ingructionsin along
ingruction and long ingtructions in a block, respectively.

As the graph in the figure shows, the performance grows with both long ingtruction size and
block size. However, the performance of blocks with the same number of ingtructions but different
geometry is sgnificantly different. For example, the performance of a machine configuration with 4
ingructions per long ingruction and 8 long ingructions per block is lower than a configuration with 8
ingructions per long indructions and 4 long ingtructions per block. The DTSVLIW architecture
benefits from large long ingruction and block szes, but not linearly. A sxteenfold increase in the
number of indructions in a block (from 4x4 to 16x16) does not double the performance of this

45 W44 D048 384 B0416E388M@16408160168 0161
o 4 1 — —
g 35 = —— - - —]
o 3 M _ | | m| n|
g 25 _ | H
2 2 i
=)
‘(‘3) 1.5+ H
s 14 i
[%2]
£ 0.5 H
0 - T
compress gce go ijpeg m88ksim perl vortex xlisp
Benchmark
implementation on any benchmark.

Figure 2: The DTSVLIW performance versus block geometry

The results presented in Fgure 2, represents the highest achievable SPECint95 performance
of this DTSVLIW implementation. When the VLIW Cache is smdler the performance of the
DTSVLIW is expected to be lower because premature flushing of useful scheduled blocks due to
replacement by new blocks. Figure 3 shows the impact of different VLIW Cache sizes on the
performance of a DTSVLIW machine with 8 instructions per long ingtruction and 8 long ingtructions
per block. As the graph shows, some benchmark programs do not demand a large VLIW Cache
size in order to exploit the performance of the DTSVLIW. Compress and ijpeg appear to be very
insengtive to the VLIW Cache sze, achieving the same performance for awide range of sizes. From
the graph of Figure 3 it is possble to infer that a VLIW Cache of 384-Kbyte is suitable for a
DTSVLIW meachine with the specified parameters.

4 I m48 @9 0192 0O334 @768 0O 1536 3072|—
2L 35
(8]
3 31
& 251
o
% 2 1
c
S 151
g 0.5 1

0 4

compress gcc go ijpeg m88ksim perl vortex xlisp
Benchmark

Figure 3: The DTSVLIW performance versus the VLIW Cache size in Kbytes

4. Concluson and Future Work

This paper presents preliminary |LP performance mesuraments of the DTSVLIW architecture.
The DTSVLIW architecture can be used to implement machines that execute code of current RISC
or CISCISA inaVLIW fashion, ddivering ILP with backward code compatibility. This architecture
takes advantage of the repetitive and locdised pattern of ingruction fetch addresses in current
programs. The firs time that program segments are executed, they are scheduled into long
ingructions and saved in aVLIW Cache; in the following executions, a VLIW Engine executes them
inaVLIW fashion.

A DTSVLIW smulator has been implemented, parameterised, and instrumented. The effect of
some parameters of the architecture on its performance has been evauated using this execution
driven smulator running the SPECint95 benchmark suit. The results show that ILP of more than 4
ingructions per cycle can be achieved with the DTSVLIW.

The DTSVLIW architecture opens severa new avenues of research. Next long ingruction
prediction, new VLIW Cache organisations, and new exception handling mechanisms are just afew
examples.

Acknowledgements

The authors would like to acknowledge Elissu Chaves Filho, from COPPE/UFRJ, for
providing the source code of his scdar SPARC smulator, which is the base of the DTSVLIW
dmulaor. The authors aso thank Antonio Liotta, Jorge Ortega-Arjona, Tom Quick, and the
anonymous referees for providing helpful comments on this paper.

5. References

[1] B. R. Rau, “Dynamicaly Scheduled VLIW Processors’, Proc. of the 26th International
Symposium on Microar chitecture, pp. 80-92, 1993.

[2] K. Ebcioglu, E. R. Altman, “DAISY: Dynamic Compilation for 100% Architectura
ggng%gégy’ Proc. of the 24th International Symposium on Computer Architecture, pp.

[3] R. Nair, M. E. Hopkins, “EXx| oitin% Ingtructions Level Pardldism in Processors by Caching
Scheduled Groups’, Proc. of the 24th International Symposium on Computer Architecture,
pp. 13-25,1997.

[4] A. F. de Souza and P. Rounce, “Dynamicaly Trace Scheduled VLIW Architectures’, Lecture
Notes on Computer Science, Val. 1401, pp.993-995, April 1998.

[5]19&81? Microsystems, “The Sparc Architecture Manual — Verson 77, Sun Microsystems Inc.,

[6] S. Davidson, D. Landskov, B. D. Swriver, P. W. Madlett, “Some Experiments in Loca
Microcode Compection for Horizontd Machines’, |IEEE Transactions on Computers, Vol.
C30, No. 7, pp. 460-477, July 1981.

