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Abstract.  

This paper presents a new architecture organisation, the dynamically trace scheduled VLIW (DTSVLIW), that can 
be used to implement machines that execute the code of current RISC or CISC instruction set architectures in a 
VLIW fashion, with backward code compatibility.  
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Introduction 
Superscalar architectures are currently of great interest as they have the potential to deliver 

instruction level parallelism (ILP), thus improving computer performance, without affecting the 
standard uniprocessor-programming model and with backward code compatibility. Current Superscalar 
machines fetch up to four instructions from cache each clock cycle, and attempt to schedule the 
execution of these in parallel across several functional units. Dependencies between instructions 
prevent full use of these units despite several algorithms to remove dependencies. Also, due to the 
physical layout of instruction caches, taken branches in the middle of a line cause the remainder of the 
line to be discarded, resulting in a partial fetch, reducing the instruction fetch bandwidth. This can 
occur on almost every fetch in current machines.  

The trace cache architecture fetches instructions from the instruction cache and attempts to schedule 
them across multiple functional units [1]. The instructions that are executed are placed in a trace cache, 
which stores them in execution order, as opposed to the static order determined by the compiler. On an 
instruction fetch the trace cache will provide a line of instructions if available. This line can encompass 
more than one line from the instruction cache through merging of lines affected by partial fetches: this 
increases instruction bandwidth and throughput. This architecture is an improved Superscalar 
architecture and still has similar scheduling overheads.  

VLIW processors [2] provide an alternative approach to ILP, using compiler techniques to construct 
lines of code to be executed in parallel. However, they cannot run existing instruction set architectures 
(ISAs) object code. It can be argued that the dynamic analysis made by of Superscalars is more 
effective than the static analysis of VLIWs. Much current research is examining ways to improve 
Superscalars and VLIW designs.  

Object code compatibility is a problem for VLIW architectures: mapping a VLIW ISA to 
implementations with different hardware latencies and varying levels of parallelism is not generally 
possible. To get over this, a dynamically scheduled VLIW (DSVLIW) has been presented by Rau [3]. 
This splits each instruction of a VLIW instruction into two components: phase1 and phase2. The first 
is the original compiled instruction with an anonymous register assigned to the destination, while the 
second finally copies the result into the correct destination. This allows the compiled instructions to be 
executed on the available hardware regardless of dependencies on other instructions in the long 
instruction. When these have completed, the phase2 copy instructions can execute. Despite the ability 
to implement a family of VLIW machines with different functional units latency and the same ISA, this 
concept cannot be used to implement an existent sequential ISA. Ebcioglu and Altman [4] with their 
DAISY machine can translate dynamically from the object code of an existing ISA architecture to the 
object code of a VLIW. When a fetch first accesses an address, a “VLIW translation missing” 
exception occurs into a Virtual Machine Monitor (VMM), implemented in software. The exception is 
handled by a fast algorithm that translates code starting in this address from base architecture 
instructions to VLIW primitives, which are scheduled into VLIW instructions stored in a protected 
section of the virtual address space. The DAISY machine concept relies on the ability of the VMM to 



translate code fast, and in the reusability of this code. Since the VMM is implemented in software, the 
cost of the translation is necessarily high. Although reusability is probably appreciable, a hardware 
translation is possibly advantageous.  

The Dynamic Instruction Formatting (DIF) concept (Nair and Hopkins [5]) performs hardware re-
formatting of the fetched code. The original code is executed on a primary engine (a simple, less 
aggressively ILP processor). At the same time, the executed code is re-formatted into the DIF VLIW 
cache for execution by a VLIW engine. As with standard Superscalar designs, code dependencies have 
to be handled, but this is only done when the code is reformatted, not each time it is fetched from the 
DIF cache. This allows the extra speed of the VLIW engine to be fully utilised.  

The DTSVLIW Machine 
This paper presents the dynamically trace scheduled VLIW (DTSVLIW), that implements the DIF 

concept. This architecture organisation (Fig. 1) has 2 processing engines and 2 caches, an instruction 
cache for the original compiled code, executed by a scheduler engine, and a VLIW cache for VLIW 
instructions built from the code trace produced by the scheduler engine. The scheduler engine consists 
of a sequential processor in the current design (that implements the Sparc-7 ISA) and the key element, 
the scheduler unit. This uses a pipelined 
implementation of the FCFS (Fist Come 
First Served) scheduling algorithm, 
traditionally used in microcode compaction 
[6]. Nair and Hopkins [5] suggested, but did 
not present, a pipelined implementation. The 
organisation of our VLIW engine and VLIW 
cache are also different from theirs. The 
implemented version of the FCFS algorithm 
runs over a circular list – the scheduling list 
– which has a fixed number of long 
instructions, one per element of the list. 
Each element of the scheduling list has also 
a candidate instruction. A valid candidate 
instruction is scheduled into a list element in the preceding clock cycle, and is an aspirant member of 
the long instruction in the element. A valid candidate instruction still may be moved to a higher 
position in the list.  

In each clock cycle, the candidate instructions in each list element are checked for dependencies 
against the long instructions in the same and the next list element. If there is no dependency a candidate 
instruction is promoted to the next element, unless it is already in the head element; if there is a 
dependency the instruction is installed in its companion long instruction. Installing can be just that or it 
can involve splitting the instruction, as in the DSVLIW, by renaming the output register, promoting the 
instruction, and installing a copy instruction into the companion long instruction. An instruction 
coming from the Sequential Unit becomes a candidate instruction, depending on dependencies, in 
either the tail element of the list or in a new entry appended to the list. In the latter case, if there are no 
spare list elements, the whole list is installed in the VLIW cache as a block. This facilitates the 
addressing system. 

When an instruction is first placed in the long instruction at the head of the scheduling list, the 
original memory address of this instruction becomes the long instruction’s address, which is saved with 
it in the VLIW cache. The following long instructions in 
the list receive the same address plus a specific-line 
identification field, which is just the enumeration of its 
position in the list. This unification of long instructions 
into a block necessitates only a few bits to specify the 
fall-through long instruction address during VLIW 
execution. The last long instruction in a block has a 
special address field pointing to the fall-through block of 
long instructions. 

The VLIW Engine (Fig. 2) has a simple fetch-execute, 
two-stage pipeline. A decode stage is not necessary, since 
the long instructions are saved in the VLIW cache 
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Fig. 1. DTSVLIW Machine. 
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Fig. 2. The VLIW Engine 



already decoded. The fetch stage uses the 
specific-line field of current long instruction, a 
conditional branch target address, or the 
address of a fall-through block. All conditional 
branches are resolved in the execute stage. If 
one branch follows a different direction than 
that observed during scheduling during 
execution, the penalty is just one cycle if the 
target is in the VLIW cache. 

Experiments and Discussion 
A simulator of the DTSVLIW was 

implemented and execution driven simulations 
was performed. One execution driven simulator 
permits a very precise evaluation of a new 
architecture, however it demands CPU power. 
For this reason, a set of small benchmarks was 
selected. The suite of test programs used 
includes Livermore Loop 24 (9999 instructions 
executed); Integral evaluation of a function by 
the trapezoidal rule (30623 instructions); 
Quick-Sort (62317); LU decomposition 
(77158); and Bubble-Sort (38245816). These 
programs were translated to Sparc code by the 
gcc compiler with -O2 optimisation. The 
number of instructions executed per cycle (ipc) 
achieved is presented in Fig. 3 (the legend 
specifies block size - long instruction size).  

The current version of the FCFS algorithm is 
not able to take into account the latencies of multicycle instructions during scheduling: instructions are 
presumed to execute in one cycle. It is not acceptable to design a VLIW machine with all instruction 
with the same latency, since it will invalidate its best quality, the fast clock rate. Single cycle operation 
has only been chosen to see if the DTSVLIW merits further study in which case a multilatency version 
would be investigated. The current results encourage further investigations and a multilatency 
scheduler is been developed.  

The algorithm used by the Scheduler Unit is not able to fill all long instructions completely in all 
blocks, even for small long instruction widths (4 instructions), resulting in poor utilisation of the silicon 
area used by the VLIW cache (Fig. 4.). The copy instructions generated by the algorithm augment the 
VLIW code size, demanding even more VLIW cache space. In order to make viable a cost-effective 
implementation of DTSVLIW machines, a different VLIW cache organisation may be necessary. 
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