
Dynamically Trace Scheduled VLIW Architectures

Alberto Ferreira de Souza and Peter Rounce

Department of Computer Science
University College London

Gower Street, London WC1E 6BT – UK
a.souza@cs.ucl.ac.uk, p.rounce@cs.ucl.ac.uk

Abstract.

This paper presents a new architecture organisation, the dynamically trace scheduled VLIW (DTSVLIW), that can
be used to implement machines that execute the code of current RISC or CISC instruction set architectures in a
VLIW fashion, with backward code compatibility.

Keywords: VLIW, Superscalar, trace cache, scheduling.
Area: Architecture.

Introduction
Superscalar architectures are currently of great interest as they have the potential to deliver

instruction level parallelism (ILP), thus improving computer performance, without affecting the
standard uniprocessor-programming model and with backward code compatibility. Current Superscalar
machines fetch up to four instructions from cache each clock cycle, and attempt to schedule the
execution of these in parallel across several functional units. Dependencies between instructions
prevent full use of these units despite several algorithms to remove dependencies. Also, due to the
physical layout of instruction caches, taken branches in the middle of a line cause the remainder of the
line to be discarded, resulting in a partial fetch, reducing the instruction fetch bandwidth. This can
occur on almost every fetch in current machines.

The trace cache architecture fetches instructions from the instruction cache and attempts to schedule
them across multiple functional units [1]. The instructions that are executed are placed in a trace cache,
which stores them in execution order, as opposed to the static order determined by the compiler. On an
instruction fetch the trace cache will provide a line of instructions if available. This line can encompass
more than one line from the instruction cache through merging of lines affected by partial fetches: this
increases instruction bandwidth and throughput. This architecture is an improved Superscalar
architecture and still has similar scheduling overheads.

VLIW processors [2] provide an alternative approach to ILP, using compiler techniques to construct
lines of code to be executed in parallel. However, they cannot run existing instruction set architectures
(ISAs) object code. It can be argued that the dynamic analysis made by of Superscalars is more
effective than the static analysis of VLIWs. Much current research is examining ways to improve
Superscalars and VLIW designs.

Object code compatibility is a problem for VLIW architectures: mapping a VLIW ISA to
implementations with different hardware latencies and varying levels of parallelism is not generally
possible. To get over this, a dynamically scheduled VLIW (DSVLIW) has been presented by Rau [3].
This splits each instruction of a VLIW instruction into two components: phase1 and phase2. The first
is the original compiled instruction with an anonymous register assigned to the destination, while the
second finally copies the result into the correct destination. This allows the compiled instructions to be
executed on the available hardware regardless of dependencies on other instructions in the long
instruction. When these have completed, the phase2 copy instructions can execute. Despite the ability
to implement a family of VLIW machines with different functional units latency and the same ISA, this
concept cannot be used to implement an existent sequential ISA. Ebcioglu and Altman [4] with their
DAISY machine can translate dynamically from the object code of an existing ISA architecture to the
object code of a VLIW. When a fetch first accesses an address, a “VLIW translation missing”
exception occurs into a Virtual Machine Monitor (VMM), implemented in software. The exception is
handled by a fast algorithm that translates code starting in this address from base architecture
instructions to VLIW primitives, which are scheduled into VLIW instructions stored in a protected
section of the virtual address space. The DAISY machine concept relies on the ability of the VMM to

translate code fast, and in the reusability of this code. Since the VMM is implemented in software, the
cost of the translation is necessarily high. Although reusability is probably appreciable, a hardware
translation is possibly advantageous.

The Dynamic Instruction Formatting (DIF) concept (Nair and Hopkins [5]) performs hardware re-
formatting of the fetched code. The original code is executed on a primary engine (a simple, less
aggressively ILP processor). At the same time, the executed code is re-formatted into the DIF VLIW
cache for execution by a VLIW engine. As with standard Superscalar designs, code dependencies have
to be handled, but this is only done when the code is reformatted, not each time it is fetched from the
DIF cache. This allows the extra speed of the VLIW engine to be fully utilised.

The DTSVLIW Machine
This paper presents the dynamically trace scheduled VLIW (DTSVLIW), that implements the DIF

concept. This architecture organisation (Fig. 1) has 2 processing engines and 2 caches, an instruction
cache for the original compiled code, executed by a scheduler engine, and a VLIW cache for VLIW
instructions built from the code trace produced by the scheduler engine. The scheduler engine consists
of a sequential processor in the current design (that implements the Sparc-7 ISA) and the key element,
the scheduler unit. This uses a pipelined
implementation of the FCFS (Fist Come
First Served) scheduling algorithm,
traditionally used in microcode compaction
[6]. Nair and Hopkins [5] suggested, but did
not present, a pipelined implementation. The
organisation of our VLIW engine and VLIW
cache are also different from theirs. The
implemented version of the FCFS algorithm
runs over a circular list – the scheduling list
– which has a fixed number of long
instructions, one per element of the list.
Each element of the scheduling list has also
a candidate instruction. A valid candidate
instruction is scheduled into a list element in the preceding clock cycle, and is an aspirant member of
the long instruction in the element. A valid candidate instruction still may be moved to a higher
position in the list.

In each clock cycle, the candidate instructions in each list element are checked for dependencies
against the long instructions in the same and the next list element. If there is no dependency a candidate
instruction is promoted to the next element, unless it is already in the head element; if there is a
dependency the instruction is installed in its companion long instruction. Installing can be just that or it
can involve splitting the instruction, as in the DSVLIW, by renaming the output register, promoting the
instruction, and installing a copy instruction into the companion long instruction. An instruction
coming from the Sequential Unit becomes a candidate instruction, depending on dependencies, in
either the tail element of the list or in a new entry appended to the list. In the latter case, if there are no
spare list elements, the whole list is installed in the VLIW cache as a block. This facilitates the
addressing system.

When an instruction is first placed in the long instruction at the head of the scheduling list, the
original memory address of this instruction becomes the long instruction’s address, which is saved with
it in the VLIW cache. The following long instructions in
the list receive the same address plus a specific-line
identification field, which is just the enumeration of its
position in the list. This unification of long instructions
into a block necessitates only a few bits to specify the
fall-through long instruction address during VLIW
execution. The last long instruction in a block has a
special address field pointing to the fall-through block of
long instructions.

The VLIW Engine (Fig. 2) has a simple fetch-execute,
two-stage pipeline. A decode stage is not necessary, since
the long instructions are saved in the VLIW cache

Instruction
Cache

VLIW
Cache

Sequential
Unit

Data
Cache

Fetch Unit

VLIW
Engine

Scheduler
Unit

From
Memory

Scheduling
List

Scheduler
Engine

To/From
Memory

Fig. 1. DTSVLIW Machine.

VLIW Cache

Fetch Unit

Long instruction Register

FU FU FU FU

Register File Data Cache

 Specific-line and
Next block fields

Fig. 2. The VLIW Engine

already decoded. The fetch stage uses the
specific-line field of current long instruction, a
conditional branch target address, or the
address of a fall-through block. All conditional
branches are resolved in the execute stage. If
one branch follows a different direction than
that observed during scheduling during
execution, the penalty is just one cycle if the
target is in the VLIW cache.

Experiments and Discussion
A simulator of the DTSVLIW was

implemented and execution driven simulations
was performed. One execution driven simulator
permits a very precise evaluation of a new
architecture, however it demands CPU power.
For this reason, a set of small benchmarks was
selected. The suite of test programs used
includes Livermore Loop 24 (9999 instructions
executed); Integral evaluation of a function by
the trapezoidal rule (30623 instructions);
Quick-Sort (62317); LU decomposition
(77158); and Bubble-Sort (38245816). These
programs were translated to Sparc code by the
gcc compiler with -O2 optimisation. The
number of instructions executed per cycle (ipc)
achieved is presented in Fig. 3 (the legend
specifies block size - long instruction size).

The current version of the FCFS algorithm is
not able to take into account the latencies of multicycle instructions during scheduling: instructions are
presumed to execute in one cycle. It is not acceptable to design a VLIW machine with all instruction
with the same latency, since it will invalidate its best quality, the fast clock rate. Single cycle operation
has only been chosen to see if the DTSVLIW merits further study in which case a multilatency version
would be investigated. The current results encourage further investigations and a multilatency
scheduler is been developed.

The algorithm used by the Scheduler Unit is not able to fill all long instructions completely in all
blocks, even for small long instruction widths (4 instructions), resulting in poor utilisation of the silicon
area used by the VLIW cache (Fig. 4.). The copy instructions generated by the algorithm augment the
VLIW code size, demanding even more VLIW cache space. In order to make viable a cost-effective
implementation of DTSVLIW machines, a different VLIW cache organisation may be necessary.

References
[1] J. E. Smith, S. Vajapeyam, “Trace Processors: Moving to Forth-Generation Microarchitectures”, IEEE

Computer, September 1997.
[2] J. A. Fisher, “The VLIW Machine: A Multiprocessor for Compiling Scientific Code”, IEEE Computer, pp.

45-53, July 1984.
[3] B. R. Rau, “Dynamically Scheduled VLIW Processors”, Proceedings of the 26th Annual Symposium on

Microarchitecture, pp. 80-92, 1993.
[4] K. Ebcioglu, E. R. Altman, “DAISY: Dynamic Compilation for 100% Architectural Compatibility”, IBM

Research Report RC20538, 82 pages. 1996.
[5] R. Nair, M. E. Hopkins, “Exploiting Instructions Level Parallelism in Processors by Caching Scheduled

Groups”, IBM Research Report RC20628, 17 pages, 1996.
[6] S. Davidson, D. Landskov, B. D. Shriver, P. W. Mallett, “Some Experiments in Local Microcode Compaction

for Horizontal Machines”, IEEE Transactions on Computers, Vol. C30, No. 7, pp. 460-477, July 1981.

0

0.5

1

1.5

2

2.5

3

3.5

livermore integral quick lu bubble

4-4 4-8 4-16 8-4 8-8 8-16

Fig. 3.

0%

10%

20%

30%

40%

50%

60%

livermore integral quick lu bubble

4-4 4-8 4-16 8-4 8-8 8-16

Fig. 4.

