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Abstract
Due to the temporal execution locality present in

programs, even small instruction caches (16-Kbyte) can
provide processors with fast access to instructions most of the
time. The Dynamically Trace Scheduled VLIW (DTSVLIW)
architecture exploits programs’ temporal execution locality by
executing code in two distinct modes. In the first execution
encounter, fragments of the code are executed in sequential
mode (in a simple pipelined processor), scheduled into blocks
of VLIW instructions and cached in a VLIW cache by the
DTSVLIW’s Scheduler Engine. In subsequent encounters, the
DTSVLIW’s VLIW Engine executes these blocks in VLIW
mode. In this paper, we present experiments which show that
DTSVLIW machines can perform better than Superscalar
machines with equivalent hardware and better than VLIWs
with the same degree of parallelism, while keeping the fast
clock of the latter. We also discuss how the DTSVLIW
compares with the Trace Cache and EPIC architectures.
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 I. INTRODUCTION

An Instruction Set Architecture (ISA) is a contract between
a class of programs and a set of processor implementations
[RAU 93a]. Usually, this contract is concerned with the
instructions format and the interpretation of the bits that
constitute each instruction. However, in the case of systems
that exploit Instruction-Level Parallelism (ILP), this contract
extends to information embedded in the programs regarding
the available parallelism between the instructions of the
programs. Special functions are performed by ILP exploiting
systems in order to find and take advantage of ILP, and
different forms of ISA contract divide these functions between
the compiler and the hardware differently. These functions can
be summarised as follows:
•  To determine dependencies between instructions.
•  To determine independencies between instructions; i.e., to

find out the instructions that are independent of any
instruction that has already been assigned to execute but
may have not yet completed.

•  To bind resources; i.e., to schedule the independent
instructions to execute at some particular time on some
specific functional unit, and to assign registers into which
the results of these instructions may be written.

Figure 1 shows some forms of ISA contract for ILP exploiting
systems.

Superscalar [JOH 91] machines execute sequential ISA
code and exploit ILP; therefore, their hardware has to
determine dependencies and independencies between several
instructions, and bind several instructions to resources at the
same time, dynamically. The hardware for doing this is in the
main data path of Superscalar machines. Because of this,
Superscalar machines with elaborate instruction scheduling
hardware have slower clocks than simpler Superscalar
machines, and the latter may have a better performance than
the former due to their fast clocks [SMI 94].
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 Fig.1 Different forms of ISA contract

Superscalar and Very Long Instruction Word (VLIW) [FIS
84] machines are at opposite extremes regarding ILP
exploitation. In standard VLIW systems, the compiler is
responsible for all functions that have to be performed in order



to exploit ILP. This allows the VLIW hardware to be simpler
and faster than the Superscalar’s, but makes the VLIW ISA
contract very restrictive. Developments in compiler or
hardware technology following a VLIW ISA specification may
allow for greater parallelism than that which can be expressed
within this VLIW ISA specification. To take advantage of
these developments, the VLIW ISA may have to be changed;
this creates the VLIW object-code compatibility problem
[RAU 93b].

Dynamically Trace Scheduled VLIW (DTSVLIW)
machines [DES 98] execute sequential code and exploit ILP.
Their hardware, similar to that of Superscalars, has to
determine dependencies and independencies between
instructions and to bind instructions to resources dynamically.
However, different from Superscalars, DTSVLIW machines
perform the functions related to ILP exploitation with one
instruction at a time, producing VLIW code that is cached and
thereafter executed many times.

Figure 2 shows a block diagram of the DTSVLIW
architecture. In a DTSVLIW machine, the Scheduler Engine
fetches instructions from the Instruction Cache and executes
them the first time using a simple pipelined processor – the
Primary Processor. In addition, its Scheduler Unit dynamically
schedules the trace produced during this execution into VLIW
instructions, placing them as blocks of VLIW instructions in
the VLIW Cache. If the same code is executed again, it is
fetched by the VLIW Engine from this cache and executed in a
VLIW fashion. In a DTSVLIW machine, the Scheduler Engine
provides object-code compatibility, and the VLIW Engine
provides VLIW performance and simplicity.

The DTSVLIW architecture is a variant of the DIF
architecture [NAI 97], proposed by Nair and Hopkins.
However, as our earlier work [DES 99a] demonstrates, the
DTSVLIW achieves similar or better performance to the DIF,
but with a simpler architecture. The results in [DES 99c]
further demonstrate the effectiveness of the DTSVLIW
scheduling algorithm in that there is no significant reduction in
performance over the DIF algorithm, even though the latter is
expected to be much more difficult to implement.
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 Fig.2 The Dynamically Trace Scheduled VLIW
Architecture

Our main motivation for the development of the
DTSVLIW came from the observation that even small
instruction caches (16-Kbyte or 4098 instructions) can achieve

average hit rates higher than 99% with the SPEC92 and
SPEC95 benchmark suites [GEE 93, CHA 97]. This shows
that there is strong temporal execution locality in programs.
The DTSVLIW exploits temporal execution locality by
scheduling the code into blocks of VLIW instructions on the
first execution encounter and by executing it in the VLIW
Engine on subsequent encounters. In this paper, we present
experiments which show that, because of their characteristics,
DTSVLIW machines can perform better than Superscalar
machines with equivalent hardware and better than VLIWs
with the same degree of parallelism, while keeping the fast
clock of the latter. We also discuss how the DTSVLIW
compares with the Trace Cache [ROT 96] and Explicit Parallel
Instruction Computing (EPIC) [GWE 97] architectures.
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 Fig.3 A DTSVLIW Machine

 II. THE  DTSVLIW ARCHITECTURE

The symbolic diagram of a DTSVLIW machine is shown
in Figure 3. It has two caches for instructions and two
processing engines. The Instruction Cache stores fragments of
the original compiled code while the VLIW Cache stores
blocks of long instructions (the term used in the rest of this
paper to refer to VLIW instructions). The Primary Processor
executes the original code first. The code trace produced
during this execution is scheduled by the Scheduler Unit into
blocks of long instructions that are saved in the VLIW Cache.
The VLIW Engine executes these long instructions if an
already scheduled code fragment has to be executed again.

While the Primary Processor is executing the code, the
Fetch Unit (Figure 3) issues different addresses to the
Instruction Cache and the VLIW Cache. To the Instruction
Cache is issued the program counter (PC) content. To the



VLIW Cache is issued the address of the instruction in the
execute stage of the Primary Processor (dashed arrow in
Figure 3). If this instruction has been executed before, there
may be a block with its address in the VLIW Cache. On a
VLIW Cache hit, the VLIW Engine takes over execution. The
block being constructed by the Scheduler Unit is flushed to the
VLIW Cache – this block is made to point at the hit block. The
contents of all but the write back pipeline stage of the Primary
Processor are annulled and the PC receives the memory
address that hit the VLIW Cache. In subsequent cycles, the
VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor takes over
execution, fetching from the last PC value computed by the
VLIW Engine. The Fetch Unit does not issue fetches to the
VLIW Cache again until an instruction arrives at the execute
stage of the Primary Processor. At this point, the Scheduler
Unit restarts to schedule a new block, the address of which will
be the last address produced by the VLIW Engine when
executing the previous block. This connects these blocks
forming a block chain. In steady state, the VLIW Cache
contains all most frequently executed traces.

In our DTSVLIW implementation, the Primary Processor
executes Sparc-7 ISA [SUN 87] code, while the VLIW Engine
executes a sub-set. The VLIW Engine has a simple fetch –
execute – write-back pipeline for each functional unit
(multicycle instructions execute in pipelined functional units).
A decode stage is not necessary as decoded instructions are
saved in the VLIW Cache. The VLIW Cache is a simple set-
associative cache, where a block of long instructions occupies
a single cache line. Individual long instructions are the unit of
communication between the VLIW Cache and the rest of the
DTSVLIW. Details of how the DTSVLIW deals with
exceptions, memory aliasing (disambiguation), and the
execution of particular instructions, e.g. Sparc save and
restore, are in [DES 99a].

A. The Scheduler Engine

The Scheduler Engine is composed of the Primary
Processor plus the Scheduler Unit (Figure 3). The Primary
Processor is a simple pipelined processor capable of executing
all instructions of the Sparc-7 ISA. When a valid instruction
moves from the decode pipeline stage to the execute pipeline
stage, the Primary Processor sends it to the Scheduler Unit.

The Scheduler Engine performs superblock scheduling
dynamically. Superblock scheduling [HWU 93] is a compiler
technique derived from trace scheduling [FIS 81]. A
superblock is a block of instructions encompassing many basic
blocks in which control may only enter at the top, but may exit
from one or more locations. In a compilation system,
superblocks are built in two steps. First, traces are selected
using heuristics or profiling. Second, tail duplication is applied
to the trace to eliminate any side entrances, via creating a
unique piece of code for each side entrance.

In a DTSVLIW machine, the execution trace produced by
the Primary Processor feeds the Scheduler Unit, which
schedules the instructions into blocks of long instructions and
saves these blocks into the VLIW Cache. Each block of long

instructions may encompass many basic blocks. Scheduling is
performed in a way that allows any branch inside any block to
exit without side effects. The unique entry point of each block
is its first instruction. Therefore, if a path in the program leads
to an instruction inside an existent block, or a branch inside a
block follows a path different from that followed during
scheduling, these paths will cause the scheduling of new
blocks. This is equivalent to tail duplication. However, in
superblock scheduling, the compiler selects traces statically
and these traces must be suitable for all input data sets of the
program. In contrast, a DTSVLIW machine performs dynamic
trace selection and as such can achieve good performance for
all input sets.

B. The Scheduling Algorithm

The Scheduler Unit implements in hardware a simplified
version of the First Come First Served (FCFS) algorithm,
which historically has been used to statically schedule
microcode [DAV 81]. We have chosen this algorithm for three
reasons. First, it operates with one instruction at a time and
considers instructions in the strict order that they appear during
program execution, which perfectly fits the DTSVLIW mode
of operation. Second, the FCFS algorithm produces optimum
or near-optimum scheduling [DAV 81]. Finally, the FCFS
algorithm is easy to implement in hardware in a pipelined
fashion [DES 99a].

A broad overview of the DTSVLIW scheduling algorithm
is that a valid instruction in the decode pipeline stage of the
Primary Processor is inserted at the end of the scheduling list
on the next clock cycle (Figure 3). On each subsequent cycle it
can move up to the next higher element in the list if: it has not
reached the head of the list; there is space for it in the next
element; and there is not a dependency with instructions in the
next element.

An instruction inserted into the scheduling list in a clock
cycle is a candidate for moving up the list on subsequent clock
cycles. There can only ever be a single candidate instruction in
a long instruction, but each long instruction in the list may
have a candidate for promotion: there is a pipeline of
candidates for promotion. If an instruction cannot move up, it
is installed into its current long instruction.

If there is a control, output, or anti dependency on a
candidate instruction, it can still move up, but has to be split.
The split is done by renaming the candidate instruction’s
output, moving up the renamed instruction, and by inserting a
copy instruction permanently in the long instruction slot
previously occupied by the candidate instruction. This copy
instruction copies the renaming register content to the
instruction’s original output.

Conditional and indirect branches do not move up. They
are installed when inserted and establish a tag for their long
instruction. All instructions subsequently installed in this long
instruction receive the last established tag. During VLIW
execution, the VLIW Engine evaluates the conditional and
indirect branches and validates their tags if they follow the
same direction observed during scheduling. Only instructions
with valid tags have their results written in the machine state.



When there is no free element for an incoming instruction,
the list is flushed to the VLIW Cache as a block and the
incoming instruction is inserted into an empty list as the first
instruction of a new block. The list is saved as a block, but on
a one long instruction per cycle basis; nevertheless,
instructions can be continuously inserted into the new block at
the same time as the old block is being saved [DES 99a]. A
block of long instructions is stored as a VLIW Cache line and
is identified by the address of the first instruction installed in
it. Each cache line holds this address and the address of the
following block.

Multicyle instructions impact upon the operation and
performance of the architecture. Their scheduling, described in
[DES 99b], has to respect dependencies in any of their cycles.
This can restrict the packing of instructions into long
instructions limiting parallelism.

For more details about the DTSVLIW architecture please
refer to [DES 00], where preliminary DTSVLIW’s
performance results are also presented.

 TABLE 1
 FIXED PARAMETERS

Primary Processor •  four-stage (fetch, decode, execute, and
write back) pipeline

•  no branch prediction hardware
•  taken branches cause a 2-cycle bubble in

the pipeline
Decoded Instruction Size 6 bytes

 TABLE 2
 BENCHMARK PROGRAMS

SPEC92
Benchmarks

Inputs SPEC95
Benchmarks

Inputs

compress in go 40 19 null.in
eqntott int_pri_3.eqn m88ksim dhry.big
espresso cps.in
gcc -O jump.i
xlisp queens 7

 III. EXPERIMENTS

A simulator of the DTSVLIW has been implemented in C,
and execution-driven simulation performed to produce the
results reported here. All results were produced with the
simulator running in test mode in order to guarantee correct
simulation. The Test mode puts two machines to run together:
the DTSVLIW and a test machine with the same
characteristics of the Primary Processor of the DTSVLIW.
Execution of these alternates and the Sparc ISA state of both
machines is compared regularly. If it is not equal, an error is
signalled and the simulation interrupted. The test mode has
been very useful because in this mode it is possible to measure
the precise number of instructions necessary for the execution
of a program. A DTSVLIW simulator alone cannot provide
this number due to copy instructions and instructions executed
speculatively. The instruction per cycle performance
measurement index used here is produced by dividing the
number of instructions executed by the test machine, by the
number of cycles consumed by the DTSVLIW execution.

The simulator faithfully models the DTSVLIW and
receives as input executables generated by ordinary compilers
that generate Sparc-7 ISA code. We have used the gcc 2.7.2
compiler with optimisation flag –O.

Model parameters that are invariant for simulations are
presented in Table 1, and the SPEC benchmark programs used
are shown in Table 2. Except when stated otherwise, each
program was run for 50 million or more instructions each
experiment, as counted by the test machine.

A. DTSVLIW versus PowerPC620

The graph in Figure 4 shows a comparison between the
performance of the PowerPC620 Superscalar processor, as
described in [DIE 95], and a DTSVLIW processor with
equivalent characteristics, when running four programs of the
SPECint92. The PowerPC620 performance figures were taken
from [DIE 95], and the parameters used there were: 4-
instruction wide fetch, dispatch, complete, and writeback
pipeline stages; single cycle integer, 2 cycles load, and 3
cycles floating point instruction latency; 3 integer, 1 load/store,
1 floating point, and 1 branch functional units, with 2, 3, 2, and
4 reservation stations for each functional unit of each kind,
respectively; 32-Kbyte, 8-way set associative instruction and
data L1 caches, with an 8-cycle miss penalty (a perfect unified
L2 cache was assumed); and a branch predictor with a 256-
entry two-way branch target buffer (BTB) and a 2048-entry
(two-bit counters) direct mapped branch history table (BHT).
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 Fig.4 DTSVLIW versus PowerPC620

The DTSVLIW was configured with a 4x8-block (four
instructions wide long instructions and eight long instructions
deep) and functional units of the same type, same latency, and
in the same number as the PowerPC620. Although six
functional units are available in the VLIW Engine with this
configuration, we have used 4-instruction wide long
instructions in the DTSVLIW to give the same dispatch width
for both machines. An extra dispatch pipeline stage was added
to the VLIW Engine pipeline to account for the logic necessary
to unpack the long instructions coming from the VLIW Cache
and dispatch them to the appropriate functional units. A branch
predictor with the same characteristics of the PowerPC620’s
was used to try to reduce the extra cost added to next long
instruction fetch misses by this dispatch stage. An 8-Kbyte, 8-
way set associative instruction cache, and a 24-Kbyte, 8-way
set associative VLIW Cache were used. These sizes were
chosen to make this pair equivalent to the instruction cache of



the PowerPC620. The DTSVLIW data cache was configured
with the same characteristics of the PowePC620’s. In this
simulation, the DTSVLIW was allowed to execute the same
number of instructions executed in the PowerPC620
simulation [DIE 95].

As Figure 4 shows, the performance of the two machines is
comparable, although the DTSVLIW performance is better
overall. This is so because the scheduling list of the
DTSVLIW is larger than the instruction window (all
reservation stations) of the PowerPC620, which allows more
opportunities for finding ILP. Although larger than the
instruction window of the PowerPC620 (15 instructions), the
scheduling list of the DTSVLIW (32 instructions) is simpler.
The complexity of the instruction window of the PowerPC620
is proportional to the number of reservation stations times the
number of functional units (15 * 6 = 80, see [JOH 91]), while
the complexity of the scheduling list of the DTSVLIW is
proportional to the number of candidate instructions times the
number of instructions per long instruction (8 * 4 = 32, see
[DES 99d]). Note that a DTSVLIW implementation is likely to
have a significantly higher clock rate than a PowerPC620,
because, different from the PowerPC620’s, the DTSVLIW
scheduling hardware is not in its main data path. In addition,
due to the instruction fetch bandwidth problem of Superscalar
machines (see Section IV), the PowerPC620 performance in
terms of ILP can be seen as a high-end performance for
standard Superscalar machines. The DTSVLIW described in
this section, on the other hand, is a low-end DTSVLIW and
larger DTSVLIW configurations can be implemented with
increasing performance returns [DES 00].

B. DTSVLIW versus VLIW

The VLIW research group at IBM is a leading group on
VLIW compiler and architecture technologies. In [MOR 97]
they have presented experimental performance results of
various VLIW configurations using a powerful VLIW
compiler. In Figure 5, we show the performance figures for
programs from the SPECint92 and SPECint95 when running in
two DTSVLIW configurations and in two IBM VLIWs
described in [MOR 97] and [MOU 96]. The benchmarks
m88ksim and go are from SPECint95 while the others are from
the SPECint92. One VLIW configuration used in the IBM
experiments has been set with 8 untyped functional units (able
to execute all instructions) and the other with 16. The
instruction latencies have been set at 1-cycle for integer
(including load/store), 3-cycle for integer multiply, 10-cycle
for integer divide, and 3-cycle for floating-point. The number
of added registers for renaming has been 64-integer, 64-
floating-point, and 16-condition in the 8-wide configuration,
and 128-integer, 128-floating-point, and 32-condition in the
16-wide configuration. The experiments have been performed
with perfect instruction and data caches (no miss penalty).

We have configured two DTSVLIW machines with
parameters identical or equivalent to those used in the two
IBM VLIW machines. One DTSVLIW configuration has an
8x8-block and the other a 16x16-block, both with untyped
functional units. The instruction latencies have been all set at

1-cycle, which is a value lower than that used in the IBM’s
experiments for integer multiply, integer divide, and floating-
point instructions. However, the Sparc-7 ISA does not have
integer multiply or divide instructions but only multiply-step,
which can execute in one cycle. Since the benchmarks are all
integers, the number of floating-point instructions executed is
zero or negligible; therefore, the different latencies used for
floating-point instructions do not constitute a problem. The
number of renaming registers used during the DTSVLIW
simulations has never exceeded the number used in the IBM’s
simulations in any combination of benchmark program and
machine configuration. Our experiments have also been
performed with perfect instruction and the data caches.

As the graph in Figure 5 shows, the VLIW outperforms the
DTSVLIW in compress and eqntott for a large margin.
However, for gcc, go, m88ksim, and xlisp both DTSVLIW
machine configurations have consistently better performance.
These results show that, in most cases, the DTSVLIW
algorithm is able to find more parallelism than a state-of-the-
art VLIW compiler under similar conditions. This is possible
because the DTSVLIW scheduler algorithm has access to run
time information not available to the VLIW compiler. We
believe that a conjunction of the DTSVLIW architecture and
compiler technology, such as loop unrolling, software pipeline,
and predication, would perform even better than shown, in
particular with compress and eqntott. Published results
corroborate this view, showing that the use of such
optimisations does significantly improve performance, in
particular the use of predication in the eqntott and compress
benchmarks [AUG 98]. Other compiler techniques could also
be developed specifically to the DTSVLIW.
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 Fig.5 DTSVLIW versus VLIW

 IV. DISCUSSION

In the integer programs of the SPEC92 benchmark suite,
on average 19% of the executed instructions are branches
[PAT 96 (page 105)] and on average 62% of them change the
control flow [PAT 96 (page 166)]. This means that about 12%
of the instructions executed in these programs change the
control flow – almost one in eight. Current Superscalar
machines fetch up to four instructions each clock cycle. For the
next generation, it is going to be possible to fetch eight or
more instructions per cycle. This means that almost every fetch
will contain a branch that will change the control flow. Since
these branches are distributed evenly throughout the address
space, many of these fetch cycles (almost half for an 8-wide
fetch) will be only partially effective. In addition, instead of



incrementing the program counter to the next fetch address,
Superscalar machines capable of fetching eight instructions per
cycle will have to find the target address of a branch (possible
more than one) almost every cycle.

Several high bandwidth fetch mechanisms based on the
conventional instruction cache have been proposed [CON 95,
SEZ 96, YEH 93]. In such mechanisms, on every cycle
instructions from non-contiguous locations in the instruction
cache are fetched and assembled into dynamic sequences using
information collected by dynamic branch predictors. To do
this, branch target tables are inspected and pointers are
generated to all non-contiguous instruction blocks. A
moderately to highly interleaved instruction cache is accessed
and provides multiple lines simultaneously. These lines are
aligned by an alignment network, which then sends the
instructions to the decode stage of the Superscalar processor.

The disadvantage of these high bandwidth fetch
mechanisms is their complexity. Sophisticated dynamic branch
predictors, interleaved multiport instruction caches, and
complex alignment networks are required to make them work.

A. DTSVLIW versus Enhanced Superscalar Architectures

The Trace Cache architecture avoids the complexity of
high bandwidth fetch mechanisms by caching dynamic
instruction sequences, rather than only the information for
constructing them [ROT 96]. A machine that follows this
architecture fetches instructions from the instruction cache and
attempts to schedule them across multiple functional units
exactly as a Superscalar. These instructions are then grouped
by a Fill Unit [MEL 88] and placed in a trace cache, which
stores them in execution order, as opposed to the static order
determined by the compiler. On an instruction fetch, the trace
cache will provide a line of instructions if available. This line
can encompass more than one line from the instruction cache
through merging of lines affected by partial fetches caused by
taken branches: this increases instruction fetch throughput.

Trace Cache architectures are basically Superscalar
architectures enhanced with a Fill Unit and a trace cache. Their
Fill Unit is equivalent to the Scheduler Unit of DTSVLIWs.
However, the Scheduler Unit performs all functions necessary
to ILP extraction on a DTSVLIW machine. In contrast,
Superscalars implemented according to the standard Trace
Cache architecture use their Fill Unit only to ameliorate the
fetch bottleneck. Nevertheless, the DTSVLIW and Trace
Cache can be seen as members of the same family of
architectures. They can be put in a scale of how many ILP
extraction functions are performed by their Scheduler Unit/Fill
Unit and how many of these functions are performed by their
parallel execution-core. Figure 6 shows such a scale and the
positions of the DTSVLIW and Trace Cache architectures.

Like standard VLIW and Superscalar, the DTSVLIW and
Trace Cache architectures are at opposite extremes. As shown
in Figure 6, the Trace Cache architecture’s execution-core
performs all ILP extraction functions, while the DTSVLIW’s
performs none. On the other hand, the DTSVLIW’s Scheduler
Unit performs all ILP extraction functions, while the Trace
Cache architecture’s Fill Unit performs none.

One might argue that the DTSVLIW sequential execution
during the scheduling phase would strongly affect its
performance. However, in the DTSVLIW or in any
architecture that always operate in parallel, such as the Trace
Cache, the first time a fragment of code is executed it is likely
to cause data and instruction cache misses that will determine
the performance during its execution. In addition, no machine
has comprehensive information about the dynamic behaviour
of branches of fresh code fragments, and the more parallel the
machine the larger the effect of branch mispredictions.
Furthermore, our results show that most of the time the
DTSVLIW is executing code in VLIW-mode if the VLIW
Cache is large enough to hold pre-scheduled code [DES 99a].
Results with the Trace Cache architecture also show that the
code is found in the trace cache most of the time [ROT 97].

Real implementations usually distance themselves from
standard architecture definitions due to real world constraints.
For example, in the DTSVLIW configuration compared with
the PowerPC620 in Section III-A, we have left to the
execution-core the task of dispatching the instructions to
specific functional units. Researchers working with the Trace
Cache architecture have also suggested moving some ILP
related functions from the execution-core to the Fill Unit in
order to allow implementations with fast clock [ROT 97, VAJ
97, FRI 98]. Other Superscalar enhancements such as value
prediction [FU 98, NAK 99] and instruction reuse [SOD 97]
may also be incorporated into both architectures.

Although future research may produce variants of the
DTSVLIW and Trace Cache architectures that are more
closely together in the scales shown in Figure 6, their pure
definitions still represent useful models to understand the
nature of the ILP that can be exploited dynamically.
Ultimately, the available VLSI technology and design
expertise will determine which of the two extremes
represented by the DTSVLIW and Trace Cache architectures
will reach the marketplace. We believe, however, that a point
close to the DTSVLIW’s in the scales of the Figure 6 is a
better option. This view is corroborated by the evolution of
Alpha microprocessors. They implement the simplest RISC
ISA (which means simple execution-core) in the mass
microprocessor market and are “performance leaders since
their introduction in 1992” [KES 99] mainly, we believe, due
to their simple high-clock-speed-tailored implementation.

  DTSVLIW Trace Cache

Scheduler Unit/Fill Unit
ILP functions

Execution-Core
ILP functions

Fig.6 Distribution of ILP related functions

B. DTSVLIW versus EPIC

The term Explicitly Parallel Instruction Computing (EPIC)
was coined recently by Intel and Hewlett Packard in their joint



announcement of the IA-64 ISA [GWE 97]. EPIC ISAs require
the compiler to determine the dependencies and the
independencies between instructions (Figure 1). However, the
hardware interpreter of an EPIC ISA is responsible for binding
the independent instructions, specified by the compiler, to the
machine resources. This is in contrast with VLIW systems
where the compiler is responsible for determining
dependencies and independencies, and also for binding
resources.

In the Intel/Hewlett Packard EPIC ISA, or IA-64 for short,
each three instructions are grouped together into 128-bit sized
and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field [INT
99]. The template field specifies two properties: the mapping
of instruction slots to execution unit types, and stops within the
current bundle. The stops define instruction groups. An
instruction group is a sequence of instructions starting at a
given bundle address and slot number and including all
instructions at sequentially increasing slot numbers and bundle
addresses up to the first stop or taken branch. Therefore,
instruction groups can encompass several bundles. The IA-64
specifies dependency restrictions that allow the processor to
execute all (or any subset) instructions within a legal
instruction group in parallel or serially with the end result
being identical. That is, two or more instructions within a
group should not write to the same register (output
dependency), or read from and write to the same register (true
and anti dependencies). Memory reads and writes to the same
address are allowed within groups, however. The IA-64
compiler has to generate code according to these dependency
restrictions. To facilitate this task, the IA-64 exposes to the
compiler a large number of registers: 128 integer, 128 floating-
point, 64 predicate, and a large number of other registers.

Conditional branch instructions use predicate registers to
decide their outcome. In addition, these registers are used to
implement predicated execution (see [DUL 98] for details).
Instruction hoisting ([DUL 98]) is also supported by IA-64.

Because the compiler specifies the dependencies and
independencies between instructions, the IA-64 processor only
has to fetch one or more bundles, to identify the stops, and to
send the independent instructions to the respective functional
units. Memory dependencies can be dealt with via compiler
assisted memory disambiguation, compiler and ISA assisted
speculative memory access [INT 99], and the use of an
Address Resolution Buffer (ARB) [FRA 92]. The new IA-64
processor still executes legacy 8086 ISA code and all is
upgrades, but it does so using special modes that may not take
full advantage of the new EPIC processor core [INT 99].

The EPIC architecture relies on compiler technologies such
as predication, instruction hoisting, loop unrolling, software
pipelining, etc, to exploit the ILP available in programs. The
DTSVLIW architecture, on the other hand, does not rely on the
compiler to exploit ILP and can achieve performance
executing legacy sequential code. In addition, the DTSVLIW
architecture can be employed to emulate legacy ISA code in
IA-64 processors, taking advantage of the EPIC core. It can
also be used to execute EPIC code directly, collecting dynamic

branch behaviour information and organising the code during
the scheduling phase of program execution to increase the
processor performance.

 V. CONCLUSIONS

The DTSVLIW architecture can be used to implement
machines that execute sequential code in a VLIW fashion,
delivering ILP with backward code compatibility. The
DTSVLIW takes advantage of code execution locality by
executing programs in two distinct modes: one sequential, in
its Scheduler Engine, the other (much more frequent) parallel,
in its VLIW Engine. Our experimental results confirm that the
DTSVLIW architecture takes advantage of code execution
locality by showing that its performance is overall better than
the Superscalar’s and VLIW’s. The DTSVLIW performs better
than the Superscalar because its scheduling list is larger than
the instruction window of the Superscalar. It performs better
than the VLIW because it has access to run time information
not available to the VLIW compiler.

We argue that DTSVLIW and Trace Cache are members of
the same family of architectures. Their main difference is in
how they divide the ILP extraction functions internally. The
Trace Cache architecture’s execution-core performs all ILP
extraction functions, while the DTSVLIW’s execution-core
performs none. On the other hand, the DTSVLIW’s Scheduler
Unit performs all ILP extraction functions and the Trace Cache
architecture’s Fill Unit performs none. We believe that
simplicity in the main execution-core results in overall better
performance. This view is corroborated by the evolution of the
Alpha family of microprocessors, “performance leaders since
their introduction in 1992” [KES 99].

EPIC architectures rely on the compiler to expose ILP to
their hardware. The DTSVLIW architecture does not; in
addition, it can be employed to emulate legacy code in new
EPIC processors, taking advantage of the EPIC core. It can
also be used to execute EPIC code directly, collecting run time
information and organising the code during the scheduling to
increase performance.
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