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Very long instruction word (VLIW) machines potentially provide the most
direct way to exploit instruction-level parallelism; however, they cannot be
used to emulate current general-purpose instruction set architectures. In addi-
tion, programs scheduled for a particular implementation of a VLIW model
cannot be guaranteed to be binary compatible with other implementations of
the same machine model with a different number of functional units or func-
tional units with different latencies. This paper describes an architecture,
named dynamically trace scheduled VLIW (DTSVLIW), that can be used to
implement machines that execute code of current RISC or CISC instruction
set architectures in a VLIW fashion, with backward code compatibility.
Preliminary measurements of the DTSVLIW performance, obtained with an
execution-driven simulator running the SPECint95 benchmark suite, are also
presented. � 2000 Academic Press
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1. INTRODUCTION

Very long instruction word (VLIW) machines can execute several scalar opera-
tions in a single clock cycle [12]. They have long instructions (hundreds to
thousands of bits), with fields to control each of their many functional units. These
long instructions are fetched from memory, one per processor clock cycle, and
issued to functional units that operate in parallel. In VLIW systems, the compiler
has complete responsibility for creating a package of operations that can be
simultaneously issued. VLIW processors do not dynamically make any decisions
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about multiple operation issue, and thus they are simple and fast. However, the
assumptions built into the code by the compiler about the VLIW hardware prevent
code compatibility between different implementations of the same VLIW instruction
set architecture (ISA). VLIW processors with different levels of hardware
parallelism require recompilation of the source code. For instance, the code
generated for a VLIW processor with four operations per VLIW instruction could
not run in another VLIW processor with three operations per VLIW instruction
without recompilation. This problem, known as the VLIW object�code compatibility
problem, has limited the commercial interest in VLIW architectures [29].

Recently, a new architectural concept named dynamic instruction formatting
(DIF) has been proposed [26]. A machine implementing this concept can over-
come the VLIW object�code compatibility problem by executing the program in
two distinct phases: one sequential and the other parallel. During the sequential
execution phase, the code is formatted as VLIW instructions. In the parallel phase,
a VLIW engine executes the formatted code. In this paper, we present an architec-
ture that follows the DIF concept. This architecture, named dynamically trace
scheduled very long instruction word (DTSVLIW) architecture [5], has been con-
ceived independent of DIF, which has permitted an implementation significantly
different from that suggested by the proponents of DIF. We have shown that the
DTSVLIW is easier to implement than DIF and delivers equivalent performance
with fewer hardware resources [6, 8, 9].

Figure 1 shows a block diagram of the DTSVLIW architecture. In the
DTSVLIW architecture, the scheduler engine fetches instructions from the instruc-
tion cache and executes them first using a simple pipelined processor��the primary
processor. In addition, its scheduler unit dynamically schedules the trace produced
during this execution into VLIW instructions, placing them as blocks of VLIW
instructions in the VLIW cache. If the same code is executed again, it is then
fetched by the VLIW engine from this cache and executed in a VLIW fashion. In
the DTSVLIW architecture, the scheduler engine provides object�code com-
patibility, and the VLIW engine provides VLIW performance and simplicity.

Executing code in two distinct modes, one sequential and one parallel, results in
four positive characteristics. First, code compatibility between different machine

FIG. 1. The dynamically trace scheduled VLIW (DTSVLIW) architecture.
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generations is facilitated. Second, complex instructions can be dealt with in sequen-
tial mode, with complex instructions being decomposed into several simpler opera-
tions which can later be executed in parallel mode. Third, the task of finding
parallelism is simplified, as the scheduler unit receives no more than one instruction
(or operation) per cycle and, therefore, can have a simple and fast hardware
implementation. Fourth, instruction exceptions can be dealt with in sequential
mode: in the case of an instruction exception during parallel execution, a
DTSVLIW machine can switch to sequential mode to deal with the exception.
However, in order to take advantage of these characteristics, a DTSVLIW machine
has to reuse the blocks of VLIW instructions saved in the VLIW cache many times.

1.1. Research Motivation

The main motivation for the research described here came from the observation
that even small instruction caches (16 Kbyte or 4098 instructions) can achieve
average hit rates higher than 990 with the SPEC92 and SPEC95 benchmark suites
[2, 14, 34]. This shows that there is strong temporal execution locality in
programs. The DTSVLIW exploits temporal execution locality by converting the
code into blocks of VLIW instructions in the first execution encounter and by
executing it in the VLIW engine in subsequent encounters. To take advantage of
the DTSVLIW architecture characteristics, the converting algorithm has to be effec-
tive in producing VLIW code. In addition, it has to be simple enough not to render
the clock cycle time longer than that determined by the VLIW engine design. The
results achieved with this research so far support the view that this can be achieved
[6, 9].

1.2. Paper Overview

In this paper, after reviewing related work, we describe the DTSVLIW in detail
and show that it can be implemented without taking the clock cycle time far from
that determined by a pure VLIW design. To better understand the DTSVLIW
architecture, we investigate the effect of various architectural parameters on its
performance via experiments. We then compare the DTSVLIW performance with
that of the DIF architecture.

2. RELATED WORK

2.1. Tackling the VLIW Object�Code Compatibility Problem

Existing techniques to get over the VLIW object�code compatibility problem can
be divided into software and hardware techniques. The simplest software technique
to overcome the VLIW object-code compatibility problem is off-line recompilation
of the programs source code. The drawback of this approach is that it is awkward
to use��machine upgrades require either recompilation of all installed software,
whose source code may not always be available, or installation of a complete set
of new binaries. Binary translation [31] is a variant of this technique that can be
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performed without the source code, but machine upgrades still require either trans-
lation or reinstallation of binaries. Alternatively, interpreters can be used to emulate
different architectures at run-time; however, this approach usually suffers from poor
performance. Binary translation and emulation can be combined [18].

Dynamic rescheduling, proposed by Conte and Sathaye [3], is another software
technique that can be used to overcome the VLIW object�code compatibility
problem. When a noncompatible program is invoked in a VLIW system that
implements dynamic rescheduling, the operating system translates the first page to
a new page that is binary compatible with the system hardware. This process is
repeated each time a new page fault occurs and provides correct execution over dif-
ferent VLIW machine generations. Ebcioglu and Altman [10], with their DAISY
machine, extended dynamic rescheduling to dynamic compilation, in order to use a
generic ISA. These techniques rely on the ability of the operating system to trans-
late code rapidly and on the reusability of this code. However, since they are
implemented in software, the cost of the translation is high. In addition, because the
translation is done on a page-fault basis, the operating system may not know much
about the dynamic behavior of branches in pages being translated, relying on
heuristics to determine their outcome. Essentially, static scheduling is performed, as
done by VLIW compilers, but in a much shorter time. This imposes limitations on
the scheduling quality, impacting on system performance.

Rau [29] presented a new type of VLIW machine, named dynamically scheduled
VLIW (DSVLIW), which tackles the VLIW object�code compatibility problem at
the hardware level. Despite its ability to implement a family of VLIW machines
with different functional units' latency and the same ISA, the DSVLIW concept
cannot be used to implement an existent sequential ISA. In addition, it requires
dynamic scheduling hardware in the main data path of the machine, which can
have a negative effect on the clock cycle time. Franklin and Smotherman [13]
proposed the use of a fill unit [25] to compact a dynamic stream of scalar instruc-
tions. Their fill unit accepts decoded instructions from the machine decoder, com-
pacts them into a long instruction (the term used in the rest of this paper to refer
to VLIW instructions), and saves this into a shadow cache. At the same time, the
fill unit sends the long instruction to the functional units for execution. Fetch
accesses hitting the shadow cache provide long instructions directly to the func-
tional units. This design cannot exploit instruction-level parallelism (ILP) exten-
sively, as the proposed fill unit does not rename registers and works within a
window of only one long instruction. Similar to this design is that proposed by
Banerjia and his colleges, the miss path scheduling (MPS) architecture [1]. The
main differences between the two proposals is that MPS schedules blocks of long
instructions as opposed to a single long instruction and that the scheduling
hardware is placed between the instruction cache and the next level of memory. In
MPS, instruction scheduling is performed at instruction cache misses and the
blocks of long instructions formed are saved in a special instruction cache. MPS
has three drawbacks. First, instruction cache miss penalty is increased in a MPS
machine, since instruction scheduling takes at least one cycle per instruction and no
useful execution is performed during scheduling. Second, MPS machines do not
rename registers, which can have a severe impact on scheduled-code parallelism.
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Third, MPS machines perform static scheduling only. Although dynamic branch
prediction can be used during scheduling, instructions are scheduled at instruction
cache misses and are likely to have not been executed before. Therefore, dynamic
branch behavior information is not likely to be available at scheduling time.

Nair and Hopkins [26] suggested a VLIW-based machine organization named
DIF (dynamic instruction formatting), which also follows the Franklin and
Smotherman proposal [13]. The DIF machine incorporates two engines: the
VLIW engine and the primary engine. The latter is a simple processor, less
aggressive in exploiting parallelism, which executes instructions of a generic ISA
when first fetched. Simultaneously with the execution of a code sequence, this
engine reformats (schedules) the code, generating groups of long instructions as
opposed to a single long instruction. These groups, which can encompass many
basic blocks, are saved in a special cache��the DIF cache. Following accesses to the
same sequence will hit the DIF cache, and the long instructions fetched will be
executed by the VLIW engine.

In a DIF machine, the instructions are executed during scheduling; therefore,
useful execution occurs during scheduling time. Register renaming is performed and
the dynamic branch behavior is recorded into the scheduled blocks. This allows for
more parallelism than the MPS and all previously mentioned proposals. The
DTSVLIW is similar to the DIF, but it has a significantly different implementation.
The DTSVLIW differs from the DIF in its register renaming mechanism, VLIW
engine register access, communication between the VLIW cache and the VLIW
engine, and scheduling algorithm. The DTSVLIW architecture was first presented
in [5]. A detailed description of the DTSVLIW is presented in Section 3 and the
differences between the DTSVLIW and the DIF are presented in Section 3.8.

2.2. Other Approaches for Exploiting ILP

A machine that follows the trace cache architecture [30] fetches instructions
from the instruction cache and attempts to schedule and execute them across mul-
tiple functional units using, for example, Tomasulo's algorithm [36]. During this
process, the instructions are saved into the trace cache, which stores them in execu-
tion order, as opposed to the static order determined by the compiler. On an
instruction fetch, the trace cache will provide a line of instructions if available. This
line can encompass more than one line from the instruction cache, which increases
instruction fetch bandwidth and throughput.

Similar to the superscalar architecture, however, the trace cache architecture has
instruction-scheduling overheads that lengthen the clock cycle time. Logic fan-out
and wire delays are perhaps the most important of these scheduling overheads
[17]. The fan-out overhead is caused by the logic that forwards the functional units
results to the reservation stations, whereas the wire delay overhead is caused by the
long wires necessary to connect the functional units to the various reservation sta-
tions. In the near future, wire delays are likely to dominate the clock cycle time of
superscalar-like machines [24]. VLIW machines, and likewise DTSVLIW
machines, do not need hardware mechanisms equivalent to reservation stations in
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their main data path and do not suffer from their characteristic forwarding logic
and forwarding wire delay overheads. Forwarding logic and forwarding wires are of
course necessary in VLIW and DTSVLIW machines. However, they only connect
functional units' outputs to functional units' inputs and not to several reservation
stations at the input of each functional unit. Therefore, they can have a faster clock
than superscalar-like machines even considering wire delays [17].

Superscalar machines using trace cache, value prediction [23], or instruction
reuse [33] are effective ways of exploiting ILP. However, superscalar machines
employing these techniques are also complex devices and the impact of such com-
plexity on the design cost and clock cycle time can be severe. We believe the
DTSVLIW architecture is a simpler, more cost-effective alternative for general-
purpose machines.

There are, off course, other approaches for exploiting ILP [16, 22, 37], but they
either require rewriting the source code or do not allow current sequential ISAs to
be employed without modification.

3. THE DTSVLIW ARCHITECTURE

The symbolic diagram of a DTSVLIW machine is shown in Fig. 2. It has two
caches for instructions and two processing engines. The instruction cache stores
fragments of the original compiled code while the VLIW cache stores blocks of long
instructions. The original code is executed first by the primary processor. The code
trace produced during this execution is scheduled by the scheduler unit into blocks of
long instructions that are saved in the VLIW cache. The VLIW engine executes these
long instructions if an already scheduled code fragment has to be executed again.

In a DTSVLIW machine, the VLIW engine and the primary processor never
operate at the same time and no machine state has to be transferred between them,
as they share the DTSVLIW machine state. This simplifies the design of both, even
allowing the VLIW engine to share its functional units with the primary processor.
The cost in cycles of swapping the execution between the VLIW engine and the
primary processor is equal to the sum of a number of pipeline stages of each one
only (the pipeline stages discarded in one plus the pipeline stages refilled in the
other).

While the primary processor is executing the code, the fetch unit (Fig. 2) issues
different addresses to the instruction cache and the VLIW cache. To the instruction
cache is issued the program counter (PC) content. To the VLIW cache is issued the
address of the instruction in the execute stage of the primary processor (dashed
arrow in Fig. 2). If this instruction has been executed before, there may be a block
with its address in the VLIW cache. On a VLIW cache hit, the VLIW engine takes
over execution. The block being constructed by the scheduler unit is flushed to the
VLIW cache��this block is made to point at the hit block. The contents of all but
the write back pipeline stage of the primary processor are annulled and the PC
receives the memory address that hit the VLIW cache. In subsequent cycles, the
VLIW engine controls the PC.
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FIG. 2. A DTSVLIW machine.

On a VLIW cache miss, the primary processor takes over execution, fetching
from the last PC value computed by the VLIW engine. The fetch unit does not
issue fetches to the VLIW cache again until an instruction arrives at the execute
stage of the primary processor. At this point, the scheduler unit restarts to schedule
a new block, the address of which will be the last address produced by the VLIW
engine when executing the previous block. This connects these blocks forming a
block chain. In steady state, the VLIW cache contains all most frequently executed
traces.

The key issues to be resolved in the DTSVLIW architecture are the scheduling
of the instruction trace into long instructions and the addressing within these long
instructions. The primary processor and the VLIW engine themselves are not a
challenge. In this section, the scheduler engine operation and the VLIW engine long
instruction addressing are examined together with other relevant aspects of the
DTSVLIW architecture. Full details of the architecture can be found in [8].
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3.1. The Scheduler Engine

The scheduler engine is composed of the primary processor plus the Scheduler
Unit (Fig. 2). The primary processor is a simple pipelined processor capable of
executing all instructions of the Sparc Version 7 ISA [35]��the ISA we have
chosen for the implementation of the DTSVLIW machine described in this paper.
When a valid instruction moves from the decode pipeline stage to the execute
pipeline stage, the primary processor sends it to the scheduler unit. The scheduler
unit implements in hardware a simplified version of the first come first served
(FCFS) algorithm, which historically has been used to statically schedule
microcode [4]. We have chosen this algorithm for three reasons. First, it operates
with one instruction at a time and considers instructions in the strict order that
they appear during program execution, which perfectly fits the DTSVLIW mode of
operation. Second, the FCFS algorithm produces optimum or near-optimum
scheduling [4]. Finally, the FCFS algorithm, as presented here, is easy to imple-
ment in hardware in a pipelined fashion (see Section 3.5).

3.1.1. The scheduling algorithm. The DTSVLIW's scheduler engine performs
superblock scheduling dynamically. Superblock scheduling [20] is a compiler
technique derived from trace scheduling [11]. A superblock is a block of instruc-
tions encompassing many basic blocks in which control may only enter at the top,
but may exit from one or more locations. In a compilation system, superblocks are
built in two steps. First, traces are selected using heuristics or profiling. Second, tail
duplication is applied to the trace to eliminate any side entrances, via creating a
unique piece of code for each side entrance.

In a DTSVLIW machine, the execution trace produced by the primary processor
feeds the scheduler unit, which schedules the instructions into blocks of long
instructions and saves these blocks into the VLIW cache. Each block of long
instructions may encompass many basic blocks. Scheduling is performed in a way
that allows any branch inside any block to exit without side effects. The unique
entry point of each block is its first instruction. Therefore, if a path in the program
leads to an instruction inside an existent block, or a branch inside a block follows
a path different than that followed during scheduling, these paths will cause the
scheduling of new blocks. This is equivalent to tail duplication. However, in super-
block scheduling, the compiler selects traces statically and these traces must be
suitable for all input data sets of the program. In contrast, a DTSVLIW machine
performs dynamic trace selection and as such can achieve good performance for all
input data sets.

A core scheduling operation performed by the DTSVLIW is the move up opera-
tion, which moves instructions through a list of long instructions inside the machine
to produce compact long instructions (see Section 3.1.2). This operation is similar
to the move-op with renaming operation of the enhanced pipeline percolation schedul-
ing technique [27]. However, the application of the move-op operation requires the
evaluation of all execution paths that transverse the instruction being moved; on
the other hand, the application of the move up operation requires the evaluation
of the trace path only. The move-op operation is applied in a sequential fashion by
the compiler, while the move up operation is applied in a pipelined parallel fashion
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by the hardware. The application of the move-op operation can cause the genera-
tion of new long instructions whereas the move up operation does not.

The DTSVLIW schedules the code trace observed during execution into long
instructions, all with the same format. For each branch, the long instruction holds
the target address for branching out of the block; however, each long instruction
has a default next long instruction target. This simplifies the implementation of fast
fetch hardware.

3.1.2. The scheduling algorithm implementation. The implemented version of the
FCFS algorithm acts on a list, the scheduling list. This list has a number of elements
equal to BLOCK�SIZE (a hardware constant) and each element contains one long
instruction and a candidate instruction, which holds an instruction for scheduling
into the long instruction. A broad overview of the algorithm is that an instruction
coming from the primary processor in one clock cycle is placed at the end of the
scheduling list on the next clock cycle. On each subsequent cycle, this instruction
can move up to the next higher element in the list if it has not reached the head of
the list, there is space for it in the next element, and there is not a dependency with
instructions in the next element. Fig. 3 shows an example of the algorithm schedul-
ing a fragment of code that adds all elements of a vector. In Fig. 3, slh and slt stand
for scheduling list head and tail, respectively, and the destination register of the
instructions is the rightmost. The scheduling algorithm ignores the nop instruction.
The details of the algorithm's operation follow.

An instruction arriving in the execute pipeline stage of the primary processor in
one cycle is inserted into a suitable slot in the scheduling list in the next cycle. If
there are no resource dependencies on any instruction in the list's tail element, the
incoming instruction is inserted there; otherwise, it is inserted into a new tail ele-
ment. In Fig. 3, instructions 1 and 2 are inserted by the first method, while instruc-
tion 3 is inserted by the second method due to a true data dependency on r8.

An instruction inserted with the first method is a candidate for moving up the list
on subsequent clock cycles. There can only ever be a single candidate instruction
in a long instruction, but each long instruction in the list may have a candidate for
promotion. Thus, candidate instructions of different long instructions can be moved
up in parallel in a clock cycle. After an instruction has been inserted into the end
of the list, the next step is to move this instruction up as far as it can go in the list
of long instructions. An instruction can move up from long instruction i to long
instruction i&1 if it has no true data dependency on any instruction in the long
instruction i&1 and there is a suitable slot available. If the instruction cannot move
up, it is installed in long instruction i. In Fig. 3, instruction 3 is installed in the
fourth cycle, while instruction 8 is moved up in the ninth cycle.

The candidate instruction in i can be placed in long instruction i&1 even if:

v there is an output dependency on any instruction in i&1,

v there is an anti-dependency on any instruction in i, or

v there is a control dependency on any instruction in i (there is a conditional
branch or indirect branch in i)

However, in such cases, the candidate instruction has to be split. The split is done
by renaming either the candidate instruction's output that has caused the
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FIG. 3. Scheduling algorithm running example. (a) C code fragment. (b) Assembly language version
of the C code (c) Four snapshots of a tree instructions wide and four long instructions deep scheduling
list, filled with instructions coming from the priliminary processor after 3, 8, 9, and 11 cycles of the
execution of the first instruction. The shaded instructions in each snapshot are also candidate instruc-
tions.

output�anti-dependency or all outputs if there is a control dependency and by inserting
a copy instruction permanently in the current slot in long instruction i. This copy
instruction performs the copy of the renaming register (or the renaming registers)
content to the instruction's original output (or instruction's original outputs). In
Fig. 3, instruction 7 is split in the ninth cycle. Copy instructions do not cause data
dependencies and they can be overwritten by other instructions that write to the
same registers that they write to during scheduling.

Allowing instructions to cross basic block limits imposed by conditional and
indirect branches provides speculative execution. This is implemented by splitting
instructions and moving up their first part past conditional or indirect branches,
leaving the copy part behind. Conditional and indirect branches do not move up.
They are installed when inserted and establish a tag for their long instruction. All
instructions subsequently placed in this long instruction receive the last established
tag. For example, in Fig. 3, the second instance of instruction 5 receives the tag
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established by instruction 9 in the eleventh cycle. During VLIW execution, the
VLIW engine evaluates branches and validates their tags if they follow the same
direction observed during scheduling. Only instructions with valid tags have their
results written in the machine state. If a conditional or indirect branch does not
follow the same direction during execution, the copy part of the split instruction is
not executed, not committing the corresponding instruction.

When there is no free element for an incoming instruction, the scheduling list
content is sent to the VLIW cache as a block and the incoming instruction is
inserted into the list as the first instruction of a new block. The list is saved as a
block, but on a one long instruction per cycle basis. Nevertheless, instructions can
be continuously inserted into the new block at the same time as the old block is
being saved (see [8] for details).

3.1.3. Multicycle instructions handling. Multicyle instructions, such as integer
divide, floating point multiply, or (sometimes) loads and stores, impact upon both
the operation and performance of the architecture. Their scheduling requires special
care to respect dependencies in any of their cycles. To schedule multicycle instruc-
tions within the DTSVLIW, extra features were added to the scheduling list [7].
These are an extra candidate instruction for each element of the list, the candidate
instruction B, and an extra slot in each VLIW instruction for each multicycle func-
tional unit, the slot B. Two instances, A and B, of a multicycle instruction are
inserted into the scheduling list. These are just copies of the original instruction and
have cross-references to each other's position in the scheduling list. The purpose of
the A and B instructions is to delimit the scheduling list elements in which the
instruction is active to prevent instructions with dependencies being scheduled in
these elements. The primary role of the B instruction is for dependency checking
against instructions moving up.

Instance A is inserted into the tail of the scheduling list. Instance B, on the other
hand, is inserted into the scheduling list tail+(instruction latency&1) position of
the scheduling list in the candidate instruction B and slot B; the scheduling list tail
register is made to point at this element. If this exceeds the maximum block size,
a new block is started at instance A's position in the list. After insertion, the
scheduler unit handles these two instances as other instructions, except that:

v Instance B does not suffer or cause resource dependencies.

v Instance B does not suffer or cause data dependencies related to its inputs.

v Instance A does not suffer or cause data dependencies related to its outputs
but only control dependencies, in which case A's output is renamed and instance B
is split. The copy instruction generated is not placed in a B slot, but in a normal
one.

v Instances A and B move up together; if A cannot move up both are per-
manently placed in their current long instructions (B can always move up if A can
move up).

v If instance B suffers an output or anti data dependency it is split and A is
also renamed.
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v Instance B is not saved in the VLIW cache and is only used for scheduling
purposes.

Multiple scheduling list elements need to be added to a block for a single multi-
cycle instruction. Because of this, the primary processor is required to have only
one instruction in the execute pipeline stage at any time. Therefore, the scheduler
unit only has to add one extra scheduling list element per cycle, since the primary
processor is expected to hold its pipeline to complete the multicycle instruction.
This reduces its performance, but the overall performance of the architecture is
dependent on the VLIW engine performance, not that of the primary processor.

Scheduling a multicycle instruction lengthens a block by the latency of the
instruction minus one. This impacts on efficiency since the longer block is more dif-
ficult to fill, reducing parallelism and wasting space in the VLIW cache. Some
instructions have very long latencies and, in certain programs, are too frequent to
be left to the primary processor to execute (one option for dealing with them):
floating-point divide is one example. These instructions are scheduled as multicycle
instructions, but the latency used by the scheduler unit is not the same as the
instruction latency. The latency used by the scheduler unit is set to a maximum (4
for example) and, under VLIW execution, the VLIW engine holds the execution of
the VLIW instruction containing these instructions for the number of extra cycles
necessary for its proper execution. This saves on VLIW cache space but does not
affect the reduction in parallelism.

3.1.4. Nonschedulable instructions handling. A few instructions are too complex
for the VLIW engine and are always executed by the primary processor. When such
an instruction is sent to the Scheduling unit, it flushes the scheduling list to the
VLIW cache.

3.2. DTSVLIW Long Instruction Format

The format of the long instructions of the DTSVLIW can be appreciated with the
help of Fig. 4. In this figure, two long instructions are shown, and each of them has
five instructions. The individual instruction tags are represented by the shaded
fields. The first long instruction does not have conditional or indirect branches;
therefore, all instructions have tags with the value zero. Instructions with tags equal
to zero are executed unconditionally. The second long instruction has two condi-
tional branches. In this long instruction, only the branch ble (0) loop is executed
unconditionally. The (0) in this branch indicates which of the many DTSVLIW's
conditional code registers (CC registers) the branch is testing. These CC registers
can be renamed as shown in Fig. 4. The instruction subcc r1, r3, r0: (1) writes into
the conditional code register 1, as indicated by the (1). The copy instruction COPY
cc1, cc0 copies the content of the cc1 to cc0: the original subcc was split and moved
up by the scheduler unit. The branch ble (0) loop changes this long instruction's tag
value to 1, and three instructions receive this new tag value, including the second
branch, bz (1) exit. When installed, this second branch changes the tag again, and
the instruction add r8, r2, r3 receives the new tag value, 2. When executing this long
instruction, the VLIW engine validates the tags 1 and 2 by checking if the branches

1491DYNAMICALLY SCHEDULING VLIW INSTRUCTIONS



FIG. 4. DTSVLIW long instruction format examples.

follow the same direction observed during scheduling. Only instructions with valid
tags, including branches, have their results written to the machine state.

3.3. VLIW Engine Instruction Addressing

Once instructions are scheduled into blocks of long instructions, the VLIW
engine instruction addressing has to be different from the primary processor
instruction addressing. In the DTSVLIW, a block of long instructions is stored as
a VLIW cache line. Since the only entry point of a block is the first instruction
scheduled in the block, there is a single address for the whole block, and this is the
address of the first instruction scheduled in the block. For fetching a long instruc-
tion from the VLIW cache, the VLIW engine uses a fetch address with two fields:
the address field and the line index field. The address field is a Sparc ISA address
and specifies the block, while the line index field specifies a long instruction in the
block. This long instruction address is produced via concatenating the PC with a line
index register maintained by the VLIW engine and incremented from zero.

The number of valid long instructions in a block is stored into the VLIW cache
with the block. The line index register content is compared with this number to
determine the fetch of the last valid long instruction in a block. When they have the
same value, the next fetch is made using the address of the instruction that follows
the block, which is also stored into the VLIW cache line. This mechanism requires
only two instruction addresses to be stored in a cache line: the address of the first
instruction of the block and that of the following block. Individual instruction
addresses are not required, since the block will execute as a whole unless a branch
is made out of the block, in which case the information needed to build the target
address is stored as part of each branch.

3.4. The VLIW Engine

The VLIW engine of the DTSVLIW has a simple fetch-execute-write back
pipeline for each functional unit (multicycle instructions execute in pipelined func-
tional units with more than one execute stage). A decode stage is not necessary as
decoded instructions are saved in the VLIW cache. When blocks are sequentially
executed no bubbles occur in the VLIW engine pipelining, and only a single bubble
occurs when a branch is made out of a block and another block is hit in the VLIW
cache. All conditional and indirect branches are resolved in the execute stage of the
VLIW engine.

3.5. Scheduler Unit Implementation

The scheduler unit can be implemented in a pipelined fashion as depicted in
Fig. 5. One or more pipeline stages can be used for inserting instructions into the
scheduling list, each scheduling list entry can be made a pipeline stage, and none,
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FIG. 5. Scheduler unit pipeline.

one, or more pipeline stages can be used for saving the scheduled long instructions
into the VLIW cache. The checking operations required on the scheduling list on
each clock cycle are just comparison operations between each candidate instruction
and the instructions in the current and next element of the list. Each check opera-
tion is independent. However, the decision to install, split, or move up a candidate
instruction may depend on a chain of decisions as long as the scheduling list.
Nevertheless, the information necessary to each one can be gathered in a way
similar to carry propagation in carry-lookahead adders [28, Appendix A], and the
logic required can be made as fast as an and-or gate delay. It can be proved with
the help of Fig. 6.

In Fig. 6, the value of CRd(i), CTd(i), COd(i), Rd(i), Td(i), Od(i), Ad(i), and
Cd(i) for each element i of the list (0<i<block size&1) is available at the beginn-
ing of each clock cycle after the comparators delay (xor gate delay). Invalid
candidate instructions never produce CRd(i), CTd(i), or COd(i) signals. Valid
candidate instructions could influence the Rd(i), Td(i), Od(i), and Ad(i) signal
values; for this reason, their companion position is used for disabling the com-
parators associated with the slot where the companion instruction is. CRd(i) is also
disabled if there is more than one slot available in i&1 for candidate instruction i.

Let us analyze the installing case first. A valid candidate instruction must be
installed on true data dependencies or resource dependencies. So, if Td(i) is true
there is an instruction already installed in long instruction i&1 causing a true data
dependency on the candidate instruction i. In this case, the candidate instruction in

FIG. 6. Scheduling list. Rd(i), Td(i), Od(i), Ad(i), and Cd(i) stand for resource dependency, true
data dependency, output data dependency, anti-data-dependency, and control dependency in candidate
instruction i, respectively. CRd(i), CTd(i), and COd(i) stand for resource dependency, true data
dependency, and output data dependency on candidate instruction i caused only by the candidate
instruction in long instruction i&1, respectively.
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i must be installed. If only CTd(i) is true one cannot tell whether or not the
candidate instruction should be installed, because the candidate instruction in i&1
might move up in this cycle. The same can be said about Rd(i) and CRd(i) signals.
Nevertheless, using the position of the candidate instruction in the list, which is
recorded in each valid scheduling list entry, an install signal can be computed for
each candidate instruction in the scheduling list as follows:

install signal

=(i�0)

+(i�1).(Td(1)+Rd(1)+CTd(1)+CRd(1))+(i�2).(Td(2)+Rd(2)

+[CTd(2)+CRd(2)].[Td(1)+Rd(1)+CTd(1)+CRd(1)])

+(i�3).(Td(3)+Rd(3)+[CTd(3)+CRd(3)].[Td(2)+Rd(2)+[CTd(2)

+CRd(2)].[Td(1)+Rd(1)+CTd(1)+CRd(1)]]). (1)

The equation above represents the logic necessary to compute the install signal
for a DTSVLIW machine with a block size equal to 4. The rule to produce
equations for bigger blocks is easily deduced by visual inspection. The operator
``� '' means binary vector comparison: (i�x) evaluates to true if i is equal to x.
The operator ``+'' means logic or, and the operator ``.'' means logic and.

When the position of the candidate instruction i is equal to zero, the first line of
the equation evaluates to true and, consequently, the install signal becomes true.
This implements the first rule for installing a candidate instruction; i.e., if the
candidate instruction is in the head of the scheduling list it is installed. If i is equal
to 1, only the second line of the equation can evaluate as true. In this case, the
candidate instruction i will be installed if there is a true dependency on any instruc-
tion installed in long instruction i&1 (the head of the list), there is not a slot
available in this long instruction, or there is a true dependency or resource
dependency on a valid candidate instruction in this long instruction. For i greater
than 1, the information from lower order list elements is added to each equation
line as shown.

A split signal can be computed for each candidate instruction in the scheduling
list of a DTSVLIW machine with a block size equal to 4 as follows:

split signal

=(i�1).(Od(1)+Ad(1)+Cd(1)+COd(1))

+(i�2).(Od(2)+Ad(2)+Cd(2)+COd(2)

.[Td(1)+Rd(1)+CTd(1)+CRd(1)])

+(i�3).(Od(3)+Ad(3)+Cd(3)+COd(3)

.[Td(2)+Rd(2)+[CTd(2)+CRd(2)].

[Td(1)+Rd(1)+CTd(1)+CRd(1)]]). (2)
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Again, the rule to produce equations for bigger blocks is easily deduced by visual
inspection. It is important to observe that part of this equation comes from the pre-
vious one. This is so because an output dependency caused by COd(i) generates a
split signal only if the candidate instruction in element i&1 of the scheduling list
is going to be installed.

If the split signal is true, the respective candidate instruction is split. If the install
signal is true, the candidate instruction is installed. If the install and the split signals
are both true the respective candidate instruction is installed. If the candidate
instruction is not going to be installed or split, it is moved up.

The install and split signal generation is the most complex operation performed
by the scheduler unit, and its complexity is governed by the block size. Since a
block of 32 long instructions is a large block, the scheduler unit design does not
pose constraints on the cycle time of DTSVLIW machines. This is because the com-
plexity of the logic necessary for generating these signals is equivalent to that of an
adder and DTSVLIW machines with data words of 32-bits or more have to per-
form integer add operations in one cycle.

3.6. Load�Store Instructions and Memory Aliasing Detection

Load and store instructions can be split and moved up by the scheduling algo-
rithm without restrictions. For the dependency test, their data addresses are com-
pared with the data address of other load�store instructions, while the registers they
use (including those used to compute data addresses) are compared with registers
of other instructions (including load�store). Memory renaming registers provide for
the renaming of memory positions. Memory aliasing [12] can occur, as the
memory address observed during scheduling is not necessarily the same during
VLIW execution. To detect memory aliasing and generate memory aliasing excep-
tions during VLIW execution, load and store instructions receive two extra fields
when they are scheduled: the order and the cross bit fields. The order field receives
the load�store insertion order, which is copied from the load�store order counter.
This counter is zeroed every time the scheduling list is found empty and is
incremented every time a load�store is inserted into the scheduling list. The cross bit
field is set in the load�store when it is placed in a long instruction containing a store
or a memory copy instruction generated from a store split.

The VLIW engine keeps a store list and a load list, which are emptied every time
a block starts execution. During VLIW execution, loads and stores with the cross
bit set have their addresses and order fields stored in these lists as they execute.
Load instructions executed in VLIW mode have their addresses associatively com-
pared with the store addresses in their long instruction and all store addresses in
the store list. On an address match, if the order field of the load is smaller than the
order field of the corresponding store (which means that a late store to the same
address has been executed), an aliasing exception is signaled. The store instructions
executed in VLIW mode have their addresses associatively compared with the load
and store addresses in the same long instruction and all load and store addresses
in the load and store lists. On an address match, if the order field of the store is
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smaller than the order field of the corresponding load�store, an aliasing exception
is signaled.

3.7. Exception Handling

Exceptions (interrupts) may be generated by the execution of some instructions,
such as load�store (page faults, access violations) or divide (divide by zero).
However, split instructions should not signal exceptions until their copy part is
executed. To avoid uncommitted instructions generating exceptions but to still
allow true exceptions to be handled, an exception bit is added to each renaming
register of the DTSVLIW. When a split instruction generates an exception, the
exception bit of its renamed destination register is set and execution proceeds nor-
mally. If this register is read by any other instruction, the exception bit is
propagated to the destination registers of this instruction. If an input register with
an exception bit set is committed to the machine state, an exception is signaled.

The DTSVLIW uses the checkpointing exception handling mechanism, proposed
by Hwu and Patt [19]. Checkpointing occurs at the beginning of the execution of
each block of long instructions, when all registers that make up the Sparc ISA state
are saved in shadow registers. Store instructions executed in the block cause the
data they overwrite in the data cache to be saved in the checkpoint recovery store
list. This list contains the address, data overwritten, and data type.

If the VLIW engine detects an exception during the execution of a block, the
scheduler engine enters a recovery mode of execution. In this mode, registers are
restored from the shadow registers, each entry of thecheckpoint recovery store list
is written back into the data cache, and the load and store lists are emptied. If the
exception detected is an aliasing exception, the VLIW cache entry containing the
block that caused the exception is invalidated. Execution is then resumed.

For an aliasing exception, execution resumes in normal trace mode and the block
that has caused it is scheduled in a way that prevents new aliasing exceptions: data
dependencies keep loads�stores in a new order inside the block, different from
before. For other exceptions, execution resumes in exception mode until the excep-
tion repeats, from which point the operating system handles the exception. In
exception mode only the primary processor operates.

There are alternative schemes to this, but these need further research [8].

3.8. Differences between DTSVLIW and DIF

The DTSVLIW architecture differs from the DIF architecture in the organization
of the cache used by the VLIW engine, in its scheduling algorithm, in its register
renaming, and in the VLIW engine register access mechanism. The unit of com-
munication between the DIF cache and its VLIW engine is an entire block of long
instructions, whereas the DTSVLIW machine accesses one long instruction per
VLIW cache access. This should make the DTSVLIW VLIW cache implementation
simpler than the DIF VLIW cache. A DIF machine schedules instructions using a
hardware table, which has as many entries as resources in the machine and records
the earliest long instruction in which each resource is available. Its proposed
scheduler implements the greedy algorithm, by checking all resources necessary for
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each new instruction against this table and scheduling the instruction in the earliest
long instruction possible. The DTSVLIW uses a simplified pipelined version of the
first come first served algorithm, which operates over a list of long instructions. An
instruction has only to be checked for dependencies against other instructions in its
current and next position in the list, as opposed to all resources available in the
machine. Instead of using copy instructions to implement register renaming, a DIF
machine has a number of instances of each ISA register and extra bits are added
to each register specifier to specify the register being used during VLIW execution.
A register-mapping table is used to access the current ISA register set. Renaming
is performed by specifying the extra bits during scheduling and by copying the new
register mapping��the exit map��to the register-mapping table every time the
execution leaves a block. Each exit point of a block (all branches and the final long
instruction) has to carry its own exit map. This mechanism may not be practical for
machines with a large number of physical registers, however. The Sparc ISA, for
example, allows processor implementations with as many as 520 integer registers
due to its register windows. Although most Sparc processors have only 128 integer
registers, a single exit map for such a processor with four instances of each register
would require 256 bits only for integer registers. The DTSVLIW splits instructions
with the purpose of renaming registers to overcome data and control dependencies
and the copy instructions generated are simpler to handle than mapping tables.

The DIF VLIW engine accesses its register file differently to the DTSVLIW. It
has to translate each register specifier to access the register file during VLIW execu-
tion because of its renaming mechanism��this translation is in the data path of the
DIF VLIW engine. A DTSVLIW machine, on the other hand, accesses its register
file directly.

4. EXPERIMENTAL METHODOLOGY

We have implemented a parameterized and instrumented simulator of the
DTSVLIW architecture to perform the experiments described in this paper. This
simulator executes ordinary programs for the Sparc Version 7 ISA compiled with
standard compilers. Integer programs from the SPEC95 benchmark suite have been
compiled and used as input for the simulator.

4.1. The DTSVLIW Simulator

The DTSVLIW simulator has been implemented in C (23 K lines of code) and
performs execution-driven simulation. To guarantee correct simulation results, all
results have been produced with the simulator running in a special mode called test
mode. The test mode puts two machines to run together: the DTSVLIW and a test
machine with the same characteristics of the primary processor of the DTSVLIW.
The DTSVLIW starts first, and every time an instruction or a block of long instruc-
tions is completed, the simulator switches to the test machine, which runs until its
PC becomes equal to the DTSVLIW PC. The Sparc ISA state of both machines is
compared and, if not equal, an error is signalled and the simulation interrupted.
The test mode has been very useful not only to validate the execution but also
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because in this mode it is possible to measure the precise number of instructions
necessary for the execution of a program, which the test machine can provide. A
DTSVLIW simulator alone cannot provide this number due to copy instructions
and instructions executed speculatively.

The simulator fully executes all user-level instructions; however, it does not
execute operating system instructions. When a system call occurs during simulation,
a module of the simulator intercepts it. This module decodes the system call, copies
its arguments, makes the corresponding system call in the host's operating system,
copies the results of the system call into the simulated program's memory, and then
restarts the execution of the simulated program.

The DTSVLIW parameters that are invariant for all simulations are presented in
Table I, while the parameters that we have varied to appreciate their influence on
the DTSVLIW performance are shown in Table II together with their default
values. Except when stated otherwise, the default values were used in the simula-
tions. Each program was run for 50 million or more instructions each experiment,
as counted by the test machine. We have chosen to run this number of instructions
because this is optimistically the number of instructions that a DTSVLIW machine
is capable of executing between operating system context switches. (Supposing that
the DTSVLIW can execute five instructions per cycle, a clock rate of 1 GHz, and
one context switch every 10 ms.)

4.2. Benchmark Programs

The SPECint95 benchmark programs and their respective input data used in the
experiments reported in this paper are shown in Table III. All programs have been
compiled with the gcc 2.7.2 compiler, using optimization flag &O. In this level of
optimization, the gcc compiler performs several optimisations such as automatic
register allocation, common subexpression elimination, invariant code motion from
loops, induction variable optimizations, constant propagation and copy propaga-
tion and filling of delay slots. We could have used the higher levels of optimization,

TABLE I

Fixed Parameters

Trace processor Four-stage (fetch, decode, execute, and write back) pipeline

Not taken branches cause a 2-cycle bubble in the pipeline (the Sparc
ISA's delayed branches allow for zero-bubble taken branches)

Instructions following a load, requiring the data loaded cause a one-
cycle bubble in the pipeline

Decoded instruction size 6 bytes

VLIW engine list sizes Load=store=checkpoint recovery store=unlimited

Scheduler unit pipeline Inserting=1 stage

Splitting and moving up=block-size stages

Saving=1 stage
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TABLE II

Variable Parameters

Parameter Default value

Number of VLIW engine functional units Equal to the long instruction size
VLIW engine functional units type Untyped (can execute any instruction)
Number of renaming registers Unlimited
Next long instruction miss penalty No penalty (0-cycle)
Instructions latency 1-cycle
VLIW cache size 3072-Kbyte
VLIW cache associativity 4-way
Instruction cache Perfect (no miss penalty)
Data cache Perfect (no miss penalty)

&O2 or &O3; however, these levels include optimizations such as loop-unrolling
and function inlining whose effect in the DTSVLIW performance would require a
careful study in isolation. We have left the study of the compiler-DTSVLIW
architecture interaction for future work.

4.3. Metrics

The instructions per cycle (IPC) index is the main performance measurement
index used in this paper. It has been produced by dividing the number of instruc-
tions necessary to execute the program, as counted by the test machine, by the
number of cycles taken for DTSVLIW execution.

We refrain from averaging benchmark performances most of the time and show
performance measurements for each individual benchmark. However, sometimes
averages are useful. Jacob and Mudge [21] and Giladi and Ahituv [15] have dis-
cussed which average should be used when dealing with computer performance
indices and have suggested the use of the harmonic mean for indices like IPC.
Therefore, when appropriate we use the harmonic mean. Nevertheless, we also
show, for extra clarity, the arithmetic mean between parentheses at the side of the
harmonic mean in the form (4.1 u.a.m.), where u.a.m. means using arithmetic mean.

TABLE III

Benchmark Programs and Input Data

Benchmarks Inputs

compress 20000 q 2131
gcc -03 jump.i
go 40 19 null.in
ijpeg vigo.ppm �GO
m88ksim dhry.big
perl primes.pl
vortex vortex.in
xlisp queens 7
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5. EXPERIMENTS

In this section, we present and discuss the experiments carried out to evaluate the
integer performance of the DTSVLIW architecture. We start by examining the
effect of some architecture parameters on the DTSVLIW performance. We then
present comparisons between the DTSVLIW and the DIF.

5.1. Effect of Some Architectural Parameters on the DTSVLIW Performance

5.1.1. Block Size and Geometry. Fig. 7 shows the effect of the block size (in
number of instructions) and block geometry (instructions per long instruction
(width) versus long instructions per block (height)) on the DTSVLIW performance.
To ensure the absence of extraneous effects, we have used perfect instruction and
data caches (no miss penalty), large VLIW cache (3072 Kbyte), and no next long
instruction miss penalty to produce the results shown in Fig. 7. The numbers in the
figure's legend are instructions per long instruction and long instructions per block,
respectively.

As the graph in the figure shows, the performance of machines with the same
block sizes and different geometry is significantly different. For example, the perfor-
mance of the machine with 4_8-block geometry is lower than the machine with
8_4-block geometry for all benchmark programs. The block width and height
affect the cost of implementing a DTSVLIW machine in different ways. Large long
instructions imply many functional units, data cache ports, and register file ports.
A Large number of long instructions in a block imply many renaming registers and
long load�store and checkpoint recovery store lists. Increasing just the width or just
the height of the block does not appear to be the best approach to achieve cost�
effective performance��a DTSVLIW with 8_8-block geometry performs better
than machines with 4_16-block geometry and 16_4-block geometry in the
majority of the SPECint95 benchmarks. The DTSVLIW benefits from large block
sizes but not linearly. A 16-fold increase in the number of instructions of a block
(from 4_4 to 16_16) does not quite double its performance.

FIG. 7. Variation of parallelism with the block size and geometry.
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The performance of the 16x16 configuration on the ijpeg benchmark is extraor-
dinary and has been investigated. This benchmark spends most of its execution in
one loop. With a large enough block size, more than one iteration of the loop can
be scheduled into a single block, allowing instructions from these iterations to be
overlapped, extracting much greater parallelism. (In Fig. 3, instruction 5 of the
second loop iteration overlaps with instructions of the first.)

5.1.2. VLIW Cache Size. The results of Fig. 7 represent the highest achievable
SPECint95 performance of the DTSVLIW for the block sizes shown. However,
when the VLIW cache is smaller the performance is expected to be lower due to
premature flushing of useful scheduled blocks by replacement blocks, leading to the
need to rebuild the blocks flushed. This requires the primary processor to run,
reducing parallelism.

Fig. 8 shows the impact of different VLIW cache sizes (in Kbytes; the directory
information is not included) on the performance of a DTSVLIW machine with
8_8-block geometry. The associativity is the same for all sizes and equal to 4. As
the graph shows, some benchmark programs do not demand a large VLIW cache
size in order to exploit the performance of the DTSVLIW. The benchmarks com-
press, ijpeg, and xlisp have small instruction working sets and are insensitive to the
VLIW cache size, achieving the same performance for the range of sizes used.
However, go, which has a large working set, would appear to benefit from a VLIW
cache larger than 3072 Kbyte.

Some benchmarks sometimes show better performances with smaller VLIW
caches, as for example compress for the 48- and 96-Kbyte run, and xlisp for the
96-Kbyte run. This happens because, with a smaller VLIW cache, sometimes blocks
have to be replaced and later rescheduled, and the newer block versions contain
traces that are more frequently executed to the end than the replaced blocks.

5.1.3. VLIW Cache Associativity. Fig. 9 shows the effect of the VLIW cache
associativity on the performance of the DTSVLIW. Two cache sizes are presented;
96- and 384-Kbyte, and the associativity is varied from 1 to 8. The figure shows
that ijpeg is insensitive to the VLIW cache associativity in this range; however,
m88ksim, perl, xlisp, and compress (for the 96-Kbyte cache) benefit from extra

FIG. 8. Variation of the parallelism with the VLIW cache size.
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FIG. 9. Variation of parallelism with VLIW cache associativity.

associativity. From Figs. 8 and 9 it is possible to infer that a two- or four-way set-
associative 384-Kbyte VLIW cache offers a cost-effective solution for a DTSVLIW
machine with 8_8-block geometry.

5.1.4. Multicycle instructions latency. The Sparc 7 ISA does not have integer
divide or multiply instructions, but only a multiply-step instruction that executes in
a single cycle [35]. Therefore, from the set of integer instructions, only loads and
stores require more than one cycle to execute in the Sparc 7 ISA. The graph in Fig.
10 shows the effect of the load�store instructions latency on the performance of the
DTSVLIW with 8x8-block geometry. In the figure's legend, LxSy stands for load
instructions with latency of x and store instructions with latency of y. In these
results, we express the latency as the number of cycles necessary for the load�store
execution and the functional units are fully pipelined.

As the graph in the figure shows, the latency of load instructions has a severe
impact in the DTSVLIW performance��25.90 (25.30 u.a.m.) performance loss
with 2-cycle and 50.70 (50.20 u.a.m.) with 3-cycle load latency. This occurs
because load instructions are frequent in integer code and loaded data is usually
required shortly after the load instructions. On the other hand, the latency of store

FIG. 10. Variation of the parallelism with the load�store instructions latency��8_8-block.
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FIG. 11. Variation of the parallelism with the load�store instructions latency��8_16-block.

instructions does not have a strong impact on the DTSVLIW performance. Store
instructions are also frequent in integer code; however, the stored data is often not
required again for a relatively large number of instructions.

The graph in Fig. 11 shows the impact of load�store latency on the performance
of a DTSVLIW machine with 8x16-block geometry. The impact is smaller with this
geometry �� 20.60 (20.40 u.a.m.) performance loss with 2-cycle load latency and
43.10 (42.70 u.a.m.) with 3-cycle load latency on average. With a longer block,
the scheduler unit has more opportunities to accommodate instructions in the
empty VLIW instructions created by the scheduling of multicycle loads. This results
in better scheduling and better performance, but the latency impact is still high and
there are costs for using long blocks (see Section 5.1.1).

As mentioned in Section 3.1.3, the primary processor does not pipeline multicycle
instructions but retains them on its execute pipeline stage until they complete
execution. Table IV presents the percentage of cycles the DTSVLIW spends waiting
for these multicycle instructions to complete in the primary processor. As the table
shows, the cost of waiting in the primary processor is very small and it is not an
issue in the impact of the load�store latency on the DTSVLIW performance. Table
IV also presents the percentage of VLIW execution cycles for the DTSVLIW with
8x16-block geometry. This machine configuration executes 98.560 (98.570 u.a.m.)
of the cycles in VLIW mode on average. This strongly suggests that the DTSVLIW
architecture is effective in taking advantage of its VLIW engine.

There are two simple approaches for reducing the impact of the load instruction
latency on the DTSVLIW performance. The first is always to implement loads with

TABLE IV

Percentage of Cycles Waiting Load�Store Latency in the Primary Processor and Percentage
of VLIW Execution Cycles

compress gcc go ijpeg m88ksim perl vortex xlisp H.Mean A.Mean

Waiting cycles (8_8) 0.140 0.110 0.080 0.000 0.010 0.010 0.030 0.010 0.000 0.050

Waiting cycles (8_16) 0.110 0.180 0.210 0.000 0.010 0.020 0.050 0.020 0.010 0.080

VLIW cycles (8_16) 97.970 98.200 97.490 99.980 99.870 96.370 98.890 99.800 98.560 98.570

1503DYNAMICALLY SCHEDULING VLIW INSTRUCTIONS



1-cycle latency. This would, in some cases, almost double the DTSVLIW clock
cycle length and, therefore, it may not be a cost-effective alternative. The second is
to implement loads with 1-cycle latency and to use a small and fast data cache (8-
Kbyte direct mapped, for example). This would increase the Data cache miss rate,
but it may be a more cost-effective alternative. Another approach to further reduce
the impact of loads on the DTSVLIW performance is to use hardware- or software-
implemented data prefetching [38]. This approach can also be used together with
one of the former approaches.

5.1.5. A feasible DTSVLIW implementation. So far, the results presented have
been produced under ideal assumptions to allow appreciation of individual
architecture parameters. However, the DTSVLIW architecture permits straight-
forward implementation using current Very large scale integrated (VLSI) circuit
technologies if reasonable design parameters are used. The graph in Fig. 12 presents
the performance of a DTSVLIW machine with a set of parameters that permits
implementation using available technology. These parameters are:

v Blocks with 16 long instructions and 8 instructions per long instruction.

v 12-wide VLIW engine, with typed (specialized) functional units and 2-cycle
next long instruction miss penalty. The functional units used are: 5 integer, 3
load�store, 2 floating-point, and 2 branch funtional units. Although this VLIW
engine has 12 functional units, the VLIW fetch is 8-instruction wide because the
block is 8-instruction wide. This is the main reason why we are using 2-cycle next
long instruction miss penalty. One extra cycle has been added to the VLIW engine
pipeline to allow the unpacking of 8-instruction wide long instructions, which are
fetched from the VLIW cache, into the 12-instruction wide long instructions
required by VLIW engine. The scheduler unit is conscious of the number of func-
tional units available and schedules the 8-instruction wide long instructions respect-
ing their availability per cycle.

v 2-cycle latency load instructions and 1-cycle latency store, integer (the Sparc
7 ISA does not have integer divide or multiply but only multiply-step, which can
execute in one cycle), branch, and floating-point instructions. Latency of one cycle

FIG. 12. Performance of a feasible DTSVLIW machine.
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is a low latency for floating-point instructions; nevertheless, this latency has been
used because the benchmarks are integers and, therefore, the number of floating-
point instructions executed is zero or negligible.

v 192-Kbyte 4-way set-associative VLIW cache with 2-cycle fully pipelined
access.

v 8-Kbyte 2-way set-associative instruction cache with 1-cycle access and
8-cycle miss penalty.

v 32-Kbyte 2-way set-associative data cache with 2-cycle fully pipelined access
and 8-cycle miss penalty.

v Perfect (pre-initialized with all instructions and data) unified second level
cache.

v The number of entries of the VLIW engine lists (load, store, and checkpoint
recovery store) and the number of renaming registers has been left unlimited.
However, the maximum number of entries required for these lists and the maximum
number of renaming registers used during the simulation have been measured and
are shown in Table V.

Figure 12 puts together, in the form of stacked bars, the result of various simula-
tions to allow appreciation of the impact of various architectural parameters in the
performance of this DTSVLIW machine. The first bar is the performance of the
DTSVLIW with the parameters presented. The following bars represent the extra
performance that would be added if the corresponding cost (shown in the legend)
was removed. Table VI shows these costs as percentages of the maximum perfor-
mance, together with other relevant information. Some items in this table do not
have a harmonic mean because it cannot be computed when the list of values
contains zeros.

As Fig. 12 and Table VI show, the load instruction latency is the principal
contributor to the reduction of this DTSVLIW machine performance, and its
cost is significant for all benchmark programs used. On the other hand,
the second most important parameter that affects the machine performance��the
VLIW cache size��has a significant impact only on the gcc, go, and vortex

TABLE V

Resource Consumption of a Feasible DTSVLIW Machine

compress gcc go ijpeg m88ksim perl vortex xlisp H.Mean A.Mean

Integer renaming

registers

33 49 44 24 38 33 39 28 34.32 36.00

Flag renaming

registers

17 20 17 15 18 21 18 17 17.70 17.88

Memory renaming

registers

14 14 8 7 11 8 15 8 9.78 10.63

Load list size 10 15 16 7 10 11 12 10 10.72 11.38

Store list size 32 15 32 5 13 12 23 14 13.24 18.25

Checkpoint rec. store

list size

48 34 48 11 20 31 39 25 25.82 32.00
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TABLE VI

Performance of a Feasible DTSVLIW Machine

compress gcc go ijpeg m88ksim perl vortex xlisp H.Mean A.Mean

Instructions per cycle 2.07 1.33 1.31 2.77 2.56 2.17 1.92 1.98 1.89 2.01

Load latency cost 15.640 8.160 9.220 20.470 15.530 31.670 13.260 27.320 14.500 17.660

VLIW cache cost 0.000 33.270 29.640 0.000 0.010 0.000 20.260 1.310 �� 10.560

Data cache cost 19.240 3.390 3.300 1.380 0.980 0.180 5.690 3.580 0.950 4.720

Next LI miss cost 5.370 2.230 3.380 0.030 5.840 5.490 2.740 6.720 0.220 3.970

Typed F.U. cost 0.000 4.480 4.340 3.980 1.960 1.970 1.510 5.430 �� 2.960

Instruction cache cost 0.010 7.810 4.920 0.010 0.230 0.950 5.170 0.050 0.020 2.390

Aliasing exceptions 0 4 39 0 1 0 1 0 �� 5.63

VLIW engine exec.

cycles

96.430 53.420 60.470 99.970 98.470 86.560 73.580 99.090 79.190 83.500

Valid instructions per

block

25.180 39.250 35.150 38.950 36.440 41.050 44.960 30.350 35.350 36.420

benchmarks. It is important to note, however, that, although large, this VLIW
cache can hold only 256 blocks and only 350 (360 u.a.m.) of the instructions
saved in these blocks during the simulations have been valid (Table VI, last row).
Therefore, if nop instructions had not been saved in the VLIW cache, its capacity
would have been better used and the performance of gcc, go, and vortex would
have been significantly better. In addition, if the VLIW cache capacity had been
better used, the instruction cache could have been even smaller than described.
Instruction cache misses cause significant performance losses only for gcc, go, and
vortex and, if the VLIW cache capacity is large enough, the size of the Instruction
cache can be smaller than the size used [8].

Next long instruction misses have a small, although significant, impact on the
machine performance. If nop instructions were not saved in the VLIW cache, a
more elaborated VLIW fetch would be required, which would result in the need for
the next long instruction miss penalty to be even higher than 2-cycle. However, the
next long instruction address can be predicted and the number of misses reduced
using techniques similar to those used in dynamic branch prediction.

The impact of using typed (specialized) as opposed to untyped functional units
(capable of executing all instructions) is also small. This means that the combina-
tion of specialized functional units used is in good balance with the instruction-level
parallelism available in the benchmarks.

Table V shows that the number of renaming registers required for execution is
within a range that does not cause significant cycle time increase due to register file
size. The VLIW engine lists (load, store, and checkpoint recovery store) do not
reach unacceptable sizes either, and they can be implemented without imposing
extra penalty on the cycle time. However, since the number of aliasing exceptions
is low (Table VI), a cheaper aliasing exception detection and recovery mechanism
is advisable.

A performance of 1.89 (2.01 u.a.m.) instructions per cycle in a machine with 12
functional units seems to be low. However, experiments with the PowerPC 620, an
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aggressive Superscalar machine with six functional units, have shown an average
(arithmetic mean) of 1.2 instructions per cycle only [28, p. 341]. Taking into con-
sideration that DTSVLIW machines can be implemented with clock speed higher
than equivalent Superscalar machines such as the PowerPC, it appears to be worth
implementing DTSVLIW machines with current technology. Simple machines with
fast clocks have proved to be more powerful than their more complex counterparts
[32]. In addition, DTSVLIW machines using equivalent hardware can perform
better than Superscalars [8, 9].

5.2. DTSVLIW versus DIF

Figure 13 shows a comparison between a DTSVLIW and a DIF machine. The
performance data of the DIF machine and the parameters used for both machines
have been collected from [26]. The parameters were: 2 branch units plus 4 untyped
functional units; 2-way set-associative instruction cache with 128-byte lines, 16 lines
per set (4 Kbyte), and 2 cycle miss penalty; direct-mapped data cache with 128 lines
each of length 32 bytes (4 Kbyte), and a 2-cycle miss penalty; 2-way set associative
VLIW cache with 512x2 blocks; and a block size of 6 long instructions of 6 instruc-
tions each.

From this data and assuming an instruction size of 6 bytes for both machines, the
DTSVLIW VLIW cache size is 216 Kbyte and the DIF VLIW cache size 463
Kbyte. The DIF VLIW cache is larger due to the DIF register renaming system.
For each block exit point, the DIF machine requires 19 bytes for the exit map [26].
The number of renaming registers is different for the same reason. Four instances
of each integer and floating point register were required in the DIF simulation, i.e.,
96 integer and 96 floating point extra registers for renaming, while the maximum
number of integer and floating point renaming registers required in the DTSVLIW
simulation was 18 and 6, respectively.

As can be seen in Fig. 13, the average performance of the two machines is similar:
2.4 (2.4 u.a.m.) instructions per cycle for the DTSVLIW and 2.2 (2.2 u.a.m.) for
DIF, a difference of approximately 100 (100 u.a.m.) in favor of DTSVLIW. DIF
performs better in compress and xlisp, while DTSVLIW performs better in the
remaining benchmarks. These results must be viewed with caution though, because
the experiments carried out with the DIF implementation have used a trace

FIG. 13. DTSVLIW versus DIF.
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simulator based in the PowerPC ISA, running the benchmarks with possibly dif-
ferent inputs and compiled with a different compiler with possibly different compiler
flags. Nevertheless, a similar performance between the two machines was expected,
since both implement the same concept, although in different ways.

6. CONCLUSION

This paper presents an architecture named the dynamically trace scheduled
VLIW. This can be used to implement machines that execute code of current RISC
or CISC ISAs in a VLIW fashion, delivering instruction-level parallelism with back-
ward code compatibility. The architecture takes advantage of the code execution
locality of current programs: Using the proposed architecture, the first time that a
code fragment is executed, it is scheduled into long instructions and saved in a
VLIW cache. In subsequent executions, a VLIW engine executes it in a VLIW
fashion.

The experimental evaluations presented in this paper have shown that the
DTSVLIW performance is basically similar to that of the DIF [26], but it is
achieved with fewer hardware resources: 18 integer and 6 FP renaming registers in
the DTSVLIW simulation, 96 integer and 96 FP in the DIF; 216-Kbyte DTSVLIW
VLIW cache, 463-Kbyte DIF VLIW cache. As detailed in Section 3.5, the core logic
of the scheduler engine is straightforward to implement, being comparable to an
adder, and as such seems to be much more feasible than that of the DIF.

The design of the DTSVLIW architecture has been driven by the requirement to
develop an architecture which can be effectively implemented to realize the fast
clocking that can be achieved with VLIW designs: inherently faster than Super-
scalar designs. The primary processor and the VLIW engine of the DTSVLIW do
not restrict the achievable clock rate. It is the scheduler engine that is the key to
an efficient and high clock rate implementation. The simplified version of the FCFS
scheduling algorithm used by the DTSVLIW has a complexity that is readily
implementable and requires far fewer resources than the greedy algorithm used by
the DIF architecture.

The primary processor and the VLIW engine in the DTSVLIW can have high
clock rates. The simplicity of the scheduling algorithm in the DTSVLIW means that
a similar high clock rate should be achieved in an implementation of the scheduler
unit, leading to an overall clocking rate similar to, if not higher than, high clock
rate Superscalar architectures, but achieving higher ILP [8, 9].

The DTSVLIW architecture opens several new avenues of research. Next long
instruction prediction, new VLIW cache organizations, and DTSVLIW-tailored
compilers are just a few examples that will be investigated in future work.
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