
Improving DTSVLIW Performance via Block
Compaction

Alberto F. de Souza

Departamento de Informática
Universidade Federal do Espírito Santo

Av. Fernando Ferrari, S/N – 29060-970 – Vitória – ES – Brazil
{alberto@inf.ufes.br}

Abstract
Dynamically Trace Scheduled VLIW (DTSVLIW) machines

have two execution engines and two instruction caches: a
Scheduler Engine and a VLIW Engine, and an Instruction
Cache and a VLIW Cache. The Scheduler Engine fetches
instructions from the Instruction Cache and executes them
singly, the first time, using a simple pipelined processor. In
addition, it dynamically schedules the instruction trace
produced during this execution into VLIW instructions,
groups them as blocks of VLIW instructions, and saves these
blocks into the VLIW Cache. If the same instruction trace
must be executed again, it is fetched by the VLIW Engine
from this cache and executed in VLIW fashion. Due to code
temporal execution locality, machines that follow the
DTSVLIW architecture spend most of the time operating in
VLIW mode, which results in instruction-level parallelism
(ILP) comparable or better than other current approaches for
exploiting ILP, such as superscalar or pure VLIW. However,
the scheduled blocks may contain a large number of nop
instructions in VLIW instructions’ slots that the Scheduler
Engine has been unable to fill with useful instructions. In this
paper we present two techniques for compacting blocks that
allow removing part of these nop instructions dynamically.
Our experiments show that DTSVLIW machines that employ
these techniques can perform 13.2% better than DTSVLIW
machines that do not.

Keywords DTSVLIW, VLIW, instruction compaction

I. INTRODUCTION

Dynamically Trace Scheduled VLIW (DTSVLIW)
machines [DES 98] execute sequential code and exploit
instruction-level parallelism (ILP). Their hardware, similar to
that of Superscalars [JOH 91], has to determine dependencies
and independencies between instructions and to bind
instructions to resources dynamically. However, different from
Superscalars, DTSVLIW machines perform these operations
with one instruction at a time. This enables DTSVLIW
implementations with fast clocks, while allowing ILP
comparable or even better than that of superscalars or pure
VLIWs [DES 00a, DES 00b].

Figure 1 shows a block diagram of the DTSVLIW
architecture. It exploits programs’ temporal execution locality
by executing code in two distinct modes. First, fragments of
code are executed in sequential mode by the Primary Processor
(Figure 1) and, at the same time, scheduled into blocks of

VLIW instructions by the Scheduler Unit, which also caches
these blocks into the VLIW Cache. If the same code has to be
executed again, it is fetched by the VLIW Engine from this
cache and executed in a VLIW fashion.

The DTSVLIW architecture is a variant of the DIF
architecture [NAI 97], proposed by Nair and Hopkins. As our
earlier work [DES 99a] demonstrates, the DTSVLIW achieves
similar or better performance to the DIF, but with a simpler
architecture. The results in [DES 99c] further demonstrate the
effectiveness of the DTSVLIW scheduling algorithm, which
shows no significant reduction in performance over the DIF
algorithm, even though the latter is expected to be much more
difficult to implement, as we have also shown.

Instruction
Cache

VLIW
Cache

Primary
Processor

Data
Cache

Fetch Unit

VLIW
EngineScheduler

Unit

From
Memory

Scheduling
List

Scheduler
Engine

To/From
Memory

Fig.1 The Dynamically Trace Scheduled VLIW
Architecture

Our main motivation for developing of the DTSVLIW

came from the observation that even small instruction caches
(16-Kbyte or 4098 instructions) can achieve average hit rates
higher than 99% with the SPEC92 and SPEC95 benchmark
suites [GEE 93, CHA 97]. This shows that there is a strong
temporal execution locality in programs. The DTSVLIW
exploits temporal execution locality by scheduling code into
blocks of VLIW instructions on the first execution encounter
and by executing it in the VLIW Engine on subsequent
encounters. However, frequently the Scheduler Engine is not
able to fill the VLIW instructions completely, leaving than
with many nop (no operation) instructions. In fact, our
experiments show that, in the standard DTSVLIW
architecture, only 19.9% of the VLIW instructions saved are
filled with useful scalar instructions on average. In this paper
we tackle this problem in two ways. The fist is a simple
mechanism that was first proposed in [NAI 97]. It consists in

holding VLIW Cache fetch attempts until blocks being
scheduled hold a certain number of instructions. The second,
which can be used together with the first, consists of a
mechanism for compacting the blocks of VLIW instructions
before saving them into the VLIW Cache. The use of the first
mechanism alone can improve DTSVLIW performance in
9.1% and block usage in 36.4%, while that the use of both can
improve the DTSVLIW performance in 13.2% and block
usage in 70.4%, as the experiments presented in this paper
show.

This paper is divided in 6 sections. After this introduction,
the DTSVLIW architecture is presented in more detail in
Section 2. In Section 3, we describe the two mechanisms for
improving DTSVLIW performance. In Section 4, we present
our experimental set-up, results and discussion. In Section 5,
we discuss related work and, in Section 6, our conclusions.

II. THE DTSVLIW ARCHITECTURE

The symbolic diagram of a DTSVLIW machine is shown
in Figure 2. It has two caches for instructions and two
processing engines. The Instruction Cache stores fragments of
original compiled code while the VLIW Cache stores blocks of
long instructions (the term used in the rest of this paper to refer
to VLIW instructions). The Primary Processor executes the
original code first. The code trace produced during this
execution is scheduled by the Scheduler Unit into blocks of
long instructions that are saved in the VLIW Cache. The
VLIW Engine executes these long instructions if an already
scheduled code fragment has to be executed again.

While the Primary Processor is executing the code, the
Fetch Unit (Figure 2) issues different addresses to the
Instruction Cache and the VLIW Cache. To the Instruction
Cache is issued the program counter (PC) content. To the
VLIW Cache is issued the address of the instruction in the
execute stage of the Primary Processor (dashed arrow in
Figure 2). We use this instruction’ address because at this
point we know for sure that this instruction must be executed.
If this instruction has been executed before, there may be a
block with its address in the VLIW Cache. On a VLIW Cache
hit, the VLIW Engine takes over execution. The block being
constructed by the Scheduler Unit is flushed to the VLIW
Cache – this block is made to point at the hit block. The
contents of all but the write back pipeline stage of the Primary
Processor are annulled and the PC receives the memory
address that hit the VLIW Cache. In subsequent cycles, the
VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor takes over
execution, fetching from the last PC value computed by the
VLIW Engine. The Fetch Unit does not issue fetches to the
VLIW Cache again until an instruction arrives at the execute
stage of the Primary Processor. At this point, the Scheduler
Unit restarts to schedule a new block, the address of which will
be the last address produced by the VLIW Engine when
executing the previous block. This connects these blocks
forming a block chain. In steady state, the VLIW Cache
contains all most frequently executed traces.

In our current DTSVLIW implementation, the Primary
Processor executes Alpha [DIG 92] code, while the VLIW
Engine executes a sub-set. The VLIW Engine has a simple
fetch – dispatch – execute – write-back pipeline. Multicycle
instructions execute in pipelined functional units. A decode
stage is not necessary as decoded instructions are saved in the
VLIW Cache. The VLIW Cache is a simple set-associative
cache, where a block of long instructions occupies a single
cache block. Individual long instructions are the unit of
communication between the VLIW Cache and the rest of the
DTSVLIW. Details on how the DTSVLIW deals with
exceptions, memory aliasing (disambiguation), and the
execution of particular instructions are in [DES 99a].

VLIW
Cache

Fetch

Execute

Write
Back

Long Instructions

Instruction
Cache

Instructions

Fetch

Execute

Write
Back

Decode

Scheduling List

Decoded
Instructions

Primary
Processor

VLIW
Engine

Scheduler
Unit

Scheduler
Engine

Fetch
Unit

Insert
Save

Move up

Move up

Move up

Move up

Dispatch

 Fig.2 A DTSVLIW Machine

A. The Scheduler Engine

The Scheduler Engine is composed of the Primary
Processor plus the Scheduler Unit (Figure 2). The Primary
Processor is a simple pipelined processor capable of executing
all instructions of the Alpha instruction set architecture (ISA).
When a valid instruction moves from the decode pipeline stage
to the execute pipeline stage, the Primary Processor sends it to
the Scheduler Unit.

The Scheduler Engine performs superblock scheduling
dynamically. Superblock scheduling [HWU 93] is a compiler
technique derived from trace scheduling [FIS 81]. A
superblock is a block of instructions encompassing many basic
blocks in which control may only enter at the top, but may exit
from one or more locations. In a compilation system,
superblocks are built in two steps. First, traces are selected
using heuristics or profiling. Second, tail duplication is applied
to the trace to eliminate any side entrances, through the
creation of a unique piece of code for each side entrance.

In a DTSVLIW machine, the execution trace produced by
the Primary Processor feeds the Scheduler Unit, which
schedules the instructions into blocks of long instructions and
saves these blocks into the VLIW Cache. Each block of long
instructions may encompass many basic blocks. Scheduling is
performed in a way that allows any branch inside any block to
branch outside its block without side effects, thanks to register
renaming and memory disambiguation (see below). The
unique entry point of each block is its first instruction.
Therefore, if a path in the program leads to an instruction
inside an existent block, or a branch inside a block follows a
path different from that followed during scheduling, these
paths will cause the scheduling of new blocks. This is
equivalent to tail duplication. However, when performing
superblock scheduling, compilers select traces statically and
these traces must be suitable for all programs’ input data sets.
In contrast, DTSVLIW machines perform dynamic trace
selection and, as such, can achieve performance in all input
data sets.

B. The Scheduling Algorithm

The Scheduler Unit implements in hardware a simplified
version of the First Come First Served (FCFS) algorithm,
which historically has been used to statically schedule
microcode [DAV 81]. We have chosen this algorithm for three
reasons. First, it operates with one instruction at a time and
considers instructions in the strict order that they appear during
program execution, which perfectly fits the DTSVLIW mode
of operation. Second, the FCFS algorithm produces optimum
or near-optimum scheduling [DAV 81]. Finally, the FCFS
algorithm is easy to implement in hardware in a pipelined
fashion, as we have shown in [DES 99a].

A broad overview of the DTSVLIW scheduling algorithm
is that a valid instruction in the decode pipeline stage of the
Primary Processor is inserted at the end of the scheduling list
on the next clock cycle (Figure 2). On each subsequent cycle it
can move up to the next higher element in the list if: it has not
reached the head of the list; there is space for it in the next
element; and there is not a dependency with instructions in the
next element.

An instruction inserted into the scheduling list in a clock
cycle is a candidate for moving up the list on subsequent clock
cycles. There can only ever be a single candidate instruction in
a long instruction, but each long instruction in the list may
have a candidate for promotion – there is a pipeline of
candidates for promotion. If an instruction cannot move up, it
is installed into its current long instruction.

Below there is a move up example in a 2x2 scheduling list
(the shaded instruction is a candidate instruction and the
destination register is the rightmost):

sub r1, r2, r3 move up ⇒ sub r1, r2, r3 add r4, r5, r6
add r4, r5, r6

Install example (the instruction is not moved up):

sub r1, r2, r3 install ⇒ sub r1, r2, r3
add r3, r4, r5 add r3, r4, r5

If there is a control, output, or anti dependency on a
candidate instruction, it can still move up, but has to be split.
The split is done by renaming the candidate instruction’s
output, moving up the renamed instruction, and by inserting a
copy instruction permanently in the long instruction slot
previously occupied by the candidate instruction. This copy
instruction copies the renaming register content to the
instruction’s original output. Example:

sub r1, r2, r3 split ⇒ sub r1, r2, r3 add r4, r5, r32
beq r3, 1000 add r4, r5, r6 beq r3, 1000 COPY r32, r6

Conditional and indirect branches do not move up. They

are installed when inserted into the scheduling list and
establish a tag for their long instruction. All instructions
subsequently installed in this long instruction receive the last
established tag. During VLIW execution, the VLIW Engine
evaluates the conditional and indirect branches and validates
their tags if they follow the same direction observed during
scheduling. Only instructions with valid tags have their results
written in the machine state. Therefore, the copy instruction
shown in the example above is only executed in VLIW mode
if the conditional branch (beq) follows the same direction
observed during scheduling.

When there is no free element for an incoming instruction,
the list is flushed to the VLIW Cache as a block and the
incoming instruction is inserted into an empty list as the first
instruction of a new block. The list is saved as a block, but on
a pipelined one long instruction per cycle basis. Nevertheless,
instructions can be continuously inserted into the new block at
the same time as the old block is being saved [DES 99a]. A
block of long instructions is stored as a VLIW Cache block
and is identified by the address of the first instruction installed
in it. Each cache block holds this address and the address of
the following block.

Load and store instructions can also be split, which can
cause memory aliasing [FIS 84] and exceptions. Please refer to
[DES 00b] for details on how the DTSVLIW deals with these
situations. In [DES 00b] we also prove that the core operations
performed by the DTSVLIW’s scheduling algorithm have the
complexity of an integer adder and, as such, should not impact
negatively the DTSVLIW clock cycle time. Multicyle
instructions impact upon the operation and performance of the
architecture. Their scheduling, described in [DES 99b], has to
respect dependencies in any of their cycles. This can restrict
the packing of instructions into long instructions limiting
parallelism.

III. IMPROVING DTSVLIW PERFORMANCE WITH

BLOCK COMPACTION

C. VLIW Fetch Starting Point

When a DTSVLIW machine is scheduling code, every time
a valid instruction reaches the Primary Processor’s execute
pipeline stage, a VLIW fetch can be attempted with its address.
On a VLIW Cache hit, the VLIW Engine takes over execution
and the block being scheduled is saved into the VLIW Cache.

If no special action is taken, the blocks produced this way can
have any number of long instructions, from 1 to block size, but
small blocks (1 or just a few long instructions) are likely not to
have much parallelism. However, instead of always allowing
VLIW fetches, we can easily allow VLIW fetches only when
the size of the block being scheduled is near its maximum.
That is, we can establish a starting point for VLIW fetches
associated with the number of instructions or long instructions
of the current block being scheduled, forcing the production of
larger and, hopefully, more compact (parallel) blocks. In
Section 4, we show that this simple modification alone can
improve DTSVLIW performance in 9.1% on average.

D. VLIW Block Compaction

During the scheduling, many long instructions’ slots may
not be filled due to control, resource or data dependencies.
These slots receive nop instructions. These take the space, in
the VLIW Cache, of possibly useful instructions, which might
reduce DTSVLIW performance. We introduce here a
mechanism for compacting blocks of long instructions prior to
saving them into the DTSVLIW VLIW Cache. It operates at
the save pipeline stage indicated in Figure 2.

A block of long instructions is saved in a pipelined fashion,
one long instruction at a time [DES 99d]. A compacting buffer
can be added to this pipeline to hold compacted long
instructions, which will form compacted blocks into the VLIW
Cache. The difference between a compacted and an
uncompacted long instruction is that the former does not have
nops, unless it is at the end of a block.

Several long instructions may be packaged together into
the compacting buffer, but the last one may only partially fit –
part of this last long instruction may have to be put into the
following compacted long instruction. In order to reconstruct
the long instructions during VLIW execution, a mechanism
must be provided to identify where each long instruction starts
and ends. This mechanism can be implemented with control
fields added to each compacted long instruction, as shown in
Figure 3.

Two blocks are shown in Figure 3: an uncompacted block
and its correspondent compacted block. Each long instruction
slot of the long instructions in these blocks can hold a useful
instruction or a nop (empty slot). Valid instructions are
labelled <LIlong instruction number>-<Iinstruction number>.

Each compacted long instruction carries its correspondent
control fields, as shown in Figure 3b. In a compacted long
instruction, there is one control field per instruction slot. These
control fields specify where a long instruction, compacted into
the compacted long instruction, ends. The first compacted long
instruction of Figure 3b holds the first long instruction of
Figure 3a plus one instruction of the second long instruction of
Figure 3a. The first control field of this compacted long
instruction contains the number 3, which specify that there is a
long instruction inside this compacted long instruction that
ends at the third instruction. The first control field also specify
where the second long instruction starts, while the second
control field specify where the second long instruction ends
and the third starts, and so on.

LI0-I0 LI0-I1 LI0-I2
LI1-I0 LI1-I1
LI2-I0 LI2-I1 LI2-I2 LI2-I3
LI3-I0 LI3-I1
LI4-I0
LI5-I0 LI5-I1 LI5-I2

(a)

⇓
control fields
3 0 - - LI0-I0 LI0-I1 LI0-I2 LI1-I0
1 0 - - LI1-I1 LI2-I0 LI2-I1 LI2-I2
1 3 4 - LI2-I3 LI3-I0 LI3-I1 LI4-I0
3 4 - - LI5-I0 LI5-I1 LI5-I2

(b)

Fig.3 Block compaction. (a) Uncompacted block.
(b) Compacted block.

The second control field of the first compacted long

instruction of Figure 3b holds zero. The value zero indicates
that the last long instruction inserted into this compacted long
instruction is incomplete: the rest of it is in following
compacted long instruction. The value zero marks, then, the
end of a compacted long instruction, and any remaining
control fields after a zero are not used (these contains a “-” in
Figure 3b).

The last control field of the third compacted long
instruction in Figure 3b contains the value 4. This value is
equal to the compacted long instruction width and indicates
that a long instruction ends at the last instruction of the
compacted long instruction. As with the case of a control field
with value zero, a control field with value equal to the size of
the compacted long instruction marks the end of the
compacted long instruction and any remaining control fields
after this are not used.

During VLIW execution, the control fields of the
compacted long instructions in the pipeline buffers of the fetch
and dispatch VLIW Engine pipeline stages (Figure 2) are
analysed by the logic of the dispatch stage. Guided by these
control fields, the dispatch stage collects instructions from the
buffers and reconstructs the original long instructions
produced by the Scheduler Unit during scheduling. These long
instructions are then sent to the functional units for execution.

The most important positive impact of employing this
compacting block technique is that it allows scheduling lists
larger than the limit imposed by the VLIW Cache block
geometry. As shown in Figure 3, blocks with more than four
long instructions can fit in a block with four compacted long
instructions only, for example. Larger scheduling lists allow
better performance, as our experiments show next.

IV. EXPERIMENTS

Execution-driven simulations were performed for
producing the results reported here using our new DTSVLIW
simulator, which uses the simplescalar-3.0 tool set [AUS 97]

as its core. The simulator faithfully models the DTSVLIW and
receives as input executables produced by ordinary compilers
that generate Alpha ISA code. We have used the gcc 2.7.2
compiler with optimisation flags –O3 –unrolloops.

TABLE 1
FIXED PARAMETERS

Primary Processor • four-stage (fetch, decode, execute, and
write back) pipeline

• no branch prediction hardware
• taken branches cause a 2-cycle bubble in

the pipeline
Decoded Instruction Size 6 bytes
Instructions Latency 1 cycle
VLIW Cache Four way set associative, 3072-Kbyte
Instruction Cache perfect (no miss penalty)
Data Cache perfect (no miss penalty)
Number of renaming regs. unlimited

TABLE 2
BENCHMARK PROGRAMS

Benchmark Inputs Instructions
Executed

compress 30000 q 2131 144153036
gcc -O3 jump.i 176479034
go 9 9 132169125
ijpeg vigo.ppm -GO 220880247
m88ksim -c < ctl.in 125045424
perl primes.pl 139264287
vortex vortex.in 120451770
xlisp queens 7 280939082

Model parameters that are invariant for simulations are

presented in Table 1. They form an almost perfect DTSVLIW
configuration, which we have choose to use to ensure the
absence of extraneous effects and to allow the appreciation of
the variables under study. The SPECint95 benchmark
programs used are shown in Table 2, together with its inputs
and the number of instructions executed. All programs were
executed until termination.

The following subsections present the effects of the VLIW
fetch starting point and compacted blocks on DTVSLIW
performance.

A. Effect of the VLIW Fetch Starting Point

The graph in Figure 4 shows the impact of the VLIW fetch
starting point on DTSVLIW performance. We have used a
DTSVLIW machine with 16 instructions per long instruction
and 16 long instructions per block (16x16-block geometry) for
this experiment. The legend of Figure 4 shows the different
VLIW fetch starting points used: at any block size (baseline),
at half of the maximum block size (1/2), at three quarters of the
maximum block size (3/4), and at full block (VLIW fetches are
only allowed when scheduling 16th long instruction). In
addition to the individual performance of each benchmark, we
have also added to the graph the harmonic mean (H.M.) of all
benchmarks to appreciate the average performance of each
configuration.

As the graph in Figure 4 shows, the strategy of discarding
some possible VLIW fetch opportunities to favour the
production of larger blocks is worthwhile. The machine

configuration with VLIW fetch starting point at 1/2 of the
maximum block size performs better than the baseline
configuration in all benchmarks. The other two configurations
shown in the graph do not have this consistent behaviour,
though. The configuration with starting point at 3/4 of the
maximum block size has better performance than the 1/2 and
baseline configurations in all benchmarks but gcc and go. The
configuration that starts issuing VLIW fetches only at full
block has a performance inferior to the previous three
configurations discussed in the gcc and go benchmarks; it has
also a worse or almost the same performance than the 3/4
configuration in vortex and compress, respectively. This
happens because, with this configuration, the DTSVLIW does
not have many opportunities to perform VLIW fetches and
spends too much time executing code in the Primary
Processor, since VLIW fetches are only allowed when the
block is full.

The benchmarks compress, gcc, go, and vortex show
clearly that there is a performance maximum when the VLIW
fetch starting point is near the 1/2 – 3/4 range of block sizes.
The harmonic means confirm this and show a DTSVLIW
performance 8.3% and 9.1% better than the baseline for the 1/2
and 3/4 configurations, respectively. For a silicon
implementation, a larger set of experiments must be made in
order to determine the adequate VLIW fetch stating point.

Fig.4 Impact of VLIW fetch starting point.

B. Effect of Compacted Blocks

The graph in Figure 5 shows the impact of the compacting
block mechanism on DTSVLIW performance. In order to
allow visual comparison with the DTSVLIW performance
results shown in the previous subsection, we have added to
Figure 5 the previous baseline configuration results, named
baseline in the legend, and best performing configuration
results, 3/4 in the legend. The cbaseline results shown in
Figure 5 are of the DTSVLIW basic configuration described in
Table 2 enhanced with the compacting block mechanism,
while the c3/4 results are of the DTSVLIW configuration that
put together a VLIW fetch starting point at three quarter of
block size and the compacting block mechanism. Note that the
block size used now is not the number of long instructions in
the block but the actual number of instructions in the block –
the block size is limited to 16 compacted long instructions, but
blocks may have more than 16 long instructions.

0

1

2

3

4

5

6

compress gcc go ijpeg m88ksim perl vortex xlisp H.M.

Benchmark

In
s

tr
u

ct
io

n
s

 p
e

r
C

yc
le

baseline 1/2 3/4 full

The experimental results present in Figure 5 confirm that
the compacting block mechanism improves the DTSVLIW
performance: the c3/4 configuration performs better than the
others in all but the gcc and go benchmarks, and looses in
these two for a small margin. On average, the c3/4
configuration performs 13.2% better than the baseline – an
improvement of 4.1% against the previous best performing
DTSVLIW without compacting blocks (13.2% - 9.1%).

Fig.5 Impact of the compacting block mechanism.

Fig.6 Percentage of block usage.

Each VLIW Cache block of the configurations under study

can hold 16x16 instructions maximum (256 instructions).
Figure 6 shows, for the same DTSVLIW configurations shown
in Figure 5, the percentage of this maximum capacity that is
actually used. We use arithmetic mean (A.M.) in Figure 6,
since the data shown are just percentages and not ratio of rates
[JAC 95], as is the case of the previous figures. As the graph in
Figure 6 shows, both compacting block mechanisms improve
block capacity usage, especially when used together, as in the
c3/4 configuration. In the baseline configuration, only 19.9%
of block capacity is used on average, while in the cbaseline,
28.1%. In the 3/4 configuration, 36.4% of block capacity is
used on average and in the c3/4, 70.4%. Although these
improvements in block capacity usage do correlate to
performance in m88ksim, vortex and xlisp, this is not the case
for the other programs under study, since configurations with
better block usage does not show better performance. This can
be explained with the help of Figure 7.

In order to execute a program, a DTSVLIW machine
spends cycles executing code either in the Primary Processor
or in the VLIW Engine. Figure 7 shows the percentage of
cycles each DTSVLIW configuration spent executing code in

the Primary Processor for each benchmark program. As the
graph in Figure 7 shows, except for gcc, go and vortex, the
DTSVLIW spent more than 95% of the time executing code in
the VLIW Engine. The time spent scheduling impacts on
performance, since the DTSVLIW executes one instruction per
cycle maximum during scheduling. The compacting block
mechanisms are effective for the gcc and go benchmarks
(Figure 6); however, they significantly increase the scheduling
time (Figure 7), which take back any performance
improvement provided by block compaction. The compress
and perl benchmarks show better compaction with the
cbaseline configuration than with the 3/4 configuration and
this does not translates to performance. As Figure 7 shows, the
DTSVLIW spent too little time scheduling these benchmarks
for the cbaseline configuration (less than 0.3% of the cycles)
and just a few blocks were necessary for their whole execution
– these blocks were better compacted with this configuration
than with the 3/4 configuration just by chance.

Fig.7 Percentage of scheduling cycles.

V. RELATED WORK

In order to take advantage of code execution locality to
exploit ILP, several techniques have been proposed. Franklin
and Smotherman [FRA 94] investigated the use of a fill unit
[MEL 88] to compact a dynamic stream of scalar instructions
into long instructions. The fill unit accepts decoded
instructions from the machine decoder, compacts them into a
long instruction, and saves the long instruction into a shadow
cache. At the same time, the fill unit sends the long instruction
to the functional units for execution. Fetch accesses that hit in
the shadow cache provide long instructions directly to the
functional units. However, the fill unit does not rename
registers, resulting in a reduction in the capacity to deal with
data dependencies, and works within a window of one long
instruction only. For these reasons, it cannot exploit ILP
extensively. Nair and Hopkins [NAI 97] suggested a VLIW
based architecture named DIF (Dynamic Instruction
Formatting), which is an improvement of the Franklin and
Smotherman proposal. It allows register renaming and
schedules blocks of long instructions. The DTSVLIW
architecture is similar to the DIF and was developed shortly
after it. The DTSVLIW performance is equivalent to DIF’s,
but this is achieved with fewer hardware resources [DES 99a].
The core logic of the DTSVLIW’s Scheduler Unit is
straightforward to implement, being comparable to an adder,

0

1

2

3

4

5

6

compress gcc go ijpeg m88ksim perl vortex xlisp H.M.

In
s

tr
u

ct
io

n
s

 p
e

r
C

yc
le

baseline cbaseline 3/4 c3/4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress gcc go ijpeg m88ksim perl vortex xlisp A.M.

B
lo

ck
 u

s
ag

e

baseline cbaseline 3/4 c3/4

0%

10%

20%

30%

40%

50%

60%

70%

compress gcc go ijpeg m88ksim perl vortex xlisp A.M.

S
ch

e
d

u
lin

g
 c

yc
le

s
 (

%
 o

f
to

ta
l c

yc
le

s
)

baseline cbaseline 3/4 c3/4

and, as such, is much more feasible than that of the DIF [DES
99a].

In dynamic rescheduling, proposed by Conte and Sathaye
[CON 95], when a program is invoked the operating system
schedules its first page into a more parallel piece of code and
saves it into a new page. This process is repeated each time a
new page fault occurs. Only scheduled pages are executed.
Ebcioglu and Altman [EBC 97] extended the concept of
dynamic rescheduling to dynamic compilation, in order to
translate and schedule any ISA to the machine’s hardware. The
Crusoe processors [KLA 00], for example, use dynamic
compilation to translate x86 (Intel) code to a VLIW ISA code
dynamically. Dynamic rescheduling and dynamic compilation
rely on the ability of the operating system to translate and
schedule code rapidly, and on the reusability of this code.
However, since they are implemented in software, the cost of
translating and scheduling are high. The DTSVLIW uses
hardware for scheduling and, as such, should provide better
performance.

Discarding some VLIW Cache fetch opportunities to
favour the production of larger blocks, as a mechanism of
improving performance, was first studied in [NAI 97] for the
DIF architecture. Here we have extended this study to the
DTSVLIW and shown that it improves performance and block
usage as well. The mechanism we have proposed for coding
the compacted long instructions is similar to the 5-bit template
field of the Intel’s IA64 ISA instruction bundles [INT 99].
However, these template fields specify the mapping of
instruction slots to execution unit types and stops within the
bundles, while the control fields of our compacted instructions
only specify stops.

VI. CONCLUSIONS

 DTSVLIW machines exploit ILP using a hardware
implemented dynamic code scheduler and a VLIW execution
core. The scheduler produces blocks of VLIW instructions by
executing and scheduling one instruction at a time. These
blocks are saved in a VLIW cache and thereafter executed by
the VLIW core, which realizes the parallelism found during
scheduling. Code execution locality compensates for the time
spent scheduling. However, the scheduler is not able to fill the
blocks completely – only 19.9% of the blocks capacity is used
in the standard DTSVLIW architecture. In this paper, we have
studied two mechanisms for improving block usage: to hold
VLIW fetch attempts until the blocks being scheduled reach a
certain number of VLIW instructions, and to remove nop
instructions from the blocks before saving them in the VLIW
cache. Our experiments show that these mechanisms, used
together, increase block usage to 70.4% of their maximum
capacity and improve DTSVLIW performance in 13.2% on
average.

Better used blocks provide better performance because
they contain more scheduling effort. However, this effort is
made sequentially and, in programs with poor execution
locality, like gcc and go, may not pay off. Nevertheless,
according to our experiments, this extra scheduling effort does
not hurt the DTSVLIW performance even in these cases.

REFERENCES

[AUS 97] T. Austin and D. Burger, “The SimpleScalar Tool
Set”, Technical Report TR-1342, Computer Science
Department, University of Wisconsin – Madison, June
1997.

[CHA 97] M. J. Charney and T. R. Puzak, “Prefetching and
Memory System Behaviour of the SPEC95
Benchmark Suite”, IBM J. of Res. and Dev., Vol. 41,
No. 3, pp. 265-285, May 1997.

[CON 95] T. M. Conte and S. W. Sathaye, “Dynamic
Rescheduling: A Technique for Object Code
Compatibility in VLIW Architectures,” Proc. of the
28th Ann. Int. Symp. on Microarchitecture, pp. 208-
218, 1995.

[DAV 81] S. Davidson, et al., “Some Experiments in Local
Microcode Compaction for Horizontal Machines”,
IEEE Trans. on Computers, Vol. C-30, No. 7, pp. 460-
477, 1981.

[DES 98] A. F. de Souza and P. Rounce, “Dynamically Trace
Scheduled VLIW Architectures”, Proc. of the
HPCN’98, in Lecture Notes on Computer Science,
Vol. 1401, pp. 993-995, 1998.

[DES 99a] A. F. de Souza and P. Rounce, “Dynamically
Scheduling the Trace Produced During Program
Execution into VLIW Instructions”, Proc. of 13th Int.
Parallel Processing Symp. & 10th Symp. on Parallel
and Distributed Processing - IPPS/SPDP’99, pp. 248-
257, 1999.

[DES 99b] A. F. de Souza and P. Rounce, “Effect of Multicycle
Instructions on the Integer Performance of the
Dynamically Trace Scheduled VLIW Architecture”,
Proc. of the HPCN’99, in Lecture Notes on Computer
Science, Vol. 1593, pp. 1203-1206, 1999.

[DES 99c] A. F. de Souza and P. Rounce, “On the Effectiveness
of the Scheduling Algorithm of the Dynamically
Trace Scheduled VLIW Architecture”, Proc. of the
11th Brazilian Symp. on Computer Architecture and
High Performance Computing, pp. 167-174, 1999.

[DES 99d] A. F. de Souza, “Integer Performance Evaluation of
the Dynamically Trace Scheduled VLIW
Architecture”, PhD Thesis, Department of Computer
Science, University College London, 1999.

[DES 00a] A. F. de Souza and P. Rounce, “DTSVLIW: VLIW
Performance with Sequential Code”, Proc. of the 12th
Brazilian Symp. on Computer Architecture and High
Performance Computing, pp. 271-278, 2000.

[DES 00b] A. F. de Souza and P. Rounce, “Dynamically
Scheduling VLIW Instructions”, J. of Parallel and
Distributed Computing 60, pp. 1480-1511, December
2000.

[DIG 92] Digital Equipment Corporation, “Alpha Architecture
Handbook”, Digital Equipment Corporation, 1992.

[EBC 97] K. Ebcioglu and E. R. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility,”
Proc. of the 24th Ann. Int. Symp. on Computer
Architecture, pp. 26-37, 1997.

[FIS 81] J. A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction”, IEEE Trans. on
Computers, Vol. C-30, No. 7, pp. 478-490, 1981.

[FIS 84] J. A. Fisher, “The VLIW Machine: A Multiprocessor

for Compiling Scientific Code”, IEEE Computer, pp.
45-53, July 1984.

[FRA 94] M. Franklin and M. Smotherman, “A Fill-Unit
Approach to Multiple Instruction Issue,” Proc. of the
27th Ann. Int. Symp. on Microarchitecture, pp. 162-
171, December 1994.

[GEE 93] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J.
Smith, “Cache Performance of the SPEC92
Benchmark Suite”, IEEE Micro, pp. 17-27, August
1993.

[HWU 93] W. W. Hwu, et al., “An effective Technique for VLIW
and Superscalar Compilation”, J. of Supercomputing,
Vol. 7, pp. 229-248, 1993.

[INT 99] Intel, “IA-64 Application Developer’s Architecture
Guide”, Intel, Order Number: 245188-001, May 1999.

[JAC 95] B. Jacob and T. Mudge, “Notes on Calculating
Computer Performance”, Technical Report CSE-TR-
231-95, Department of Electrical Engineering and
Computer Science, University of Michigan, USA,
March 1995.

[JOH 91] M. Johnson, “Superscalar Microprocessor Design”,
Prentice-Hall, 1991.

[KLA 00] A. Klaiber, “The Technology Behind Crusoe™
Processors”, Transmeta Corporation, January 2000.

[MEL 88] S. Melvin, M. Shebanow, and Y. Patt, “Hardware
Support for Large Atomic Units in Dynamic
Scheduled Machines,” Proc. of the 21st Ann. Int.
Symp. on Microarchitecture, pp. 60-66, 1988.

[NAI 97] R. Nair, M. E. Hopkins, “Exploiting Instructions Level
Parallelism in Processors by Caching Scheduled
Groups”, Proc. of 24th Int. Symp. on Computer
Architecture, pp. 13-25, 1997.

