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Abstract. This paper discusses the implementation of a numerical method for simulating
petroleum reservoirs, based on finite volume technique using non-structured grids, designed
for parallel computing platforms with distributed-memory, particularly for clusters of
workstations. Non-structured meshes are used in order to enhance the capability of
conforming the irregular boundary of the reservoir allowing better application of boundary
conditions and enabling an easier specification of geological faults. The parallel
implementation is based on the domain decomposition, where the original reservoir is
decomposed into several domains, each of which given to a separate processing node. All
nodes then execute computations in parallel, each node on its associated sub-domain. The
parallel computations include initialisation, coefficient generation, linear solution on the sub-
domain, and inter-node communication. The exchange of information across the sub-
domains, or processors, is achieved using the message passing interface standard, MPI. The
use of MPI ensures portability across different computing platforms ranging from massively
parallel machines to clusters of workstations. In order to validate the solution procedure, the
well-known five-spot problem is simulated. The execution time and speed-up are evaluated
through comparing the performance of different numbers of processors. The results indicate
that the parallel code can significantly improve prediction capability and efficiency for large-
scale simulations.
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1. INTRODUCTION

One of the main goals of petroleum industry is to maximize oil production from each
reservoir. It is well known that only a fraction of the oil in a reservoir is produced due to its
own internal pressure. As soon as the natural pressure of the reservoir decreases significantly
and oil production starts to decline, it is necessary to utilize methods for additional recovery.
One of the most used methods to increase oil recovery is based on the injection-production
mechanism: apart from the production wells, which produce oil, there are injection wells,
which inject water (or chemicals) into the reservoir. As water is injected, it occupies some
space in the reservoir displacing the oil towards the production well, consequently increasing
recuperation.

The success of this technique is very dependent on the fluid flow pattern. Therefore, the
numerical simulation of petroleum reservoir is of great importance in petroleum engineering,
since full experimental simulation in laboratory is impossible. With the advances in
computing capabilities in terms of speed of computation and increase in computer memory, as
well as, the advances in numerical techniques, reservoir simulators have become an
established technique in the petroleum industry to assess the quality of reservoirs and to plan
production strategies. Reservoir simulators are capable of giving valuable insights on the
pattern of the fluid flow inside the porous rock, enabling the optimum positioning of wells
(production/injection) to maximize recuperation efficiency.

Nevertheless, the complex nature of the problem requires an enormous computational
effort to perform full-scale simulations. The need for high performance computing for
reservoir simulations is due to for the physics of the process being investigated. In addition to
the transient and tri-dimensional form of the governing equations, there are several length
scales of significant importance upon the process. Based on core samples analysis of porous
media one can obtain rock porosity maps with resolutions as high as 100 mm (Killough,
1995), while a characteristic reservoir size can exceed 1 km.

In fact, the question of how to scale up from laboratory scale to field scale is still
open. However, a numerical scheme that can incorporate a description of local heterogeneities
as fine as possible, given the state of art computing, represents a valuable tool in the
development of full-scale reservoir simulations (Chang & Mahanty, 1997; Christie, 2001).
This motivates the development of this work, which presents the implementation of a finite
volume technique using non-structured grids, designed for parallel computing platforms. Non-
structured meshes are used in order to enhance the capability of conforming the irregular
boundary of the reservoir enabling easier specification of geological faults.

The algorithm is designed for parallel computing platforms with distributed-memory.
Access to supercomputers can be limited or very expensive. Thus, the code is mainly
developed for clusters of workstations, which is one of the modern solutions to avoid the cost
limitations imposed by supercomputers, since the rapid increase of microprocessor and
network performance has enabled high levels of computing power for a small fraction of the
price of supercomputers.

2. PETROLEUM RESERVOIR MODELLING

When several fluid phases flow in a porous medium, each phase affects the flow of the
other, depending on the concentration of the various phases. This section describes the
governing equations of the problem. In this paper the well-known black oil is used to describe
the flow of 2 components (water + oil). The set of equation used by the black-oil model are
obtained by performing a mass conservation balance for each component, Allen & Furtado



(1997) present an in depth description of the subject. Neglecting body forces and the capillary
pressure effects, the conservation equations for water and oil are written as:
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where the subscripts w and o indicate water and oil phases, P represents pressure, C represents
concentration (or saturations). ε denotes the medium porosity, B represents the formation
factor, and q is the mass flow rate per unit volume. λ represents the mobility of each phase,
and is given as:

αα

α
α µ

λ
B

KK r.
= (3)

where λα denotes the mobility for the α phase, K and Krα are the medium permeability and
relative permeability of the α phase, and µα is the absolute viscosity of the α phase. The value
of Krα is a function of the concentrations of oil and water, in this work, it is given as
(Marcondes et al., 1994):
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Equations 1 and 2 form a set of two differential equations with three unknown
variables (Cw, Co and P). The closing equations is the conservation of the global mass:

1=+ ow CC (5)

Eqs. 1, 2 and 5 need to be solved in a coupled manner. There are two main methods
used for solving this problem. The first one is the IMPES method (Implicit Pressure Explicit
Saturation). In this method, eqs. 1 and 2 are combined by using eq. 5, yielding to an equation
for pressure to be solved implicitly. Once the pressure values are determined, they are used in
eq. 1 to determine (explicitly) water concentration and oil concentration is determined by
using eq.4. The second method is to replace Co (eq. 2) by 1 - Cw and solve eqs. 1 and 2 for
pressure and water concentration in a simultaneous fashion using Newton's iteration. In this
work, the IMPES method was used and it is described here in more details.

The next section describes the numerical method used for discretize the equations
described above, and presents the sequence of operations required for the solution.

3. NUMERICAL METHOD

3.1 Finite Volume Method with Unstructured Meshes

In the last decade, the finite volume method in unstructured meshes has presented
significant development, mainly in the discretization methodologies. The unstructured meshes
are important to solve problems with complex geometry, such as moving boundary problems.



In spite of the large number of publications using finite volume method in unstructured
meshes in the literature, the use of unstructured meshes with finite volume formulation can
still be considered a recent technique, specially when compared to Finite Element methods.
and continues to be a research area with a lot of activity.

The use of unstructured meshed has proven to be a valuable tool for reservoir
simulations due to the geometry complexity of the problems. Accordingly, several works have
been published in the specialized literature recently, among others Zang et al (2001) and
Prévost et al. (2001).

There are two possibilities for the discrete location of the variables on unstructured
meshes. These locations originate the finite volume discretization schemes called
CellCentered (CC) and VertexCentered (VC). In the both schemes, the solution domain is
divided into polygonal elements or cells (usually triangles for a 2D case and tetrahedra for a
3D case). In the VC scheme, the computational nodes are located at the vertices of the
elements. The control volumes are formed around each node by joining the centroids of the
elements and/or midpoints on element edges, as shown in figure 1a. By contrast, in the CC
scheme, the variables are stored in the centroid of the control volumes.

Control Volume

Triangular Element

Triangle Centroid

Computing node

  

Control Volume

Triangular Element

Triangle Centroid

(a) (b)

Figure 1 - Schematic representaion of the the finite volume method for unstructured grid
using the (a) VertexCentered and (b) CellCentered schemes.

The VC and CC schemes are presented in equally large number of publications in the
literature. The discussion regarding robustness, efficiency and performance of these schemes
are still open. According to Martins et al. (2000) the simplicity in the discretization of
conservation equations is the main feature that kept the researchers interest in the CC scheme.
Another factor favoring this scheme is the direct use of the triangles as elementary control
volumes, since in VC schemes the triangles are used indirectly; the possibility to use hybrid
meshes, which are usually comprised of triangles and quadrilaterals, is the third factor that
motivated the use of CC schemes.

Although the discussion regarding using either CC and VC schemes is still open, the
CC scheme was selected for the use in the present work. The main reason for this choice is the
ratio between the number of triangles and the number of vertices. In twodimensional
triangular meshes the ratio between the number of triangles and the number of vertices is two.
However, for threedimensional meshes composed by tetrahedra, this ratio can vary between
5 and 6. In CC schemes, the flow calculations are made by a sum over all tetrahedra faces,
while in VC schemes, these same calculations require the sum over all surrounding vertex
edges, which demands a considerably large computational effort. Although the effort for
calculating the discretized equation for each control volume is smaller, the number of
algebraic equations in the CC scheme is 2 times higher for 2D calculations (or 5 to 6 for 3D
calculations), demanding larger amount of memory. Since the objective of this work is related



to distributed parallel computing, memory requirements are not a very serious issue in the
computation, since the computational domain will be spread over several computing nodes
(this procedure is described in detail in section 4). Furthermore, as will be discussed in the
section of results (section 5), the speed-up provided by the use of additional computing nodes
is superior for configurations with larger number of control volumes.

3.2 Finite Volume Discretization

As described in section 2, the IMPES technique is based on combining eqs. 1 and 2 by
using eq. 5. In this procedure, the eqs. 1 and 2 are discretized and then combined, yielding to
an equation for pressure to be solved implicitly. In this section, the dicretization procedure for
eqs. 1 and 2 is presented, subsequently the final form of the pressure equation is derived, and
the sequence of steps of the solution algorithm is presented. The equations are presented in a
two-dimensional form, however, the formulations presented here can be easily extended to a
three-dimensional form. As a first step, it is interesting to re-write eqs. 1 and 2 as:
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where the subscript α denotes the α-phase (water or oil). The main concept of a finite volume
discretization consists of dividing the computational domain into control volumes or cells,
and integrating the governing equations of a problem in each one of the control volumes. This
integration over each control volume implies the conservation principle in the finite control
volume, just as the differential equation expresses it for an infinitesimal control volume.
Figure 2 presents a schematic representation of a generic control volume inside the calculation
domain, where P denotes the nodal point in the center of the triangular control volume, whose
vertices are A, B and C. The points 1,2 and 3 represent the centers of the neighboring control
volumes.
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Figure 3 - Schematic representation of a generic control volume inside the calculation
domain.

The discretized form of eq. 6 is obtained by integrating the general transport equation over the
control volume (figure 2) and over the time interval from t to t + ∆t:
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by using the Gauss Theorem, the second term in the left hand side can be replaced by a
surface integral:
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where n is the outward normal vector to the surface of the control volume S, J is the flux
vector given by:
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where i and j are the components of the outward normal vector n in the x and y directions,
respectively. By integrating eq. 8 explicitly over the time interval t to t + ∆t, and considering
the source term qα constant over the control volume, it is possible to re-write eq.8 as:

( ) tVqdStCC
B S

∆∆=∆+− ∫ ααα
α

ε
nJ.0 (10)

or

VqdS
t
CC

B S

∆=+
∆
−

∫ α
αα

α

ε
nJ.

0

(11)

where ∆V denotes the volume of the control volume (i.e. the area of the triangle in a two-
dimensional coordinate system), and the superscripts 0 denotes a variable evaluated in the
previous time interval.

The surface integral presented in eq. 11 describes the net flux over control volume
(figure 2). This flux is calculated by the sum of the fluxes over each face of the control
volume.
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where the index k represents the each face of the control volume P (k = 1, 2, 3), as depicted in
figure 2, and Sk denotes the area of the face k.

The surface integral can be evaluated by using a mean flux J  over the control volume
face:
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In order to calculate this summation, it is necessary to determine the gradients in the x
direction and y direction at each face of the control volume, since J  is given by:
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where the partial derivatives can be calculted in each face of the control volume by the Green
theorem:
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where V is the area of the quadrilateral comprised of the two opposite centroids and the two
vertices of each face, i.e. A1BP for face 1, B2CP for face 2 and C3AP for face 3 (Figure 2). In
order to evaluate the integrals above it is necessary to know not only the value of P in the
center the control volumes, but also in the vertices of the control volume. The vertex values
are determined by interpolating the pressure at the neighboring control volumes using the
inverse of the square of the distance between the center of the neighboring control volume and
the vertex.

After the evaluation of J  at each face, based on the integrals above, eq. 13 can be re-
written as:
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where 1
αλ , 2

αλ  and 3
αλ represent the mobility of the phase α, calculated at the faces 1, 2 and 3

of the control volume, respectively. The term St is due to the non-orthogonality of the mesh. If
an orthogonal mesh is used, St vanishes. By using eq. 16, it is possible to re-write eq. 12 as:
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which represents the discretized equation for calculating the concentration of the component
α. As discussed previous, the expression above can be used to write equations for



concentration of water and oil, which can be combined together via eq.5, yielding a
discretized equation for pressure:
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where 1Γ , 2Γ  and 3Γ  represent the combined mobility of the phases, calculated at the faces 1,
2 and 3 of the control volume, respectively, which are given as:
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It is important to emphasize that the values of concentration of water and oil that are
required for the calculations of 1Γ , 2Γ  and 3Γ , are stored in the center of the control volume,
while the values of Γ are required calculated at the faces of the control volume. Thus, some
kind of interpolation should be use to obtain Γ  at the faces of the control volume. An obvious
choice would be a piecewise linear interpolation from the control volume centers to the faces.
In fact, this would be an excellent choice for a diffusion problem. However, although the
governing equations resemble those of a pure diffusion problem (i.e. a Poison-like equation),
the physical phenomenon is a convection dominated problem. Therefore, numerical methods
for dealing with this class of equations may be subjected to wiggles or oscillations of the
solutions, which are related to the use of higher order schemes in convection/diffusion
problems. As such, numerical schemes usually require some form Upwinding or Flux Limiter
technique to ensure an oscillation free solution. Thus, in this work, upwinding is applied to
obtain Γ  at the faces of the control volume for numerical stability (Lu et al., 2001).



The boundary conditions at the reservoir frontier are of flux equal to zero, since the
reservoir boundaries are considered to be impermeable.

The non-orthogonality term (St) is treat explicitly, since it depends on the pressure
values at the control volumes vertices, which are interpolated from values at the control
volumes centers. Therefore, an iterative procedure is necessary to solve the pressure equation.

Start

End

Read mesh files

Calculate geometrical parameters 
based on mesh files

Inicialization of the variables of interest
(pressure, water and oil concentration, permeability, etc.)

Calculate coefficients for pressure equation

Calculate water and oil concentrations

Calculate coefficients for pressure equation

Calculate pressure at the Control Volume’s vertices

Calculate pressure at the Control Volume’s vertices

Solution of linear system of equations (Gauss-Seidel)

Calculate  and λ λw  o

Convergence?

Convergence?

Final time ?

Yes

Yes

Yes
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No

No

Calculate coefficients for pressure equation

Advance to next time step

Calculate  and λ λw  o

Figure 3  - Schematic representation of the sequence of operations involved solution
algorithm.

According to the IMPES method, given the initial concentrations of water and oil and
the initial pressure inside the calculation domain, eq. 19 is solved in order to determine the
pressure field. The present work uses the Gauss-Seidel method to solve the linear system of



equations for the pressure field. Once pressure values are calculated eq. 18 is used to
determine water concentration and eq.5 to determine oil concentration. Once concentrations
of oil and water are calculated, new values of 1Γ , 2Γ  and 3Γ  must be re-calculated, and eq.
19 solved again, in order to determine a new pressure field, which will be used to calculate
new concentrations of oil and water, and so on. This iterative process must continue until the
values of water and oil concentrations, as well as, pressure no longer present a significant
change from one iteration to the other.

Figure 3 presents a schematic representation of the sequence of operations involved in
the procedure. There are four major loops in the algorithm. The first one, more internal, is the
loop of the solution of the linear system of equations (Gauss-Seidel). The second loop
performs the iterations due to the explicit treatment of the non-orthogonality terms of the
pressure equation. The third is the IMPES procedure. And the outer loop (the fourth) is the
time step advancing.

4. PARALLELIZATION STRATEGY

Before describing the parallelization strategy adopted for the solution algorithm, it is
convenient to outline the main differences between the parallelization for shared-memory
computers and for distributed parallel computers. Figure 4 presents as schematic
representation of a shared memory architecture and a distributed memory architecture. Shared
memory machines have several processors, which can access the memory through a high-
speed connection bus. In this type of architecture any process can access any memory location
with an equally fast access time. On the other hand, each processor of a distributed memory
has its own memory, and can only access a memory position located through a connection
bus. Therefore, the performance of distributed memory systems may be directly related to the
data speed on the connection bus, which can be considerably large for massively parallel
computers (such as Cray T3E and T3D) or relatively slow for clusters of workstations, where
the connecting bus is the local network. Moreover, since the local memories of each processor
are not directly linked, the programmer should orchestrate the message-passing between the
processors. This requires considerable changes in the programming paradigm for distributed
memory systems.

Memory

CPU CPU CPUCPU CPU CPU

High-speed 
connection bus

Memory Memory Memory Memory Memory

CPU CPUCPU CPU CPU

Connection bus

(a) (b)

Figure 4 - Schematic representation of (a) a shared memory architecture and (b) a distributed
memory architecture

While for shared-memory, parallelism is mainly directed to executing identical set of
operations in parallel on the same data structure (Do-loop parallelization), parallelism in
distributed memory systems is mainly directed to sub-dividing the data structures into sub-
domains and assign each sub-domain to one processor. In this case, the same code runs on all
processors, on its own set of data. Figure 5 shows an unstructured grid containing 4000



control volumes, by dividing the computational domain into sixteen sub-domains it is possible
to spread the work load between sixteen different processor. However, it is important to note
that in order compute the variables for each control volume, the variables at its neighboring
points are required. Thus, in order to calculate the variables at the control volumes close to the
interface between sub-domains, one processor will require information stored in the memory
of another processor. This requires some amount of communication at regular intervals, which
may slow down the computation.

In general, the computation procedure involves three steps (1) partitioning of the
solution domain; (2) performing computations on each processor to update its own data set;
(3) communicating data between processors. This technique is called domain decomposition.
The key for an efficient computation is to maintain the communications between processors to
a minimum level, as well as, to divide the workload equally between processors.

    
(a) (b)

Figure 5 - (a) Unstructured mesh containing 4000 triangular control volumes and (b) its
decomposition in 16 sub-domains.

In this work a domain decomposition coordinate bisection is used (Streng, 1996). This
method divides the number of points equally between processors, but makes no attempt to
obtain a domain division that minimize communications between processors, i.e., a division
with the smallest number of control volumes in boundaries between sub-domains. In general,
coordinate bisection produces sub-domains with long interfaces, so that they lead to large
communication volumes. This can be partly overcome by recursive application of
alternatively x, y (and in 3D, z) bisection. The grid is first divided into 2 grids using bisection
of the x-length of the calculation domain. Then to each of the resulting domains, y-bisection is
applied, resulting in four blocks (or sub-domains). The procedure can be continued to obtain
eight, sixteen, thirty two, … blocks.

Once a multi-block domain has been established, calculations on each block can begin
in parallel if the boundary conditions of the block are known. This may be either a physical
boundary condition (reservoir boundary) or an internal boundary as a consequence of the
domain decomposition. The physical boundary conditions are managed by the source code;
while the internal boundary requires boundary data from its neighbor, which may reside on a
different processor. These data are provided by allowing a buffer on the boundary of each



block, which will store a copy of the corresponding overlap data. Figure 6 illustrates a
calculation sub-domain and the buffer cells used to store the overlap data.

1 4

2 3 Buffer data  to be refreshed
 by sub-domain 3

Buffer data  to be refreshed
 by sub-domain 1

Figure 6 - Schematic representation of a calculation sub-domain divided into four sub-
domains. Indicating the buffer cells used to store the overlap data

Once the buffer data has been received from all sides of the block, the computation of
the block can commence, using the sequential algorithm. On completion of the solution for
the block, the data at the boundaries of the current block is sent to the neighboring blocks. The
current block then awaits for its buffer to be refreshed by its neighboring blocks, so that the
next computation can commence.

In the present work, each block deals individually with the solution of the pressure
equation, solving the linear system of equations and resolving the iterations required for the
explicit treatment of the non-orthogonal terms on each block. Once pressure values are
calculated for each block, the pressure values at each block boundary is communicated to its
neighbors. Water and oil concentrations are then calculated on each sub-domain, and their
values at each block boundary communicated to its neighbors. This iterative process is
continued until the process reaches convergence. The exchange of information across the sub-
domains, or processors, is achieved using the message passing interface standard, MPI. The
use of MPI ensures portability across different computing platforms ranging from massively
parallel machines to clusters of workstations. Figure 7 illustrates the sequence of operations
involved in the computation.
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Figure 7 - Sequence of operations executed by the solution algorithm on each processor.



5. RESULTS AND DISCUSSION

This section is divided into two main parts. In the first part, the physical output of the
solution algorithm is evaluated and its accuracy is assessed, by comparing the results obtained
with previous work available in the literature. In the second part, the aspects of parallelization
are explored, and the speed-up obtained by the use of additional processors is analyzed.

5.1 Validation and Verification

To verify the computational accuracy of the proposed algorithm the well-known five-
spot problem is simulated. The problem consists of four injection wells symmetrically
disposed around one production well (figure 8). Due to the symmetry of the configuration
only 1/4 of the problem is simulated. The geometrical configuration and the physical data
were taken from Mota & Maliska (1994). The water is injected at a rate of 2,648x10-3 m3/s in
an injection well located at the lower corner of a square reservoir, whose sides measure
402,33 m. The depth of the reservoir is 6,09 m. The porous medium is considered to be
homogeneous and isotropic, with porosity equal to 0,2 and permeability equal to 0,012337
µm2. Water viscosity is equal 0,1 mPa.s and oil viscosity equal to 1,0 mPa.s.

Production well

Water injection well

Reservoir boundary

Symmetryaxis

Water injection wellWater injection well

Water injection well

Production well

Water injection well

(a) (b)

Figure 8 - Schematic representation of the five-spot problem (a), and the configuration
simulated five-spot problem.

Although the IMPES method treats pressure equa tion implicitly, concentrations are
treated explicitly. Thus, CFL stability criterion must be satisfied, as such, the time step sizes
for each simulations are set based on the condition of CFL number < 1. The results are
compared with the data published by Mota & Maliska (1994), which presents numerical
results of simulations using a TVD scheme (mesh 20 x 20 control volumes) and upwind
scheme (mesh 30 x 40 control volumes) with structured grid and body-fitted coordinates. To



avoid repetition from this point onwards the simulation using TVD scheme with a mesh of 20
x 20 is referred to as RUN A and the simulation using upwind scheme with a mesh of 30 x 40
is referred to as RUN A.

The grid size used is 1020 control volumes, with a control volume size comparable to
the mesh 30 x 40 used with the upwind scheme presented by Mota & Maliska (1994). Figure
9 presents the evolution of the water concentration inside the reservoir. The time evolution is
presented as a function of the porous volume of the reservoir injected by water (PVI). A
significantly sharp front is observed while the water displaces the oil, until reaching the
production well.
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Figure 9 - Time evolution of the water concentration inside the reservoir.

Figure 10 compares the obtained results for water concentration at the production well
for the simulation carried out in the present work and the results obtained by Mota & Maliska
(1994). The discrepancies between curves are very small, thus, the solutions obtained are very
similar. It is interesting to note that although the present simulation uses the same
discretization scheme and a roughly equivalent mesh size as RUN B, the results seems to
match more closely results obtained by RUN A, which uses the TVD and, a priori, produces
better results than upwind schemes. This is probably related to mesh refinement used in the
present work close to the production and injection wells.
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Figure 10 - Comparison of the results obtained for water concentration at the production well
for the simulation carried out in the present work and the results obtained by Mota & Maliska

(1994).

5.1 Speed-up results and discussion

The experiments were run on a cluster of 16 Pentium III (650 MHz, 256k cache L2,
512 Mb RAM), using Giganet 32-bits 33 MHz cLAN NIC and a 30 port Giganet switch,
which presents a latency for 4 bytes equal to 8.2 µs and a bandwidth for 32 Kbytes of 101
Mbytes/s. The five-spot problem described in the previous sections was simulated using three
different mesh sizes, containing 1000, 4000 and 16.000 control volumes. These meshes will
be referred to as 1KCV, 4KCV and 16KCV respectively, from this point onwards. The
simulations were run using 1, 2, 4, 8 and 16 processors. It is important to emphasize that the
simulation for 1 processor is, in fact, slightly different from those executed on various
processors, since a truly sequential code was utilized. So that, it was possible to evaluate the
real performance gain in using parallel instead of sequential computing. Figure 11 presents
the speed-up obtained during the experiments.
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Figure 11 - Speed-up obtained for mesh sizes, containing 1000, 4000 and 16.000 control
volumes, with simulations running on 1, 2, 4, 8 and 16 processors.



 Figure 11 compares the obtained results with the ideal speed-up, which would
represent a linear reduction of the computation time as the number of processors increases. It
is possible to note that the speed-up obtained for the 1KCV mesh is far from the ideal speed-
up. When two processors are used there is a considerable gain in performance, but not a linear
gain. Although the workload is divided among processor, the control volumes of each
computation block that require communication represent a large proportion of the total
number of control volumes in each block. Since the speed of the data in the network
connecting the processors is limited, each processor spends a large amount of time waiting for
information form the other. This fact is even more noticeable when the number of processors
is increased, and the proportion of control volumes of each computation block requiring
communication becomes even larger. It can be seen that computing time for 16 processors is
larger than that for 8 processors.

When the number of control volumes in the calculation domain increases, there is a
considerable gain in performance for the parallel runs in relation to the run using only one
processor. For the 4KCV mesh, the number of control volumes of each computation block
that require communication represent a smaller proportion of the total number of control in
each block, when compared to the 1KCV mesh. Although the speed-up obtained for the
4KCV mesh is considerably better, it is still far from the ideal speed-up, especially when the
number of processors increases. On the other hand, for the 16KCV mesh the speed up for
simulations using 2 and 4 processors is nearly linear, and very close to the ideal. However, as
the number of processors increases the speed-up obtained starts to reduce, which illustrates
that even for a mesh size of 16.000 the proportion of control volumes requiring
communication is considerable for 16 sub-domains.

One interesting feature of the speed-up curves obtained is that the speed-up for the
grid using 4000 control volumes was slightly superior to that obtained for the 16KCV mesh.
This is probably related to a more efficient use of the processor cache. Although the
proportion of control volumes requiring communication of the 4KCV mesh is larger than for
that of 16KCV, the memory size required for the computation was considerably smaller.
Thus, dividing the 4KCV mesh into 8 blocks, creates a computation with memory occupation
small enough to nearly fit inside the processor L2 cache. Since the access time for cache
memory is 5 to 10 times faster that for conventional memory, each processor performs the
computation on its own sub-domain slightly faster, reducing the total computing time.
However, as the domain is further divided the increase of performance provided by the more
efficient use of the processor's cache is not sufficient avoid the considerable performance
degradation.

It is important to remember that although the speed-up provided is not linear, the
performance gains are considerable. The complete simulation of the problem using 16.000
control volumes took 9 hours and 47 minutes using a single processor, while the simulation
using 16 processors took only 1 hour and 4 minutes. Furthermore, the mesh sizes used here
represent only a small fraction of those used in a real scale field simulation, where
computational meshes can exceed 1 million grid cells.

6. CONCLUSION

A numerical algorithm for simulating petroleum reservoirs, based on finite volume
technique using non-structured grids, was presented. The algorithm was designed for parallel
computing platforms with distributed-memory. The parallel implementation was based on the
domain decomposition, with the original reservoir decomposed into several domains, each of
which given to a different processing node. All nodes then execute computations in parallel,



each node on its associated sub-domain. The exchange of information across the sub-domains,
or processors, is achieved using the message passing interface standard.

In order to validate the solution procedure, the well-known five-spot problem is
simulated and the results compared with data from Mota & Maliska (1994) obtained from
numerical simulations using TVD and Upwinding schemes. The results show a good
agreement with previous numerical simulations.

The execution time and speed-up are evaluated through comparing the performance of
different numbers of processors. The results indicate that the parallel code can significantly
improve prediction capability and efficiency for large-scale simulations. However, there is a
considerable degradation of the speed-ups obtained with the increase of the proportion
between the control volumes that require communication and the total number of control
volumes in each block. Thus, for simulation with a small number of grid points, the speed-up
provided by the execution using parallel processors is far from linear. Nevertheless, mesh
sizes used in real scale field simulation can exceed 1 million grid cells, so that they can really
take advantage of large number of processors.
 Although this work has presented good levels of performance for parallel
computations, there is still some ground for improvement. Further work should be carried out
to include higher order convection/diffusion schemes, such as higher order Godunov  (Dicks,
1993) or TVD schemes. The use of more modern methods for the solution of the linear
system of equations, such as GMRES, is also desirable. In addition, more attention should me
devoted to utilize more efficient domain decomposition techniques, since the coordinate
bisection only divides the number of points equally between processors, but makes no attempt
to obtain a domain division that minimize communications between processor. This can be
improved by the use of an inertial or spectral bisection methods (Streng, 1996).

Another possible ground for improvement is to attempt to move the communication
between processors from inside the IMPES Do-loop to outside. In this manner instead of
calculating pressure at each sub-domain and then updating the data between processors, the
pressure field inside a sub-domain would be used for calculating water and oil concentrations,
only then updating the data between processors. This would, theoretically, reduce the
frequency of communication between processors. Moreover, processor cache influence should
be further investigated by using more advanced metrics (Meira et al., 1996).
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