ALGORITMOS PARALELOS

(Aula 4)
R R
Neyval C. Reis Jr. = SRR~ R
OUTUBRO/2004 | =iy PRI\ Rt
& = oF

Laboratério de Computagéo

ufts de Alto Desempenho

g DI/UFES
E I = 05

2 &)W -

Programa do Curso B Al

e = P gE

Introducéo
Arquitetura de Computadores
Arquiteturas de Sistemas Paralelos

Computacéo de Alto Desempenho

a bk 0N PE

Programacéo Paralela (modelos e -
paradigmas)

Analise de Desempenho e Instrumentacao

—
—r
=i
([
o

EEEEEEEEEEEE 7. Aplicagdes

nnnnnnn
uuuuuuuuuuuuu

Programa do Curso

5.

nnnnnnnnnnnn
nnnnnnn
sssssssssssss

e
1
E

rE

L

Programacéo Paralela (modelos e

paradigmas)

a) Comecando a pensar em paralelo (exemplo)

b)
c)
d)

e)

Metodologia de design

Paradigmas de Programacao

i1

Eficiéncia

Ferramentas

<L) |
nhe B

&

nnnnnnnnnnnn
nnnnnnn
nnnnnnnnnnnnn

Fundamentos de
metodologia de

design

Lei de Amdahl (1967)

Tempo de execucdo em um Unico processador:

(1)
Parte Parte Parte
sequencial 1 paralelizavel sequencial 2
1-B

B = fracao do programa que é sequencial

Lei de Amdahl

)
Tempo de
execugéo em Parte Parte Parte
um dnico sequencial 1 paralelizavel sequencial 2
processador:
1-B
T()*B+ (1 -B)y*7(1)/2
Tempo de
execucdo em 2 Parte Parte Parte
sequencial 1| paralelizavel |sequencial 2
processadores:
a-py*r)z

Lei de Amdahl

T(1,N)=f+(T(1,N) - f) f... sequential part of code
that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = T(1,N) / (f + (T(1,N) - f) / p)
For p — infinity, speedup is limited by S(p,N) < T(1,N) / f

100
20
=z 80 d —S(p,N) =p
g 70 4
® 60 Z ——f/ T(1,N) =0.1% => S(p,N) < 1000
=9
2 e = —f/T(1,N)= 1%=> S(p,N) < 100
2 30 -~ = 5%=> <
& X 7 f/ T(1,N) = 5%=> S(p,N) < 20
10 -~/ T(1,N) = 10%=> S(p,N) < 10
0 1 1 1 1 1
0 20 40 60 80 100
p = #processors —_—

Lei de Gustafson-Barsis

* A lei de Amdahl tornou-se um incbmodo para os fabricantes
de maquinas de grande porte.

« No final da década de 80, Gordon Bell ofereceu um prémio
anual de US$ 1000,00 para quem pudesse utilizar
processamento paralelo de maneira eficiénte para resolver

problemas reais (lista de ganhadores).

e Em 1987, um grupo de pesquisadores do Laboratério de
Sandia (Laboratério Computacao Cientifica - EUA) obtiveram
speed-ups de aproximadamente 1000 para problemas com B
entre 0,004 e 0,008, egnquanto que a lei de Amdahl previa

speed-ups de apenas 125 a 250 para estes casos.

Lei de Gustafson-Barsis

« John Gustafson e Ed Barsis formalizaram o conceito por
basico da aparente contradicao. A chave é que Amdahl assume
que o valor de B seja constante para qualquer valor de p (n.
processadores), de fato (1-) quase nunca € independente de
N.

» Lei de Gustafson-Barsis

S=T@Q)/T(p)

T(p)=1
T(p)=a+(-a)=1

fracao sequencial do

programa

Lei de Gustafson-Barsis

TD=a+1-a)=1

Tempo de

execucdo em 2 Parte Parte Parte

processadores: sequencial 1| paralelizavel |sequencial 2

(1-a
TM=a+2*1-0)
Tempo de
execugéo em Parte Parte Parte
um Udnico sequencial 1 paralelizavel sequencial 2
processador:
2*(1-0)

Lei de Amdahl

1 S =Speed-up
S = p = n. de porcessadores
ﬁ + (1 B ﬁ) B = fracao sequencial do
p programa
Lei de Gustafson-Barsis
S =Speed-up

S — p _ a(p _ 1) p = n. de porcessadores

a = fragao sequencial do
programa

Metodologia de

design

nnnnnnnnnnnn
nnnnnnn
nnnnnnnnnnnnn

Paradigma Fork-Join (decomposicao

de tarefas e juncao dos resultados)

l master thread

data-parallel

Paradigma data-parallel

(decomposicao de tarefas

devida a decomposicao
dos dados)

Limites para o paralelismo

e Trivialmente paralelo (trivially parallel) > S=p
« exemplo: aplicagoes “bag of tasks”
= Dividir e conquistar (Divide and Conquer) = S= p/log,p
« exemplo: aplicacoes baseadas em arvores binaria, como busca,
ordenacao, somatorias, etc.
e Paralelismo limitado por comunicacao (Communication bound
Paralelism) > S= 1/C(p)
eem geral C(p) = A+B(p), onde A e Bdependem da forma de
comunicacgao entre processadores e meméoria (laténcia e
bandwidth)
 exemplo: multiplicacao de matrizes e métodos numéricos
e Super-linear paralelismo > S=>p

« exemplo: uso mais eficiente da hierarquia de memoaria

Limites para o paralelismo

Trivially

Comm. intensive

Speedup
(&)}
]

Divide and conquer

0 T T T T T T T
1 2 3 4 5 6 7 8 9 10

Number of processors

Desenvolvimento

5. Testing 6. Validation

7. Certification

6. Validation

5. Testing
4. Coding

7. Certification

4. Coding

1.Requirements
capture

8. Version 2
in use

8. Version 1
in use

3. Detailed
design 2. Preliminary
design

3. Detailed
design

1. Requirements
capture

2. Preliminary design

Desenvolvimento

1.Partitioning. The computation that is to be

performed and the data operated on by this

computation are decomposed into small tasks.
PROBLEM Practical issues such as the number of processors
in the target computer are ignored, and attention
is focused on recognizing opportunities for parallel
execution.
2.Communication. The communication required
to coordinate task execution is determined, and
appropriate communication structures and
algorithms are defined.
3.Agglomeration. The task and communication
structures defined in the first two stages of a
design are evaluated with respect to performance
requirements and implementation costs. If
necessary, tasks are combined into larger tasks to
improve performance or to reduce development

costs.
4.Mapping. Each task is assigned to a processor

in a manner that attempts to satisfy the competing
goals of maximizing processor utilization and
minimizing communication costs. Mapping can be
specified statically or determined at runtime by
load-balancing algorithms.

Particionamento

Dados: _ Do n ,

Pl

Sy

1-D 2D 3-D

Funcional:]
Atmospheric Model

Hydrology
Model Ocean
i ¢ Model
Land Surface Model e

Comunicacgao

Local Communication S
¢ ¢ Global Communication

Comunicacao

Having devised a partition and a communication structure for our
parallel algorithm, we now evaluate our design using the following
design checklist. However, we should be aware of when a design
violates them and why.
1.Do all tasks perform about the same number of
communication operations?
2.Does each task communicate only with a small number of
neighbors?
3.Are communication operations able to proceed concurrently?
Is the computation associated with different tasks able to
proceed concurrently? If not, your algorithm is likely to be
inefficient and nonscalable. Consider whether you can reorder
communication and computation operations.

10

Aglomeracao

(@) —

RN

- _
(b) —_— |]
|
|

[
'/
!
/O_ /O\

O
O/g\o—r = /g\

© M e ;
g &Y SigE—

@]

@ 6’0§ ‘go'b > oo

Aglomeracao

1.Has agglomeration reduced communication costs by increasing locality?

2.1f agglomeration has replicated computation, have you verified that the benefits of
this replication outweigh its costs, for a range of problem sizes and processor counts?
3.1f agglomeration replicates data, have you verified that this does not compromise the
scalability of your algorithm by restricting the range of problem sizes or processor
counts that it can address?

4.Has agglomeration yielded tasks with similar computation and communication
costs? The larger the tasks created by agglomeration, the more important it is that
they have similar costs. If we have created just one task per processor, then these
tasks should have nearly identical costs.

5.Does the number of tasks still scale with problem size?

6.1f agglomeration eliminated opportunities for concurrent execution, have you verified
that there is sufficient concurrency for current and future target computers?

7.Can the number of tasks be reduced still further, without introducing load
imbalances, increasing software engineering costs, or reducing scalability?

8.1f you are parallelizing an existing sequential program, have you considered the cost
of the modifications required to the sequential code?

11

Divisao de tarefas (Mapping)

Our goal in developing mapping algorithms is normally to minimize total execution time.
We use two strategies to achieve this goal:
1.We place tasks that are able to execute concurrently on different processors, so
as to enhance concurrency.
2.We place tasks that communicate frequently on the same processor, so as to
increase locality.

i
i

p
Pp
® v ®

e

Modelos de

Programacao

U5

UHIVERSIDADE
EEDERAL DO
ESPIRITO SANTO

12

Porque precisamos de modelos ?

* S0 0s modelos formais que nos ajudam a demonstrar que o0s

algoritmos séo 6timos ou a obter “6timos” resultados.

e Sua importancia também esta relacionada a possibilidade de
relacionar a complexidade do algoritmo sequencial com o

algoritmo paralelo.

« Através da remocédo dos detalhes de codigicagcdo, como
comunicacgéo e sincroni¢do, o programador pode focar-se nas
caracteristicas estruturais do problema e do processamento

concorrente.

Andlise de algoritmos paralelos

De uma maneira geral a performance de um algoritmo paralelo € medida com
base no tempo de execuc¢do e na quantidade de recursos consumidos:

e Tempo de Execucéo: a quantidade de tempo total gasta na execucéo do

programa (T)

« Numero de processadores necessarios para a execugao do algoritmo (P)

= Custo do algoritmo é definido como o produto entre o nimero de

processadores e 0 tempo de execucéo (C).

13

Limites dos Modelos:
« Sistemas com arquiteturas diferentes precisam de algoritmos diferentes
para resolver o mesmo problema.
< A analise e descrigdo de problemas reais é geralmente bastante dificil, uma
vez que qualquer acesso de memoria ou migracéo de dados devem ser

descritos.

PRAM

» Parallel Random Access Machine
 Shared-memory multiprocessor
 unlimited number of processors, each

— has unlimited local memory

— knows its 1D

— able to access the shared memory

 unlimited shared memory

14

Pn \
m

PRAM n RAM processors connected to a common memory of m cells

ASSUMPTION: at each time unit each P, can read a memory cell, make an internal
computation and write another memory cell.

CONSEQUENCE: any pair of processor P, P;can communicate in constant time!

P; writes the message in cell x at time t
P; reads the message in cell x at time t+1

PRAM

» Inputs/Outputs are placed in the shared
memory (designated address)

» Memory cell stores an arbitrarily large
integer
 Each instruction takes unit time

» Instructions are synchronized across the
processors

15

PRAM

» Synchronized Control
Read Compute]
Write Cycle
Y Private
Memory
) Global
Privat
: ricte | @) o
[|
» Complexity:
T(n), P(n), C(n) —
Memory

Modelo PRAM e suas variagcdes

= There are different modes for read and write operations in a PRAM.
= Exclusive read(ER)
= Exclusive write(EW)
= Concurrent read(CR)
= Concurrent write{ CW)
= Common
= Arbitrary
= Minimum
= Priority
= Based on the different modes described above, the PRAM can be
further divided into the following four subclasses.
= EREW-PRAM model
= CREW-PRAM model
= ERCW-PRAM model
= CRCW-PRAM model

16

Simulacdo de um acesso multiplo a um dado,

utilizando o modelo PRAM EREW

= Broadcasting mechanism:
= P1 reads x and makes it known to P2.

= P1 and P2 make x known to P3 and P4,
respectively, in parallel.

= P1, P2, P3 and P4 make x known to P5, P6,
P7 and P8, respectively, in parallel.

= These eight processors will make x know
to another eight processors, and so on.

Simulagdo de um acesso multiplo a um dado,
utilizando o modelo PRAM EREW

X L X L S L

..... /' x| 7 i %) % e %
................................ | « . z E
- -__./vi B

]] X

N n N B

5 H 1 BH®~i

(a) (b) (©) @

Simulating Concurrent read on EREW PRAM with eight processors using Algorithm
Broadcast_EREW

17

Simulacdo de um acesso multiplo a um dado,

utilizando o modelo PRAM EREW

= Algorithm Broadcast_EREW

Processor P1
y (in P1’s private memory) < x
L[1] €y
for i=0 to log p-1 do
forall P;, where 2! +1 < j < 2#1 do in parallel
y (in P's private memory) < L[j-21]
L] <y
endfor
endfor

THE PRAM IS A THEORETICAL (UNFEASIBLE) MODEL

« The interconnection network between processors and memory would require
a very large amount of area .

» The message-routing on the interconnection network would require time

proportional to network size (i. e. the assumption of a constant access time
to the memory is not realistic).

WHY THE PRAM IS A REFERENCE MODEL?

+ Algorithm’s designers can forget the communication problems and focus their

attention on the parallel computation only.

18

PRAM

One should notice, however, that PRAM algorithms, when implemented in practice,
leave much to be desired in terms of actual performance. Frequently speedup results
for theoretical PRAM algorithms do not match the actual speedups obtained in
experiments performed on real parallel computers. So in spite of the usefulness, as
far theory is concerned, of the PRAM model, we are desperately in need of more

realistic parallel computing models.

BSP - Bulk Synchronous Parallel

Among the realistic computing models, the most important is probably Valiant's BSP
(Bulk Synchronous Parallel) computing model, proposed in 1990. A BSP computer
consists of a set of processor/memory modules connected by a router that can
deliver messages in a point to point fashion among the processors. In the BSP
model, computation is divided into a sequence of supersteps separated by barrier
synchronizations. A superstep in turn consists of local computation and data
exchange among processors through the router. Though BSP is possible to simulate
PRAM algorithm optimally on distributed memory machines, Valiant observes the
importance of design of parallel algorithms that take advantage of local
computations and minimize global operations. Valiant also points out situations in
which PRAM simulations are not efficient and these situations, unfortunately, occur

in the majority of current parallel computers.

19

BSP - Bulk Synchronous Parallel

Bulk synchronous parallelism (BSP)is a model in which interconnection network
properties are captured by a few architectural parameters. A BSP abstract
machine consists of a collection of p abstract processors, each with local
memory, connected by an interconnection network whose only properties of
interest are the time to do a barrier synchronization (/) and the rate at which
continuous randomly addressed data can be delivered (g). These BSP

parameters are determined experimentally for each parallel computer.

BSP - Bulk Synchronous Parallel

A BSP (abstract) program consists of p threads and is divided into supersteps.
Each superstep consists of: a computation in each processor, using only locally
held values; a global message transmission from each processor to any set of the
others; and a barrier synchronization. At the end of a superstep, the results of
global communications become visible in each processor’s local environment. If
the maximum local computation on a step takes time wand the maximum
number of values sent by or received by any processor is h, then the total time

for a superstep is given by
t=w+hg +/

(where g and | are the network parameters), so that it is easy to determine the
cost of a program. This time bound depends on randomizing the placement of
threads and using randomized or adaptive routing to bound communication time.

20

BSP - Bulk Synchronous Parallel

<—— Processors —————>

Local Computations

W Global Communications

I 5.:ricr Synchronisation

BSP Superstep

BSP - Bulk Synchronous Parallel

Thus BSP programs must be decomposed into threads, but the placement of
threads is then done automatically. Communication is implied by the
placement of threads, and synchronization takes place across the whole
program. The model is simple and fairly abstract, but lacks a software

construction methodology.

The cost measures give the real cost of a program on any architecture for

which gand /are known.

The current implementation of BSP uses an SPMD library that can be called
from C and FORTRAN. The library provides operations to put data into the
local memory of a remote process, to get data from a remote process, and

to synchronize.

21

Another related approach is LogP [Culler et al. 1993], which uses similar threads
with local contexts, updated by global communications. However, LogP does not
have an overall barrier synchronization. The LogP model is intended as an abstract
model that can capture the technological reality of parallel computation. LogP
models parallel computations using four parameters:

L: an upper bound on the latency, or delay, incurred in communicating a message
containing a word (or small number of words) from its source module to its target
module.

o: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor cannot
perform other operations.

g: the gap, defined as the minimumtime interval between consecutive message
transmissions or consecutive message receptions at a processor.

P: the number of processor/memory modules. We assume unit time for local
operations and call it a cycle.

PO i, L

P2 SN, o~

P3 "‘-_‘ ‘%n-....__ L

P4 Ty

P35 | SR S - e L

P6 Ty e
P7 P6 P4 P7 Ay

0 IS IﬂO I15 IZD T\Ime

Figure 3: Optimal broadcast tree for P = 8,1 = 6,7 = 4, 0 = 2 (left) and the activity of each processor
over time (right). The number shown for each node is the time at which it has received the datum and can
begin sending it on. The last value is received at time 24.

A set of programming examples has been designed with the LogP model
and implemented on the CM-5 parallel machine to evaluate the model’s
usefulness. However, the LogP model is no more powerful than BSP

[Bilardi et al. 1996], so BSP’s simpler style is perhaps to be preferred.

Bibliografia Recomendada:
Modelos
* Models and Languages for Parallel Computation, David B. Skilicorn and Domenico

Talia, disponivel em
http://www.inf.ufes.br/~raulh/ufes/teaching/courses/pp/page/texts/p123-skillicorn.pdf

« Designing and Building Parallel Programs, by lan Foster,
disponivel em http://www-unix.mcs.anl.gov/dbpp/

PRAM

« Parallel Random Access Machine (PRAM) Model Emulator, Yueh-Lin Liu and Siripong
Kaewyou,
disponivel em http://cs-www.bu.edu/faculty/best/crs/cs551/projects/pram/pram.html

23

Bibliografia Recomendada:

BSP (disponiveis em http://www.scs.carleton.ca/~bsp/):

« Silvia Goetz, "Algorithms in CGM, BSP and BSP* Model: A Survey", Term Paper for
Graduate Course "Parallel Algorithms and VLSI Implementation”, Carleton Unviversity,
Ottawa, January 1997. on Parallel Computation Models

« B.M. Maggs, L.R. Matheson, R.E. Tarjan, "Models of Parallel Computation: A Survey
and Synthesis, Proc. of the 28th Hawaii International Conference on System Sciences
(HICSS), Vol. 2, Jan. 1995, pp. 61-70. S. E. Hambrusch, "Models for Parallel
Computation”, Proceedings of Workshop on Challenges for Parallel Processing,
International Conference on Parallel Processing, 1996.

LogP (disponiveis em http://www.scs.carleton.ca/~bsp/other.html#Log):

« D.E.Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.
Subramonian, T. von Eicken, "LogP:Towards a Realistic Model of Parallel
Computation", 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, CA, May 1993.

¢ A. Alexandrov, M. lonescu, K. E. Schauser, C. Scheiman, "LogGP: Incorporating Long
Messages into the LogP model - One step closer towards a realistic model for parallel
computation", 7th Annual Symposium on Parallel Algorithms and Architecture
(SPAA'95), July 1995.

24

